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ABSTRACT
An inconsistent database is a database that violates one or more in-
tegrity constraints. A typical approach for answering a query over
an inconsistent database is to first clean the inconsistent database by
transforming it to a consistent one and then apply the query to the
consistent database. An alternative and more principled approach,
known as consistent query answering, derives the answers to a
query over an inconsistent database without changing the database,
but by taking into account all possible repairs of the database.

In this paper, we study the problem of consistent query answer-
ing over inconsistent databases for the class for conjunctive queries
under primary key constraints. We develop a system, called EQUIP,
that represents a fundamental departure from existing approaches
for computing the consistent answers to queries in this class. At
the heart of EQUIP is a technique, based on Binary Integer Pro-
gramming (BIP), that repeatedly searches for repairs to eliminate
candidate consistent answers until no further such candidates can
be eliminated. We establish rigorously the correctness of the al-
gorithms behind EQUIP and carry out an extensive experimen-
tal investigation that validates the effectiveness of our approach.
Specifically, EQUIP exhibits good and stable performance on con-
junctive queries under primary key constraints, it significantly out-
performs existing systems for computing the consistent answers of
such queries in the case in which the consistent answers are not
first-order rewritable, and it scales well.

1. INTRODUCTION
An inconsistent database is a database that violates one or more

integrity constraints. Inconsistencies arise frequently under several
different circumstances. For example, errors may be unintention-
ally introduced or the same information may be entered differently
in the same database. Inconsistencies may also arise when combin-
ing data from different sources, where each source may represent
the same information in a different way. There is a large body of
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work on data cleaning aiming to make meaningful sense of an in-
consistent database (see [15] for a survey). In data cleaning, the
approach taken is to first bring the database to a consistent state by
resolving all conflicts that exist in the database. While data clean-
ing makes it possible to derive one consistent state of the database,
this process usually relies on statistical and clustering techniques,
which entail making decisions on what information to omit, add, or
change; quite often, these decisions are of an ad hoc nature.

An alternative, less intrusive, and more principled approach is
the framework of consistent query answering, introduced in [1]. In
contrast to the data cleaning approach, which modifies the database,
the inconsistent database is left as-is. Instead, inconsistencies are
handled at query time by considering all possible repairs of the
inconsistent database, where a repair of a database I is a database
r that is consistent with respect to the integrity constraints, and
differs from I in a “minimal” way. A consistent answer of a query
q on I is a tuple that belongs to the set

⋂
{q(r) : r is a repair of I}.

In words, the consistent answers of q on I are the tuples that lie in
the intersection of the results of q applied on each repair of I .

There has been a substantial body of research on delineating the
boundary between the tractability and intractability of consistent
answers, and on efficient techniques for computing them (see [6]
for a survey). The parameters in this investigation are the class of
queries, the class of integrity constraints, and the types of repairs.
Here, we focus on the class of conjunctive queries under primary
key constraints and subset repairs, where a subset repair of I is
a maximal sub-instance of I that satisfies the given integrity con-
straints. Conjunctive queries, primary keys, and subset repairs con-
stitute the most extensively studied types of, respectively, queries,
integrity constraints, and repairs considered in the literature to date.

Earlier systems for computing the consistent answers of conjunc-
tive queries under primary key constraints have been based either
on first-order rewriting techniques or on heuristics that are devel-
oped on top of logic programming under stable sets semantics.

As the name suggests, first-order rewriting techniques [1, 20, 29]
are applicable whenever the consistent answers of a query q can be
computed by directly evaluating some other first-order query q′ on
the inconsistent database at hand. First-order rewritability is ap-
pealing because it implies that the consistent answers of q have
polynomial-time data complexity and, in fact, can be computed
using a database engine. In particular, for the subclass Cforest of
conjunctive queries under primary key constraints, the system Con-
Quer, which is developed on top of a relational database manage-
ment system, was shown to achieve very good performance [19].
However, first-order rewriting techniques can only be applied to
a rather limited collection of conjunctive queries under primary
key constraints. The reason is that computing the consistent an-
swers of conjunctive queries under primary key constraints is a
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coNP-complete problem in data complexity [2]. Moreover, coNP-
completeness can arise even for very simple Boolean conjunctive
queries with only two atoms under primary key constraints [20, 24].

Heuristics for computing the consistent answers using logic pro-
gramming under stable model semantics have high worst-case com-
plexity, but apply to much larger classes of queries and constraints
[2, 4, 14, 22, 23, 26]. Indeed, this technique is applicable to arbi-
trary first-order queries under universal constraints. In particular,
it is applicable to arbitrary conjunctive queries under primary key
constraints, regardless of whether or not their consistent answers
are first-order rewritable. However, as we shall show in Section 6,
this technique does not scale well to larger databases.

Contributions We propose a different approach that leverages Bi-
nary Integer Programming (BIP) to compute the consistent answers
to conjunctive queries under primary key constraints.
• We give an explicit polynomial-time reduction from the com-

plement of the consistent answers of a conjunctive query under
primary key constraints to the solvability of a binary integer
program.
• We present an algorithm that computes the consistent answers

of a query using the above binary integer program. Our algo-
rithm repeatedly executes and augments the binary integer pro-
gram with additional constraints to eliminate candidate consis-
tent answers until no more such candidates can be eliminated.
• We have built a system, called EQUIP, that implements our

BIP-based approach over a relational database management sys-
tem and a BIP solver.
• We have conducted an extensive suite of experiments over both

synthetic data and data derived from TPCH to determine the
feasibility and effectiveness of EQUIP. Our experimental re-
sults show that EQUIP exhibits good performance with rea-
sonable overheads on queries for which computing the consis-
tent answers ranges from being first-order rewritable to coNP-
complete. Furthermore, EQUIP performs significantly better
than existing systems for queries for which no first-order rewrit-
ing exists, and also scales well.

2. RELATED WORK
Computing the consistent answers to conjunctive queries under

primary key constraints has been the target of an in-depth investi-
gation within the broader area of consistent query answering. Early
intractability results revealed that the data complexity of this prob-
lem is coNP-complete [10]; this gave rise to the challenge to iden-
tify tractable cases of this problem and also to design useful heuris-
tics for the intractable cases.

Much of the pursuit of tractable cases of consistent query an-
swering has focused on the first-order rewriting technique. This
technique amounts to taking the original query q, together with the
constraints Σ, and constructing a first-order query q′ such that the
usual evaluation of q′ on the inconsistent database I returns exactly
the consistent answers to q on I with respect to Σ. In what follows,
if such a query q′ exists, we say that q is first-order rewritable.
The main advantage of this approach is the ease of incorporating it
into existing database applications, since the query q′, being a first-
order query, can be efficiently evaluated using a database engine.

The first-order rewriting technique was initially introduced in [1]
and further studied by Fuxman et al. [19, 20] and by Wijsen [27,
29]. In particular, Fuxman et al. identified a subclass, called Cforest,
of self-join free conjunctive queries that are first-order rewritable
under primary key constraints, and also built a system, called Con-
Quer, which implements a rewriting strategy for queries in Cforest.

In [29], Wijsen studied the class of self-join free acyclic conjunc-
tive queries and characterized the first-order rewritable ones by
finding an efficient necessary and sufficient condition for an acyclic
conjunctive query under primary key constraints to be first-order
rewritable. The two classes of first-order rewritable queries identi-
fied by Fuxman et al. and by Wijsen are incomparable. Indeed, on
the one hand, Cforest contains cyclic first-order rewritable queries
(hence these are not covered by Wijsen’s results) and, on the other,
there are acyclic conjunctive queries that are first-order rewritable,
but are not in Cforest. We will see such examples in Section 6 of the
paper. It remains an open problem to characterize which conjunc-
tive queries are first-order rewritable under primary key constraints.

