
IS-LABEL: an Independent-Set based Labeling Scheme for
Point-to-Point Distance Querying

Ada Wai-Chee Fu, Huanhuan Wu,
James Cheng

Dept. of Computer Science and Engineering
The Chinese University of Hong Kong

adafu,hhwu,jcheng@cse.cuhk.edu.hk

Raymond Chi-Wing Wong
Dept. of Computer Science and Engineering

Hong Kong University of Science & Technology

raywong@cse.ust.hk

ABSTRACT
We study the problem of computing shortest path or distance be-
tween two query vertices in a graph, which has numerous impor-
tant applications. Quite a number of indexes have been proposed
to answer such distance queries. However, all of these indexes can
only process graphs of size barely up to 1 million vertices, which is
rather small in view of many of the fast-growing real-world graphs
today such as social networks and Web graphs. We propose an
efficient index, which is a novel labeling scheme based on theinde-
pendent set of a graph. We show that our method can handle graphs
of size orders of magnitude larger than existing indexes.

1. INTRODUCTION
Computing the shortest path or distance between two vertices is

a basic operation in processing graph data. The importance of the
operation is not only because of its role as a key building block
in many algorithms but also of its numerous applications itself. In
addition to applications in transportation, VLSI design, urban plan-
ning, operations research, robotics, etc., the proliferation of net-
work data in recent years has introduced a broad range of new ap-
plications. For example, social network analysis, page similarity
measurement in Web graphs, entity relationship ranking in seman-
tic Web ontology, routing in telecommunication networks, context-
aware search in social networking sites, to name but a few.

In many of these new applications, however, the size of the un-
derlying graph is often in the scale of millions to billions of vertices
and edges. Such large graphs are becoming more and more com-
mon, some of the well-known ones include Web graphs, various
social networks (e.g., Twitter, Facebook, LinkedIn), RDF graphs,
mobile phone networks, SMS networks, etc. Computing shortest
path or distance in these large graphs with conventional algorithms
such as Dijkstra’s algorithm or simple BFS may result in a long
running time that is not acceptable.

For computing shortest path or distance between two points in
a road network, many efficient indexes have been proposed [1,
2, 4, 9, 16, 18, 31, 32, 33]. However, these works apply unique
properties of road networks and hence are not applicable forother
graphs/networks that are not similar to road networks. In recent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 6.
Copyright 2013 VLDB Endowment 2150-8097/13/04...$ 10.00.

years, a number of indexes have been proposed to process distance
queries in general sparse graphs [12, 15, 16, 23, 35, 39, 41].How-
ever, as we will discuss in details in Section 7, these indexes can
only handle relatively small graphs due to high index construction
cost and large index storage space. As a reference, the largest real
graphs tested in these works have only 581K vertices with average
degree 2.45 [12], and 694K vertices with average degree 0.45[23],
while most of the other real graphs tested are significantly smaller.

We propose a new index for computing shortest path or distance
between two query vertices and our method can handle graphs with
hundreds of millions of vertices and edges. Our index, namedas
IS-Label[17], is designed based on a novel application of theinde-
pendent setof a graph, which allows us to organize the graph into
layers that form a hierarchical structure. The hierarchy can be used
to guide the shortest path computation and hence leads to thedesign
of effective vertex labels (i.e., the index) for distance computation.

We highlight the main contributions of our paper as follows.
(1) We propose an efficient index for answering shortest pathor

distance queries, which can handle graphs up to orders of mag-
nitude larger than those tested in the existing works [12, 15, 16,
23, 35, 39, 41]. None of these existing works can handle even
the medium-sized graphs that we tested. (2)We design an effective
labeling scheme such that the label size remains small even if no
optimization (mostly NP-hard) is applied as in the existinglabeling
schemes. (3) Our index naturally lends itself to the design of simple
and efficient algorithms for both index construction and query pro-
cessing. (4)We develop I/O-efficient algorithms to construct vertex
labels in large graphs that cannot fit in main memory. (5)We ver-
ify both the efficiency and scalability of our method for processing
distance queries in large real-world graphs.
Organization. Section 2 defines the problem and basic notations.
Sections 3 and 4 present the details of index design, and Section 5
describes the algorithms. Section 6 reports the experimental results.
Section 7 discusses the limitations of existing works. Section 8
discusses handling path queries and Section 9 concludes thepaper.

2. NOTATIONS
We focus our discussion on weighted, undirected simple graphs.

Let G = (VG, EG, ωG) be such a graph, whereVG is the set of
vertices,EG is the set of edges, andωG : EG → N

+ is a function
that assigns to each edge a positive integer as its weight. Wedenote
the weight of an edge(u, v) by ω(u, v). The size ofG is defined
as|G| = (|VG|+ |EG|).

We define the set ofadjacentvertices (orneighbors) of a vertex
v in G asadjG(v) = {u : (u, v) ∈ EG}, and thedegreeof v in G
asdegG(v) = |adjG(v)|.

We assume that a graph is stored in its adjacency list representa-
tion, where each vertex is assigned a unique vertex ID and vertices

457

are ordered in ascending order of their vertex IDs.
Given a pathp in G, the length of p is defined aslen(p) =

∑

e∈p ωG(e), i.e., the sum of the weights of the edges onp. Given
two verticesu, v ∈ VG, theshortest pathfrom u to v, denoted by
SPG(u, v), is a path inG that has the minimum length among all
paths fromu to v in G. We define thedistancefrom u to v in G
asdistG(u, v) = len(SPG(u, v)). We definedistG(v, v) = 0 for
anyv ∈ VG.

Problem definition: we study the following problem: given a
static graphG = (VG, EG, ωG), construct adisk-based indexfor
processingpoint-to-point(P2P) shortest path distance queries, i.e.,
given any pair of vertices(s, t) ∈ (VG × VG), find distG(s, t).

We focus onsparse graphs, which are prevalent in real world.
We focus our discussion on undirected graphs, and will also show
that our index can be extended to handle directed graphs in Section
4.3. We will also discuss computing the actual path in Section 8,
which is a fairly simple extension with some extra bookkeeping.

3. QUERYING DISTANCE BY VERTEX HI-
ERARCHY

In this section, we present our main indexing scheme, which con-
sists of the following components:

• A layered structure of vertex hierarchy constructed from the
input graph.

• A vertex labeling scheme developed from the vertex hierar-
chy.

• Query processing using the set of vertex labels.

We discuss each of these three components in Sections 3.1 to 3.3.

3.1 Construction of Vertex Hierarchy
The main idea of our index is to assign hierarchy to vertices in an

input graphG so that we can use the vertex hierarchy to compute
the vertex labels, which are then used for querying distance.

To create hierarchies for vertices inG, we construct a layered
hierarchical structure fromG. To formally define the hierarchical
structure, we first need to define the following two importantprop-
erties that are crucial in the design of our index:

• Vertex independence: given a graphH = (VH , EH , ωH),
and a set of verticesI , we say thatI maintains the vertex
independence property with respect toH if I ⊆ VH and
∀u, v ∈ I , (u, v) /∈ EH , i.e.,I is anindependent setof H .

• Distance preservation: given two graphs H1 =
(VH1 , EH1 , ωH1) andH2 = (VH2 , EH2 , ωH2), we say that
H2 maintains the distance preservation property with respect
toH1 if ∀u, v ∈ VH2 , distH2(u, v) = distH1(u, v).

While distance preservation is essential for processing distance
queries, vertex independence is critical for efficient index construc-
tion as we will see later when we introduce the index.

We now formally define the layered hierarchical structure, fol-
lowed by an illustrating example.

DEFINITION 1 (VERTEX HIERARCHY). Given a graphG =
(VG, EG, ωG), a vertex hierarchy structure ofG is defined by a
pair (L,G), whereL = {L1, . . . , Lh} is a set of vertex sets and
G = {G1, . . . , Gh} is a set of graphs such that:

• VG = L1 ∪ . . . ∪ Lh, andLi ∩ Lj = ∅ for 1 ≤ i < j ≤ h;

• For 1 ≤ i ≤ h, eachLi maintains the vertex independence
property with respect toGi, i.e.,Li is an independent set of
Gi;

• G1 = G, and for2 ≤ i ≤ h, let Gi = (VGi
, EGi

, ωGi
),

thenVGi
= (VG −L1 − ...−Li−1), whereasEGi

andωGi

satisfy the condition thatGi maintains the distance preser-
vation property with respect toGi−1.

Intuitively, L is a partition of the vertex setVG and represents
a vertex hierarchy, whereLi is at a lower hierarchical level than
Lj for i < j. Meanwhile, eachGi ∈ G preserves the distance
information in the original graphG, as shown by the following
lemma.

LEMMA 1. For all u, v ∈ VGi
, where 1 ≤ i ≤ h,

distGi
(u, v) = distG(u, v).

PROOF. Since for anyu, v ∈ VGi
, u, v ∈ VGj

for 1 ≤ j ≤
i. Thus, we havedistGi

(u, v) = distGi−1(u, v) = . . . =
distG1(u, v) = distG(u, v) since eachGi maintains the distance
preservation property with respect toGi−1 for 2 ≤ i ≤ h.

We use the following example to illustrate the concept of vertex
hierarchy.

