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ABSTRACT
As Personalized PageRank has been widely leveraged for ranking
on a graph, the efficient computation of Personalized PageRank
Vector (PPV) becomes a prominent issue. In this paper, we pro-
pose FastPPV, an approximate PPV computation algorithm that is
incremental and accuracy-aware. Our approach hinges on a novel
paradigm of scheduled approximation: the computation is parti-
tioned and scheduled for processing in an “organized” way, such
that we can gradually improve our PPV estimation in an incremen-
tal manner, and quantify the accuracy of our approximation at query
time. Guided by this principle, we develop an efficient hub based
realization, where we adopt the metric of hub-length to partition
and schedule random walk tours so that the approximation error re-
duces exponentially over iterations. Furthermore, as tours are seg-
mented by hubs, the shared substructures between different tours
(around the same hub) can be reused to speed up query process-
ing both within and across iterations. Finally, we evaluate FastPPV
over two real-world graphs, and show that it not only significantly
outperforms two state-of-the-art baselines in both online and of-
fline phrases, but also scale well on larger graphs. In particular,
we are able to achieve near-constant time online query processing
irrespective of graph size.

1. INTRODUCTION
Graphs are ubiquitous in the real-world, such as the Web, so-

cial networks and entity-relationship graphs, calling for solutions to
ranking on a graph. Formally, a graph G = (V,E) is represented
by a set of nodes V and edges E. As each edge embeds certain
semantic relationship between the nodes, given a node q ∈ V as
the query, what are the nodes relevant to q through the edges in E?

∗This material is based upon work partially supported by NSF Grant IIS
1018723, the Advanced Digital Sciences Center of the University of Illi-
nois at Urbana-Champaign, and the Agency for Science, Technology and
Research of Singapore. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the author(s) and do
not necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 6
Copyright 2013 VLDB Endowment 2150-8097/13/04... $ 10.00.

Here, the input is a query q, and the output is a ranked list of nodes
in V . We motivate such ranking with two example scenarios.

Scenario 1: Bibliographic search. Consider a bibliographic net-
work with interconnected nodes such as papers, venues and au-
thors. Given a paper, who are the best matching experts to review
it? In this case, the input query is a paper node, and the output is a
ranking over the author nodes in the network.

Scenario 2: Friends recommendation. Consider a social network
with users as nodes, connected by their friendships. Given a user
in the network, how can we recommend some potential friends to
her? Taking the user node as the input query, a ranking over all the
other user nodes can be leveraged for the recommendation.

In the above scenarios, the rankings are specific to the dynamic
queries, reflecting the “relevance” of nodes to the query node. As a
well-studied graph ranking algorithm, Personalized PageRank [14,
12] is effective in calculating such query-specific relevance based
on the link structure of the graph. In this paper, we study the effi-
ciency aspect of Personalized PageRank, as we shall see.

Background on Personalized PageRank. Personalized PageRank
is an extension of the famous PageRank algorithm [14], both of
which are based on a random surfer model.

To understand Personalized PageRank, we first review the orig-
inal PageRank briefly. A random surfer starts at any node on the
graph. At each step, with a probability of 1−α the surfer moves to
a neighboring node randomly, and with a probability of α she gets
bored and teleports to a random node on the graph. This process
is repeated until the walk converges to a steady-state. The station-
ary probability of the surfer at each node is taken as the score of
the node. However, this form of score is purely based on the static
link structure, indicating the overall popularity of each node on the
graph, without tailoring to a specific query node.

In contrast, Personalized PageRank enables query-sensitive rank-
ing, in the sense that we can specify a query node to obtain a “per-
sonalized” ranking accordingly. It is based on the same random
surfer model of the original PageRank, except when the surfer tele-
ports, she always prefers the query node q. Specifically, at each
step, with probability α the surfer teleports to q instead of a ran-
dom node, thus visiting the neighborhood of q more frequently.
Thus, the stationary distribution, called a Personalized PageRank
Vector (PPV), is biased towards q and its neighborhood, which can
be interpreted as a popularity or relevance metric specific to q. We
denote the PPV w.r.t. a query node q by rq , and rq(p) refers to the
entry corresponding to node p in rq , i.e., p’s score w.r.t. q.

More generally, a query q can comprise multiple nodes on the
graph, such that in the teleportation the surfer can jump to any
node in q. Fortunately, the computation for a multi-node query is
no more difficult than for a single-node query due to the Linearity
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Theorem [12, 8, 6], as the PPV w.r.t. a multi-node query is a sim-
ple linear combination of the individual PPV w.r.t. each node in the
query. Hence, our discussion only covers single-node queries.

Challenges in efficiency. Unfortunately, computing an exact PPV
is, in general, infeasible even on a moderately large graph due to
the prohibitive time or space cost [8, 12]. To make exact computa-
tion manageable, early works [11, 12] restrict personalization (i.e.,
the query) to only some selected nodes. While such partial person-
alization is in some cases acceptable, most applications demand
full personalization, which supports any arbitrary node as queries.
Thus, some recent efforts [12, 8, 5, 6, 7] propose full personaliza-
tion methods for approximate PPVs. They trade accuracy for faster
query processing by reducing the computation in consideration on-
line, as well as resorting to partial precomputation offline, which
we will further elaborate in Sect. 2. However, in these schemes,
once the offline precomputation is completed at a predetermined
approximation level, the trade-off between efficiency and accuracy
cannot be easily controlled dynamically.

Our proposal. In this paper, we present FastPPV, an approximate
algorithm for computing fully personalized PPV. To highlight, it
features incremental and accuracy-aware query processing, which
means we can control the trade-off between efficiency and accu-
racy online. The key insight to achieve such a control hinges on
the novel concept of scheduled approximation—we “organize” the
random walk paths to be considered in some meaningful layers,
such that the approximation can be incremented layer by layer, and
more layers render better accuracy.

In particular, we develop this scheduled approximation upon an
existing concept called inverse P-distance [12]. As shown previ-
ously [12], a node p’s score in the PPV w.r.t. a query node q equals
to the inverse P-distance from q to p, which is the reachability from
q to p through all possible tours (i.e., paths):

rq(p) ≡
∑

t∈{q p}

R(t), (1)

where a tour t ∈ {q  p} is a sequence of edges from q to p that
may contain cycles. R(t), the reachability of t, is the probability
of reaching p from q through tour t in a random walk. For a tour t
of the form v0 → v1 → · · · → vL(t) with length L(t),

R(t) , (1− α)L(t) · α ·
L(t)−1∏
i=0

1

|Out(vi)|
, (2)

where α ∈ (0, 1) is the teleporting probability in the random surfer
model, and |Out(vi)| is the out-degree of vi.

We note that inverse P-distance was previously explored [12] to
decompose the computation of a PPV. Specifically, they use inverse
P-distance to compute some PPV components for a restricted set
of nodes, which are then assembled to obtain the final PPVs w.r.t.
those restricted nodes. Thus, their goal is to compute exact PPVs,
but only for a fixed subset of nodes, lacking full personalization.
While identified as their future work [12], devising an approximate
algorithm for full personalization, solely based on their original
use of inverse P-distance without exploiting other properties, ap-
pears implausible. In this paper, we solve this problem by making
a new observation on inverse P-distance—the tours in Eq. 1 are not
equally important in contributing to the computation. This obser-
vation prompts us to investigate the novel principle of scheduled
approximation by partitioning and prioritizing tours, which lever-
ages inverse P-distance in a distinct way, as we discuss next.

Principle (Sect. 3). We partition the set T of all tours involved in
inverse P-distance (Eq. 1) into disjoint subsets T = T 0 ∪ · · · ∪ T η
according to their contribution, and prioritize them to tackle a more

“important” partition T i earlier. While simple, this partition-and-
prioritize principle has remained unexplored for PPV computation
to this date, and possesses two ideal properties:

• Incremental: FastPPV processes tours partition by partition, start-
ing from T 0. In iteration-i, it covers tours in T i to compute an in-
crement r̂iq , adding to the overall estimate r̂q = r̂0q+ · · ·+ r̂iq . As
it covers more partitions, the error (in terms of L1 norm) mono-
tonically decreases, and r̂q asymptotically approaches rq .
• Accuracy-aware: In each iteration, we show that the current L1

error is determinable using only the current estimate, even with-
out knowing the exact PPV. Thus, this error can be utilized as
a stopping condition to control the trade-off between efficiency
and accuracy at query time.

