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ABSTRACT
The volume of RDF data continues to grow over the past decade
and many known RDF datasets have billions of triples. A grant
challenge of managing this huge RDF data is how to access this
big RDF data efficiently. A popular approach to addressing the
problem is to build a full set of permutations of (S, P, O) index-
es. Although this approach has shown to accelerate joins by order-
s of magnitude, the large space overhead limits the scalability of
this approach and makes it heavyweight. In this paper, we present
TripleBit, a fast and compact system for storing and accessing RDF
data. The design of TripleBit has three salient features. First, the
compact design of TripleBit reduces both the size of stored RDF
data and the size of its indexes. Second, TripleBit introduces two
auxiliary index structures, ID-Chunk bit matrix and ID-Predicate
bit matrix, to minimize the cost of index selection during query
evaluation. Third, its query processor dynamically generates an
optimal execution ordering for join queries, leading to fast query
execution and effective reduction on the size of intermediate re-
sults. Our experiments show that TripleBit outperforms RDF-3X,
MonetDB, BitMat on LUBM, UniProt and BTC 2012 benchmark
queries and it offers orders of mangnitude performance improve-
ment for some complex join queries.

1. INTRODUCTION
The Resource Description Framework (RDF) data model and its

query language SPARQL are widely adopted today for managing
schema-free structured information. Large amount of semantic data
are available in the RDF format in many fields of science, engineer-
ing, and business, including bioinformatics, life sciences, business
intelligence and social networks. A growing number of organiza-
tions or Community driven projects, such as White House, New
York Times, Wikipedia and Science Commons, have begun export-
ing RDF data [22]. Linked Open Data Project announced 52 billion
triples were published by March 2012 [22].

RDF data are a collection of triples, each with three columns,
denoted by Subject (S), Predicate (P) and Object (O). RDF triples
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tend to have rich relationships, forming a huge and complex RD-
F graph. Managing large-scale RDF data imposes technical chal-
lenges to the conventional storage layout, indexing and query pro-
cessing [17, 18]. A fair amount of work has been engaged in RDF
data management. Triples table [8, 17], column store with verti-
cally partitioning [3] and property tables [25] are the three most
popular alternative storage layouts for storing and accessing RD-
F data. The storage layouts may not favor all queries. However,
queries constrained on S, P or O values are equally important for
real-world applications. A popular approach to achieving this goal
is to maintain all six permutation indexes on the RDF data in order
to provide efficient query processing for all possible access pat-
terns [5, 9, 17, 24]. Although the permutation indexing techniques
can speed up joins by orders of magnitude, they may result in sig-
nificant demand for both main memory and disk storage. First,
RDF stores need load those indexes into limited memory of com-
puter in order to generate query plans when processing complex
join queries. Consequently, frequent memory swap in/out, and out
of memory problems are common when querying RDF data with
over a billion of triples [14]. Furthermore, the large space overhead
also places a heavy burden on both memory and disk I/O. One way
to address the space cost is to use compression techniques, such as
D-Gap [5], delta compression [17], in storing and accessing RDF
data. Multiple permutation indexes also complicate the decision on
the choices of the indexes for a given query.

In this paper, we present TripleBit, a fast and compact system
for large scale RDF data. TripeBit is designed based on two im-
portant observations. First, it is important to design an RDF data
storage structure that can directly and efficiently query the com-
pressed data. This motivates us to design a compact storage and in-
dex structure in TripleBit. Second, in order to truly scale the RDF
query processor, we need efficient index structures and query eval-
uation algorithms to minimize the size of intermediate results gen-
erated when evaluating queries, especially complex join queries.
This leads us to the design decision that we should not only reduce
the size of indexes (e.g., through compression techniques) but also
minimize the number of indexes used in query evaluation.