First-order rewritability is a sufficient, but not necessary, condi-
tion for tractability of consistent query answering. There are con-
junctive queries, as simple as involving only two different binary
relations, for which a first-order rewriting does not exist. Con-
cretely, Wijsen [28] showed that the consistent answers of the con-
junctive query ∃x, y.R1(x, y) ∧ R2(y, x), where the first attribute
of R1 and R2 is a key, are polynomial-time computable, but the
query is not first-order rewritable. In [24], an effective necessary
and sufficient condition was given for a conjunctive query involv-
ing only two different relations to have its consistent answers com-
putable in polynomial-time. No such characterization is known for
queries involving three or more relations.

A different approach to tractable consistent query answering is
the conflict-hypergraph technique, introduced by Arenas et al. [3]
and further studied by Chomicki et al. in [11, 12]. The conflict-
hypergraph is a graphical representation of the inconsistent database
in which nodes represent database facts and hyperedges represent
minimal sets of facts that together give rise to a violation of the
integrity constraints, where the class of integrity constraints can
be as broad as denial constraints. Chomicki et al. designed a
polynomial-time algorithm and built a system, called Hippo, that
uses the conflict-hypergraph to compute the consistent answers to
projection-free queries that may contain union and difference oper-
ators. While the class of constraints supported by Hippo goes well
beyond primary key constraints, the restriction to queries without
projection limits its applicability. In particular, for the class of con-
junctive queries and primary key constraints, this technique does
not bring much to the table, as conjunctive queries that are self-join
free and projection-free belong to Cforest.

In a different direction, disjunctive logic programming and sta-
ble model semantics have been used to compute the consistent an-
swers of arbitrary first-order queries under broad classes of con-
straints, which include primary key constraints as a special case [2,
4, 14, 22, 23, 26]. For this, disjunctive rules are used to model the
process of repairing violations of constraints. These rules form a
disjunctive logic program, called the repair program, whose stable
models are tightly connected with the repairs of the inconsistent
database (and in some cases are in one-to-one correspondence with
the repairs). For every fixed query, the query program is formed
by adding a rule on top of the repair program. Query programs
can be evaluated using engines, such as DLV [13], for computing
the stable models of disjunctive logic programs, a problem known
to be Πp

2-complete. Two systems that have implemented this ap-
proach are Infomix [25] and ConsEx [8, 9]. The latter uses the
magic sets method [5] to eliminate unnecessary rules and generate
more compact query programs. Clearly, these systems can be used
to compute the consistent answers of conjunctive queries under pri-
mary key constraints, which are the object of our study here. How-
ever, they can also handle constraints and queries for which the data
complexity of consistent query answering is Πp

2-complete; for ex-
ample, the data complexity of conjunctive queries under functional
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and inclusion dependencies is Πp
2-complete [10]. As mentioned

earlier, the data complexity of conjunctive queries under primary
key constraints is coNP-complete; our system EQUIP uses a solver
for BIP, a problem of matching computational complexity.

Finally, Flesca at al. [17] studied the problem of repairing and
querying databases with numerical attributes. To this effect, they
used Mixed Integer Linear Programming to model repairs based
on a minimal number of updates at attribute level, and to extract
consistent answers from inconsistent numerical databases. This
approach is similar to the BIP approach adopted here, but is fo-
cused on numerical databases and on aggregate constraints. In
subsequent investigations [16, 18], they used Integer Linear Pro-
gramming to compute the consistent answers of Boolean aggregate
queries, as well as the range-consistent answers of SUM, MIN, and
MAX queries, in this framework.

3. PRELIMINARIES
Basic Notions A relational database schema is a finite collection
R of relation symbols, each with an associated arity. If R is a rela-
tion symbol in R and I is an instance over R, then RI denotes the
interpretation of R on I . Furthermore, if Attr(R) is the set of all
attributes of R, then a key of R is a minimal subset X of Attr(R)
for which the functional dependency X → Attr(R) holds; such a
functional dependency is called a key constraint. We assume that
each relation symbol comes with a fixed key.

A conjunctive query is a first-order formula built from atomic
formulas, conjunctions, and existential quantification. Thus, every
conjunctive query is logically equivalent to an expression of the
form q(z) = ∃w.R1(x1)∧ . . .∧Rm(xm), where each xi is a tu-
ple of variables and constants, z and w are tuples of variables, the
variables in x1, . . . ,xm appear in exactly one of z and w, and each
relation symbol may appear more than once. We will often write
conjunctive queries as rules; specifically, the rule expressing the
preceding conjunctive query is q(z) : −R1(x1), . . . , Rm(xm).
A Boolean conjunctive query is a conjunctive query in which all
variables are existentially quantified; thus, when a Boolean con-
junctive query q is written as a rule, the left-hand side of the rule
is q(). If a conjunctive query has repeated relation names, we say
that it contains a self-join. We refer to queries that do not contain
self-joins as self-join free queries. In what follows, whenever we
write a conjunctive query, we underline in each atom variables that
appear in the positions of attributes that are part of the key of the
relation symbol; such variables are called key variables. For exam-
ple, by writing ∃x, y.R1(x, y)∧R2(y, x), we indicate that the first
attributes of R1 and R2 are, respectively, the keys of R1 and R2;
furthermore, x is a key variable of the atom R1(x, y), while y is a
key variable of the atom R2(y, x). In general, when a conjunctive
query is presented in this form, we omit explicitly specifying the
schema and the key constraints, since they can be derived from the
formulation of the query itself.

A fact of an instance I is an expression of the form RI(a1, . . . , an)
such that (a1, . . . , an) ∈ RI . We say that two facts RI(a1, . . . , an)
and RI(b1, . . . , bn) form a conflict if the tuples (a1, . . . , an) and
(b1, . . . , bn) witness a violation of the key constraint of R; we also
say that these two facts are key-equal. A key-equal group of facts
in a database I is a maximal set of key-equal facts, i.e., it is a set
K of facts from I such that every two facts from K are key-equal,
and no fact from K is key-equal to some fact from I \K.
Database repairs and consistent answers We now give precise
definitions of the notions of a subset repair and consistent answers.

DEFINITION 1. Let R be a relational database schema and Σ a
set of primary key constraints over R.

• Let I be an instance. An instance r is a subset repair or, simply,
a repair of I w.r.t. Σ if r is a maximal sub-instance of I that
satisfies Σ, i.e., r |= Σ and there is no instance r′ such that
r′ |= Σ and r ⊂ r′ ⊂ I .
• Let q be a conjunctive query over the schema R.

• If I is an instance, then a tuple t is a consistent answer
of q on I if for every repair r of I w.r.t. Σ, we have that
t ∈ q(r).
In the case in which q is Boolean, we say that true is the
consistent answer to q on I if for every repair r of I w.r.t. Σ,
we have that q(r) is true; otherwise, false is the consistent
answer of q on I .

• CERTAINTY(q) is the following decision problem: Given an
instance I and a tuple t, is t a consistent answer of q on I?
In the case in which q is Boolean, CERTAINTY(q) is the
following decision problem: Given an instance I , is true
the consistent answer to q on I?

It should be pointed out that the decision problem CERTAINTY(q)
is about the data complexity of consistent query answering, that is
to say, the query and the constraints are fixed, hence the complexity
of computing the consistent answers depends only on the size of the
database instance. It is easy to see that for every fixed conjunctive
query q and every set Σ of primary key constraints, CERTAINTY(q)
is in coNP. Moreover, there are conjunctive queries and primary key
constraints for which CERTAINTY(q) is coNP-complete. For exam-
ple, as shown in [20], this is the case for the conjunctive query
∃x, x′y.R1(x, y) ∧R2(x′, y).