Realization (Sect. 4). To realize the basic principle of partition-
ing tours, we propose a novel notion, hub length. Given some hub
nodes H selected from V , we measure the hub length of a tour t,
or Lh(t), as the number of hubs traversed by t. Then, we partition
each T i to contain tours of Lh(t) = i. With a carefully selected
|H|, such partitioning has two desirable properties to enable effi-
cient computation:

• Discriminating: By choosing nodes of high out-degrees as hubs,
from Eq. 2, the fewer hubs t contains, the larger t’s reachability
becomes in general. Thus, tours in an earlier partition T i (with
i hubs) tend to contribute more than those in a later partition
T k+m (with more than k hubs), allowing us to efficiently focus
on the first few partitions that are more important for an accurate
estimation. We formally prove an error bound that decreases
exponentially as more partitions are covered.
• Sharing: By choosing “popular” nodes on the graph as hubs,

i.e., hubs are more reachable from many tours, different tours
will share the same hubs. This sharing enables the reuse of com-
mon sub-structures to speed up computation. First, as the tour
segments between hub nodes are shared, we can thus precom-
pute and index their reachabilities, which we call prime PPVs,
as building blocks to assemble an arbitrary tour at query time.
Second, as we build partitions by hub length, it can be shown
that tours in partition T i simply extend those in T i−1 as pre-
fixes, and thus successive iterations can reuse these prefixes.

Overall framework (Sect. 5). Upon the hub length-based realiza-
tion, we devise an overall framework for FastPPV:

• Offline precomputation: We identify a desirable set of nodes as
hubs, and precompute their prime PPVs as building blocks for
online processing.
• Online query processing: We start from the tours of hub length

0 in T 0, and further process tours of increasing hub length in an
iterative manner. Within each iteration, precomputed building
blocks can be reused; across iterations, prefixes can be shared.

Empirical evaluation (Sect. 6). Finally, we conduct extensive ex-
periments on two real-world datasets. We compare FastPPV with
two competitive baselines [7, 8], and find out that FastPPV signif-
icantly outperforms them in both online and offline phases. More
importantly, we are able to demonstrate the scalability of FastPPV
on growing graphs. In particular, FastPPV can achieve a near-
constant time query processing irrespective of graph size, through
only a linear increase in the offline precomputation costs.

2. RELATED WORK
While Personalized PageRank [14, 12] enables a personalized or

query dependent view of PageRank, its computation can be pro-
hibitively expensive in time or space, for not only online but also
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offline scenarios. Even on a moderately large graph, it is infeasible
to compute PPVs online using the naı̈ve iterative method. Alter-
natively, even with the Linearity Theorem [12], naı̈ve precomputa-
tion of the exact PPV w.r.t. every node on the graph (i.e., full per-
sonalization) is time consuming and requires at least Ω(|V |2) bits
to store, which is quadratic in |V | or the number of nodes on the
graph. It can be shown that the quadratic space complexity holds
no matter how clever the compression scheme is [8].

Thus, designing efficient algorithms for personalized PageRank
has become an important research area. While earlier work pursues
exact computation by supporting partial personalization (i.e., only
a subset of nodes can be used in a query), our work aligns with
more recent developments that aim at full personalization (i.e., any
node can be used in a query) at the cost of accuracy.

Exact, partial personalization. Haveliwala et al. first proposed
topic-sensitive PageRank [11], which only precomputes 16 PPVs—
each corresponds to a top level category in the Open Directory
Project1. With the Linearity Theorem [12], finer-grained person-
alization can be supported, e.g., in hub decomposition [12], intelli-
gent surfer [17] and ObjectRank [4]. Despite this, full personaliza-
tion is still infeasible on large graphs.

Approximate, full personalization. To achieve full personaliza-
tion, most efforts resort to approximate computation instead. Intu-
itively and informally, the PPV w.r.t. a query q is a measure over
random-walk paths starting from q. Thus, most of the existing ap-
proximation approaches can be perceived as a reduction in the total
number of paths in their computation. First, only hub-pivoted paths
that pass through some important “hub” nodes are considered, e.g.,
Web Skeleton [12]. Second, only sampled paths using a Monte
Carlo simulation are considered, e.g., [8, 2]. Third, only neighbor-
hood paths that are within some “radius” around q are considered,
e.g., Bookmark Coloring [5] and the HubRank family [6, 7, 16].

In addition, some techniques leverage additional properties, such
as the block structure of the web [13], and the assumption of the
power law distribution in PPV [3]. A few top-K methods have also
been explored [10, 9], which often relies on bounds to identify the
top K nodes without an actual estimate on node scores.

Connections to our work. Inspired by inverse P-distance [12] and
the ideas of hubs and subgraph [5, 7], we introduce a novel prin-
ciple of scheduled approximation by partitioning and prioritizing
computation. This principle leads to our incremental query pro-
cessing by iteratively enhancing the estimated PPV, which is also
accuracy-aware—we can measure some form of error in our esti-
mation after each iteration at query time. As we shall see in Sect. 3,
this enables a dynamic trade-off between accuracy and efficiency at
query time, which is lacking in previous works.

Specifically, as Sect. 1 explained, we make a novel observation
on inverse P-distance [12] that tours are not equally important for
they contribute to PPV computation differently. The importance
of a tour can be quantified by hub length, which means our hubs
serve a different purpose from previous works [5, 7]—to partition
and prioritize computation, rather than to directly use their precom-
puted PPVs. As such, our offline precomputation is much cheaper,
since we do not need to compute the PPVs for the hubs over the
entire graph. We also use a subgraph at query time, but we are not
computing the PPV on the subgraph directly as in previous works
[5, 7]; instead, the subgraph is primarily used as a gateway to ex-
tend tours for efficient incremental enhancement.

1http://www.dmoz.org/
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t1: a → c R(t1) = 0.0255

t2: a → h → c R(t2) = 0.0216

t3: a → d → c R(t3) = 0.0108

t4: a → b → c R(t4) = 0.0072

t5: a → f → d → c R(t5) = 0.0046

t6: a → b→ d → c R(t6) = 0.0046

t7: a → f → g → d → c R(t7) = 0.0017

Figure 1: PPV computation example.

3. PRINCIPLE: SCHEDULED APPROXI-
MATION

In this section, we propose the general principle of a “sched-
uled” PPV approximation method, which enables incremental and
accuracy-aware query processing.

Running example. As our motivating example, we introduce a toy
graph G = (V,E) in Fig. 1(a), where V = {a, b, . . . , h} and E =
{(a, b), (a, d), . . .}. To simplify discussion, the example graph is
unweighted and contains no cycles, although our framework works
for a general graph with cycles.

Suppose the query node is a. By Eq. 1, ra the PPV w.r.t. a cap-
tures the reachability from a to each node in G. Consider the per-
sonalized PR score ra(c) for a specific node c (i.e., the reachability
from a to c), which can be computed by summing up the reachabil-
ity of 7 tours, as illustrated in Fig. 1(b).

On a large graph, computing the reachability for all tours be-
tween each pair of nodes would cause serious efficiency issues.
Fortunately, we have observed two facts that motivate an efficient
PPV computation approach.

• Some tours are more important than others in PPV computation.
A tour with higher reachability (e.g., t1) will rank its destination
node (e.g., c) highly by contributing more to the computation of
the final score (e.g., ra(c)).
• Covering more tours in the computation would improve the ac-

curacy. For instance, if we handle more tours from t1 to t7, the
cumulative reachability would be closer to the exact ra(c).

The above two observations lead to the key insights of a scheduled
approximation approach with two components:

• Partitioning tours. Instead of treating all tours equally, we first
partition them into different tour sets according to their impor-
tance w.r.t. the query node. A partition of a full set of tours T is
a set of disjoint subsets T 0, . . . , T η , where T = T 0 ∪ . . . ∪ T η
and T i ∩ T j = ∅,∀i 6= j.
• Prioritizing computations. Given a partition of tours T = T 0 ∪
. . . ∪ T η , we exploit the varying contribution of different tour
sets, and schedule them for a prioritized PPV approximation—
the most important set T 0 is traversed first for a fast estimate
r̂T

0

q (i.e., the aggregated reachability of tours in T 0 only), while
less important ones are handled later to improve the accuracy
incrementally. Note that we use r̂q to denote an estimated PPV
to distinguish it from the exact one rq .

To be concrete, consider the graph G in Fig. 1(a). Suppose a is
the query node and, for the purpose of illustration, we magically
have the reachability of each tour at hand. Then, as Fig. 2 shows,
we can partition the tours starting from a, T = {t1, . . . , t20}, into
some (say three) disjoint tour sets with decreasing importance by
their reachability range: T 0, T 1, T 2. Note that in real scenarios,
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∪

Figure 2: Scheduled approximation example.

we do not have the reachability of each tour beforehand; we will
discuss a practical partitioning strategy in Sect. 4.