EXAMPLE 1. Figure 1 shows a given graphG and the vertex
hierarchy ofG. We assume that each edge inG has unit weight
except for(e, f), which has a weight of 3. It is obvious that the set
{c, f, i} forms an independent set inG, similarly {b, d, h} in G2

and{e} in G3. It is easy to see thatG2 preserves all distances in
G, we shall explain the addition of edge(e, h) later. In order to
preserve the distance inG2, an edge(e, g) of weight 2 is added to
G3. G4 consists of a single edge(a, g) of weight 3.L4 = {a}, G5

consists of a single vertexg, L5 = {g}.

a

b

c

d

e

f

g

h

i

(G = G1, L1= c, f, i

a

b

d

e

g

h

G2

4

a

b d

e g

h

4

L2= b, d, h

a

e

g
2

G3, L3= e

3

a

gg
3

G4, L4= a G5

Figure 1: A vertex hierarchy

The distance preservation property can be maintained inGi with
respect toGi−1 as follows. First, we require the subgraph ofGi−1

induced by the vertex setVGi
to be inGi (i.e. (u, v) ∈ EGi

iff
(u, v) ∈ EGi−1 for u, v ∈ VGi

). Then, we create a set of addi-
tional edges, calledaugmenting edges, to be included intoEGi

as
follows. For any vertexv ∈ Li−1 (thusv /∈ VGi

according to Def-
inition 1), if u,w ∈ VGi

, (u, v) ∈ EGi−1 and(v,w) ∈ EGi−1 ,
then an augmenting edge(u,w) is created inGi with ωGi

(u, w) =
ωGi−1(u, v) + ωGi−1(v, w). If (u,w) already exists inGi, then
ωGi

(u,w) = min(ωGi−1(u,w), ωGi−1(u, v) + ωGi−1(v, w)).
An edge inGi with updated weight is also called an augmenting

458

edge. For example, in Figure 1, inG3, dist(e, g) can be pre-
served by creating an augmenting edge(e, g) with ω(e, g) = 2.
Edge(e, h) is also added according to our process above. Note that
distG1(e, h) = 3, which can be preserved inG2 without adding
(e, h), but we leave(e, h) there to avoid costly distance querying
needed to exclude(e, h).

The following lemma shows the correctness of constructingGi

from Gi−1 as discussed above.

LEMMA 2. ConstructingGi fromGi−1, where2 ≤ i ≤ h, by
adding augmenting edges to the induced subgraph ofGi−1 byVGi

,
maintains the distance preservation property with respecttoGi−1.

PROOF. According to Definition 1,Li−1 is the only set of
vertices that are inGi−1 but missing inGi. For any two ver-
tices s and t in Gi, suppose that the shortest path (inGi−1)
from s to t, SPGi−1(s, t) does not pass through any vertex in
Li−1, then the distance betweens and t in Gi−1 is trivially pre-
served inGi. Next supposeSPGi−1(s, t) passes through some
vertex v ∈ Li−1. Let SPGi−1 (s, t) = 〈s, . . . , u, v, w, . . . , t〉.
Then, we must have the augmenting edge(u,w) created inGi

with ωGi
(u,w) = ωGi−1(u, v) + ωGi−1(v, w), or ωGi

(u,w) =
min(ωGi−1(u,w), ωGi−1(u, v) + ωGi−1(v, w)) if (u,w) already
exists inGi. Therefore, the distance (inGi−1) between any two
vertices is preserved inGi.

In addition to the distance preservation property that is required
for answering distance queries, the proof also gives a hint on why
we require eachLi to be an independent set ofGi. Since there is
no edge inGi−1 between any two vertices inLi−1, to create an
augmenting edge(u,w) in Gi we only need to do a self-join on
the neighbors of the vertexv ∈ Li−1. Thus, the search space is
limited to 2 hops from each vertex. On the contrary, if an edgecan
exist between two vertices inLi−1, then to preserve the distance
the search space is at least 3 hops from each vertex, which is sig-
nificantly larger than the 2-hop search space in practice. This is
crucial for processing a large graph that cannot fit in main memory
as we may need to scan the graph many times to perform the join,
as we will see in Section 5.

3.2 Vertex Labeling
With the vertex hierarchy(L,G), we now describe a labeling

scheme that can facilitate fast computation of P2P distance. We
first define the following concepts necessary for the labeling.

• Level number: each vertexv ∈ VG is assigned a level num-
ber, denoted byℓ(v), which is defined asℓ(v) = i iff v ∈ Li.

• Ancestor: a vertexu ∈ VG is an ancestor of a vertexv if
there exists a sequenceS = 〈v = w1, w2, ..., wp = u〉, such
that ℓ(w1) < ℓ(w2) < ... < ℓ(wp), and for1 ≤ i < p,
the edge(wi, wi+1) ∈ EGj

wherej = ℓ(wi). Note thatv
is an ancestor of itself. Ifu is an ancestor ofv, thenv is a
descendantof u.

EXAMPLE 2. In our example in Figure 1, the level numbers of
c, f, i are 1, that ofb, d, h are 2, that ofe is 3. The ancestors of
f will be e, h, a, g, since(f, e) and (f, h) are inG1, (h, g) is in
G2, and (e, a), (e, g) are in G3. Note thatd is not an ancestor
of f since in the path〈f, e, d〉, ℓ(e) = 3 while ℓ(d) = 2. The
ancestor-descendant relationships are shown in Figure 2(a).

We now define vertex label as follows.

DEFINITION 2 (VERTEX LABEL). Thelabel of a vertexv ∈
VG, denoted byLABEL(v), is defined asLABEL(v) =
{(u, distG(v, u)) : u ∈ VG is an ancestor ofv}.

To computeLABEL(v) for all v ∈ VG, we need to compute
the distance fromv to each ofv’s ancestors. This is an expensive
process which cannot be scaled to process large graphs. To address
this problem, we define a relaxed vertex label that requires only an
upper-bound,d(v, u), of distG(v, u) and show thatd(v, u) suffices
for answering distance queries.

DEFINITION 3 (RELAXED VERTEX LABEL). The relaxed
label of a vertexv ∈ VG, denoted bylabel(v), is a set of
“ (u, d(v, u))” pairs computed by the following procedure:
For each v ∈ VG, we first include(v, 0) in label(v) and
mark v. Then, we add more entries tolabel(v) recursively
as follows. Take amarked vertex u that has the smallest
level numberℓ(u), and unmark u. Let ℓ(u) = j. For each
w ∈ adjGj

(u), whereℓ(w) > j and (w, d(v, w)) /∈ label(v),
add the entry(w, (d(v, u) + ωGj

(u,w))) to label(v), and mark
w. If the entry (w, d(v, w)) is already in label(v), update
d(v, w) = min(d(v,w), (d(v, u) + ωGj

(u,w))). Repeat the
above recursive process until no more vertex is marked.

As for LABEL(v), label(v) contains entries for all ancestors
of v. In Section 5, we will show that the new definition facilitates
the design of an I/O-efficient algorithm for handling large graphs.
Here, we further illustrate the concept using an example, and then
prove thatlabel(v) can indeed be used instead ofLABEL(v) to
correctly answer P2P distance queries in the following subsection.

label(c) {(a, 2), (b, 1), (c, 0), (e, 2), (g, 4)}
label(f) {(a, 4), (e, 3), (f, 0), (g, 5), (h, 1)}
label(i) {(a, 2), (e, 1), (g, 3), (i, 0)}
label(b) {(a, 1), (b, 0), (e, 1), (g, 3)}
label(d) {(a, 2), (d, 0), (e, 1), (g, 1)}
label(h) {(a, 5), (e, 4), (g, 1), (h, 0)}
label(e) {(a, 1), (e, 0), (g, 2)}
label(a) {(a, 0), (g, 3)}
label(g) {(g, 0)}

(a) (b)

Figure 2: Labeling for the example in Figure 1

EXAMPLE 3. For our example in Figure 1, the ancestor re-
lationships are shown in Figure 2(a), where all edges have unit
weights unless indicated otherwise. The labeling starts with L1,
for verticesc, f, i, nextL2 verticesb, d, h are labeled, followed by
L3 = {e}, L4 = {a}, andL5 = {g}. Consider the labeling
for vertexc, first, (c, 0) is included, sinceadjG(c) = {b}, (b, 1)
is added tolabel(c) and b is marked.b is unmarked by checking
its neighborsa ande in G2, and we include both(a, 2), (e, 2) into
label(c), a ande are marked.e is at level 3 and is unmarked next.
adjG3(e) = {a, g}, we add(g, 4) to label(c). Thena is unmarked,
its only neighborg in G4 is already inlabel(c), d(c, g) is not up-
dated.g is marked. Finallyg is unmarked, sinceg has no neighbor
in G5, no further processing is required. The labels for all vertices
are shown in Figure 2(b). Note thatd(h, e) = 4 in label(h), while
distG(h, e) = 3, henced(h, e) > distG(h, e). In general the dis-
tance value in a label entry can be greater than the true distance.

3.3 P2P Distance Querying
We now discuss how we use the vertex labels to answer P2P

distance queries. We first define the following label operations used
in query processing.

• Vertex extraction: V[label(v)] = {u : (u, d(v, u)) ∈
label(v)}.

459

• Label intersection: label(u) ∩ label(v) = V[label (u)] ∩
V[label (v)].

The above two operations apply in the same way toLABEL(.).
Given a P2P distance query with two input vertices,s andt, let

X = label(s) ∩ label(t), the query answer is given as follows.

distG(s, t) =

{

minw∈X{d(s, w) + d(w, t)} if X 6= ∅
∞ if X = ∅

(1)

In Equation 1, we retrieved(s, w) andd(t,w) for eachw ∈ X

from label(s) and label(t), respectively. We give an example of
answering P2P distance queries using the vertices labels asfollows.

EXAMPLE 4. Consider the example in Figure 1, the labeling is
shown in Figure 2. Suppose we are interested indistG(h, e). We
look uplabel(h) and label(e). label(h) ∩ label(e) = {e, a, g}.
Among these vertices,g has the smallest sum ofd(h, g)+d(g, e) =
1 + 2 = 3. Hence we return 3 asdistG(h, e). Note that although
the distanced(h, e) recorded inlabel(h) is 4, which is greater than
distG(h, e), the correct distance is returned. If we want to find
distG(a, g), label(a) ∩ label(g) = {g}. HencedistG(a, g) is
given byd(a, g) + d(g, g) = 3 + 0 = 3.

Query processing using the vertex labels is simple; however, it
is not straightforward to see how the answer obtained is correct
for every query. In the remainder of this section, we prove the
correctness of the query answer obtained using the vertex labels.

We first define the concept ofmax-level vertex, denoted by
vmax , of a shortest path, which is useful in our proofs. Given a
shortest path froms to t in G, SPG(s, t) = 〈s = v1, v2, . . . , vp =
t〉, vmax is the max-level vertex ofSPG(s, t) if vmax is a vertex
on SPG(s, t) andℓ(vmax) ≥ ℓ(vi) for 1 ≤ i ≤ p. The following
lemma shows thatvmax is unique in any shortest path.

LEMMA 3. Given two verticess andt, if s andt are connected
in G, then for any shortest pathSPG(s, t) betweens and t, there
exists a unique max-level vertex,vmax , of SPG(s, t).