Let q be a non-Boolean conjunctive query and let Σ be the set of
primary key constraints in q. Since q is a monotone query and since
the repairs of a database instance I are sub-instances of I , we have
that the consistent answers of q on I form a subset of q(I). Thus,
every tuple in q(I) is a candidate for being a consistent answer to
q on I w.r.t. Σ. We refer to the tuples in q(I) as the potential con-
sistent answers to q on I w.r.t. Σ, or, simply, the potential answers
to q on I w.r.t. Σ. In the case in which q is Boolean, if q(I) is
false, then the consistent answer to q is also false. If q(I) is true,
then true is the potential answer to q on I . The consistent part of I
is the the sub-instance of I consisting of all facts of I that are not
involved in any conflict. Clearly, the consistent part of a database
I is the intersection of all repairs of I . It is also the union of all
singleton key-equal groups.

Integer Linear Programming Integer Linear Programs (ILP) are
optimization problems of the form max {cTx | Ax ≤ b;x ∈ Z∗}
(or, in the dual form min {bTy | ATy ≥ c; y ∈ Z∗}), where b
and c are vectors of integer coefficients, bT and cT are the trans-
pose of, respectively, b and c, A is a matrix of integer coefficients
and x (or, y) is a vector of variables, ranging over the set Z∗ of
the non-negative integers. The function cTx (or, bTy) is called
the objective function. The system of inequalities Ax ≤ b (or,
ATy ≥ c) are the constraints to the program. Binary Integer Pro-
gramming (BIP) is the special case of Integer Linear Programming
in which the variables must take values from the set {0, 1}. A
solution to an integer program is an assignment of non-negative in-
tegers to the variables of the program that satisfies the constraints.
An optimal solution to the integer program is a solution that yields
the optimal value of the objective function. If x is the vector of
variables in the program, we will use the notation x̂ to denote a
solution of the integer program, and the notation x∗ to denote an
optimal solution.

The decision problem underlying Integer Linear Programming
is: Given a system Ax ≤ b of linear inequalities with integer co-
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efficients, does it have a solution? Similarly, the decision prob-
lem underlying Binary Integer Programming is: Given a system
Ax ≤ b of linear inequalities with integer coefficients, does it
have a solution consisting of 0’s and 1’s? It is well known that both
these decision problems are NP-complete (see [21]). In what fol-
lows, we will use the terms Integer Linear Programming (ILP) to
refer to both the optimization problem and the decision problem,
and similarly for Binary Integer Programming (BIP).

4. CONSISTENT QUERY ANSWERING VIA
BINARY INTEGER PROGRAMMING

From now on, whenever we are working with a conjunctive query
q, we will assume that we are given both the conjunctive query and
the primary key constraints of the schema of q.

Let q be a conjunctive query. Since CERTAINTY(q) is in coNP
and since Binary Integer Programming is NP-complete, there is a
polynomial-time reduction from the complement of CERTAINTY(q)
to Binary Integer Programming. Here, we will explore explicit
natural reductions between these two problems and will develop
a technique for computing the consistent answers of conjunctive
queries using Binary Integer Programming. The following results
will be presented in this section.
• An explicit polynomial-time reduction from the complement of

CERTAINTY(q), where q is a Boolean conjunctive query, to Bi-
nary Integer Programming. This result is stated as Theorem 1.

• An explicit polynomial-time reduction from the complement of
CERTAINTY(q), where q can be a Boolean or a non-Boolean
conjunctive query, to Binary Integer Programming. This result
is stated as Theorem 2; the technique used in Theorem 2 ex-
tends the reduction used in Theorem 1 to non-Boolean queries.

• An algorithm for computing the consistent query answers of a
conjunctive query, which uses as a building block the system of
constraints in the reduction used in Theorem 2.

Boolean Conjunctive Queries In what follows, we will make use
of the notion of a minimal witness to a query on a database instance.
Let I be a database instance and S a sub-instance of I . We say that
S is a minimal witness to a Boolean query q if q is true on S and
for every proper subset S′ of S, we have that q is false on S′.

THEOREM 1. Let q be a fixed Boolean conjunctive query. Given
a database instance I over the same schema as q, we construct in
polynomial time the following system of linear equalities and in-
equalities with variables xf1 , · · · , xfi , · · · , xfn , where each vari-
able xfi is associated with a fact fi of I .
System (1):
(a)

∑
fi∈K

xfi = 1, for K a key-equal group of I .

(b)
∑
fi∈S

xfi ≤ |S| − 1, for S a minimal witness to q on I , where
xfi ∈ {0, 1}, for every fi ∈ I .

Then the following statements are equivalent:

• There is a repair r of I in which q is false.

• System (1) has a solution.

PROOF. (Sketch) Intuitively, the constraints (a) express the fact
that from every key-equal group of facts, exactly one fact must ap-
pear in a repair. The constraints (b) express the fact that for every
minimal witness S to q, not every fact of S should appear in a re-
pair. There is a one-to-one mapping between the repairs in which q
is false and the solutions to the set of constraints (a) and (b). Given
a repair r of I on which q is false, one can construct a solution x̂
by assigning x̂fi = 1 if and only if fi is a fact in r. In the other

direction, given a solution x̂ to the constraints (a) and (b), one can
construct a repair r of I in which q is false by adding to r precisely
the facts fi such that x̂fi = 1.

We illustrate Theorem 1 with Example 1 next.

EXAMPLE 1. Let q be the query q() : −R1(x, y, z), R2(x′, y).
Let I be the displayed database, where f1, · · · , f5 are names used

R1

A B C
f1 a b1 c1
f2 a b2 c1
f3 e b1 c2

R2

D E
f4 d b1

f5 d b2

to identify database facts. For every fact fi, we introduce a Boolean
variable xfi . Since {f1, f2} forms a key-equal group of facts, we
create the constraint xf1 +xf2 = 1. Doing the same for all the key-
equal groups, we obtain the equalities (a). The sets of facts that are
minimal witnesses to q on I are {f1, f4}, {f2, f5}, and {f3, f4}.
From these minimal witnesses, we obtain the inequalities (b).

(a)
xf1 + xf2 = 1
xf3 = 1
xf4 + xf5 = 1

(b)
xf1 + xf4 ≤ 1
xf2 + xf5 ≤ 1
xf3 + xf4 ≤ 1

It is easy to check that the consistent answer to q is false, because
q is false on the repair r = {f1, f3, f5}. This gives rise to a solution
to the system of the constraints (a) and (b) by assigning value 1 to
a variable xi if and only if fi ∈ r. Thus, we obtain the solution
(xf1 , xf2 , xf3 , xf4 , xf5) = (1, 0, 1, 0, 1).

The size of System (1) in Theorem 1 is polynomial in the size
of the database I (however, the degree of the polynomial depends
on the fixed query q). Indeed, there are |I| different variables, that
is, as many variables as facts in I . One equality constraint is intro-
duced for every key-equal group. Since every database fact belongs
to exactly one key-equal group, the number of constraints in (a) is
at most |I|. One inequality constraint is introduced for every mini-
mal witness. If q has k atoms, then there are at most |I|k different
minimal witnesses.
Non-Boolean Conjunctive Queries Theorem 1 gives rise to a
technique for computing the consistent answers of a Boolean con-
junctive query under primary key constraints using a BIP solver.
This technique can be extended to non-Boolean queries as follows.

Let q be a conjunctive query of arity k, for some k ≥ 1. If I is
a database instance and t is a k-tuple with values from the active
domain of I , then t is a consistent answer of q on I if and only if
for every repair r of I , we have that t is in q(r). This is the same
as the Boolean query q[t] being true in every repair r of I , where
q[t] is the query obtained from q by substituting variables from the
head of q (i.e., variables that are not existentially quantified) with
corresponding constants from t. Thus, for every potential answer
a to q, we can use Theorem 1 to check if q[t] is true in every repair.