Now, to prioritize computation, we initially consider the most
important set T 0 only for an estimated PPV r̂T

0

a . According to
r̂T

0

a , the most relevant nodes to a (i.e., c) have already been iden-
tified correctly. Subsequently, when T 1 is added, we obtain an en-
hanced estimate r̂T

0∪T1

a , which ranks the top five nodes c, d, b, f, h
perfectly. Finally, when the tours in T 2 are also included, all the
tours starting from a are covered, achieving the exact PPV ra.

This example illustrates a well-scheduled PPV computation pro-
cess: T 0 is the top consideration since through T 0 most of the
nodes in G, in particular the important ones, would be ranked; T 1

and T 2 are successively included to gradually improve our estima-
tion. Towards the concept of scheduled computation, we propose
an incremental query processing, which computes PPVs in a pro-
gressive manner where more time will render higher accuracy.

Incremental query processing. We estimate the PPV through
multiple iterations, with each iteration handling an additional tour
set, enhancing the overall approximation iteration by iteration.

More formally, given a partition of tours T = T 0 ∪ . . . ∪ T η

with decreasing importance, in iteration-i, a PPV increment r̂T
i

q

is computed over the i-th important tour set T i. For brevity, we
also denote the increment by r̂iq . The overall approximation is the
summation of all PPV increments from all iteration so far. That is,
after iteration-k, we obtain an approximate PPV r̂(k)q :

r̂(k)q = r̂T
0∪T1∪...∪Tk

q =
k∑
i=0

r̂iq (3)

Note that in r̂(k)q , the superscript (k) is enclosed in parentheses
to mean that it is cumulative from T 0 to T k, while the superscript
in each PPV increment r̂iq has no parentheses.

Such an incremental process enables flexible trade-off of effi-
ciency and accuracy. As we process more iterations, the accuracy
of approximation is gradually enhanced and if all tour sets are pro-
cessed, an exact PPV is obtained. The reason is quite obvious. For
a disjoint partition T = T 0∪ . . .∪T η , in iteration-i, tours in T i are

included in the computation. Thus more iterations will tackle more
tour sets, and after iteration-η, each tour in T is covered for exactly
once. This property is formalized by the following theorem.

Theorem 1. Given a query node q, let T be all tours starting from
q and T 0, . . . , T η be a partition of T . The estimated PPV score of
any node p ∈ V monotonically enhances with more iterations and
eventually equals the exact one after iteration-η:

r̂(0)q (p) ≤ r̂(1)q (p) ≤ . . . ≤ r̂(η)q (p) = rq(p) (4)

Generally, the graph can be cyclic, which contains a (countably)
infinite number of tours. Thus, the partitioning might result in an
infinite number of tour sets (i.e., η = ∞) such that we need infi-
nite iterations to achieve the exact PPV. However, we can expect
an approximation which is arbitrarily accurate with sufficient iter-
ations. In Sect. 4, given our specific partitioning and prioritizing
methods, we would derive an error bound that is consistent with
this expectation.

Accuracy-aware approximation. Due to the nature of our incre-
mental processing, after each iteration, we can easily compute the
L1 error of our estimation so far, even without knowing the exact
PPV rq . The L1 error after iteration-k is defined as follows:

ϕ(k) ,
∥∥∥rq − r̂(k)q

∥∥∥
1

=
∑
p∈V

∣∣∣rq(p)− r̂(k)q (p)
∣∣∣ (5)

From Theorem 1, we know rq(p) ≥ r̂(k)q (p), ∀p, q ∈ V, ∀k ≤
η. Together with the fact that

∑
p∈V rq(p) = 1 (since rq is a

probability distribution over V ), Eq. 5 can be re-expressed:

ϕ(k) =
∑
p∈V

rq(p)−
∑
p∈V

r̂(k)q (p) = 1−
∑
p∈V

r̂(k)q (p) (6)

The above equation provides a simple way to calculate ϕ(k) as
the one’s complement of the L1 norm of the current PPV estimate,
without the knowledge of the final exact PPV. Thus, during online
query processing, we can measure the L1 error after each iteration
to enable a user-controllable trade-off between accuracy and time,
e.g., by specifying an accuracy requirement in terms of the L1 error,
or a time limit for query processing.

Further, if we prioritize the tour sets appropriately, we can en-
sure that earlier iterations would bring in more improvement than
later ones. Ideally, we should order the tour sets by their impor-
tance, or equivalently the sum of reachability of the constituent
tours, i.e.,

∑
t∈T0

R(t) ≥ . . . ≥
∑
t∈Tη R(t), which means that∑

p∈V r̂0q(p) ≥ . . . ≥
∑
p∈V r̂ηq (p). By Eq. 6 and 3, this order

will result in the largest reduction in L1 error after iteration-0, fol-
lowed by iteration-1 and 2, and so on. Consequently, we can stop
at an early iteration, yet still get the “most significant portion” out
of the exact PPV. Formally, in Sect. 4, based on our actual parti-
tioning and prioritizing strategy, we will prove an error bound that
decreases exponentially as more iterations are processed.

However, while the principle is straightforward, the realization
is challenging in two aspects:

• Challenge 1: how can we partition and prioritize the tours?
In other words, how can we measure the importance of each
tour? Naturally, we do not know the reachability of each tour
beforehand—PPV computation is our ultimate goal, and thus it
is impractical to partition the tours according to their reachability
as we did in the example. We need a simple and unified metric,
which can be efficiently applied to measure the importance of
tours and is universally effective for different queries.
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• Challenge 2: how can we efficiently compute each PPV incre-
ment? Computing each r̂iq from scratch is not ideal since it is ex-
pensive to naı̈vely sum up the reachability of all tours involved.
In our previous example in Fig. 2, we observe large overlaps be-
tween tours in different sets. E.g., t12, t13, t14 in T 1 share an
edge a→ f , which is a tour t2 in T 0. Thus, we can take advan-
tage of these overlaps to efficiently calculate each r̂iq(p).

4. REALIZATION: FastPPV
As the next step, we tackle the two challenges in realizing the ba-

sic principle in Sect. 3. We seek an effective and simple partitioning-
and-prioritizing metric, and an efficient algorithm for computing
PPV increments.

To motivate both goals, let us take a deeper examination of our
running example in Fig. 1. Observe that some nodes, like d, have
two desirable properties for characterizing the importance of tours
and enabling efficient PPV computations, respectively.

First, Discriminating. With many out-neighbors, d significantly
decays the reachability of those tours passing through it, i.e., it has
a high “decaying power” due to Eq. 2. E.g., for two resembling
tours (with only one different node), t2 : a→ h→ c and t3 : a→
d→ c, the reachability R(t3) is only 1/2 of R(t2) due to the high
decaying power of node d on t3.

Second, Sharing. As many tours pass through d, the segments (a
sequence of edges) around d may be shared in different tours. E.g.,
the segment f → g → d is shared by three tours starting from a as
shown in Fig. 2. We say that d is “popular.”

We refer to nodes with such properties as hub nodes, because
topologically they look like hubs in a network, at the center of dif-
ferent connections. While the notion of hubs has been explored
previously [12, 6, 7], we stress that our hubs serve dual unique
purposes—as a crucial response to the dual challenges:

• Tour set partitioning: Hub nodes have high decaying power to
discriminate tour importance and thus is a good criterion to par-
tition tours (Challenge 1).
• PPV increment computation: Segments around hub nodes are

shared by different tours and thus can be precomputed and reused
to enable efficient computation (Challenge 2).

Next, we will discuss a hub selection strategy based on the above
two properties. Afterwards, we will present an effective tour par-
tition scheme (leveraging the discriminating property of hubs) in
Sect. 4.1, and an efficient PPV computation algorithm (leveraging
the sharing property of hubs) in Sect. 4.2.

Hub selection. To begin with, we quantify each criterion of a good
hub—decaying power to discriminate tour importance, and simul-
taneously, popularity to share computation.

First, the decaying power of a node can be interpreted as its “util-
ity” in discriminating tours, i.e., how effective a node can discrimi-
nate tours passing through it. As shown in Eq. 2, the reachability of
a tour decreases to a factor of 1

|Out(v)| when passing through a node
v. That is, the high out-degree of v has a power to significantly
decay the importance of a tour. Thus, we choose the out-degree of
a node v to measure its decaying power, i.e., its utility U(v).