The main contributions of the paper are three folds: First, we
present a compact RDF store - TripleBit, including the design of
a bit matrix storage structure and the encoding-based compression
method for storing huge RDF graphs more efficiently. The stor-
age structure enables TripleBit to use merge joins extensively for
join processing. Second, we develop two auxiliary indexing struc-
tures, ID-Chunk bit matrix and ID-Predicate bit matrix, to reduce
the number and the size of indexes to the minimum while provid-
ing orders of magnitude speedup for scan and merge-join perfor-
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mance. The ID-Chunk bit matrix provides a fast search of the rel-
evant chunks matching to a given subject (S) or object (O). The
ID-Predicate bit matrix provides a mapping of a subject (S) or an
object (O) to the list of predicates to which it relates. Third, we em-
ploy the dynamic query plan generation algorithm to generate an
optimal execution plan for a join query, aiming at reducing the size
of intermediate results as early as possible. We evaluate TripleBit
through extensive experiments against RDF graphs of up to 2.9 bil-
lion triples. Our experimental comparison with the state of art RDF
stores, such as RDF-3X, MonetDB, shows that the TripleBit consis-
tently outperforms them and delivers up to 2-4 orders of magnitude
better performance for complex long join queries over large scale
RDF data.

2. OVERVIEW & RELATED WORK
A fair number of RDF storage systems has been developed in

the past decade, such as Sesame [8], Jena [25], RDF-3X [17, 18],
Hexastore [24], BitMat [5], gStore [28] etc. These systems can be
broadly classified into four categories: triples table [17], proper-
ty table [25], column store with vertical partitioning [3] and RDF
graph based store. We will illustrate and analyze these four cate-
gories of RDF stores using the following example RDF dataset.

T1: person1 isNamed ”Tom”.
T2: publication1 hasAuthor person1.
T3: publication1 isTitled ”Pub1”.
T4: person2 isNamed ”James”.
T5: publication2 hasAuthor person2.
T6: publication2 isTitled ”Pub2”.
T7: publication1 hasCitation publication2.

Triple table. A natural approach to storing RDF data is to store
(S, P, O) statements in a 3-column table with each row representing
a RDF statement. The 3-column table is called the triple table [17].
For the above example, the seven statements will correspond to
seven rows of a triple table. There are several variants of the triple
table, e.g., storing literals and URIs in a separate table and using
pointers to refer to literals and URIs in the triple table. However,
querying over an RDF table of billions of rows can be challenging.
First, most of queries involve self-joins over this long table. Sec-
ond, larger table size leads to larger table scan and larger index look
up time, which complicates both selectivity estimation and query
optimization [3]. A popular approach to improving performance of
queries over a triple table is to use an exhaustive indexing method
that creates a full set of (S, P, O) permutations of indexes [17, 27].
For example, RDF-3X, one of the best RDF stores today, built clus-
tered B+-trees on all six (S, P, O) permutations− (SPO, SOP, PSO,
POS, OSP, OPS), thus each RDF dataset is stored in six duplicates,
one per index. In order to choose the fastest index among the six
indexes for a given query, another set of 9 aggregate indexes, in-
cluding all six binary projections− (SP, SO, PO, PS, OS, OP), and
three unary projections − (S, P, O) [17, 18], are created and main-
tained, each providing some selectivity statistics. By maintaining
such aggregate indexes, RDF-3X eliminates the problem of expen-
sive self-joins and provides significant performance improvement.
However, storing all permutation indexes may be expensive and the
performance penalty can be high as the volume of dataset increases
due to the cost of storing and accessing these indexes and the cost
of deciding which of these indexes to use at the query evaluation.
Property table. Instead of using a ”long and slim” triple table, the
property table typically stores RDF data in a ”fat” property table
with subject as the first column and the list of distinct predicates
as the remaining columns [25]. Each row of the property table
corresponds to a distinct S-value. Each of the remaining column-
s corresponds to a predicate (P-value). Each table cell represents

an O-value of a triple with the given S-value and P-value. Con-
sider our example RDF dataset of 7 triples with 4 distinct proper-
ties (predicates), and thus we will have a 5-column property table.
publication1 has three properties: hasAuthor, isTitled, hasCitation.
Thus, three statements are mapped into one row corresponding to
publication1 in the table. Clearly, for a big RDF dataset, a single
property table can be extremely sparse and contains many NUL-
L values. Thus multiple-property tables with different clusters of
properties are proposed in Jena [25] as an optimization technique.
BitMat [5] represents an alternative design of the property table
approach, in which RDF triples are represented as a 3D bit-cube,
representing subjects, predicates and objects respectively and slic-
ing along a dimension to get 2D matrices: SO, PO and PS.