The preceding approach to computing the consistent answers of
a non-Boolean query q on some database instance I requires that
we solve as many instances of BIP as the number of potential an-
swers of q on I . Hence, if the number of potential answers is large,
it is conceivable that this approach may be expensive in practice.
For this reason, we explore a different technique for handling non-
Boolean queries that avoids constructing and evaluating a binary
integer program for every potential answer. We will present this
technique in two steps. First, we give a reduction that, given a
database instance I , constructs a system of linear equalities and in-
equalities such that one can reason about all the potential answers
to q by exploring the set of solutions to the system. This result,
which is stated in Theorem 2, serves as a building block for Algo-
rithm ELIMINATEPOTENTIALANSWERS, which is presented later
in this section.
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THEOREM 2. Let q be a fixed conjunctive query. Given a data-
base instance I over the same schema as q, we construct in polyno-
mial time the following system of linear equalities and inequalities
with variables xf1 , · · · , xfi , · · · , xfn , where each variable xfi is
associated with a database fact fi.
System (2):
(a)

∑
fi∈K

xfi = 1, for K a key-equal group of I .

(b) (
∑
fi∈S

xfi )− ua ≤ |S| − 1, for a ∈ q(I) and for S a witness of
q[a] on I , where xfi , ua ∈ {0, 1},
for every fi ∈ I and a ∈ q(I).

Then the following statements are equivalent for a, where a is a
potential answer to q on I:

• There is a repair r of I in which q[a] is false.

• System (2) has a solution (x̂, û) such that ûa = 0.

PROOF. (Sketch) If r is a repair of I such that a is not an answer
to q on r, we can construct a solution (x̂, û) by assigning x̂fi = 1
if and only if fi is a fact in r, and by assigning ûa = 0, and ûb = 1
for every other variable ub, where b 6= a. In the other direction,
given a solution (x̂, û) such that ûa = 0, we can construct a repair
r to I that does not satisfy q[a] by adding to r precisely the facts fi
such that x̂fi = 1.

Observe that for every solution to System (2), there is a database
repair that corresponds to the solution, and for every repair, there is
a solution to System (2) that corresponds to the repair. Furthermore,
it is straightforward to verify that if only the constraints (a) are
considered, then the solutions (to the constraints (a)) are in one-to-
one correspondence with the repairs of I .

We illustrate Theorem 2 with Example 2.

EXAMPLE 2. Consider the unary query q(z), where
q(z) : −R1(x, y, z), R2(x′, y). Let I be the following database:

R1

A B C
f1 a b1 c1
f2 a b2 c1
f3 e b1 c2
f4 g b1 c3
f5 h b2 c3

R2

D E
f6 d b1

f7 d b2

The key-equal groups give rise to equations in (a). The potential
answers to q are c1, c2 and c3. To represent each of these potential
answers, we use variables uc1 , uc2 and uc3 , respectively. Since
{f1, f6} is a minimal witness to potential answer c1, we generate
the inequality xf1 + xf6 − uc1 ≤ 1. The set {f2, f7} is also a
minimal witness to c1. Hence, we generate the inequality xf2 +
xf7 −uc1 ≤ 1. Doing the same for every minimal witness to every
potential answer, we create the set of inequalities in (b):

(a)

xf1 + xf2 = 1
xf3 = 1
xf4 = 1
xf5 = 1
xf6 + xf7 = 1

(b)

xf1 + xf6 − uc1 ≤ 1
xf2 + xf7 − uc1 ≤ 1
xf3 + xf6 − uc2 ≤ 1
xf4 + xf6 − uc3 ≤ 1
xf5 + xf7 − uc3 ≤ 1

The vector (x̂, û) with x̂ = (0, 1, 1, 1, 1, 1, 0) and û = (0, 1, 1)
is a solution of the system (a) and (b). It is easy to check that the
database instance r = {fi ∈ I | x̂fi = 1} is a repair of I in which
c1 is not an answer to q. Hence, c1 is not a consistent answer.
Similarly, x̂ = (0, 1, 1, 1, 1, 0, 1) and û = (1, 0, 1) form a solution
of the system. The instance r = {fi ∈ I | x̂fi = 1} is a repair
of I in which c2 is not an the answer to q. As Theorem 2 states,
it is not a coincidence that ûc1 = 0. On the other hand, c3 is a
consistent answer of q. Indeed, since in every solution of the above

system it must hold that x̂f4 = 1 and x̂f5 = 1, and one of x̂f6 or
x̂f7 must be assigned value 1, it follows that in order to satisfy both
inequalities xf4 + xf6 − uc3 ≤ 1 and xf5 + xf7 − uc3 ≤ 1 the
variable uc3 must always take value 1.

The size of the system of constraints is polynomial in the size of
the database instance |I|. Indeed, the number of variables is equal
to the number |I| of facts in I plus the number |q(I)| of potential
answers. If the query q has k atoms, then |q(I)| is at most |I|k.
The number of equality constraints is at most |I|. Finally, for every
potential answer there are at most |I|k inequality constraints.

The system of constraints in Theorem 2 can be viewed as a com-
pact representation of the repairs, since, as mentioned earlier, the
solutions to the program encapsulate all repairs of the database.
The conflict-hypergraph and logic programming techniques, which
were discussed in Section 2, also provide compact representations
of all repairs. Specifically, in the case of the conflict hypergraph,
the repairs are represented by the maximal independent sets, while,
in the case of logic programming, the repairs are represented by the
stable models of the repair program.

Theorem 2 gives rise to the following technique for comput-
ing the consistent query answers to a conjunctive query q: given
a database instance I , construct System (2), find all its solutions,
and then explore the entire space of these solutions to filter out the
potential answers that are not consistent. This technique avoids
building a separate system of constraints for every potential an-
swer, unlike the earlier technique based on Theorem 1 . However,
the number of solutions of System (2) can be as large as the number
of repairs. Thus, it is not a priori obvious how these two techniques
would compare in practice. In what follows in this paper, we will
demonstrate the advantage that Theorem 2 brings.

Algorithm ELIMINATEPOTENTIALANSWERS In a sense, the
solutions of System (2) form a compact representation of all repairs
together with information about which potential answers are false
in each repair. This allows us to explore the space of solutions in an
efficient manner, so that we can quickly filter out inconsistent po-
tential answers. It also provides the intuition behind our algorithm
ELIMINATEPOTENTIALANSWERS that we will describe next.

ELIMINATEPOTENTIALANSWERS is based on two main obser-
vations. First, one can differentiate among the solutions to System
(2) according to the number of potential answers that they provide
evidence for filtering out. Intuitively, a solution can be thought
of as being better than another if it makes it possible to filter out a
larger number of potential answers than the second one does. Thus,
it is reasonable to examine first the solution that allows to filter out
the most potential answers. We can model this idea by building a
binary integer program that minimizes the sum of all variables uaj .
Second, some solutions may provide redundant information about
potential answers that are not consistent as, in practice, it is com-
mon that a potential answer may not be found as an answer in more
than one repair. The algorithm ELIMINATEPOTENTIALANSWERS,
presented in Figure 1, is an iterative process that in each iteration
evaluates a binary integer program, uses the optimal solution to fil-
ter out potential answers that are not consistent, incorporates this
knowledge into the binary integer program by adjusting the con-
straints, and re-evaluates the tweaked binary integer program to fil-
ter out more potential answers.