Second, the overall popularity of a node on the graph can be
quantified by the commonly used PageRank score, as applied in a
number of previous works [14, 12, 6]. We note that simpler al-
ternatives exist too, such as in-degree, which is much cheaper to
compute than PageRank. However, PageRank is more effective
in capturing the “global” popularity of a node based on the entire
graph, while the in-degree of a node only reflects its “local” popu-
larity attributed by its direct in-neighbors. In addition, the cost of
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Figure 3: Hub length-based tour partitioning and prioritizing.

PageRank computation is not a major concern, since we only need
to run it once offline, and its computation time is actually domi-
nated by the other precomputation steps in the offline stage (see
Sect. 5). Thus, we choose the PageRank score of a node v to mea-
sure its popularity, i.e., the probability of v being “shared” in the
computation, denoted by P (v).

Given a node v’s utility U(v) and probability P (v), we can nat-
urally define its expected utilityEU(v)—an effective hub selection
metric that integrates the discriminating and sharing properties:

EU(v) = P (v) · U(v) = PageRank(v) · |Out(v)|. (7)

Subsequently, given a desired number of hubs |H| as an input
parameter, we choose |H| nodes with the largest expected utility as
hubs. The setting of |H| also impacts the performance, which we
will analyze in Sect. 5 and validate in Sect. 6.

4.1 Tour Partitioning and Prioritizing
As the first challenge of scheduled PPV approximation, we need

a partition scheme which is effective in discriminating tour impor-
tance and can be efficiently applied on the fly.

To motivate, consider our example graph G, assuming H =
{b, d, f} is the hub set for G. For intuition, we make an analogy
that G is a bus transportation network, in which each node is a city
and each edge is a bus route connecting two cities. To facilitate
long distance transportation, some particular cities (i.e., hub nodes
in our approach) where multiple bus lines pass through, marked in
a double circle, are selected as transfer points, as Fig. 3(a) shows.

Now suppose a passenger is planning a trip from city a to c.
Which route is most likely to be chosen? Apparently, taking a
direct bus route (which does not pass through any transfer point)
between a and c, i.e., a → c or a → h → c (here h is merely
a “stop-over”, not a transfer point) is most preferred, followed by
making one transfer (e.g., a → d → c), and then two transfers
(e.g., a → f → d → c ). Note that, when writing a tour, we
underscore a node to stress a transfer point (or hub node).

Intuitively, just as people dislike routes that need many transfers,
it is less likely to follow the tours containing more hub nodes in
random walks, i.e., these tours are less important in our prioritized
PPV computation. More formally, each hub node would substan-
tially decay the reachability of a tour passing through it due to its
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large out-degree. The more hubs a tour passing through, the less
important the tour is.

Partitioning and prioritizing by hub length. We formally quan-
tify the importance of a tour by the number of hubs it passes through,
which we call hub length.

Definition 1 (Hub Length). Given a set of hub nodes H , for any
tour t, the hub length of t, denoted by Lh(t), is the number of hub
nodes in t, excluding the starting and ending nodes.

Given this hub length metric, partitioning tours is straightfor-
ward. Consider the example graph withH = {b, d, f} in Fig. 3(a).
The tours starting from a are partitioned into three sets: T 0, T 1

and T 2, with each containing tours of a distinct hub length—the
hub length of every tour is 0 in T 0, 1 in T 1 and 2 in T 2, as shown
in Fig. 3(b). These tour sets form a valid partition—they are pair-
wise disjoint and cover all tours starting from a. Furthermore, the
importance of tours in different sets are decreasing from T 0 to T 2,
which naturally shows a desired order for prioritized computation.

More generally, given a set of hub nodes, for a query node q, we
can partition all the tours rooted at q into η sets T = T 0 ∪ T 1 ∪
. . . ∪ T η such that, for i ∈ [0, η], T i = {t |t starts at q ∧ Lh(t) =
i}), where η is the maximal hub length of all tours in T . Given
such a partition, for a prioritized incremental computation, to return
better results earlier, as Sect. 3 explained, the sets with a shorter hub
length are handled earlier, in the order T 0 to T η . As Sect. 3 also
explained, for a cyclic graph, η can be infinite. However, tours with
large hub length contribute trivially and, thus, can be omitted for a
good approximation.

Error bound. Based on our partitioning and prioritizing strategy,
we further exploit the L1 error of our incremental approximation
discussed in Sect. 3. In particular, we formally prove a bound for
the L1 error in each iteration, which further implies two theoreti-
cally desirable properties.

Theorem 2. After iteration-k, the L1 error ϕ(k) as defined in Eq. 5
satisfies the following bound:

ϕ(k) ≤ (1− α)k+2 (8)

PROOF. First, by Eq. 6 and 3, we have ϕ(k) = 1−
∑
p r̂(k)q (p) =

1−
∑k
i=0

∑
t∈T i R(t) [∗].

Second, by Def. 1, ∀t ∈ T k,Lh(t) = k, and ∀t,Lh(t) <
L(t) where L(t) is the natural length of t (i.e., the number of
edges in t). Thus, if L(t) ≤ k + 1, then Lh(t) ≤ k, imply-
ing ∪ki=0T

i ⊇ ∪k+1
i=0 S

i where Si , {t : L(t) = i}. Hence,∑k
i=0

∑
t∈T i R(t) ≥

∑k+1
i=0

∑
t∈Si R(t) [∗∗].

Third, we claim that
∑
t∈Si R(t) = (1−α)iα [∗∗∗], and show

it by induction. The base case i = 0 is clearly true. In the induction
step, suppose it is true for i = `. All tours with length `+1 must be
extended from a tour of length ` by one step. Consider a particular
tour t′ of length `. The total reachability of all tours of length `+ 1
that are extended from t′ is R(t′)(1 − α) based on Eq. 2. Hence,∑
t∈S`+1 R(t) =

∑
t′∈S` R(t′)(1 − α) = (1 − α)`α(1 − α) =

(1− α)`+1α, which proves the claim.
Finally, combining these results [∗, ∗∗, ∗ ∗ ∗], we can derive that

ϕ(k) = 1−
∑k
i=0

∑
t∈T i R(t) ≤ 1−

∑k+1
i=0

∑
t∈Si R(t) = 1−∑k+1

i=0 (1− α)iα, which simplifies to ϕ(k) ≤ (1− α)k+2.

This bound exhibits two desirable properties. First, since 1 −
α < 1, limk→∞ ϕ

(k) = 0. Second, the rate of ϕ(k) approaching
zero is exponential as k grows. In other words, an earlier iteration
contributes exponentially more than a later one. Thus, we can stop
early yet still obtain a good estimation.

More specifically, for a typical α = 0.15 as suggested in [14],
we have ϕ(10) ≤ 0.143, ϕ(20) ≤ 0.0280 and ϕ(30) ≤ 0.00552,
which diminishes exponentially as k increases. We note that, as the
proof of Theorem 2 builds upon, we bound the error of the overall
reachability of ∪ki=0T

i by that of ∪k+1
i=0 S

i. In practice, ∪ki=0T
i

contains many more tours than ∪k+1
i=0 S

i, which makes the error to
converge even faster. Our experiments in Sect. 6 show that as few
as three iterations yield a very accurate PPV.

4.2 Efficient PPV Increment Computation
We next tackle the second challenge—to efficiently compute the

PPV increment r̂iq in iteration-i, which aggregates the reachabil-
ity of tours of hub length i. Towards its efficient realization, we
analyze the structure of tours in aggregation and develop a tour as-
sembly model– interestingly, since tours are built from segments,
the aggregation of tours into PPV amount to the aggregation of
PPVs of the constituent segments around hubs. Next, we propose
the sharing and reusing of such “hub-segment PPVs” in aggrega-
tion and, the “overlapping” of aggregations in different rounds, to
enable an efficient PPV-increment computation.
4.2.1 Structured Aggregation: Tour Assembly Model

To enable efficient computation of r̂iq , we develop a tour assem-
bly model to aggregate the similar segments in different tours, so
that the overall reachability can be aggregated by such structured
components rather than each individual tour.

Recall the bus transportation analogy in Sect. 4.1 (Fig. 3(a)).
Consider the possible itineraries with two transfers from a to c–
t5 : a → f → d → c, t6 : a → b → d → c and t7 : a →
f → g → d → c. We observe that all these itineraries can be
constructed by three “direct bus routes”: one from the source a and
two from subsequent transfer points. E.g., t7 is built by a → f (a
direct route from a), and two direct routes f → g → d and d→ c
from transfer points f and d respectively.