PROOF. If s andt are connected inG, then at least one short-
est path exists betweens and t. Consider any such shortest path
SPG(s, t), vmax must exist onSPG(s, t). Now suppose to the
contrary thatvmax is not unique, i.e., there exists at least one other
vertexv on SPG(s, t) such thatℓ(vmax) = ℓ(v) = j, which also
means that bothvmax andv are inLj andGj . SinceLj is an in-
dependent set ofGj , there is no edge betweenvmax andv in Gj .
Sincevmax andv are on the same pathSPG(s, t), they must be
connected inGj and the path connecting them must pass through
some neighboru of vmax or v in Gj , whereu is also onSPG(s, t).
Thus,u cannot be inLj (otherwise the vertex independence prop-
erty is violated) and henceℓ(u) > ℓ(vmax), which contradicts that
vmax is the max-level vertex ofSPG(s, t).

Next we prove thatLABEL(.) can be used to correctly answer
P2P distance queries. Then, we show howlabel(.) possesses the
essential information ofLABEL(.) for the processing of distance
queries.

THEOREM 1. Given a P2P distance query with two input
vertices, s and t, let X = LABEL(s) ∩ LABEL(t), then
distG(s, t) = minw∈X{distG(s, w) + distG(t, w)} if X 6= ∅,
or distG(s, t) = ∞ if X = ∅.

PROOF. We first show that ifSPG(s, t) exists, thenvmax ∈ X.
Consider a sequence of vertices,S = 〈s = u1, u2, . . . , uα =

vmax = vβ, . . . , v2, v1 = t〉, extracted fromSPG(s, t), such that
ℓ(u1) < ℓ(u2) < ... < ℓ(uα) = ℓ(vmax), ℓ(v1) < ℓ(v2) < ... <
ℓ(vβ) = ℓ(vmax), and for1 ≤ i < α, any vertexw betweenui

andui+1 onSPG(s, t) hasℓ(w) < ℓ(ui), and same for any vertex
betweenvi andvi+1. Note that sinceui+1 is the next vertex afterui

with ℓ(ui+1) > ℓ(ui), we haveℓ(w) ≤ ℓ(ui), andℓ(w) 6= ℓ(ui)
by the vertex independence property.

Sinceui and ui+1 are connected, they must exist together in
Gℓ(ui). Since there exists no other vertexw betweenui andui+1

on SPG(s, t) such thatℓ(w) ≥ ℓ(ui), ui andui+1 are not con-
nected by any suchw in Gℓ(ui). Thus, by Lemma 1, the edge
(ui, ui+1) must exist inGℓ(ui) for Gℓ(ui) to preserve the distance
betweenui andui+1, which means that for1 ≤ j ≤ α, uj is
an ancestor ofs and henceuj ∈ LABEL(s). Note thatu1 =
s ∈ LABEL(s) if α = 1. Similarly, we havevi ∈ LABEL(t),
for 1 ≤ i ≤ β. Thus, vmax = uα = vβ ∈ X and hence
distG(s, t) = distG(s, vmax) + distG(t, vmax).

The other case is thatSPG(s, t) does not exist, i.e.,s andt are
not connected, and we want to show thatX = ∅. Suppose on the
contrary that there existsw ∈ X. Then, it means that there is a path
from s to w and fromt to w, implying thats andt are connected,
which is a contradiction. Thus,X = ∅ anddistG(s, t) = ∞ is
correctly computed.

Theorem 1 reveals two pieces of information that are essential
for answering distance queries: the ancestor set and the distance to
the ancestors maintained inLABEL(.). We first show thatlabel(.)
also encodes the same ancestor set ofLABEL(.).

LEMMA 4. For eachv ∈ VG, V[label (v)] = V[LABEL(v)].

PROOF. First, we show that ifw ∈ V[LABEL(v)], i.e.,w is an
ancestor ofv, thenw ∈ V[label(v)]. According to the definition
of ancestor, there exists a sequenceS = 〈v = w1, w2, ..., wp =
w〉, such thatℓ(w1) < ℓ(w2) < ... < ℓ(wp), and for1 ≤ i <
p, (wi, wi+1) ∈ EGℓ(wi)

. This definition implies that ifwi is
currently inV[label (v)], wi+1 will also be added toV[label (v)]
according to Definition 3. Sincew1 = v must be inV[label(v)], it
follows thatw = wp is also inV[label(v)].

Next, we show that ifw ∈ V[label (v)], then w ∈
V[LABEL(v)]. First, we havev ∈ V[label(v)], v is also in
V[LABEL(v)]. Then, according to Definition 3, a vertexw is
added toV[label (v)] only if w ∈ adjGℓ(u)

(u) for someu cur-

rently in V[label(v)], and ℓ(w) > ℓ(u), and sinceu is an an-
cestor ofv, it implies thatw is an ancestor ofv and hencew ∈
V[LABEL(v)].

Next, we show thatlabel(.) also possesses the essential distance
information for correct computation of P2P distance.

LEMMA 5. Given a P2P distance query,s and t, let X =
label(s) ∩ label(t). If SPG(s, t) exists, thenvmax ∈ X,
d(s, vmax) = distG(s, vmax) andd(t, vmax) = distG(t, vmax).

PROOF. It follows from Lemma 4 thatlabel(s) ∩ label(t) =
LABEL(s) ∩ LABEL(t). As the proof of Theorem 1 shows that
vmax ∈ LABEL(s) ∩ LABEL(t), we also havevmax ∈ X.

The proof of Theorem 1 defines a sequence,S = 〈s =
u1, u2, . . . , uα = vmax = vβ, . . . , v2, v1 = t〉, extracted from
SPG(s, t). In particular, the proof shows that the edge(ui, ui+1)
exists inGℓ(ui) and ℓ(ui+1) > ℓ(ui), for 1 ≤ i < α. Thus,
according to Definition 3, we add the entry(ui+1, (d(s, ui) +
ωGℓ(ui)

(ui, ui+1))) to label(s). Since eachωGℓ(ui)
(ui, ui+1)

preserves the distance betweenui and ui+1, and d(s, u1) =
distG(s, u1), it follows thatd(s, vmax = uα) = distG(s, vmax =
uα). Similarly, we haved(t, vmax) = distG(t, vmax).

460

Finally, the following theorem states the correctness of query
processing usinglabel(.).

THEOREM 2. Given a P2P distance query,s andt, distG(s, t)
evaluated by Equation 1 is correct.

PROOF. The proof follows directly from Theorem 1, Lemmas 4
and 5.

4. A K-LEVEL VERTEX HIERARCHY
In Definition 1, we do not limit the heighth of the vertex hier-

archy, i.e., the number of levels in the hierarchy. This definition
ensures that an independent setLi can always be obtained for each
Gi, for 1 ≤ i ≤ h. However, when the given graph is massive,
there are two problems associated with the height of the vertex hi-
erarchy. First, as the number of levelsh increases, the label size
of the vertices at the lower levels (i.e., vertices with a smaller level
number) also increases. Since vertex labels require storage space
and are directly related to query processing, there is a needto limit
the vertex label size. Second, as we will discuss in Section 5, the
complexity of constructing the vertex hierarchy is linear inh. Thus,
reducingh can also improve the efficiency of index construction.

In this section, we propose to limit the heighth by a k-level
vertex hierarchy, wherek is normally much smaller thanh, and
discuss how the above-mentioned problems are resolved.

4.1 Limiting the Height of Vertex Hierarchy
The main idea is to terminate the construction of the vertex hi-

erarchy earlier at a level when certain condition is met. We first
define thek-level vertex hierarchy.

DEFINITION 4 (K-LEVEL VERTEX HIERARCHY). Given
a graph G = (VG, EG, ωG), a vertex hierarchy structure
H = (L,G) ofG, and an integerk, where1 < k ≤ (h+ 1) andh
is the number of levels inH, a k-level vertex hierarchy structure of
G is defined by a pair(H<k, Gk), whereH<k andGk are defined
as follows:

• H<k = (L<k,G<k) consists of the first(k − 1) levels ofH,
i.e.,L<k = {L1, . . . , Lk−1} andG<k = {G1, . . . , Gk−1};

• Gk is the sameGk as theGk in G.

Thek-level vertex hierarchy simply takes the first(k − 1) Li ∈
L, for 1 ≤ i < k, and the firstk Gi ∈ G, for 1 ≤ i ≤ k.
We set the value ofk as follows: leti be the first level such that
(|Gi|/|Gi−1|) > σ, whereσ (0 < σ ≤ 1) is a threshold for the
effect ofGi; then,k = i.

If k = (h+1), thenH<k is simplyH andGk is an empty graph.
In practice, a value ofσ that attains a reasonable indexing cost and
storage usage will often givek ≪ h.

For the k-level vertex hierarchy, we assign the level number
ℓ(v) = i for each vertexv ∈ L(i), where1 ≤ i ≤ (k − 1),
while for each vertexv ∈ VGk

, we assignℓ(v) = k. In this
way, we can computelabel(v) (or LABEL(v)) for each vertex
v ∈ VG in the same way as discussed in Section 3.2. Note that
label(v) = {(v, 0)} for each vertexv ∈ VGk

sincev has the high-
est level number among all vertices inVG.

EXAMPLE 5. Let us consider our running example in Figure 1,
if we setk = 2, there is only one levelL1 in L<k, the graphG2

is the highest level graph and is not further decomposed. Thek-
level vertex hierarchy is shown in Figure 3. The maximum level of
vertices is 2, since all verticesv in G2 are assignedℓ(v) = 2. The
labels for the vertices inL1 are shown in the following table.

a

b

c

d

e

f

g

h

i

1 1

a

b

d

e

g

h

2

Figure 3: A k-level vertex hierarchy (k = 2)

label(c) {(b, 1), (c, 0)}
label(f) {(e, 3), (f, 0), (h, 1)}
label(i) {(e, 1), (i, 0)}

4.2 P2P Distance Querying by k-Level Vertex
Hierarchy

According to Section 4.1,ℓ(v) andlabel(v) computed from the
k-level vertex hierarchy may be different from those computed
from the original vertex hierarchy. However, we show later in this
section that these labels are highly useful for they captureall the
information that is essential fromG−Gk for a continued distance
search inGk. Given a P2P distance query,s and t, we process
the query according to whethers and t are inGk. We have the
following two possible types of queries.