In Algorithm ELIMINATEPOTENTIALANSWERS, the optimal so-
lution (x∗, u∗) returned is the one that contains the largest number
of 0s in u∗, because the binary integer program minimizes the sum∑

j∈[1..p] uaj . This allows us to filter out right away many poten-
tial answers that are not consistent answers. The reason for adding
the new constraints at the end of each iteration is to trivially sat-
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ALGORITHM ELIMINATEPOTENTIALANSWERS

1. Input: q : conjunctive query
I : database over the same schema as q
C: the set of constraints constructed from q, I as

described in Theorem 2.
{a1, · · · ,ap}: the set of potential answers to q on I

2. let CONSISTENT be a boolean array with subscripts 1, . . . , p
CONSISTENT[j] represents the element aj and every entry is
initialized to true.
3. let i := 1
4. let filter:=true
5. let C1 := C
6. while (filter=true)
7. let Pi = min{

∑
j∈[1..p] uaj |subject to Ci}

8. Evaluate Pi using BIP engine
9. let (x∗, u∗) be an optimal solution for Pi

10. let Ci+1 := Ci
11. let filter:=false
12. for j := 1 to p
13. if u∗aj

= 0 then
14. let CONSISTENT[j]:=false
15. Add to system Ci+1 the equality (uaj = 1)
16. let filter:=true
17. let i := i + 1
18. for j := 1 to p
19. if CONSISTENT[j] = true
20. return aj

Figure 1: Algorithm for computing consistent query answers
by eliminating potential answers.

isfy the constraints of type (b) related to a potential answer that we
have already established that it is not consistent. Each time that we
modify the program and re-evaluate it, we filter out more and more
potential answers. In theory, the worst case scenario is encoun-
tered when we have to modify and re-evaluate the program as many
times as there are potential answers. This scenario is very unlikely
to encounter in practice, especially when the number of potential
answers is large. In Section 6, we show experimentally that even
over databases with hundreds of thousands of tuples, two to four
iterations will suffice to filter out all the potential answers that are
not consistent. Note that if q is a Boolean conjunctive query, then
the only potential answer is true.

THEOREM 3. Let q be a conjunctive query and I a database in-
stance. Then, Algorithm ELIMINATEPOTENTIALANSWERS com-
putes exactly the consistent query answers to q on I .

PROOF. The proof uses the following two loop invariants:
1. At the i-th iteration, every optimal solution to Pi is also a solu-

tion to the constraints C.

2. At the end of the i-th iteration, if filter is true then the number
of elements in CONSISTENT that are false is at least i.

The first loop invariant follows easily from the fact that Ci con-
tains all the constraints of C. The second loop invariant is proved
by induction on i. Assume that at the end of the i-th iteration, the
number of false elements in CONSISTENT is greater than or equal
to i. For every j ∈ [1..p] such that CONSISTENT[j] is false, there
must exist a constraint uaj = 1 in Ci. We will show that at the
termination of iteration i + 1, if filter is true, then the number of
elements in CONSISTENT that are false is greater than or equal to

i + 1. Since filter is true, the BIP engine has returned an opti-
mal solution (x∗, u∗) to Pi+1 such that u∗aj

= 0 for at least some
j ∈ [1..p]. Notice that it is not possible that at some previous itera-
tion, CONSISTENT[j] has been assigned false. If that were the case,
then the constraint uaj = 1 would be in Ci+1, and (x∗, u∗) would
not be a solution of Ci+1. Therefore, at iteration i + 1, at least one
element in CONSISTENT that has value true is changed to false.

We show that the algorithm always terminates. The second loop
invariant implies in a straightforward manner that the algorithm
terminates in at most p iterations. Next, we show that for any
m ∈ [1..p], a potential answer am is a consistent answer if and
only if CONSISTENT[m] = 1 at termination. In one direction, if
am is a consistent answer, then Theorem 2 implies that for every
solution (x̂, û) to the constraints C, it always holds that ûam = 1.
Since for every i ∈ [1..p], every optimal solution to Pi is also a
solution to C, we have that the algorithm will never execute line
14 for j = m. Hence, the value of CONSISTENT[m] will always
remain true.

In the other direction, if CONSISTENT[m] is true after the algo-
rithm has terminated, then assume towards a contradiction that am

is not a consistent answer. If the algorithm terminates at the i-th
iteration, then every solution to Pi is such that it assigns value 1
to every variable uaj , for j ∈ [1..p]. So, the minimal value that
the objective function of Pi can take is p. If am were not a consis-
tent answer, we know from Theorem 2 that there must be a solution
(x̂, û) to C such that ûam = 0. We will reach a contradiction by
showing that we can construct from (x̂, û) a solution (x∗, u∗) to
Pi such that

∑
j∈[1..p] u

∗
aj

< p. The vectors x̂, û are defined as
follows: x∗ = x̂, u∗am

= ûam and u∗aj
= 1 for j 6= m. Because

the equality constraints (a) in Ci and in C are the same, we have
that x∗ will satisfy the constraints (a) in Ci. For j 6= m and since
u∗aj

= 1, all inequalities in (b) that involve u∗aj
, where j 6= t, are

trivially satisfied. In addition, the left-hand-side of every inequality
in the constraints (b) that involves u∗am

will evaluate to the same
value under (x̂, û) and (x∗, u∗) (this follows directly from the fact
that x∗ = x̂ and u∗am

= ûam ). Finally, all equality constraint that
may have been added to C during previous iterations are satisfied
since u∗aj

= 1 for j 6= m, and the equality u∗am
= 1 cannot be

in Ci. Now, it is clear that (x∗, u∗) is a solution to Pi such that∑
j∈[1..p] u

∗
aj

= p − 1. This contradicts the assumption that all
solutions to Pi yield minimal value p of the objective function.

5. IMPLEMENTATION
We have developed a system, called EQUIP, for computing the

consistent query answers to conjunctive queries under primary key
constraints. EQUIP executes in three phases (see Figure 2), corre-
sponding to the modules: 1) database pre-processor, 2) constraints
builder, and 3) consistent query answers (CQA) evaluator.

• PHASE 1: Compute answers of the query from the consistent
part of the database and extract database facts that may be rele-
vant for computing the additional answers to the query.

• PHASE 2: Construct the set of constraints based on Theorem 2
with the set of database facts retrieved in PHASE 1.

• PHASE 3: Run Algorithm ELIMINATEPOTENTIALANSWERS.

PHASE 1 The database pre-processor performs two main tasks in
phase 1 as an attempt to optimize subsequent phases.

First, it retrieves answers of q that are obtained from the consis-
tent part of the database. Clearly, the result of q over the consistent
part of the database is a subset of the consistent query answers of q
on I . The set of all consistent query answers that are obtained from
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Figure 2: Architecture of EQUIP

the consistent part of the database is denoted as ANS FROM CON
in Figure 3. This set ANS FROM CON is immediately returned as
part of the consistent answers of q on I (see bottom of Figure 2).

After this, it extracts the set of facts from I that may be relevant
for computing additional consistent answers of q on I . Since all ad-
ditional consistent answers belong to (q(I) - ANS FROM CON),
every fact that shares a key with a fact of a minimal witness to
a tuple in (q(I) - ANS FROM CON) is a relevant fact. In other
words, for every tuple a ∈ (q(I) - ANS FROM CON), every fact
in a minimal witness S of a is a relevant fact. Furthermore, every
fact that shares a key with some tuple s ∈ S is also a relevant fact.
The witnesses and relevant facts are computed as WITNESSES
and RELEVANT Ri as shown in the third and, respectively, fourth
steps of Figure 3. The relations KEYS Ri, ANS FROM CON,
WITNESSES, and RELEVANT Ri are computed by SQL queries
that are executed over the instance I , which is stored in a database.
We store the resulting relations in temporary tables (i.e., tables
that exist only within the session). The relation KEYS Ri, which
is used to compute ANS FROM CON, contains all tuples in Ri

whose key-equal group has size more than 1.