Our r̂iq computation shares the same insight with this analogy
of building itineraries. For a query node q, by viewing each tour
from q as an itinerary starting at q and going through hubs as mak-
ing transfers, we can “assemble” the reachability of any tour by
combining the reachability of a direct segment (i.e., tours passing
through no hubs) from q to its nearest hub node and then several di-
rect segments from each hub on the tour. Specifically, let’s examine
the tours just mentioned (t5, t6, t7). For each tour, we can calculate
its reachability by assembling three direct segments as follows:

R(t5) =
1

α2
·R(a→ f) ·R(f → d) ·R(d→ c)

R(t6) =
1

α2
·R(a→ b) ·R(b→ d) ·R(d→ c)

R(t7) =
1

α2
·R(a→ f) ·R(f → g → d) ·R(d→ c)

Note that by the reachability definition (Eq. 2), at the end of a
segment, the random surfer would stop with a probability α. Thus,
to continue the tour, we need to compensate a probability α at each
“transfer,” i.e., the 1

α2 term in our two-transfer example above.
With such an “assembly” of individual reachabilities, we now

build a systematic understanding of assembling r̂iq(p). As an ex-
ample, we will consider the above tours from a to c, to assemble
r̂2a(c). The result can be derived, step by step, as Eq. 9 shows.

r̂2a(c) , R(t5) +R(t6) +R(t7) =
(
R(t5) +R(t7)

)
+R(t6)

=1 1

α2
·̂r0a(f) ·̂r0f (d) ·̂r0d(c) +

1

α2
·̂r0a(b) ·̂r0b(d) ·̂r0d(c)

=2 1

α2
·
∑

h2∈H′(h1)

∑
h1∈H′(a)

r̂0a(h1) · r̂0h1
(h2) · r̂0h2

(c) (9)
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To begin with, as different tours may share the same hubs (recall
the “sharing” property), we wonder if we can first aggregate such
tours to factor out their common segments? Let’s re-examine the
tours t5, t6, and t7. As Fig. 4 shows, t5 and t7 share the same hubs
f , d. Thus, if we merge them at each hub node, we can aggre-
gate the reachability of individual segments in different tours (e.g.,
R(f  d) in t5, R(f  g  d) in t7) into an overall reachability
between the ending nodes (e.g., r̂0f (d)). We can transform t6 sim-
ilarly, since it is segmented by another set of hubs—all by itself.
This assembling is illustrated in step-1 of Eq. 9.

More generally, as we observed, aggregating those tours with
the same hubs is effectively aggregating direct segments between
hubs. This will prove to be useful, since we have now abstracted
the aggregation of tours in terms of the set of hubs they pass through
(in this case, from a to c through {f, d} or {b, d}).

Further, to aggregate these “hub-abstracted” tours, we wonder
if they can be enumerated in a systematic order. From the re-
sult of step 1, we observe that even the tours segmented by differ-
ent hubs can be generated by a same two-level expansion pattern:
a  h1  h2  c where h1 is the first-level hub (e.g., f and d)
to be reached from a, and h2 is any hub (e.g., d) to be reached at
the second level (from h1). To emphasize this level-by-level prop-
erty, we refer to the first-level hubs h1 as the neighboring hubs
of the starting node a, denoted H′(a), and similarly, the second-
level hubs are referred as the neighboring hubs of h1, i.e.,H′(h1).
Therefore, to aggregate every tour in the form a h1  h2  c,
we further merge the neighboring hubs H′(hi) at each level i as
step 2 of Eq. 9 shows.

Overall, with our tour assembly model, we can transform the
aggregation of tours into the aggregation of intermediate segments
between hubs at each level. Specifically, by merging the segments
from a to the first-level hubs (e.g., f and d), we gather the tours
in the “neighborhood” of a (i.e., tours in T 0) to form a prime sub-
graph which is rooted at a and bordered by h1’s, denoted G′(a).
We call the aggregated reachability of the constituent tours in G′(a)
the prime PPV of a, denoted r̂0a. Similarly, merging tour segments
from h1 to the second-level hubs, we form the prime subgraphs of
h1 (e.g., G′(f) and G′(d)).

Definition 2 (Prime Subgraph and Prime PPV). Given a graph G
and a set of hub nodes H , for any node v,
• The prime subgraph G′(v) of v consists of all the nodes and

edges in T 0, the tours starting at v with Lh(t) = 0; and the
neighboring hubs of v,H′(v), can also be referred as the border
hub nodes of G′(v).
• The reachability from v to each node through all tours in G′(v)

forms the prime PPV of v, i.e., r̂0v .
In general, we can compute r̂iq(p), the reachability between q

and p over tour set T i by assembling r̂0q and the prime PPVs of up
to i-th level hubs, as formalized in Theorem 3. The essence of this
theorem boils down to the Chapman-Kolmogorov equation [15],
which relates a joint probability distribution with the combination
of a set of transition probabilities.

Theorem 3. Let q be the query node, H be a set of hub nodes in
graph G. For any node p, the personalized PR score estimated over
tours of hub length i can be constructed as:

r̂iq(p)=
1

αi
·
∑

hi∈H′(hi−1)

· · ·
∑

h1∈H′(q)

r̂0q(h1) · · · r̂0hi−1
(hi) · r̂0hi(p) (10)

4.2.2 Computing with Prefixes and Building Blocks
By the tour assembly model discussed in Sect. 4.2.1, we are able

to assemble a PPV increment by structured building blocks: the

prime PPVs of hub nodes. We will now exploit the common sub-
structures between PPV increments (calculated in successive itera-
tions) for efficient computation.

To motivate, we rewrite Eq. 9 to connect r̂2a(c) with the preced-
ing PPV increments. To better illustrate this connection, we repre-
sent the border hubs in terms of their hub length, e.g., h1 ∈ H′(q)
is explicitly represented as Lh(a  h1) = 1. Then, we rearrange
and isolate the terms related to h1 as an inner summation, which
can be substituted with r̂1a(h2) (by Theorem 3), as follows:

r̂2a(c)

=
1

α
·

∑
h2∈H,Lh(a h2)=1

1

α
·

∑
h1∈H,Lh(a h1)=0

r̂0a(h1)·r̂0h1
(h2)

·r̂0h2
(c)

=
1

α
·

∑
h2∈H,Lh(a h2)=1

r̂1a(h2) · r̂0h2
(c) (11)

Basically, this transformation facilitates an efficient computa-
tion of PPV increments. To compute PPV increment-2 r̂2a(c), we
do not need to assemble the prime PPVs r̂0a(h1), r̂0h1(h2), r̂0h2

(c)
from scratch; rather, it can be directly built upon PPV increment-1
r̂1a(h2) and a specific PPV r̂0h2

(c) involved in iteration-2. Likewise,
r̂1a(h2) itself can be assembled by PPV increment-0 r̂0a(h1) and a
specific PPV r̂0h1

(h2), as illustrated in the inner summation of the
first line in Eq. 11.

Formally, in Theorem 4 we present a general result by recur-
sively expanding Eq. 10 for each iteration i. For any r̂iq (i > 0),
we can reuse r̂i−1

q computed over T i−1, directly assembling it with
the prime PPVs of the i-th level hub nodes in T i, i.e., r̂0hi(p). The
proof mirrors the above derivation of Eq. 11.
Theorem 4. Let q be the query node, H be a set of hub nodes in
graph G. For any node p, the personalized PR score estimated over
T i can be computed as:

r̂iq(p) =
1

α
·

∑
hi∈H,Lh(q hi)=i−1

r̂i−1
q (hi) · r̂0hi(p) (12)

In summary, Theorem 4 exploits the shared substructures both
within and across iterations, entailing two crucial aspects for speed-
ing up computation:
• Reusing Prefix Tours: The PPV increment-i or r̂iq(p), computed

over tours in T i, can be simply extended from its prefix r̂i−1
q (hi),

which is already computed in r̂i−1
q , the PPV increment of the last

iteration. Thus, the incremental PPV enhancement can be effi-
ciently realized by recursively reusing the PPV increment in a
earlier iteration to construct an enhanced estimation.
• Precomputing Building Blocks: The extension beyond the prefix

is r̂0hi(p), the prime PPV of hub hi, which is independent of the
query q. Thus, to enable fast online computation, we can pre-
compute these query-independent prime PPVs (i.e., prime PPV
of each hub) and use them as building blocks to construct any
PPV increment on the fly.

5. OVERALL FRAMEWORK
To materialize the computation in Eq. 12, our overall framework

consists of two phases: 1) Offline precomputation where we pre-
compute the building blocks; 2) Online query processing where we
reuse the building blocks and prefix tours to incrementally compute
a gradually more accurate PPV for any query.

To develop the two phases, we first treat the graph as residing
in the main memory, a typical assumption adopted in recent works
such as [6, 7]. Next, to handle graphs that are too large for the main
memory, we propose a disk-based implementation for FastPPV.
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Figure 4: Tour assembly example, corresponding to the two steps in Eq. 9.