Type 1: s /∈ VGk
andt /∈ VGk

, and either(V[label (s)] ∩ VGk
) =

∅ or (V[label(t)] ∩ VGk
) = ∅. Type 1 queries are evaluated by

Equation 1.

Type 2: queries that are not Type 1. Type 2 queries are evaluated
by a label-based bi-Dijkstra searchprocedure.

We have discussed query processing by Equation 1 in Section
3.3. We now discuss how we process Type 2 queries as follows.

4.2.1 Label-based bi-Dijkstra Search
We describe a bidirectional Dijkstra’s algorithm that utilizes ver-

tex labels for effective pruning. The algorithm consists oftwo main
stages: (1) initialization of distance queues and pruning condition,
and (2) a single bidirectional Dijkstra search.

As shown in Algorithm 1, we first initialize aforward and are-
versemin-priority queue,FQ andRQ, which are to be used for run-
ning Dijkstra’s single-source shortest path algorithm from s andt,
respectively. For any vertexv ∈ VGk

, if (v, d(s, v)) ∈ label(s),
we add(v, d(s, v)) to FQ with d(s, v) as the key. For all other ver-
tices inVGk

but not inlabel(s), we add the record(v,∞) to FQ.
Similarly, we initializeRQ.

The vertex labels can also be used for pruning the search space.
If there exists a path betweens and t that passes through some
vertexw ∈ (VG − VGk

− {s, t}), then Lines 5-6 initializesµ as
the minimum length of such a path. Note thatµ ≥ distG(s, t).

We now describe Stage 2 of the query processing. We run Di-
jkstra’s algorithm simultaneously froms and t by extracting the
vertex v with the minimum key fromFQ or RQ (Line 9). Let
(v, d(x, v)) be the extracted record, wherex = s if the record
is extracted fromFQ andx = t otherwise. At this point, Dijkstra’s
algorithm guarantees that the distance fromx to v is found, i.e.,
d(x, v) = distG(x, v). Then, in Lines 13-18, the distance from
x to every neighboru of v in Gk is updated, ifu is still in FQ (if
x = s) or RQ(if x = t).

In addition to starting the search in both directions froms and
t in Dijkstra’s algorithm, we also add a pruning condition in Line

461

Algorithm 1: Label-based bi-Dijkstra Search

Input : s, t, label(s), label(t), Gk

Output : distG(s, t)
// Stage 1: initialization of distance queues

and pruning condition
// FQ (RQ): forward (reverse) min-priority

queue
1 initialize FQ with the set{(v, d(s, v)) : v ∈ VGk

,

(v, d(s, v)) ∈ label(s)}, with d(s, v) as the key;
2 initialize RQwith the set{(v, d(t, v)) : v ∈ VGk

,

(v, d(t, v)) ∈ label(t)}, with d(t, v) as the key;
3 ∀ v ∈ VG andv not in FQ(RQ), insert(v,∞) into FQ(RQ);
// µ: shortest distance from s to t found so

far
// µ is used for pruning in Stage 2

4 µ←∞;
5 X← label(s) ∩ label(t);
6 if X 6= ∅ then µ← minw∈X{d(s, w) + d(w, t)};

// Stage 2: bidirectional Dijkstra search
7 S ← ∅;
8 while both FQ and RQ are not empty, and

(min(FQ) + min(RQ)) < µ do
9 (v, d(x, v))← extract-min(FQ ,RQ) ; // x = s or x = t

10 let x′ = t if x = s, andx′ = s if x = t;
11 if 〈v, distG(x, v)〉 is not inS then
12 insert〈v, distG(x, v)〉 into S;

13 foreachu ∈ adjGk
(v) do

14 if d(x, u) > d(x, v) + ωGk
(v, u) then

15 d(x, u)← d(x, v) + ωGk
(v, u);

16 updated(x, u) in FQ (if x = s) or RQ(if x = t);
17 if 〈u, distG(x′, u)〉 is in S then
18 µ← min{µ, d(x, u) + distG(x′, u)};

19 return µ;

8 that requires the sum of the minimum keys ofFQ andRQ to be
less thanµ. If this sum is not less thanµ, then it means that no
path froms to t of a shorter distance thanµ can be found (proved
in Theorem 4) and hence we returndistG(s, t) = µ.

To improve the pruning effect so as to converge the search
quickly, we keep updatingµ wheneverd(x, u) is updated if
distG(x

′, u) has been found (Lines 17-18), sinceu is a poten-
tial vertex onSPG(s, t). We use a setS to keep a set of vertices
whose distance froms or t has been found. WheneverdistG(x, v)
is found for a vertexv, if v is not yet inS, we insertv, together
with distG(x, v), intoS.

We give an example to illustrate how queries are processed as
follows.

EXAMPLE 6. Let us consider Example 5. Suppose we need to
process a distance query between verticesc andi, i.e. s = c, t = i.
In label(c), b is in Gk, and therefore we enter(b, d(c, b) = 1)
into FQ. In label(i), e is in Gk, hence we enter(e, d(i, e) = 1)
into RQ. label(c) ∩ label(i) = φ, henceµ = ∞ after Stage
1 of Algorithm 1. In Stage 2, let us extract(b, 1) from FQ first,
〈b, 1〉 is inserted intoS, and we enter(a, 2), (e, 2), intoFQ. Next
we extract(e, 1) fromRQ, and insert〈e, 1〉 into S. (a, 2), (d, 2),
(b, 2) are entered intoRQ. Sinceb is in S, we updateµ to 2 + 1
= 3. At this point(min(FQ) + min(RQ)) > µ and we return
distG(c, i) = 3.

4.2.2 Correctness
We now prove the correctness of query processing by thek-level

vertex hierarchy. We first prove the correctness for processing Type
1 queries.

THEOREM 3. Given a P2P distance query,s andt, if the query
belongs to Type 1, thendistG(s, t) evaluated by Equation 1 is cor-
rect.

PROOF. First, we show that if the query belongs to Type 1, then
SPG(s, t) does not contain any vertex inVGk

. Suppose on the
contrary thatSPG(s, t) contains a vertex inVGk

. Then, consider
the sub-path ofSPG(s, t) from s to x, wherex is the only vertex
on the sub-path that is inVGk

. SinceSPG(s, t) is a shortest path in
G, this sub-path is a shortest path froms to x in G. LetSPG(s, x)
be the sub-path. Consider the query with two input verticess and
x; then, by similar argument as in the proof of Lemma 3 we have
vmax = x onSPG(s, x), and by similar argument as in the proof of
Lemma 5 we havex = vmax ∈ V[label(s)]. A symmetric analysis
on the sub-path fromt to some vertexy, wherey is the only vertex
on the sub-path that is inVGk

, shows thaty = vmax onSPG(t, y)
andy ∈ V[label (t)]. This contradicts the definition of Type 1 query
that either(V[label(s)] ∩ VGk

) = ∅ or (V[label(t)] ∩ VGk
) = ∅.

Now if SPG(s, t) does not contain any vertex inVGk
, then the

query can be answered using only label entries of vertices from the
first (k − 1) levels of the vertex hierarchy. These entries will have
identical occurrences and contents in the vertex labels at the firstk
levels of any vertex hierarchyH<j , wherek ≤ j ≤ h + 1, which
is formed by limiting the height of a givenH. Thus, the correctness
of query answer follows from Theorem 2.

Note that Type 1 queries exist only if there exist more than one
connected component inG such that all vertices in some connected
component(s) have a level number lower thank.

Next we prove the correctness for processing Type 2 queries.

THEOREM 4. Given a P2P distance query,s andt, if the query
belongs to Type 2, thendistG(s, t) evaluated by the label-based
bi-Dijkstra search procedure is correct.

PROOF. We have two cases: (1)SPG(s, t) does not contain any
vertex inVGk

, or (2) otherwise.
If SPG(s, t) does not contain any vertex inVGk

, then
distG(s, t) is computed in Lines 5-6 of Algorithm 1, or in other
words by Equation 1. As explained in the proof of Theorem 3, the
correctness of query answer follows from Theorem 2.

If SPG(s, t) contains at least one vertex inVGk
, then consider

the two subpaths,SPG(s, x) andSPG(t, y), defined in the proof of
Theorem 3 (note that it is possibles = x and/orx = y and/ory =
t). distG(s, x) anddistG(t, y) can be answered using only label
entries of vertices inL<k and their ancestors inGk for (H<k, Gk).
From the labeling mechanism, the occurrences and contents of such
label entries will be identical in the labels of vertices in the firstk
levels of any vertex hierarchyH<j , k ≤ j ≤ h + 1, which is
formed by limiting the height of a givenH. Hence by Theorem 2,
distG(s, x) anddistG(t, y) are correctly initialized in Lines 1-3
of Algorithm 1. Thus, if we do not consider the pruning condition
in Line 8, then Dijkstra’s algorithm guarantees the distance froms
(andt) to any vertex inGk correctly computed, from which we can
obtaindistG(s, t).

Now we consider query processing with pruning. Letµ = µ∗,
andminf = min(FQ) andminr = min(RQ), when the search
stops. If µ∗ is the value ofµ initialized in Line 6, then we
must havex = y ∈ (label(s) ∩ label(t)) and henceµ∗ =
(distG(s, x) + distG(t, x)). Otherwise,µ∗ is a value assigned
to µ in Line 18 and suppose to the contrary that there exists a
shorter path betweens andt with lengthp such thatp < µ∗. Since
the path passes through vertices inGk, there must exist an edge
(v, u) in Gk such thatp = distG(s, v)+ωGk

(v, u)+distG(u, t),
distG(s, v) < minf anddistG(u, t) < minr. The existence of

462

this edge is guaranteed becausep < µ∗ ≤ (minf +minr). Since
distG(s, v) < minf anddistG(u, t) < minr, by Dijkstra’s algo-
rithm, bothdistG(s, v) anddistG(t, u) have been computed when
the search stops. Thus,µ should have been updated to a value not
greater thanp in Line 18 when the edge(v, u) was processed. This
contradicts our assumption and henceµ∗ = distG(s, t).