An advantage of the property tables is that the subject-subject
self-joins on the subject column can be eliminated. However, the
property table approach suffers from several problems [3]: First,
the space overhead of the wide property table(s) with sparse at-
tributes is high. Second, processing of RDF queries that have no
restriction on property values may involve scanning all property ta-
bles. Furthermore, experimental results in [12] have shown that the
performance of the property table approach degrades dramatically
when dealing with large scale RDF data.
Column store with vertical partitioning. This approach stores
RDF data [3] using multiple two-column tables, one for each u-
nique predicate. The first column is for subject whereas the other
column is for object. Consider our running example with four prop-
erties, this approach will map 7 statements to four 2-column tables.
Although those tables can be stored using either row-oriented or
column-oriented DBMS, the column store is a more popular stor-
age solution for vertically partitioned schema [3]. This approach
is easy to implement and can provide superior performance for
queries with value-based restrictions on properties. However, this
approach may suffer from scalability problems when the size of ta-
bles varied significantly [19]. Furthermore, processing join queries
with multiple join conditions and unrestricted properties can be ex-
tremely expensive due to the need of accessing all of the 2-column
tables and the possibility of generating large intermediate results.
Graph-based store. Graph-based approaches represent an orthog-
onal dimension of RDF store research [7, 14], aiming at improving
the performance of graph-based manipulations on RDF datasets be-
yond RDF SPARQL queries. However, most of these graph based
approaches focus more on improving the performance of special-
ized graph operations rather than the scalability and efficiency of
RDF query processing [24]. Large scale RDF data is a very big s-
parse graph, which poses a significant challenge to store and query
such an RDF graph efficiently. [4] developed a compressed RD-
F engine k2-triples. gStore [28] proposes VS-tree and VS*-tree
index to process both exact and wildcard SPARQL queries by effi-
cient subgraph matching.

In comparison, TripleBit advocates two important design prin-
ciples: First, in order to truly scale the RDF query processor, we
should design compact storage structure and minimize the num-
ber of indexes used in query evaluation. Second, we need compact
index structure as well as efficient index utilization techniques to
minimize the size of intermediate results generated during query
processing and to process complex joins efficiently.

3. TRIPLE MATRIX AND ITS STORAGE
STRUCTURE

We design the TripleBit storage structure with three objectives
in mind: improving storage compactness, improving encoding or
compression efficiency and improving query processing efficiency.
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Table 1: The Triple Matrix of the example
isNamed hasAuthor isTitled hasCitation
T1 T4 T2 T5 T3 T6 T7

person1 1 0 1 0 0 0 0
person2 0 1 0 1 0 0 0
publication1 0 0 1 0 1 0 1
publication2 0 0 0 1 0 1 1
”Tom” 1 0 0 0 0 0 0
”James” 0 1 0 0 0 0 0
”Pub1” 0 0 0 0 1 0 0
”Pub2” 0 0 0 0 0 1 0

We first present the Triple Matrix model and then describe how the
storage layout design of the Triple Matrix model offers more com-
pact storage, higher encoding efficiency and faster query execution.