5.1 Offline Precomputation
In the offline phase, we need to compute the building blocks,

i.e., prime PPVs for a set of hub nodes H over G. These building
blocks are then stored in an index, which will be used in online
query processing.

Given a graphG and number of hubs |H| as input, we first select
hubs according to their expected utility (see Sect. 4). Next, for
each h ∈ H , we compute its prime PPV r̂0h using the standard
iterative algorithm over its corresponding prime subgraph, which
is feasible as prime subgraphs are many orders smaller than the
entire graph. The prime subgraph can be identified using a depth-
first search starting from the query node. During the search, we
backtrack when we hit a hub node (which are the border hub nodes
for this prime subgraph), or a “faraway” node whose reachability
to the query node is smaller than a threshold ε (say 10−8).

The above steps are summarized in Algorithm 1. In particular,
the precomputed prime PPVs or building blocks are stored in a PPV
index on disk, which can be loaded into the main memory as needed
during online query processing.

Time complexity. As hubs essentially form the borders of prime
subgraphs, we can informally view a graph as being divided into
prime subgraphs at the hub nodes. Intuitively, more hubs result in
smaller prime subgraphs. As each hub node blocks an entire search
subtree during the depth-first search for the prime subgraph, the
size of a prime subgraph decreases exponentially in |H|. Hence,
it is reasonable to assume that on average a prime subgraph is
smaller than O(1/|H|) of the entire graph, i.e., contains fewer
than O(|V |/|H|) nodes and O(|E|/|H|) edges. Thus, computing
a prime PPV over such a prime subgraph using the standard itera-
tive algorithm costs less thanO (I(|V |+ |E|)/|H|), where I is the
number of iterations. Therefore, the total precomputation time for
all hubs can be upper bounded by O (|H| · I(|V |+ |E|)/|H|) =
O (I(|V |+ |E|)). This implies that our offline precomputation is
scalable in the number of hubs, since the upper bound is indepen-
dent of |H|. The ability to index a large number of hubs offline is
crucial to speeding up online query processing as we will discuss
in Sect. 5.2. Although our time complexity is under a quite simpli-
fying assumption, the experiments in Sect. 6.3 do demonstrate that
offline precomputation is scalable in the number of hubs.

Space complexity. Under the same assumption that on average a
prime subgraph is smaller than O(1/|H|) of the entire graph, the
space cost of the PPV index can be likewise upper bounded by
O (|H| · |V |/|H|) = O(|V |), which is also independent of |H|.

5.2 Online Query Processing
In the online phase, given a graph G, a precomputed PPV index

Φ, a query node q and a stopping condition S, we incrementally
compute an approximate PPV r̂(η)q for a given query q according to
Eq. 12, as sketched in Algorithm 2. The algorithm consists of two
major steps: computing the initial iteration i = 0 (line 1–5) and
subsequent iterations i ≥ 1 (line 6–16).

In the initial iteration i = 0, we need to compute the prime PPV
r̂0q for the query node q, which is required in iteration i = 1 (see

Algorithm 1: OfflinePrecomputation

Input: a graph G; number of hub nodes |H |
Output: PPV index Φ

1 Φ← ∅;
2 H ← Select |H | hubs on G;
3 foreach h ∈ H do

4 Compute prime PPV r̂0h for h on G;

5 Store r̂0h in PPV index Φ;

6 end
7 return Φ.

Algorithm 2: OnlineQueryProcessing

Input: a graph G; PPV index Φ over H ; query node q;
stopping condition S

Output: estimated PPV r̂(η)q

1 if q /∈ H then

2 Compute prime PPV r̂0q for q on G;

3 else

4 Load r̂0q from PPV index Φ;

5 end

6 r̂(η)q ← r̂0q; i← 0; Hexp ← H′(q);
7 while the stopping condition S not met do

8 i← i+ 1; r̂iq ← 0; HnextToExp ← ∅;
9 foreach h ∈ Hexp such that r̂i−1

q (h) > δ do

10 Load r̂0h from PPV index Φ;

11 r̂iq ← r̂iq +
1
α r̂

i−1
q (h)r̂0h;

12 HnextToExp ← HnextToExp ∪H′(h);
13 end

14 r̂(η)q ← r̂(η)q + r̂iq;

15 Hexp ← HnextToExp;

16 end

17 return r̂(η)q .

Eq. 12). If q happens to be a hub node, we can directly load r̂0q from
the precomputed index; otherwise we need to compute it on-the-fly.

To compute subsequent iterations i ≥ 1 for Eq. 12, we will reuse
the prefixes—PPV increment r̂i−1

q from iteration i − 1, as well as
the building blocks—precomputed prime PPVs of some hub nodes
h ∈ Hexp (line 11). In particular, these hub nodes h ∈ Hexp are the
border hub nodes of the hubs used in iteration i− 1 (line 12).

It is worth noting that we also need to specify a stopping con-
dition S as an input. The choice of S is flexible depending on the
desired trade-off between accuracy and efficiency—we can stop the
incremental iterations when an accuracy requirement (in terms of
L1 error) is achieved, or a time limit for query processing is up, or
the maximum number of iterations η is reached.

For a practical implementation, we impose a threshold δ (say
0.005) on the border hub nodes, such that we include them only
if r̂i−1

q (h) > δ (line 9). This threshold prevents least contributing
hubs, improving efficiency with minimal impact on accuracy.

Time complexity. Suppose there is an average of O( ¯|H|) border
hub nodes in each prime PPV. Thus, in η iterations we need to han-
dle O( ¯|H|η) hub nodes. Typically ¯|H| � |H| and η ≤ 5. For in-
stance, in our experiments, even when η = 1, an average precision
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of above 0.9 can already be achieved. Hence, this complexity is
practically feasible. Additionally, if the query is not a hub node, an
extra O ((|V |+ |E|)/|H|) time is needed for computing its prime
PPV, which decreases with a larger |H|.

5.3 Disk-based Implementation
Many real-world graphs are too large to reside entirely in the

main memory. To handle these graphs, we describe a disk-based
approach for online query processing. Disk-based offline precom-
putation can be implemented using similar ideas.

First, we observe that in online processing, we need the entire
graph in the main memory such that we can identify the prime sub-
graph for the query node. However, after we have obtained the
prime subgraph, we no longer require the entire graph—only the
prime subgraph is needed, which is generally many orders of mag-
nitude smaller than the entire graph.

Hence, given a query node, the key to the disk-based online
query processing is to identify its prime subgraph from a disk-
resident graph. The basic idea is to segment the graph into a number
of clusters, such that we can at least fit each single cluster into the
main memory. Subsequently, we can assemble the prime subgraph
by searching in each cluster separately.

Specifically, to identify the prime subgraph for the query node,
we first load the cluster that contains the query node into the mem-
ory, and start the depth-first search in this cluster until we reach a
node that is outside this cluster. We call this event a cluster fault, at
which point we will swap the required cluster into the main mem-
ory to continue the depth-first search. As frequent cluster faults
significantly slow down query processing, we may prematurely ter-
minate the search once reaching a threshold on the number of clus-
ter faults. This can considerably speed up query processing with a
minimal loss in accuracy. In our experiments, we set the threshold
to the total number of clusters, which is generally robust.

Finally, to segment a graph into clusters, we adopt the technique
in [18]. Specifically, a number of “anchor” nodes are chosen ran-
domly, and every other node in the graph is assigned to its “nearest”
anchor in terms of their personalized PageRank w.r.t. the anchor. It
has been shown that personalized PageRank exhibits a good clus-
tering quality [1]. Hence, we can obtain tight clusters even though
the anchors are selected randomly, since every node in a cluster can
become the anchor.

6. EXPERIMENTS
We empirically evaluated FastPPV on two real-world graphs.

The experiments showed that it substantially outperforms previous
state-of-the-art baselines in both the offline and online phases. We
also investigated the performance of FastPPV on larger or disk-
resident graphs, and concluded that it is scalable.

Datasets. We used two public real-world graphs below. In particu-
lar, the first graph is undirected, and the second one is directed.

• DBLP2: A bibliographic network of authors, papers and venues,
with undirected edges representing the author-paper and paper-
venue relationships. The graph contains 2 million nodes and 8.8
million edges.
• LiveJournal3: A social network where users can declare their

friends. The friendship relationship is not necessarily reciprocal,
and hence a directed edge from node i to j means that user i
declares j as a friend. We sampled a graph with 1.2 million
nodes and 4.8 million edges. Larger samples will also be used to
study the scalability of FastPPV in Sect. 6.4.