4.3 Handling Directed Graphs
To handle directed graphs, we need to make the following

changes. Let us use(u, v) to indicate a directed edge fromu to
v in this subsection. The concept of independent set can be ap-
plied in the same way by simply ignoring the direction of the edges.
However, for distance preservation, we create an augmenting edge
(u, w) atGi only if ∃v ∈ Li−1 such that(u, v), (v, w) ∈ EGi−1 .
We distinguish two types of ancestors for a vertexv: in-ancestors
andout-ancestors. The definition of in-ancestors is similar to that
of ancestors in undirected graphs, except that we only consider
edges from higher-level vertices to lower-level vertices.Analo-
gously, the definition of out-ancestors concerns edges going from
lower-level vertices to higher-level vertices.

The labeling needs to handle two directions. For each ver-
tex v, we need two types of labels defined as follows. The
in-label of a vertex v ∈ VG, denoted byLABELin(v),
is defined asLABELin (v) = {(u, distG(u, v)) : u ∈
VG is an in-ancestor ofv}. The out-label of a vertex v ∈
VG, denoted byLABELout (v), is defined asLABELout(v) =
{(u, distG(v, u)) : u ∈ VG is an out-ancestor ofv}.

Given a P2P distance query with two input vertices,s andt, we
computeX = LABELout(s) ∩ LABELin (t) and then answer the
query in the same way as given in Equation 1.

5. ALGORITHMS
In this section, we present the algorithms for index construction

(i.e., vertex hierarchy construction and vertex labeling)and query
processing using the vertex labels. In recent years, due to the pro-
liferation of many massive real world networks, there has been an
increasing interest in algorithms that handle large graphs. For pro-
cessing large graphs that cannot fit in main memory, I/O cost usu-
ally dominates. Thus, we propose I/O-efficient algorithms,from
which the in-memory algorithms can also be easily devised.

For the analysis of the I/O complexity in this section, we de-
fine the following notation [5]. Letscan(N) = Θ(N/B) and
sort(N) = Θ(N

B
logM/B

N
B
), whereN is the amount of data be-

ing read or written from/to disk,M is the main memory size, and
B is the disk block size (1 ≪ B ≤ M/2).

5.1 Algorithm for Index Construction
Although the vertex hierarchy, exceptGk, is not required for

query processing, it is needed for vertex labeling. The vertex hi-
erarchy consists of two components,L andG; thus we have two
main steps: (1) computing each independent vertex setLi ∈ L,
and (2) constructing each distance-preserving graphGi ∈ G. We
first describe these two steps, followed by the constructionof the
overall vertex hierarchy, and finally the vertex labeling.

5.1.1 ConstructingLi

We want to maximize the size of eachLi as this helps to mini-
mize the number of levelsh and hence also minimizes the vertex
label size. However, maximizingLi means computing the maxi-
mum independent set ofGi, which is an NP-hard problem.

We adopt a greedy strategy to approximate the set of maximum
independent set ofGi by selecting the vertex with minimum degree
at each step [21], since small degree vertices have smaller number

Algorithm 2: ConstructingLi

Input : A graphGi = (VGi
, EGi

, ωGi
)

Output : Li andADJ (Li) = {adjGi
(v) : v ∈ Li}

1 allocate a buffer forLi andADJ (Li), and a buffer forL′;
2 G′

i ← Gi;
3 sortadjG′

i
(v) in G′

i in ascending order ofdegG′

i
(v);

4 foreachadjG′

i
(u) read inG′

i do
5 if u 6∈ L′ then
6 insertu into Li, and insertadjG′

i
(u) into ADJ (Li);

7 foreach v ∈ adjG′

i
(u) do

8 if v 6∈ L′ then insertv into L′;

9 if buffer forLi andADJ(Li) is full then flush the buffer;
10 if buffer forL′ is full then
11 scanG′

i to delete allv ∈ L′ andadjG′

i
(v), and clearL′;

Algorithm 3: ConstructingGi

Input : Gi−1, Li−1 andADJ(Li−1)
Output : Gi

1 Gi ← Gi−1;
2 remove fromGi all v ∈ Li−1 andadjGi−1

(v);

3 EA ← ∅;
4 foreachadjGi−1

(v) ∈ ADJ (Li−1) do
5 foreachu,w ∈ adjGi−1

(v), whereu < w do
6 insert intoEA the edges(u, w) and(w, u), with

ωGi
(u,w) = ωGi

(w, u) =
(ωGi−1

(u, v) + ωGi−1
(v, w));

7 sort the edges inEA by vertex ID’s;
8 scanEA andGi to add each edge(u, w) ∈ EA to Gi, or update

ωGi
(u,w) with the smaller weight if(u, w) already exists inGi;

of dependent (i.e., adjacent) vertices and hence more vertices are
left as candidates for independent set at the next step. Moreover,
the greedy algorithm can also be easily extended to give an I/O-
efficient algorithm that handles the case whenGi is too large to fit
in main memory, as described in Algorithm 2.

The algorithm computes an independent setLi of Gi, together
with the adjacency lists of the vertices inLi, denoted byADJ (Li).
We useADJ (Li) to constructGi+1 in Section 5.1.2. To compute
Li, we also keep those vertices that have been excluded fromLi in
the algorithm, as denoted byL′. We use a buffer to keep the current
Li andADJ (Li), and another buffer to keepL′.

The algorithm first makes a copy ofGi, let it beG′

i, and then
sorts the adjacency lists inG′

i in ascending order of the vertex de-
grees (i.e., the sizes of the adjacency lists). Then, we readG′

i in
this sorted order, i.e., the adjacency lists of vertices with smaller
degrees are read first. For eachadjG′

i
(u) read, ifu is not inL′,

we includeu intoLi and addadjG′

i
(u) to ADJ (Li). Meanwhile,

we exclude all vertices inadjG′

i
(u) from Li because of their de-

pendence withu, i.e., we add these vertices toL′. The algorithm
terminates whenadjG′

i
(u) for all u in G′

i are read.
If Gi is very large, it is possible thatLi andADJ (Li) are too

large to be kept by a memory buffer. We can simply write the cur-
rentLi andADJ (Li) in the buffer to disk, and then clear the buffer
for new contents ofLi andADJ (Li). However, when the buffer
for L′ is full, we cannot simply flush the buffer since it is possible
that∃u ∈ L′, adjG′

i
(u) has not been read yet. To tackle this with-

out incurring random disk accesses, we scanG′

i to remove all the
vertices currently inL′, together with their adjacency lists, from
G′

i, because these vertices have already been excluded fromLi.

463

Then, we clear the buffer forL′.
If G′

i can be resident in main memory, Lines 10-11 of Algorithm
2 are not necessary and we only need to scanG′

i once. IfG′

i is
resident on disk, it is easy to see that only sequential scansof G′

i

are needed and expensive random disk access is avoided.
Algorithm 2 takessort(|Gi|) I/Os to sortGi. If |L′| < M , we

need anotherscan(|Gi|) I/Os to readGi. Otherwise,O(|L′|/M)∗
scan(|Gi|) I/Os are required.

5.1.2 ConstructingGi

After obtainingLi−1 andADJ (Li−1), we use them to construct
Gi. As shown in Algorithm 3, we first initializeGi by removing
the occurrences of all vertices inLi−1, together with their adja-
cency lists, fromGi−1. However, the resultantGi may not sat-
isfy the distance preservation property. As discussed in Section
3.1, the violation to this property can be fixed by the creation of a
set of augmenting edges. We create these augmenting edges from
ADJ (Li−1) as follows.

When a vertexv ∈ Li−1, together withadjGi−1
(v), is removed

from Gi−1 to formGi, what is missing inGi is the path〈u, v, w〉
for anyu,w ∈ adjGi−1

(v), whereu < w (i.e.,u is ordered be-
forew). Thus, to preserve the distance we only need to create the
augmenting edge(u, w), and symmetrically(w, u) for undirected
graphs, with weight(ωGi−1(u, v) + ωGi−1(v, w)).

We create all such augmenting edges in Lines 4-6 of Algorithm
3 and store them in an arrayEA. Then, we sort the edges inEA

first in ascending order of the first vertex and then of the second
vertex. Then, we scan bothEA andGi (already sorted in its adja-
cency list representation), so that each edge inEA is merged into
Gi. If an edge inEA is already inGi, then its weight is updated to
the smaller value of its weight recorded inEA and inGi. In addi-
tion we can adopt the pruning method in [13] to prune augmenting
edges based on triangle inequality.

If main memory is not sufficient, Line 2 of Algorithm 3 uses
O(|Li−1|/M) ∗ scan(|Gi−1|) I/Os, if |EA| < |Gi| then Lines 3-6
and 8 usescan(|Gi|) I/Os, and Line 7 usessort(|Gi|) I/Os, else
we may sort partialEA each time it fills up memory and then scan
Gi, so the IO cost isO(|EA|/M)scan(|Gi|).

5.1.3 Constructing(L,G)

The overall scheme to construct the vertex hierarchy,(L,G), is
to start with the givenG1 = G, and keep repeating the two steps
of computingLi (Algorithm 2) and constructingGi (Algorithm 3)
until we reach a levelk (see Section 4.1 for the value ofk).

5.1.4 Top-Down Vertex Labeling
Definition 3 essentially defines a procedure for computing

label(v) for eachv ∈ VG. However, a careful analysis will show
that such a procedure, if implemented directly as it is described,
involves much redundant processing as implied by the following
corollary of Lemma 4.

COROLLARY 1. Given a vertexv ∈ Li, we haveV[label (v)] =
{v} ∪ (

⋃

u∈adjGi
(v) V[label (u)]).

PROOF. By Definition 3,∀u ∈ adjGi
(v), u will be included

into V[label (v)]. From the result of Lemma 4, we have∀u ∈
V[label (v)], u is an ancestor ofv by Definition 2. In the same
way, we have∀w ∈ V[label (u)], w ∈ V[label (v)] sincew is
then also an ancestor ofv. Thus,∀u ∈ adjGi

(v), V[label (u)] ⊆
V[label (v)].