In Triple Matrix model, RDF triples are represented as a two di-
mensional bit matrix. We call it the triple matrix. Concretely, given
an RDF dataset, let VS , VP , VO and VT denote the set of distinct
subjects, predicates, objects and triples respectively, The triple ma-
trix is created with entity e ∈ VE = VS ∪ VO as one dimension
(row) and triples t ∈ VT as the other dimension (column). Thus,
we can view the corresponding triple matrix as a two-dimensional
table with |VT | columns and |VE | rows. Each column of the ma-
trix corresponds to an RDF triple, with only two entries of bit value
(’1’), corresponding to the subject entity and object entity of the
triple and all the rest of (|VE | − 2) entries of bit (’0’). Each row
is defined by a distinct entity value, with the presence (’1’) in a
subset of entries, representing a collection of the triples having the
same entity. We sort the columns by predicates in lexicographic
order and vertically partition the matrix into multiple disjoint buck-
ets, one per predicate (property). For a new triple with predicate
p, it will be inserted into a column in the predicate bucket corre-
sponding to p. Assume that the triple to be inserted has subject i,
object j and predicate p, and it corresponds to the column k, then
the entries that lie in the i-th row, the j-th row and the k-th column
of the matrix are set to ’1’. The other entries in the k-th column are
set to ’0’. Table 1 shows the triple matrix for the running example
of 7 triples. It has 7 columns, one per triple, and eight entities, rep-
resenting four subject values and four object values. We use strings
instead of row ids in this example solely for the readability.

In addition, during the construction of the triple matrix from RD-
F data, each e ∈ VE is assigned a unique ID using the row number
in the matrix. We assign IDs to subjects and objects using the same
ID space such that subjects and objects having identical values will
be treated as the same entity. We observe that a fair amount of
entities in many real RDF datasets are used as subject of a triple
and object of another triple. For example, Table 5 in Section 6
showed that more than 57% subjects of UniProt are also object-
s. TripleBit utilizes unique IDs for the same entities to achieve a
more compact storage and to further improve the query process-
ing efficiency. This is because query processor does not need to
distinguish whether IDs represent subject or object entities when
processing joins. Furthermore, our approach facilitates index con-
struction and makes the join on subject and object more efficient
than the approaches where subjects and objects have independent
ID space [5].

3.1 Dictionary
In RDF specification, Universal Resource Identifiers (URIs) are

used to identify resources, such as subjects and objects. A resource
may have many properties and corresponding values. It is not e-
conomical to store URIs in each appearance of resources. To re-
duce the redundancy, like many RDF stores, such as RDF-3X, in
TripleBit we replace all strings (URI, literals and blank node) by

Figure 1: String-ID Mapping and ID-String Mapping

IDs using mapping dictionaries. Considering the existence of long
common prefixes in URIs, we adopt a prefix compression method,
which is similar to Front Coding to obtain compressed dictionar-
ies. The prefix compression method splits each URI into a prefix
slice and a suffix slice at the last occurrence of separator ’/’. The
strings which do not contain ’/’ are considered as suffixes. We as-
sign each prefix a PrefixID and construct Prefix-ID mapping table.
We concatenate prefix ID and suffix to get a new string which is al-
so assigned an ID in an independent ID space. Similarly, we build
a Suffix-ID mapping table (Fig. 1).

During query translation, hashing function maps prefix of a string
str to its index and then the offset of prefix stored in corresponding
slot of the hash table is accessed. Using the offset, we can get its
PrefixID in Prefix-ID mapping table. Using the above process, the
ID assigned to str is returned. The process to translate a string to
its ID is illustrated using the solid lines in Fig. 1.

Before query results are returned to users or applications, IDs in
the results must be translated back into strings. In order to speed up
the reverse process, we build two inverted tables (PrefixID Offset
and ID Offset in Fig. 1) to translate IDs back into strings. Both
tables store (id, offset) pairs where id corresponds to the PrefixID
or IDs, and offset represents the position where the prefix or suffix
and the ID are stored. Inverted table structures make the mapping
of ids to literals or URIs more efficient. The process to transform
ids back to strings is shown by dashed line in Fig. 1.

In summary, searching ids in the dictionary using strings does
not require much time thanks to the hashing index and the fact that
the number of strings occurring in a query is very small. However,
the reverse mapping process can be costly when the query result
size is big [16].