2Available at http://www.informatik.uni-trier.de/˜ley/db/
3Available at http://snap.stanford.edu/data/

Test queries. We randomly chose 1000 nodes from each graph,
where every chosen node is a test query. We only focus on these
single-node queries, since a multi-node query can be easily decom-
posed as multiple single-node queries using the Linearity Theorem
[12, 8, 6]. For each experiment, we report the average performance
over all test queries.

Baselines. We compare FastPPV with two baselines, representing
two major lines of techniques. In particular, HubRankP [7] is the
most competitive work among those that rely on reusing computa-
tion, while MonteCarlo is based on the popular fingerprint work [8]
that relies on Monte Carlo simulation.

We implemented HubRankP [7] using their proposed benefit-
based hub selection model to optimize online query time. To realize
their benefit model, we assume a uniformly distributed query log,
which is fair as our test queries are also sampled uniformly. Note
that HubRankP builds upon the Bookmark-coloring algorithm [5]
with a better hub selection policy. In addition, as Chakrabarti et
al. [7] show, HubRankP is also superior to HubRankD [6] (an im-
provement over Jeh and Widom’s hub decomposition method [12]).
Hence, among these various works [7, 6, 5, 12], we only present the
state-of-the-art HubRankP as the baseline.

We implemented a second baseline MonteCarlo using finger-
prints [8], which simulates random walks on a graph. Specifically,
a fingerprint is a sample random walk path, and the more samples
we obtain, the more accurate the approximation is. Although it was
originally meant to sample fingerprints for each query node offline,
we can process queries online by on-the-fly sampling. To reduce
the online workload, we first sample fingerprints for a set of hub
nodes offline, which can be reused online. To increase the chance
of hitting a hub node, we select nodes with largest global PageRank
scores as hubs, a common strategy used previously [12, 5].

Parameters. For FastPPV, we must specify the following two pa-
rameters as part of the input:
• Number of hubs |H|, which influences online query processing

speed. We will specifically study the performance under differ-
ent |H|. However, as default, for other experiments we empiri-
cally set |H| = 20K for DBLP and |H| = 120K for LiveJournal
unless otherwise stated, such that online query times are compa-
rable on both datasets.
• Number of iterations η, which dynamically controls the trade-off

between accuracy and query time in the online phase. By default
we use η = 2 unless otherwise stated.
For both baselines, we also need to set the number of hubs |H|.

In addition, each of them also has a parameter to control the accu-
racy which affects both the online and offline phases. In particular,
HubRankP relies on a residual threshold εpush, and MonteCarlo de-
pends on the samples per query N . We will discuss the choice of
these parameters in the corresponding experiments.

Moreover, for all the methods, we clip their PPV at 10−4, i.e.,
discarding nodes with scores less than 10−4 for offline storage. It
can drastically reduce offline space cost with minimal impact on
accuracy, as shown previously [6, 7]. Finally, we set α = 0.15
(Eq. 2), which is a typical teleporting probability.

Accuracy metrics. Given a query, all the methods compute an ap-
proximate PPV. Thus, we need to evaluate their accuracy w.r.t. the
exact PPV, in terms of ranking and score. Since users are usually
more interested in higher ranked nodes, we focus on the top 10
nodes. Our accuracy objective is two-fold—we evaluate not only
node rankings, but also node scores. In particular, we adopted four
metrics from previous works [6, 7, 8], namely Kendall’s τ and pre-
cision to measure the rankings, as well as RAG and L1 error to
measure the scores. We refer readers to [6] for details.
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For a consistent presentation, we report the complement of L1
error (1− L1 error) instead, which we call L1 similarity. Now, all
the metrics indicates a better accuracy with a larger value.

Environment. We implement all methods in Java, and evaluate
them on a Linux system with 2.67GHz CPU and 10GB RAM. The
entire graph resides in the main memory except for the disk-based
implementation in Sect. 6.4. In that case, the graph is disk-resident
as we assume a reduced memory budget.

6.1 Comparison to Baselines
We compare the performance of FastPPV and our baselines. As

all the methods compute approximate PPVs, there is a trade-off
between accuracy and query time. To demonstrate the edge of
FastPPV over the baselines, we configure the parameters to moder-
ate their accuracy, where FastPPV achieves an accuracy level sim-
ilar to or better than the baselines. Moderating their accuracy in
this way enables us to fairly compare FastPPV with the baselines
in terms of their online query time and offline aspects.

Four such accuracy-moderated configurations have been identi-
fied in Fig. 5. In each configuration, all the methods share a pa-
rameter |H|, in addition to their individual parameter mentioned
earlier. The moderated accuracy can be verified in Fig. 6.

Dataset all:|H| HubRankP:εpush MonteCarlo:N FastPPV:η
I DBLP 20K 0.11 120K 2
II DBLP 30K 0.13 40K 1
III LiveJournal 150K 0.20 200K 3
IV LiveJournal 200K 0.29 10K 1

Figure 5: Four accuracy-moderated configurations (I–IV).

We first examine the online query time in Fig. 7(a). Across the
four accuracy-moderated configurations, FastPPV is 2.0 ∼ 7.2×
faster than HubRankP, and 2.4 ∼ 5.2× faster than MonteCarlo.

Second, we examine the offline phase in Fig. 7(b)–(c). As illus-
trated in Fig. 7(b), FastPPV requires less space than MonteCarlo,
whereas it needs up to 30% more space than HubRankP in con-
fig. I. In contrast, for the offline precomputation time in Fig. 7(c),
FastPPV is 4.3 ∼ 11.0× faster than HubRankP, and 2.9 ∼ 14.3×
faster than MonteCarlo. Recall that online processing by FastPPV
is also much faster under these configurations. As storage is in-
creasingly cheaper, we consider the 30% more space required by
FastPPV acceptable to trade for the much faster offline precompu-
tation and online processing.

In summary, FastPPV is superior in both online and offline phases
among the three methods.
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Figure 7: Accuracy-moderated comparisons with baselines.

6.2 Effects of Hub Selection Policy
We compare a few different hub selection policies for FastPPV.

Apart from our policy of expected utility discussed in Sect. 4, we
also select hubs by PageRank (popularity) or out-degree (utility)
alone. Additionally, we also evaluate a random selection policy.
However, its performance is substantially worse than the other poli-
cies, and hence we omit it here.

As different policies select different hub setsH , both offline pre-
computation for H and online processing using H are affected by
different hub selections. To eliminate the effect of other parame-
ters, we used the default number of hubs and iterations mentioned
previously across all hub selection policies.

We first present the impact of different policies on online query
processing in Fig. 8. While expected utility results in an accu-
racy level similar to or better than the others, it significantly speeds
up online query processing—it is 1.2× faster on DBLP and 2.4×
faster on LiveJournal than the second best policy. As DBLP is undi-
rected, the three policies are fairly correlated with smaller differ-
ences than they are on the directed LiveJournal. Hence, the speed-
up is more significant on LiveJournal.

Expected utility also results in cheaper offline precomputation
for the selected hubs. In Fig. 9, while the space cost of expected
utility is similar to other policies, precomputation is 1.3× faster on
DBLP and 1.7× faster on LiveJournal than the second best policy.
Likewise, the improvement is larger on the directed LiveJournal.
Note that the precomputation time here includes the time to com-
pute the prime PPVs for every hub, but excludes the time to select
these hubs—the latter is negligible compared to the former.

These results clearly demonstrate that advantage of our proposed
hub selection policy based on expected utility, which improves both
the online and offline phases over the baseline policies.
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Figure 8: Effect of hub selection policies on online processing.
Left axis: accuracy (Kendall, Prec, RAG, L1). Right axis: time.

Expected utility PageRank Out-degree

0

6

13

19

25

0

40

80

120

160

Total space Total time

T
im

e
 (

m
in

)

S
p

a
ce

 (
M

B
)

(a) DBLP

0

50

100

150

200

0

150

300

450

600

Total space Total time
T

im
e

 (
m

in
)

S
p

a
ce

 (
M

B
)

(b) LiveJournal

Figure 9: Effect of hub selection policies on costs of offline pre-
computation. Left axis: space cost. Right axis: time cost.

6.3 Effects of Parameters
We study how the number of hubs |H| and iterations η affect

the performance of FastPPV. In particular, we will fix one of the
parameters with its default value, and vary the other.