Next, ∀w ∈ V[label (v)]\{v}, w ∈ V[label (u)] for someu ∈
adjGi

(v) becausew is included intoV[label(v)] from someu by

Algorithm 4: Top-Down Vertex Labeling

Input : (L,G)
Output : label(v), ∀v ∈ VG

// Initialization of vertex labels
1 for i = 1, ..., k − 1 do
2 foreach v ∈ Li do
3 label(v)← {(v, 0)} ∪ {(u, ωGi

(v, u)) : u ∈ adjGi
(v)};

4 ∀v ∈ VGk
: label(v)← {(v, 0)};

// Top-down vertex labeling
5 for i = k − 1, ...,1 do
6 allocate bufferBL and loadlabel(v), for eachv ∈ Li, in BL;
7 allocate bufferBU and loadlabel(v), for eachv ∈ Lj for

i < j < k and for eachv ∈ VGk
, in BU ;

8 foreach blockBL do
9 foreach blockBU do

10 foreach label(v) in BL do
11 foreach label(u) in BU do
12 if (u, d(v, u)) ∈ label(v) then
13 foreach (w, d(u, w)) ∈ label(u) do
14 if (w, d(v, w)) 6∈ label(v) then
15 add(w, d(v, u) + d(u, w)) to

label(v);

16 else
17 d(v, w) =

min(d(v, w), d(v, u)+d(u, w));

Definition 3, and by the same procedurew will be included into
V[label (u)] when we computelabel(u).

Corollary 1 implies that label(v) can be computed from
label(u), for eachu ∈ adjGi

(v), instead of from scratch. Based
on this, we design a more efficient top-down algorithm for vertex
labeling as shown in Algorithm 4.

The algorithm consists of two stages: initialization of vertex la-
bels and top-down vertex labeling by block nested loop join,dis-
cussed as follows.

According to Corollary 1, we only need to add(v, 0) and
(u, ωGi

(v, u)) for all u ∈ adjGi
(v) to label(v), and then derive

other entries oflabel(v) from label(u) in the top-down process.
For eachv ∈ VGk

, however, we only need to add(v, 0) to label(v)
since eachv ∈ VGk

has only one ancestor, i.e.,v itself.
After the initialization, we compute the labels for the vertices

starting from the top levels to the bottom levels, i.e., fromlevel(k−
1) down to level 1. We assume that the set of labels at each level
may not be able to fit in main memory and hence use block nested
loop join to find the matching labels, i.e.,label(u) for eachu ∈
adjGi

(v) when we processv at leveli. Note that ifu ∈ adjGi
(v),

then(u, d(v, u)) ∈ label(v) by the initialization. Thus, as shown
in Lines 11-16, we derive the entries of other ancestors ofv from
label(u) directly, which essentially follows the rule specified in
Definition 3.

The complexity of the algorithm is apparently dominated by the
top-down process. LetbL(i) = |{label(v) : v ∈ Li}|, and
bU (i) = |

⋃

i<j<k{label(v) : v ∈ Lj} ∪ {label(v) : v ∈ VGk
}|.

The I/O complexity for the block nested loop join is given by
(bL(i)/M) ∗ (bU (i)/B). Thus, the I/O complexity of Algorithm 4
is given byO(

∑k−1
i=1 ((bL(i)/M) ∗ (bU (i)/B))).

5.2 Algorithm for Query Processing

464

For processing large datasets, the vertex labels may not fit in
main memory and are stored on disk. The entries in eachlabel(v)
are stored sequentially on disk and are sorted by the vertex ID’s
of the ancestors ofv. Thus, label(s) ∩ label(t) involves simple
sequential scanning of the entries inlabel(s) and label(t). From
our experiments, the vertex labels are small in size and retrieving a
vertex label from disk takes only one I/O. The CPU time for query
processing comes mostly from the bi-Dijkstra search. For a graph
G = (V,E), a binary heap can be used and Dijkstra’s algorithms
runs inO((|E|+ |V |) log |V |) time.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of our method and compare with

other related methods for processing P2P distance queries [23, 39].
All methods tested were programmed in C++ and compiled with
the same compiler. All experiments were run on a computer with
an Intel 3.3 GHz CPU, 4GB RAM and a 7200 RPM SATA hard
disk, running Ubuntu 11.04 Linux OS.

We use both undirected and directed real datasets. For the undi-
rected datasets: BTC is a semantic graph converted from the Bil-
lion Triple Challenge 2009 RDF dataset (vmlion25.deri.ie/), where
each vertex represents an object such as a person, a document,
and an event, and each edge represents the relationship between
two nodes such as “has-author”, “links-to”, and “has-title”. Web
(barcelona.research.yahoo.net/webspam) is a subgraph ofthe UK
Web graph, where vertices are pages and edges are hyperlinks.
The original graph~G is directed and converted into undirected
graphG as follows: if two vertices are reachable from each other
within w hops in ~G, wherew ∈ {1, 2}, they have an undirected
edge with weightw in G. Since there are many connected com-
ponents inG, we extract the largest connected component . As-
Skitter is an Internet topology graph from traceroutes run daily in
2005 (www.caida.org/tools/measurement/skitter). Email-Enron is
the communication network from Enron. Ca-Astroph is the col-
laboration network of Arxiv Astro Physics. The homo and erdos
datasets are a biological network and a social network from [39].
For the directed graphs: ukweb is a subgraph of the UK Web graph.
The wiki-talk graph is a communication network from Wikipedia.
Email-EuAll is the email network from a EU research institution.
Soc-sign-slashdot and soc-Epinions are social networks. The p2p
graph is the Gnutella peer to peer network. Cit-HepPh is the Arxiv
High Energy Physics paper citation network. The wiki-vote graph
is the Wikipedia who-votes-on-whom network. More details of
the following datasets can be found in (snap.stanford.edu): as-
Skitter, email-Enron, aa-Astroph, wiki-talk, email-EuAll, soc-sign-
slashdot, soc-Epinions, p2p, cit-HepPh, and wiki-vote. Welist the
datasets in Table 1.

6.1 Comparison with Other Methods
We compare with two most recent works on point-to-point dis-

tance querying,HCL [23] for directed graphs andTEDI [39] for
undirected graphs. In [23, 39], HCL and TEDI were shown to
outperform other existing methods for distance querying indi-
rected and undirected graphs, respectively. Since IS-Label uses
bidirectional Dijkstra search (BDIJ) in Gk, we also report the re-
sults of BDIJ on the original graphG as a reference. We use
σ = 0.95 as our default threshold in IS-Label to obtainGk, i.e.,
when (|Gi|/|Gi−1|) > σ, we setk = i. To assess query per-
formance, we randomly generate 1000 queries in each datasetand
compute the average query time.

Table 2 reports both the indexing performance and query perfor-
mance of all the methods. The results clearly show that IS-Label
significantly outperforms both HCL and TEDI in all aspects. First,

|V | |E| Avg. deg Max. deg Disk size

Undirected graphs
BTC 164.7M 361.1M 2.19 105,618 5.6 GB
Web 6.9M 113.0M 16.40 31,734 1.1 GB
as-Skitter 1.7M 22.2M 13.08 35,455 200 MB
Email-Enron 37K 368K 10.02 1,383 2.7MB
ca-Astroph 19K 396K 21.10 504 2.8MB
homo 7K 40K 5.64 157 0.3MB
erdos 7K 24K 3.42 507 0.2MB
Directed graphs
ukweb 105.9M 297.4M 2.81 78,228 7.4GB
wiki-talk 2.4M 5.0M 2.10 100,022 104.2MB
Email-EuAll 265K 419K 1.58 7,631 8.6MB
soc-sign-slashdot 77K 517K 6.68 2,532 8MB
soc-Epinions 76K 509K 6.71 3,035 7.5MB
p2p 63K 148K 2.36 78 2.8MB
cit-HepPh 35K 421K 12.20 846 6.3MB
wiki-vote 7K 104K 14.57 893 1.4MB

Table 1: Real datasets

IS-Label is far more scalable than HCL and TEDI. IS-Label can
process graphs up to three and four orders of magnitude larger than
those HCL and TEDI can handle. For most of the graphs tested, we
were not able to obtain the result for HCL and TEDI due to the pro-
hibitively high cost of all-pairs shortest path computation. Second,
even for processing those small graphs which HCL and TEDI can
handle, both the indexing time and querying time of IS-Labelare
up to orders of magnitude shorter than those of HCL in all cases.
TEDI is faster in indexing than IS-Label but TEDI is only ableto
handle very small graphs with only 7K vertices.

For the relatively smaller graphs, IS-Label obtains a complete
vertex hierarchy, i.e.,k = (h+1) andGk is an empty graph, but the
indexing process is still very fast. The label size is in general larger
than when we have a non-emptyGk, but the largest overall label
size is only around 1 GB which is certainly acceptable. Note that if
storage space is critical, we can easily limit the height of the vertex
hierarchy to obtain a smaller label size, as we have done for the
large graphs. This shows the flexibility of our labeling scheme for
processing graphs of different sizes and/or computing resources.

Compared with BDIJ, IS-Label is significantly faster for process-
ing all datasets. The need for an index becomes clearer for process-
ing larger graphs. For processing the datasets BTC and ukweb, we
could not obtain the result for BDIJ since the memory consumption
of BDIJ exceeds the main memory capacity.

In conclusion, our labeling scheme is a big step forward in the
development of an efficient index for answering point-to-point dis-
tance queries in real world general graphs (both directed and undi-
rected). This is evident from the results that IS-Label is able to
handle graphs up to three and four orders of magnitude largerthan
the largest graphs used to test HCL [23] and TEDI [39], respec-
tively. Furthermore, even for processing small graphs, IS-Label
also significantly outperforms the most recent work, HCL [23], in
all aspects.

6.2 Effect of Graph Density
In this experiment, we examine the effect of density on the per-

formance of IS-Label. We generate two types of synthetic graphs
using the graph generator provided by [40]: thepreferential attach-
mentmodel (modeling graphs with power-law degree distribution)
[10], and thesmall worldmodel (modeling graphs with short aver-
age distance and small communities) [38]. We fix the graph size to
1 million vertices and vary the average degree of the vertices from
5 to 80.

We report the total label size for each average degree value in
Figure 4. The indexing time and query time follow similar trend as
the label size.