EXAMPLE 3. Let q(z) : −R1(x, y, z), R2(x′, y, w) be a query
over the schema {R1(A1, B1, C1), R2(A2, B2, C2)}. The follow-
ing views will be declared in PHASE 1:

KEYS R1(A1): select A1 from R1 group by A1 having count(*)>1
KEYS R2(A2): select A2 from R2 group by A2 having count(*)>1
ANS FROM CON(C1):

select R1.C1
from R1 inner join R2 on R1.B1=R2.B2
where R1.A1 not in (select * from KEYS R1) and

R2.A2 not in (select * from KEYS R2)
WITNESSES(A1, B1, C1, A2, B2, C2):

select A1,B1,C1,A2,B2,C2
from R1 inner join R2 on R1.B1=R2.B2
where R1.C1 not in (select * from ANS FROM CON)

RELEVANT R1(A1): select * from R1 inner join WITNESSES on
R1.A1=WITNESSES.A1

RELEVANT R(A2): select * from R2 inner join WITNESSES on
R2.A2=WITNESSES.A2

PHASE 2 This phase uses the temporary tables created in PHASE
1 to build the set of constraints, as described in Theorem 2. Every
tuple in RELEVANT Ri is represented by a variable in the integer
program. From every group of facts in RELEVANT Ri that have
the same values in the positions of the key attributes of Ri, we add
a constraint of type (a) as described in Theorem 2. Every tuple in
WITNESSES represents a minimal witness to a potential answer

PHASE 1: DATABASE PRE-PROCESSING

Input: R : Schema with relation names {R1, · · · , Ri, · · · , Rl}
q(z) : −Rp1(x1,y1), · · · , Rpj (xj,yj), · · · , Rpk (xk,yk)

for j ∈ [1..k] and 1 ≤ pj ≤ l
I : database over R

for all Ri, 1 ≤ i ≤ l
create view KEYS Ri that contains all tuples d s.t.
there exists more than one fact of the form Ri(d, ) in I

create view ANS FROM CON that contains all tuples t s.t.
- t ∈ q(I), and
- there exists a minimal witness S for q(t), and s.t.

no fact Ri(d, ) ∈ S has its key-value d in KEYS Ri

create view WITNESSES that contains all tuples of the form
(tp1 , · · · , tpj , · · · , tpk) s.t.

- Rpj (tpj) ∈ I for 1 ≤ j ≤ k, and
- the set S={Rpj (tpj) : 1 ≤ j ≤ k} forms a minimal witness

for q(a), where a is a potential answer that is not in
ANS FROM CON

for all Ri, 1 ≤ i ≤ l
create view RELEVANT Ri that contains all tuples t s.t.

- Ri(t) ∈ I , and
- there exists an atom Rpj (xj,yj) in q such that pj = i and

exists a tuple (tp1 , · · · , tpj , · · · , tpk) in WITNESSES
s.t. Rpj (tpj) and Ri(t) are key-equal

Figure 3: Description of PHASE 1

to the query. So, from every tuple in WITNESSES we construct a
constraint of the type (b) as described in Theorem 2.

PHASE 3 In this phase, the additional potential answers are first
retrieved by simply taking a projection over the view WITNESSES
on the attributes that appear in the head of the query q. With this
input, the set of constraints built in PHASE 2, and the database in-
stance, we run Algorithm ELIMINATEPOTENTIALANSWERS next.
In the first iteration, we start with a binary integer program whose
objective function is the sum of all variables uaj , where each uaj

represents a distinct potential answer aj, and whose constraints are
those from PHASE 2. In every iteration, the program is evaluated
using a BIP solver. The first optimal solution that is returned by
the optimizer is used to filter out potential answers that are false.
In each iteration, the integer program is augmented with more con-
straints. As the constraints we add make some of the existing con-
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straints of type (b) (see Theorem 2) trivially satisfiable, this results
in a program (in the next iteration) that is simpler to evaluate than
the one evaluated in the current iteration.

6. EXPERIMENTAL EVALUATION
We have conducted an extensive set of experiments with EQUIP.

Our goal is to analyze the performance of EQUIP on conjunctive
queries whose consistent answers have varying complexity and on
databases of varying size and of varying degree of inconsistency
(i.e., the percentage of tuples involved in conflicts). We also seek
to understand how EQUIP compares with earlier consistent query
answering systems, such as ConQuer and ConsEx.

Our experimental results show that EQUIP incurs reasonable
overheads, even when the size of the database is scaled up to mil-
lions of tuples for both synthetic data and data derived from TPCH.
Our results also demonstrate that EQUIP is, by far, the best avail-
able system for computing the consistent query answers of con-
junctive queries that are not first-order rewritable, as well as for
conjunctive queries that are first-order rewritable, but cannot be
handled by ConQuer. In particular, EQUIP outperforms ConsEx
on coNP-hard queries by a significant margin, especially on larger
databases.

6.1 Experimental Setting
Our experiments have been carried out on a machine running on

a Dual Intel Xeon 3.4GHz Linux workstation with 4GB of RAM.
We use the 64 bit Ubuntu v11.04, DB2 Express C v10.1 as the
underlying DBMS, and IBM’s ILOG CPLEX v12.3 for solving the
binary integer programs. Our system is implemented in Java v1.6.

No established benchmark for consistent query answering ex-
ists. Moreover, as noted in [19], conjunctive queries obtained from
TPCH queries after removing aggregates, grouping, and subqueries
are first-order rewritable and, in fact, most of them are in the class
Cforest, hence their consistent answers can be computed using the
ConQuer system. We have conducted experiments using such queries
and data derived from TPCH to compare EQUIP with ConQuer.
However, since we are interested in understanding the performance
of EQUIP on conjunctive queries whose consistent answers are of
varying complexity (from first-order rewritable to coNP-complete),
we compiled a list of queries of varying complexity and generated
synthetic inconsistent databases for our experiments. We now dis-
cuss this experimental setting in some detail.

Benchmark queries Table 1 contains the list of queries we com-
piled. The queries vary according to the number of atoms, the num-
ber of free variables, and the computational complexity of their
consistent answers, which can be: first-order rewritable; in PTIME
but not first-order rewritable; coNP-complete. Queries Q1 to Q14

are shown not to be first-order rewritable using the results in [29].
For the two-atom queries Q1, Q2, Q3, Q8, Q9, Q10, their complex-
ity (coNP-hard or PTIME) can be immediately derived from the
results in [24]. The coNP-hardness of the three-atom queries Q4

to Q7 can be shown via a simple reduction from CERTAINTY(q),
where q is the Boolean query q() : −R(x, y), S(x′, y). Queries
Q11 to Q14 can be shown to be in PTIME by extending the conflict-
join graph algorithm introduced in [24] for the queries with two
atoms. The first-order rewritability of queries Q15-Q21 can be
shown using the results in [29]. Moreover, queries Q15 to Q18

are also in the class Cforest [20], which provides another proof that
they are first-order rewritable.

Database generation In our experiments with the above queries,
we use synthetic databases, which we generate in two steps: (a)
generate a consistent database; and (b) generate an inconsistent

Complexity: coNP-complete
Q1() : −R5(x, y, z), R6(x′, y, w)
Q2(z) : −R5(x, y, z), R6(x′, y, w)
Q3(z, w) : −R5(x, y, z), R6(x′, y, w)
Q4() : −R5(x, y, z), R6(x′, y, y), R7(y, u, d)
Q5(z) : −R5(x, y, z), R6(x′, y, y), R7(y, u, d)
Q6(z, w) : −R5(x, y, z), R6(x′, y, w), R7(y, u, d)
Q7(z, w, d) : −R5(x, y, z), R6(x′, y, w), R7(y, u, d)

Complexity: PTIME, not first-order rewritable
Q8() : −R3(x, y, z), R4(y, x, w)
Q9(z) : −R3(x, y, z), R4(y, x, w)
Q10(z, w) : −R3(x, y, z), R4(y, x, w)
Q11() : −R3(x, y, z), R4(y, x, w), R7(y, u, d)
Q12(z) : −R3(x, y, z), R4(y, x, w), R7(y, u, d)
Q13(z, w) : −R3(x, y, z), R4(y, x, w), R7(y, u, d)
Q14(z, w, d) : −R3(x, y, z), R4(y, x, w), R7(y, u, d)