3.2 ID Encoding in the Triple Matrix
In a triple matrix, ID is an integer. The size for storing an integer

is typically a word. Modern computers usually have a word size of
32 bits or 64 bits. Not all integers require the whole word to store
them. For example, it is enough to store the ID of value ”100” using
1 byte. It is wasteful to store values with a large number of bytes
when a small number of bytes are sufficient. Also, since TripleBit
is designed for large scale RDF data, it is difficult to know the max-
imal number of entities in future data sets. For example, 32-bits ID
might be a good choice for current RDF data, but insufficient in the
near future. Thus, we encode the entity ID in triple matrix using
variable-size integer such that the minimum number of bytes are
used to encode this integer. Furthermore, the most significant bit of
each compressed byte is used to indicate whether an ID is the sub-
ject(0) or object (1) of a statement and the remaining 7 bits are used
to store the value. Consider the example in Table 1. The entity per-
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Figure 2: The Storage scheme of TripleBit

Table 2: Storage space of Triple Matrix for six datasets
LUBM

10M
LUBM
50M

LUBM
100M

LUBM
500M

LUBM
1B UniProt

Two Copies of Triple
Matrix (MB)

133 722 1,461 7,363 15,207 24,371

Per Triple (bytes) 5.02 5.48 5.54 5.59 5.97 4.33

son1 denotes a subject in T1 and an object in T2. Thus, the row of
this entity has its 1st and 3rd columns set to ’1’. We use 00000001
(subject) in the column encoding of T1 and use 10000001 (object)
in the column encoding of T2 respectively. By utilizing the signif-
icant bit of each compressed byte, we can easily find the triple of
interest without scanning the entire chunk.

Many RDF stores use fixed-sized integer (e.g., an integer of 4
bytes in 32-bit computer) to encode IDs. Comparing with fixed-
sized integer, the overhead of the variable-size integer encoding
approach is 1 bit per byte but this approach saves more with high-
er flexibility. Our experiments on the 6 datasets in Table 2 show
that each ID needs about 2.1-3 bytes on average. Furthermore, our
approach is highly extensible comparing with fixed-sized ids since
the former can encode any number of subjects or objects. For ex-
ample, we can encode IDs larger than 232 using 5 or more bytes
while fixed-sized integer does not have such flexibility.

3.3 Triple Matrix Column Compression
The triple matrix is inherently sparse. To achieve the internal

compact representation of the triple matrix, we store the bit ma-
trix in a compressed format using column compression. Given that
each column of the matrix corresponds to a triple and thus has
only two entries with ’1’, we show that a column-level compres-
sion scheme for storing the triple matrix is more effective than the
row-level, byte-level or bit-level compression scheme [5]. Con-
cretely, for each column of the triple matrix, instead of storing
the entire column of size |VE |, we use only the two row numbers
(i.e., IDs) that correspond to the two ’1’ entries. Consider Table
1, the first column (T1) and the third column (T2) are represent-
ed as 00000001 10000101 and 10000001 00000011 respectively.
By combining with the variable-size integer encoding approach for
the two IDs, each column requires only 2-8 bytes for storing one
triple in TripleBit if the number of entities (or rows) is less than
228. Furthermore, instead of storing two full ids of a column we
can store the first id and the changes between two ids. If two ids

are similar, it will further save storage. Our experiments on the six
data sets in Table 2 show that the storage per triple is about 4.3-6
bytes on average without other storage optimization. This saving at
per-triple level is significant compared to 12 bytes per triple in the
row stores and 8 bytes per triple in the column stores, leading to
higher efficiency in storing and scanning data on storage media as
well as high reduction in both the size of intermediate results and
the time complexity of query processing.