465

k |VGk
| |EGk

| |label| Index size Indexing time (s) Query time (ms)
Data graphs IS-Label HCL TEDI IS-Label HCL TEDI IS-Label HCL TEDI BDIJ

Undirected
BTC 6 134K 16.4M 6.6 7.1GB – – 2057.98 – – 6.35 – – –
Web 19 242K 14.5M 259.1 8.1GB – – 2034.07 – – 28.39 – – 108.53
as-Skitter 6 86K 8.5M 53.2 428.6MB – – 487.92 – – 2.32 – – 4.91
Email-Enron 78 0 0 784.1 137.7MB 46.4MB – 36.58 51780 – 0.005 0.294 – 0.107
ca-Astroph 164 0 0 2605.7 233.5MB 78.4MB – 238.56 22445 – 0.015 1.818 – 0.091
homo 75 0 0 466.7 15.7MB 9.4MB 27.9MB 16.70 2871 3.12 0.003 0.223 0.0014 0.024
erdos 17 0 0 27.7 1MB 2.2MB 1.9MB 2.93 1889 0.22 0.0008 0.012 0.0009 0.01
Directed
ukweb 10 1.1M 54.5M 7.0 8.9GB – n.a. 10132.8 – n.a. 19.796 – n.a. –
wiki-talk 4 14K 1.1M 1.5 85MB – n.a. 39.93 – n.a. 0.011 – n.a. 0.198
Email-EuAll 4 975 125K 1.0 8.0MB – n.a. 1.39 – n.a. 0.008 – n.a. 0.021
soc-sign-slashdot 215 0 0 1336.5 1GB – n.a. 439.47 – n.a. 0.007 – n.a. 0.048
soc-Epinions 216 0 0 1586.3 1.1GB – n.a. 517.41 – n.a. 0.009 – n.a. 0.079
p2p 322 0 0 896.3 536.3MB – n.a. 464.82 – n.a. 0.004 – n.a. 0.045
cit-HepPh 107 0 0 325 107.8MB 63.9MB n.a. 44.41 40747 n.a. 0.002 0.246 n.a. 0.445
wiki-vote 69 0 0 176.2 12.1MB 2.6MB n.a. 13.20 559 n.a. 0.001 0.018 n.a. 0.005

Table 2: Performance results of IS-Label, HCL, TEDI, and Bi-Dijkstra (BDIJ): the size of Gk and average number of entries per
label, |label |, of IS-Label; and the total index size, total indexing time,and average query time of all methods.

The results show that our label size is not significantly increased
when the density increases for both preferential attachment and
small-world models. The more rapid increase in the label size when
the degree increases from 5 to 20 is because a largerk, i.e., more
levels in the vertex hierarchy, is computed for smaller graphs. How-
ever, when the density becomes larger, the increase in the label size
becomes small.

0 5 10 20 40 80
0

20

40

60

80

100

La
be

l s
iz

e
(M

B
)

Average degree

Preferential Attachment
Small World

Figure 4: Performance results of density change

6.3 Effect of k-Level Vertex Hierarchy
For handling large graphs, IS-Label restricts the number oflev-

els in the vertex hierarchy tok in order to combat the increasing
label size, and then run the bi-Dijsktra algorithm onGk. In this ex-
periment, we test the effect ofk on the performance. In particular,
we examine whetherGk is too dense for the bi-Dijsktra algorithm
to be efficient.

We report the results in Table 3, where we use the two larger
graphs BTC and Web to demonstrate the effect ofk (the results
on other datasets are similar). The value ofk computed by our
algorithm is 6 and 19 for BTC and Web, respectively. And we
manually set4 ≤ k ≤ 8 and15 ≤ k ≤ 23 to test the effect.

The results show that for any two level numberk1 andk2, where
k1 < k2, Gk2 is denser than that ofGk1. The increase in density
is largely due to the decrease in the vertex number, but the overall
size (in terms of both edge number and vertex number) ofGk2 is
smaller than that ofGk1. Thus, ask increases, bi-Dijkstra runs on
a denser but smaller graphGk2. As shown by Qtime-2 in Table 3,
bi-Dijkstra is still faster inGk2 than inGk1, thoughGk2 is denser.

The overall query time, i.e., the sum of Qtime-1 and Qtime-2,
increases ask increases. This is mainly due to the fact that the
label size increases whenk increases, i.e., the number of levels in

k |VGk
| |EGk

| Label Indexing Qtime-1 Qtime-2
size time (s) (ms) (ms)

BTC 4 232K 18.7M 3.8 GB 1422.10 3.59 0.06
BTC 5 167K 17.2M 4.9 GB 1574.19 4.77 0.05
BTC 6 134K 16.4M 7.1 GB 2057.98 6.31 0.04
BTC 7 114K 15.8M 11.2 GB 2147.93 7.83 0.04
BTC 8 100K 15.4M 18.1 GB 2711.81 9.09 0.04
Web 15 329K 17.8M 5.8 GB 1398.34 17.10 15.63
Web 17 280K 16.0M 7.1 GB 1729.28 19.57 13.65
Web 19 242K 14.5M 8.1 GB 2034.07 20.58 7.81
Web 21 211K 13.2M 9.0 GB 2437.78 23.43 7.15
Web 23 186K 12.2M 9.9 GB 2784.04 32.61 6.55

Table 3: Performance results of differentk: the size ofGk and
label, indexing time, Qtime-1 for the time taken to process the
labels and Qtime-2 for the time to run bi-Dijsktra in Gk

the vertex hierarchy increases. Thus, the time to retrieve the labels
from disk (leading to high I/O cost) and to intersect the label sets,
i.e., Qtime-1, becomes more expensive. However, we note that if k
is too small, it becomes very costly to run bi-Dijkstra inGk. For
example, it takes 108.53 ms to run bi-Dijkstra inG0 = G for the
Web graph, which is larger than the sum of Qtime-1 and Qtime-2
for anyk shown in Table 3.

Finally, we can also see from the table that the value ofk com-
puted by our algorithm is effective. In fact, for the Web graph,
k = 19 computed by our algorithm is the optimal value.

7. LIMITATIONS OF EXISTING WORK
We highlight the challenges of computing P2P distance by dis-

cussing existing approaches and their limitations.

7.1 Indexing Approaches
Cohen et al. [16] proposed the 2-hop labeling that com-

putes for each vertexv two sets,Lin (v) and Lout (v), where
for each vertexu ∈ Lin (v) and w ∈ Lout (v), there is a
path fromu to v and fromv to w. The distancesdistG(u, v)
and distG(v, w) are pre-computed. Given a distance query,s
and t, the index ensures thatdistG(s, t) can be answered as
minv∈(Lout (s)∩Lin (t)){distG(s, v)+distG(v, t)}. However, com-
puting the 2-hop labeling, including the heuristic algorithms [15,
35], is very costly for large graphs.

Xiao et al. [41] exploit symmetric structures in an unweighted
undirected graph to compress BFS trees to answer distance queries.
However, the overall size of all the compressed BFS trees is pro-
hibitively large even for medium sized graphs.

466

Wei [39] proposed an index based on a tree decomposition of
an undirected graphG, where each node in the tree stores a set of
vertices inG. The distance between each pair of vertices stored in
each tree node is pre-computed, so that queries can be answered
by considering the minimum distance between vertices stored on
a simple path in the tree. However, the number of vertices stored
in the root node is large and thus the pair-wise distances forthese
vertices are expensive to compute and require huge storage space.
As a result, the method cannot scale to handle large graphs.

The labeling method in [16] is very costly. Jin et al. [23] pro-
posed to use a spanning tree as a highway structure in a directed
graph, so that distance froms to t is computed as the length of the
shortest path froms to some vertexu and via the highway (i.e., a
path in the spanning tree) to some vertexv, and fromv to t. Every
vertex is given a label so that a set of entry points in the highway
(e.g.,u) and a set of exit points (e.g.,v) can be obtained. However,
the labeling requires all pairs shortest paths to be computed and is
too costly for processing large graphs.

Cheng et al. [13] proposed the VC-index for computing the dis-
tances from a source vertex to all other vertices. The use of vertex
cover in [13] has inspired the use of independent set in our method.
An independent set is the complement of a vertex cover in a graph.
VC-index can be used to answer P2P distance queries if we force
the search from sources to stop when hitting targett. However,
their method is not a labeling technique and much computation will
be wasted in computing the distances from the source to many ir-
relevant vertices. Vertex cover has also been used for answering
k-hop reachability queries [14], it is also not a labeling method.

The problem of P2P distance querying has been well studied for
road networks. Abraham et al. [2] recently proposed a hub-based
labeling algorithm, which is the fastest known algorithm inthe road
network setting. Other fast algorithms such as [32], [18], and [9]
are also based on the concept of highways to reduce the search
space. However, it has been shown in [4] and [1] that the effec-
tiveness of these methods relies on properties such as low VCdi-
mensions and low highway dimensions, which are typical in road
networks but may not hold for other types of graphs. Another ap-
proach is based on a concise representation of all pairs shortest
paths [31, 33]. However, this approach heavily depends on the
spatial coherence of vertices and their inter-connectivity. Tao et
al. [36] proposed thek-skip shortest path on road networks, which
is to return at least one out of everyk consecutive vertices in a
shortest path. While P2P distance querying has been quite success-
fully resolved for road networks, these methods are in general not
applicable to graphs from other sources.

7.2 Other Approaches
When the input graph is too large to fit in main memory, ex-

ternal memory algorithms can be used to reduce the high disk I/O
cost. Existing external memory algorithms are mainly for comput-
ing single-source shortest paths [24, 28, 26, 27] or BFS [6, 7, 11,
25, 29], which are wasteful for computing P2P distance.

There are also a number of approximation methods [8, 20, 30,
34, 37] proposed to compute P2P distance. Although these methods
have a lower complexity than the exact methods in general, they
are still quite costly for processing large graphs, in termsof both
preprocessing time and storage space. We focus on exact distance
querying but remark that approximation can be applied on topof
our method (e.g., on the graphGk defined in Section 4).

7.3 Methods with Similar Characteristics
We also want to specifically compare and contrast with several

methods for road-networks that share some similar characteristics

with IS-Label.
First, we consider the landmark approach proposed in [19],

in which a set of landmarksL are selected and for each ver-
tex, the distance to and from each landmarkx ∈ L is pre-
computed. By triangle inequality,distG(s, t) is lower bounded
by maxx∈L{|distG(s, x) − distG(t, x)|}, which helps speed up
bi-Dijkstra search. With the full vertex hierarchy in IS-Label, we
also store pre-computed distances in labels, except that the labels
can always give the exact value ofdistG(s, t) instead of a lower
bound.