Complexity: First-order rewritable
Q15(z) : −R1(x, y, z), R2(y, v, w)
Q16(z, w) : −R1(x, y, z), R2(y, v, w)
Q17(z) : −R1(x, y, z), R2(y, v), R7(v, u, d)
Q18(z, w) : −R1(x, y, z), R2(y, v), R7(v, u, d)
Q19(z) : −R1(x, y, z), R8(y, v, w)
Q20(z) : −R5(x, y, z), R6(x′, y, w), R9(x, y, d)
Q21(z) : −R3(x, y, z), R4(y, x, w), R10(x, y, d)

Table 1: Benchmark queries used in our experiments

database from the consistent database by inserting tuples that would
violate some key constraints. Instead of using available database
generators, such as datagen in TPCH for (a), we have generated
our own databases for (a) because it is difficult to express over the
TPCH schema a variety of meaningful queries that are not first-
order rewritable. As part of future work, we plan to leverage more
sophisticated generators for (a), such as QAGen [7], that would al-
low one to generate (consistent) databases over a given schema and
with varying data distributions.

a) Generation of the consistent databases Each relation in
the generated consistent database has the same number (denoted
as r size) of facts. The values of the non-key attributes are gener-
ated so that for every two atoms Ri, Rj that share variables in any
of the queries, approximately 25% of the facts in Ri join with some
fact in Rj , and vice-versa. The third attribute in all of the ternary
relations, which is sometimes projected out and never used as a
join attribute in Table 1, takes values from a uniform distribution in
the range [1, r size/10]. Hence, in each relation, there are approx-
imately r size/10 distinct values in the third attribute, each value
appearing approximately 10 times. The choice of the distributions
is made with the purpose to simulate reasonably high selectivities
of the joins and large number of potential answers.

b) Generation of the inconsistent databases From the con-
sistent database, an inconsistent database is obtained by adding,
for each relation, tuples that violate some key constraints. The in-
consistency generator takes as input a consistent relation and two
additional parameters: (a) nr conflicts: the total number of viola-
tions to be added to the consistent relation; and (b) c size: the size
of each key-equal group. The inconsistent version of a consistent
relation r is obtained by repeatedly adding tuples that violate some
key value. Specifically, a key value from the key values of the tu-
ples in r, where the number of violations for the key value is less
than c size - 1, is first selected. Subsequently, additional distinct
tuples with the same key value are added, so that there is a total
of c size distinct tuples with the same key value. The non-key at-
tributes of these newly generated tuples are obtained by using the
non-key attributes of some randomly selected tuples in r. The pur-
pose of reusing the non-key attributes is to preserve the existing
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data distributions as we augment r with new tuples. This process
is repeated until a total of nr conflicts is obtained. In fact, the in-
consistency generator that we have just described is similar to the
one used in ConQuer [20], except that we have added the parameter
c size to control the sizes of the key-equal groups.
Other Experimental Parameters Unless otherwise stated, our
experiments use databases with 10% conflicts in which each key-
equal group contains two facts. The evaluation time of a consistent
query answering system is the time between receiving the query
to the time it takes for the system to return the last consistent an-
swer to the query. We always generate five random databases with
the same parameters, i.e., with the same size, the same degree of
inconsistency, and the same number of facts per key-equal group.
For each database, we run each query five times and take the aver-
age of the last three runs, and finally, we take the averages of the
query evaluation times over the five databases.

One of the CPLEX parameters that can be varied is the relative
GAP parameter. This parameter is used to specify the level of “tol-
erance” on the optimality of the solution that is found. The GAP
parameter can be set to allow the optimizer to return a less-than-
optimal, but “good enough” solution. In other words, the solution
that is returned may not be optimal, but will have an estimated gap
from the optimal solution that is within the tolerance limit given
by the GAP parameter. Having a large GAP parameter usually has
the effect of allowing the optimizer to find a solution much earlier.
As the correctness of Algorithm 1 is not dependent on obtaining
an optimal solution, we have set the GAP parameter to 0.1. In this
way, CPLEX may avoid the long running times that may otherwise
be incurred by searching for an optimal solution.

6.2 Experimental Results and Comparisons
Our first goal was to determine how the EQUIP system com-

pares against existing systems that are capable of computing the
consistent answers of conjunctive queries that are not first-order
rewritable. The only other systems that have this capability are the
ones that rely on the logic programming technique, such as Infomix
and ConsEx. Since ConsEx is the latest system in this category and
also has the feature that it implements an important optimization
based on magic sets, we have compared EQUIP against ConsEx.
Comparison with ConsEx Our findings, depicted in Figure 4,
show that EQUIP outperforms ConsEx by a significant margin,
especially on larger datasets and even on small queries whose con-
sistent answers are coNP-hard (i.e., queries Q1 and Q2)), as well as
on the small queries whose consistent answers are in PTIME, but
not first-order rewritable (i.e., queries Q8 and Q9).

Our second goal was to investigate the total evaluation time and
the overhead of EQUIP on conjunctive queries whose consistent
answers have varying complexity.
Evaluation time for coNP-hard queries In Figure 5(a), we show
the total evaluation time in seconds, using EQUIP, of each query
Q1−Q7 as the size of the inconsistent database is varied. In Figure
5(b), we show the overhead of computing the consistent answers,
relative to the time for evaluating the query over the inconsistent
database (i.e., the time for evaluating the potential answers).

Figure 5(a) shows a sub-linear behavior of the evaluation of con-
sistent query answers, as we increase the database size. Note that
the overhead for computing consistent answers is rather constant
and no more than 5 times the time for usual evaluation. In particu-
lar, the Boolean queries Q1 and Q4 incur noticeably less overhead
than the rest of the queries. The reason is that these queries hap-
pen to evaluate to true over the consistent part of the constructed
databases, and hence, since there are no additional potential an-
swers to check, no binary integer program is constructed and solved.
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Figure 4: Comparison of EQUIP with ConsEx.

Evaluation time for PTIME, not first-order rewritable queries In
Figure 6, we show the performance of EQUIP on conjunctive queries
whose consistent answers are in PTIME, but are not first-order
rewritable. Since EQUIP is based on Binary Integer Programming,
which is an NP-complete problem, we do not expect EQUIP to per-
form better on such queries as compared to queries that are coNP-
hard. Indeed, Figure 5 and Figure 6 show that the performance of
EQUIP on the tractable queries Q8 to Q14 is comparable to the
performance of EQUIP on the intractable queries Q1 to Q7.

Evaluation time for first-order rewritable queries Next, we
evaluate EQUIP on first-order rewritable queries. As Figure 7
shows, the performance of EQUIP on such queries is compara-
ble to that on queries in the other classes (see Figure 5 and Fig-
ure 6). We also compare EQUIP with ConQuer on queries Q15-
Q18, since these queries are in Cforest, hence their consistent an-
swers can be computed using ConQuer. The results of this compar-
ison are shown in Figure 8. ConQuer performs better than EQUIP
on each of the queries Q15 to Q18. This is not surprising, because
EQUIP is agnostic to the complexity of the query and “blindly” re-
duces queries into binary integer programs to be solved by CPLEX.
This reduction is exponential in the size of the query and instance,
even though these queries are first-order rewritable. These findings
suggest that ConQuer is preferred whenever the query is in Cforest.

Experiments with data and queries derived from the TPCH
benchmark We used the data generator of the TPCH benchmark to
generate a consistent database of size 1GB. From this database we
created an inconsistent database with 10% conflicts, where each
key equal group has size 2. The experiments use queries derived
from existing TPCH queries Q2, Q3, Q4, Q10, Q11, Q20, Q21 by
removing aggregates, grouping, and sub-queries. Due to space lim-
itations, we have omitted spelling out these queries. Also, to avoid
naming conflicts with our benchmark queries in Table 1, we shall
henceforth denote these queries as Q′2, Q′3, Q′4, Q′10, Q′11, Q′20,
and Q′21.