6.3.1 Number of Hubs
We first illustrate the effect of varying the number of hubs |H| on

online query processing in Fig. 10. As expected, having more hub
nodes drastically reduces the query time of FastPPV (see Sect. 5.2).
Interestingly, even with a greatly reduced query time, all the accu-
racy metrics remain robust.
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Kendall Precision RAG L1 similarity
Config. FastPPV HubRankP MonteCarlo FastPPV HubRankP MonteCarlo FastPPV HubRankP MonteCarlo FastPPV HubRankP MonteCarlo

I 0.9255 0.9214 0.9211 0.9538 0.9517 0.9568 0.9993 0.9995 0.9999 0.9961 0.9845 0.9964
II 0.8894 0.8944 0.8904 0.9305 0.9354 0.9388 0.9988 0.9988 0.9997 0.9939 0.9780 0.9938
III 0.9281 0.9272 0.8864 0.9636 0.9628 0.9588 0.9989 0.9983 0.9998 0.9972 0.9774 0.9971
IV 0.8231 0.8237 0.7739 0.9178 0.9067 0.9192 0.9966 0.9886 0.9989 0.9908 0.9579 0.9880

Figure 6: FastPPV achieves an accuracy level similar to or better than the baselines under each accuracy-moderated configuration.

We further study the effect of |H| on offline precomputation, as
shown in Fig. 11. As |H| grows, we observe that the total space
cost increases sublinearly, whereas the total precomputation time
actually decreases. Let us analyze such trends. As |H| increases
linearly, each prime subgraph becomes smaller exponentially (see
Sect. 5.1). Hence, the total size of the prime subgraphs decreases,
resulting in a decreasing total precomputation time. Likewise, we
would also expect a decreasing total space cost, contrary to what
we have observed. The reason is that we applied clipping on the
prime PPVs, which is more effective on larger prime PPVs.

Hence, with a decreasing precomputation time and sublinearly
increasing space cost, it is feasible to index more hubs offline,
which also speeds up online query processing without compromis-
ing accuracy. Of course, if we index too many hubs (substantially
more than what we are using now), the I/O overhead may even-
tually outweigh the benefit, since fetching the precomputed prime
PPV of a hub node during online query processing requires one
random access to the disk.
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Figure 10: Effect of |H| on online processing. Left axis: accu-
racy (RAG, L1, Prec, Kendall). Right axis: time.
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Figure 11: Effect of |H| on costs of offline precomputation. Left
axis: space cost. Right axis: time cost.

6.3.2 Number of Iterations
We explore FastPPV’s incremental query processing by varying

the number of iterations η.
As depicted in Fig. 12, allowing more iterations results in better

accuracy but takes longer to process. This verifies that our approx-
imation indeed becomes more accurate in an incremental manner.
In particular, the improvement in accuracy is more significant in
earlier iterations, which is consistent with Theorem 2. Thus, good

accuracy can be achieved with only a few iterations. For instance,
in Fig. 12 all the accuracy metrics are above 0.9 with η = 2 only.
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Figure 12: Incremental online processing by varying η. Left
axis: accuracy (RAG, L1, Prec, Kendall). Right axis: time.

It is worth noting that η only affects online query processing,
allowing us to dynamically control the trade-off between accuracy
and query time without re-executing the offline phase. In contrast,
many previous works including our baselines lack such flexibility.
To adjust the trade-off, their offline phases may need a re-execution.

6.4 Scalability
We investigate the scalability of FastPPV in terms of two aspects.

First, how does FastPPV scale on larger graphs in the online and
offline phases? Second, how does the disk-based implementation
fare on a disk-resident graph due to insufficient main memory?

6.4.1 Scaling to Larger Graphs
We first need to obtain graphs of varying sizes. On the one hand,

each paper in DBLP has a timestamp. Thus, we take a snapshot of
DBLP every four years from 1994 to 2010, as shown in Fig. 13(a).
The snapshot graphs increase in size as time passes. On the other
hand, we have no timestamp information in LiveJournal. Thus, we
resort to sampling different numbers of edges from LiveJournal, as
shown in Fig. 13(b). We order these sampled graphs in increasing
size, and label them S1 to S5.

(a) Snapshots from DBLP
Snapshot year # Nodes # Edges

1994 0.32M 1.11M
1998 0.54M 2.00M
2002 0.88M 3.48M
2006 1.51M 6.40M
2010 2.00M 8.79M

(b) Samples from LiveJournal
Sample ID # Nodes # Edges

S1 0.31M 0.76M
S2 0.83M 2.67M
S3 1.22M 4.81M
S4 1.53M 7.01M
S5 1.77M 9.30M

Figure 13: Varying graph size for scalability study.

The key to scaling to larger graphs is to index more hubs offline.
As shown in Fig. 14, even though the graph increases more than 5
folds on both datasets, by using a larger number of hubs |H|, we are
able to achieve a near constant online query time without compro-
mising accuracy. Hence, FastPPV can efficiently process queries
online regardless of graph size, given sufficient number of hubs. In
our study, we empirically determined the number of hubs required
to achieve a constant query time over growing graphs. It is also
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interesting to predict the requirement analytically, which warrants
further investigation in a future work.

Next, we examine any additional cost involved in the offline
phase in order to achieve a constant online query time. In Fig. 15,
we plot the total space and time needed by offline precomputation
against graph size (i.e., the total number of nodes and edges). The
plots clearly show a linear relationship between the total space (or
time) and graph size. We deem such linear growths in the offline
phase acceptable for maintaining a constant online query time.

(a) DBLP
Year |H| Kendall Precision RAG L1 similarity Time per query
1994 1K 0.9304 0.9520 0.9995 0.9966 15.7 ms
1998 3K 0.9245 0.9508 0.9993 0.9968 16.1 ms
2002 8K 0.9309 0.9556 0.9995 0.9965 15.1 ms
2006 15K 0.9286 0.9527 0.9993 0.9962 15.7 ms
2010 25K 0.9285 0.9545 0.9994 0.9963 15.2 ms

(b) LiveJournal
ID |H| Kendall Precision RAG L1 similarity Time per query
S1 14K 0.9274 0.9681 0.9984 0.9966 28.5 ms
S2 63K 0.9244 0.9637 0.9984 0.9970 28.0 ms
S3 120K 0.9269 0.9633 0.9985 0.9967 29.7 ms
S4 160K 0.9252 0.9645 0.9983 0.9965 27.5 ms
S5 200K 0.9210 0.9627 0.9986 0.9962 29.9 ms

Figure 14: Scaling FastPPV in online query processing.
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Figure 15: The costs of offline precomputation in order to scale
FastPPV online. Left axis: space cost. Right axis: time cost.

6.4.2 Disk-based Online Processing
Assuming that our graphs do not fit into the main memory, we

use our disk-based online processing, where a graph is segmented
into a number of clusters to mimic the reduced memory budget (see
Sect. 5.3). Recall that at any time, only one cluster needs to be in
the memory. Hence, the size of the largest cluster is the minimum
working set, which is much smaller than the entire graph.

As reported in Fig. 16, the disk-based implementation is scal-
able in the number of clusters. First, when we have more clusters,
query time remains stable. Although cluster faults become more
frequent with more clusters, the clusters also become smaller which
are faster to swap into the main memory, resulting in similar query
times. Second, as the largest cluster also shrinks with more clusters,
the memory requirement decreases as well.

(a) DBLP (b) LiveJournal
# Faults Time Memory # Faults Time Memory

# Clusters per query per query need † per query per query need †
10 7.3 1434 ms 15.2% 6.8 747 ms 19.8%
15 10.8 1376 ms 10.3% 10.2 783 ms 15.1%
25 17.8 1370 ms 7.6% 16.8 862 ms 11.7%
35 24.7 1316 ms 5.4% 23.4 833 ms 6.4%
50 35.0 1270 ms 3.5% 33.3 831 ms 5.3%

† The size of the largest cluster, as a percentage of the entire graph.

Figure 16: Disk-based online query processing.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a scheduled approximation strategy to

approximate PPVs. Specifically, we developed a hub length-based
scheduling scheme for partitioning and prioritizing tours, as well as
a structured aggregation model for assembling PPVs. As a result,
our online processing is incremental and accuracy-aware, enabling
a dynamic trade-off between efficiency and accuracy at query time.
Empirically, FastPPV is not only superior to two state-of-the-art
baselines, but also scalable.

As future work, we identify three major directions to explore.
First, automatic configuration: for example, automatically deter-
mine the optimal number of hubs by correlating with various graph
properties like density and diameter. Second, tackling dynamic
graphs: as a graph can evolve over time, a simple idea to pro-
cess graph updates is to only re-compute the affected prime PPVs,
without touching the unaffected ones. Third, generalizing to other
graph algorithms: it is promising to apply the same principle of
partitioning and prioritizing tours to other random walk-based al-
gorithms, such as the hitting and commute time measures.
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