Next, we compare with the multilevel overlay graphs in [22] for
road networks, where overlay graphs are built on top of shrinking
setsS of vertices, preserving the distances among vertices inS.
The overlay graphs can limit the search in a graph smaller than G.
However, in building overlay graph for a vertex setS, each vertex
in S undergoes a Dijkstra’s single source shortest path search inG.
The complexity is high and the empirical studies in [22] handled
graphs with less than 500,000 vertices. While all overlay graphs
are maintained in [22] for querying, we do not keep any graph for
full vertex hierarchy and keep onlyGk for k-level hierarchy.

Labeling technique is also used in the hub-based labeling algo-
rithm (HL) [2], which is the fastest known algorithm for distance
querying in road networks. As pointed out by the same authorsin
[3], for graphs other than road networks, the contraction hierarchy
(CH) preprocessing in HL is not effective for general graphs. To ad-
dress this problem they proposed hierarchical hub labeling(HHL)
for other graph types [3]. Instead of the bottom up CH method,
a top-down method was proposed for HHL, as inspired by [16].
HHL maintains a shortest path tree for every vertex to represent all
uncovered shortest paths starting at each vertex. The computation
and storage complexities of HHL are not scalable for handling large
graphs. With a RAM of 96GB, HHL was tested only on preferen-
tial attachment graphs and small world graphs with|V | = 100, 000
and average degree 10. In contrast, our labeling technique accom-
modates I/O efficient algorithms that work with small RAM sizes,
such as 4GB, and we can handle preferential attachment graphs and
small world graphs with|V | = 1, 000, 000 and much higher aver-
age degree.

8. PATH QUERIES
In this section, we discuss the extension of our method to an-

swer shortest-path queries. To answer a P2P shortest-path query,
we need to keep some extra information in the vertex labels. When
an augmenting edge(u,w) is created inGi with ωGi

(u,w) =
ωGi−1(u, v) + ωGi−1(v, w), we also keep the intermediate vertex
v along with the augmenting edge to indicate that the edge repre-
sents the path〈u, v, w〉. Note that(u, v) and(v, w) are edges in
Gi−1, which in turn can be augmenting edges. In the labeling pro-
cess, instead of adding the entry(w, d(u,w)) to label(u), we also
attach the intermediate vertexv (if any) for (u,w). Thus, the en-
try becomes a triple(w, d(u,w), v) (or (w, d(u,w), φ), if there is
no intermediate vertex). Note that we keep the graphGk, and thus
the intermediate vertex of any augmenting edge inGk is directly
attached to the edge.

Given a query,s andt, if the query is of Type 1, the answer is de-
termined by two label entries,(w, d(s,w), v) and(w, d(t, w), v′).
If v 6= φ (similarly for v′), we form two new queries(s, v) and
(v, w). In this way, we recursively form queries until the interme-
diate vertex in a label entry isφ. It is then straightforward to obtain
the resulting path by linking all the intermediate vertices. If the
query is of Type 2, then the answer is determined by two label en-
tries and a path inGk. The subpaths from the two label entries are
derived in the same way as we do for a Type 1 query. The path in

467

Gk is expanded into the original path inG by forming new queries,
“u andv” and “v andw”, for any augmenting edge(u, w) with
the intermediate vertexv. For each such query, the corresponding
subpath is obtained as discussed above. The I/O complexity of the
overall process is given byO(|SPG(s, t)|), where|SPG(s, t)| is
the number of edges onSPG(s, t).

9. CONCLUSIONS
We introduced an effective disk-based label indexing method for

distance and shortest path querying in large real-world graphs. Our
vertex labeling process is guided by an independent-set based ver-
tex hierarchy. For massive graphs, we can limit the height ofthe
hierarchy to control the the label size, our theoretical analysis show
that we need at most one in-memory bi-Dijkstra’s search on the
residual graph to obtain the final solution. Our method simulta-
neously solves the problem of reachability. Given the low costs
of IS-LABEL in index construction and querying, it is expected to
handle very larger graphs for reachability queries. This isto be
confirmed in our future work.

10. ACKNOWLEDGEMENTS
We thank Yanyan Hsu for her help in the implementation of the

directed version of the IS-Label algorithm. We thank Shumo Chu
for his help in the use of the datasets BTC and Web. This work was
supported by the CUHK RGC Direct Grant Allocation 2050483.

11. REFERENCES
[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. F.

Werneck. Vc-dimension and shortest path algorithms. InICALP (1),
pages 690–699, 2011.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. A
hub-based labeling algorithm for shortest paths in road networks. In
SEA, pages 230–241, 2011.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck.
Hierarchical hub labelings for shortest paths. InProceedings of the
20th Annual European Conference on Algorithms (ESA), pages
24–35, 2012.

[4] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In
SODA, pages 782–793, 2010.

[5] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems.Commun. ACM, 31(9):1116–1127, 1988.

[6] D. Ajwani, R. Dementiev, and U. Meyer. A computational study of
external-memory BFS algorithms. InSODA, pages 601–610, 2006.

[7] D. Ajwani, U. Meyer, and V. Osipov. Improved external memory bfs
implementation. InALENEX, 2007.

[8] S. Baswana and S. Sen. Approximate distance oracles for
unweighted graphs in expectedo(n2) time.ACM Transactions on
Algorithms, 2(4):557–577, 2006.

[9] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner. Combining hierarchical and goal-directed speed-up
techniques for dijkstra’s algorithm.ACM Journal of Experimental
Algorithmics, 15, 2010.

[10] T. Bu and D. F. Towsley. On distinguishing between internet power
law topology generators. InINFOCOM, 2002.

[11] A. L. Buchsbaum, M. H. Goldwasser, S. Venkatasubramanian, and
J. Westbrook. On external memory graph traversal. InSODA, pages
859–860, 2000.

[12] L. Chang, J. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance
to destination in undirected world.The VLDB Journal, pages 1–20,
2012 (Online First).

[13] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of
distance queries in large graphs: a vertex cover approach. In
SIGMOD Conference, pages 457–468, 2012.

[14] J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. K-reach: Who
is in your small world.PVLDB, 5(11):1292–1303, 2012.

[15] J. Cheng and J. X. Yu. On-line exact shortest distance query
processing. InEDBT, pages 481–492, 2009.

[16] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels.SIAM J. Comput.,
32(5):1338–1355, 2003.

[17] A. W.-C. Fu, H. Wu, J. Cheng, S. Cho, and R. C.-W. Wong. Is-label:
an independent-set labeling scheme for point-to-point distance
querying on large graphs.arXiv:1211.2367, 2012.

[18] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.Contraction
hierarchies: Faster and simpler hierarchical routing in road networks.
In WEA, pages 319–333, 2008.

[19] A. V. Goldberg and C. Harrelson. Computing the shortestpath: A*
search meets graph theory. InProceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 156–165, 2005.

[20] A. Gubichev, S. J. Bedathur, S. Seufert, and G. Weikum. Fast and
accurate estimation of shortest paths in large graphs. InCIKM, pages
499–508, 2010.

[21] M. M. Halldórsson and J. Radhakrishnan. Greed is good:
Approximating independent sets in sparse and bounded-degree
graphs.Algorithmica, 18(1):145–163, 1997.

[22] M. Holzer, F. Schulz, and D. Wagner. Engineering multilevel overlay
graphs for shortest-path queries.ACM Journal of Experimental
Algorithmics, 13(2.5), 2008.

[23] R. Jin, N. Ruan, Y. Xiang, and V. E. Lee. A highway-centric labeling
approach for answering distance queries on large sparse graphs. In
SIGMOD Conference, pages 445–456, 2012.

[24] V. Kumar and E. J. Schwabe. Improved algorithms and data
structures for solving graph problems in external memory. In IEEE
Symp. on Parallel and Distributed Processing, pages 169–177, 1996.

[25] K. Mehlhorn and U. Meyer. External-memory breadth-first search
with sublinear I/O. InESA, pages 723–735, 2002.

[26] U. Meyer. Via detours to I/O-efficient shortest paths. In Efficient
Algorithms, pages 219–232, 2009.

[27] U. Meyer and V. Osipov. Design and implementation of a practical
i/o-efficient shortest paths algorithm. InALENEX, pages 85–96,
2009.

[28] U. Meyer and N. Zeh. I/O-efficient undirected shortest paths with
unbounded edge lengths. InESA, pages 540–551, 2006.

[29] K. Munagala and A. G. Ranade. I/o-complexity of graph algorithms.
In SODA, pages 687–694, 1999.

[30] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fastshortest path
distance estimation in large networks. InCIKM, pages 867–876,
2009.

[31] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. InSIGMOD Conference,
pages 43–54, 2008.

[32] P. Sanders and D. Schultes. Highway hierarchies hastenexact
shortest path queries. InESA, pages 568–579, 2005.

[33] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for
spatial networks.PVLDB, 2(1):1210–1221, 2009.

[34] A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A
sketch-based distance oracle for web-scale graphs. InWSDM, pages
401–410, 2010.

[35] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient
connection index for complex xml document collections. InEDBT,
pages 237–255, 2004.

[36] Y. Tao, C. Sheng, and J. Pei. Onk-skip shortest paths. InSIGMOD
Conference, pages 43–54, 2011.

[37] M. Thorup and U. Zwick. Approximate distance oracles.J. ACM,
52(1):1–24, 2005.

[38] D. Watts and S. Strogatz. Collective dynamics of ‘small-world’
networks.Nature, 393(6684):440–442, 1998.

[39] F. Wei. Tedi: efficient shortest path query answering ongraphs. In
SIGMOD Conference, pages 99–110, 2010.

[40] H. Wu, J. Cheng, A. W.-C. Fu, and S. Chu. Generating massive
graphs with limited memory.Technical Report, Department of
Computer Science and Engineering, The Chinese University of Hong
Kong, (CS-TR-2012-01):1–9, 2012.

[41] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He. Efficiently indexing
shortest paths by exploiting symmetry in graphs. InEDBT, pages
493–504, 2009.

468