Figure 9 shows the comparison between EQUIP and ConQuer
on the more expensive queries Q′3, Q′10, Q′21, and the less expen-
sive queries Q′2, Q′4, Q′11, Q′20. Due to a bug, ConQuer could not
evaluate query Q′21. The overheads incurred by EQUIP on ex-
periments with data derived from TPCH are approximately in the
same range as the overheads we observed when evaluating the sys-
tem with our own benchmark queries, and we omit the graphs here.
As expected, ConQuer performs better than EQUIP, about twice
as fast as EQUIP. These results reinforce our earlier findings for
first-order rewritable synthetic queries and synthetic data.
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Figure 5: Evaluation time and overhead of EQUIP for computing consistent answers of coNP-hard queries Q1-Q7.
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Figure 6: Evaluation and overhead of EQUIP for computing consistent answers of P, but not-first-order rewritable queries Q8-Q14.
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Figure 7: Evaluation and overhead of EQUIP for computing consistent answers of first-order rewritable queries Q15-Q21.

6.3 Further Experimental Results
To gain deeper insights to the performance of EQUIP, we took

several other measurements concerning the behavior of EQUIP on
the queries in Table 1. We describe our findings next.

Evaluation time per phase Figure 10 shows the evaluation times
for queries Q1−Q21, split into the three phases: PHASE 1, PHASE
2, and PHASE 3. Not surprisingly, PHASE 1, the pre-processing
step executed over DB2, dominates the overall evaluation time. The
results also show that the construction and evaluation times of the
integer program takes more time for non-Boolean queries. More-
over, by looking at Q6, Q7,Q13, Q14, we see that PHASE 2 and
PHASE 3 take more time for queries that have more variables in
the head of the query. In contrast, for the Boolean queries, the BIP
solver is not even invoked.

Pre-computation from the consistent part of the database Since
we have approximately 10% of the database involved in conflicts,
it is natural to expect that a significant portion of the consistent an-
swers can be computed from the consistent part of the database.
Hence, we expect that the optimization we have implemented in
PHASE 1 for computing some of the consistent answers from the
consistent part of the database to play a role in reducing the overall
evaluation time. Figure 11 shows the evaluation times of EQUIP,
where part of the consistent answers are computed from the consis-
tent part of the database and additional answers are computed using
Algorithm ELIMINATEPOTENTIALANSWERS, versus the evalua-
tion time when all of the consistent answers are computed using
Algorithm ELIMINATEPOTENTIALANSWERS. Our experiments
show that the latter technique (without optimization), on 12 of the
queries it is between 1.1 and 1.5 times slower; on 6 of the queries
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Figure 8: Comparison of EQUIP with ConQuer on queries
Q15 - Q18, over the database with 1 million tuples/relation.
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Figure 9: Evaluation times of the simplified TPCH queries over
“as-is” query evaluation, EQUIP, and ConQuer.

it is between 1.6 and 2 times slower; on 2 queries it is over 2 times
slower; and only on one query it is slightly faster.

Sizes of the binary integer programs In Table 2, we tabulate the
sizes of the binary integer programs that were constructed from a
database with 1 million tuples per relation. As this table indicates,
for some of the queries, large binary integer programs containing
over 100,000 variables and constraints are solved. Observe that the
number of variables is much smaller than the number of tuples. The
reason is that the binary integer programs are built only from facts
relevant to computing the additional consistent query answers. Re-
call that PHASE 1 retrieves only the relevant facts. The Boolean
queries Q1, Q4, Q8 and Q11 evaluate to true over the consistent
part of the databases used for these experiments; hence, there are
no relevant facts, and no integer program is constructed. So far, we
have not run into the potential limitation that the binary integer pro-
gram generated may be too large to fit into main memory. This is
true even for experiments conducted with data derived from TPCH.
In general, instead of building a single program for checking all the
potential answers at once, we can, in fact, partition the set of poten-
tial answers and construct a “smaller” binary integer program for
each bucket. As part of future work, we plan to further investigate
this technique.

Varying the degree of inconsistency Figure 12 shows the effect
of varying the degree of inconsistency (10%, 15%, 20%) with a
database where there is 1 million tuples per relation. Our results
indicate that in the worst case, the evaluation time increases lin-
early with the degree of inconsistency. This is not unexpected as
EQUIP has to manage a larger number of relevant tuples as the
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Figure 10: Evaluation time for PHASE 1, PHASE 2, and PHASE
3 of EQUIP over a database with 1 million tuples/relation.
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Figure 11: Performance of EQUIP with and without pre-
computing the consistent answers from the consistent part of
the database, over a database with 1 million tuples/relation.

degree of inconsistency increases. Not surprisingly, the degree of
inconsistency affects the percentage of consistent answers out of
all the potential answers. Specifically, when the degree of inconsis-
tency is 10%, the percentage of consistent answers, depending on
the query, ranges from 80% (for Q7, Q14) to 99% (for Q15). When
the degree of inconsistency is increased to 20%, the percentage of
consistent answers ranges from 63% to 97%.

Query Nr. vari-
ables

Nr. con-
straints

Query Nr. vari-
ables

Nr. con-
straints

Q1, Q4, Q8, Q11 0 0 Q13 148K 126K
Q2 13K 12K Q14 170K 137K
Q3 89K 71K Q15 9K 8K
Q5 26K 26K Q16 109K 86K
Q6 141K 124K Q17 31K 28K
Q7 160K 138K Q18 53K 45K
Q9 11K 9K Q19 20K 18K
Q10 86K 64K Q20 19K 17K
Q12 22K 120K Q21 16K 17K

Table 2: Size of BIP program (DB has 1 million tuples/relation).

The use of indices We have found out that the majority of the
time for computing the consistent query answers goes to PHASE 1.
Since PHASE 1 consists of evaluating SQL queries on top of the
underlying DBMS, it is natural to consider making use of DBMS
features, such as indices. For this reason, we also conducted exper-
iments in which we added a number of indices. For every relation,
we have created a clustered index on the key attributes. Figure 13
shows the evaluation of EQUIP in the presence of indices. The
improved performance from using indices is clear, as for all the
queries the evaluation time has decreased significantly. One may
also be able to obtain better performance by using a different con-
figuration of indices, or by a better tuning of DBMS parameters.
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Figure 12: Evaluation time of EQUIP over databases with 1
million tuples/relation and different degrees of inconsistency.
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Figure 13: Performance of EQUIP in the presence of indices,
over a database with 1 million tuples/relation.

7. CONCLUDING REMARKS
We developed EQUIP, a new system for computing the consis-

tent answers of conjunctive queries under primary key constraints.
The main technique behind EQUIP is the reduction of the prob-
lem of computing the consistent answers of conjunctive queries
under primary key constraints to binary integer programming, and
the systematic use of efficient integer programming solvers, such
as CPLEX. Our extensive experimental evaluation suggests that
EQUIP is promising in that it consistently exhibits good perfor-
mance even on relatively large databases. EQUIP is also, by far,
the best available system for evaluating the consistent query an-
swers of queries that are coNP-hard and of queries that are in PTIME
but not first-order rewritable, as well as queries that are first-order
rewritable, but not in the class Cforest. For Cforest queries, ConQuer
demonstrates superior performance, but is of limited applicability.

For future work, we plan to investigate extensions of our tech-
nique to unions of conjunctive queries and broader classes of con-
straints, such as functional dependencies and foreign key constraints.

Finally, our results suggest that an “optimal” system for consis-
tent query answering is likely to rely not on a single technique, but,
rather, on a portfolio of techniques. Such a system will first at-
tempt to determine the computational complexity of the consistent
answers of the query at hand and then, based on this information,
will invoke the most appropriate technique for computing the con-
sistent answers. Developing such a system, however, will require
further exploration and deeper understanding of the boundary be-
tween tractability and intractability of consistent query answering.
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