3.4 Triple Matrix Chunk Storage
As described earlier, we partition a triple matrix vertically in-

to predicate-based buckets, each containing triples with the same
predicate. Triples of each bucket are stored in fixed-size chunks.
Chunks are physically clustered by predicates such that chunk clus-
ters having the same predicates are placed adjacently on storage
media. We assign chunks of each bucket with chunk IDs consec-
utively. The size of a chunk can be set according to a number of
parameters, such as the size of dataset, the memory capacity, the
IO page size. Although search in small size chunk is faster, larger
chunk simplifies the construction of ID-Chunk index and reduces
I/O. Larger chunk also has less storage overhead. In the first imple-
mentation of TripleBit, we set the chunk size to be 64KB.

Since the triple matrix does not indicate which entity is subject
or object in a column, we choose to store each column of a buck-
et in a consistent order, either SO or OS. Compared to some ex-
isting RDF systems [17, 24], which store all six permutations of
RDF data, TripleBit stores the triple matrix for each RDF dataset
physically in two duplicates, one in S-O order and another in O-
S order. The triples in a SO-bucket or an OS-bucket are sort-
ed by S-O order or O-S order respectively and SO pairs or OS
pairs are stored consecutively in the chunks of each bucket (see
Fig. 2). Thus, each chunk is either SO-ordered chunk or OS-
ordered chunk. Considering the example in Table 1, the triples
corresponding to ’isNamed’ are stored in the SO chunk as follows:
00000001 10000101 00000010 10000110.

Fig. 2 gives a sketch of TripleBit storage layout. In the head of
each chunk, we store the minimum and maximum subject IDs in
each SO chunk and the minimum and maximum object IDs in each
OS chunk, as well as the amount of used space.

Consider a query with a given predicate and a given subject hav-
ing ID of value ”id”. We process this query in three steps: (1) By
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using the given predicate, we locate the corresponding SO bucket
containing triples with the given predicate. (2) We need to find the
relevant SO chunks that contain triples with the given subject val-
ue ”id” by checking whether target id falls inside the MinIDs and
MaxIDs of chunks. (3) Now we examine each relevant SO chunk
to find the SO pairs matching the given subject value ”id” using
binary search instead of full scan. Recall Section 3.2, our ID en-
coding in the triple matrix utilizes the most significant bit of each
byte of an entity ID to indicate whether the ID refers to a subject
or an object of a triple. This feature allows TripleBit to get an SO
pair (or OS pair) more efficiently in an SO-chunk (or OS chunk).
Concretely, we start at the middle byte of an SO ordered chunk,
say ”00001001”. TripleBit finds the matching SO pair, namely the
ID of the subject and the ID of the object of the matching triple, in
two steps. First, TripleBit reads the previous bytes and next bytes
until the most significant bit of the bytes are not ’0’. Then TripleBit
reads next bytes till the most significant bit of the bytes are not ’1’
and get the SO pair. Now TripleBit compares the query input id to
the subject ID of the SO pair. If it is a match, it returns the subject
and object of the matching triple. Otherwise, it continues to com-
pare and determine whether the input id is less or greater than the
stored subject ID and starts the next round of binary search with
the search scope reduced by a half. TripleBit repeats this process.
The search space is reduced by a half at each iteration and thus it
can quickly locate the range of matching SO pairs. Similar process
applies to the OS-chunks if the object of the query is given.

In summary, the Triple Matrix model is conceptually attractive
as it can facilitate the design of compact RDF storage layout, com-
pact RDF indexes and ease of query processing. The Triple Ma-
trix model prevails over other existing RDF stores, such as triple
row store, column store with vertically partitioning, and property
table based model, for a number of reasons. First, the Triple Ma-
trix model allows efficient encoding of each entity using its row ID
through variable-sized integer encoding. Second, the Triple Ma-
trix model enables effective column level encoding. By combining
both entity ID level and column level compression, Triple Matrix
model enables TripleBit to generate a very compact storage model
for RDF triples. Third, the Triple Matrix model and its predicate-
based triple buckets provide a natural and intuitive way to organize
TripleBit storage layout by placing the triples with the same pred-
icate adjacently in contiguous chunks of the corresponding buck-
et. Thus, TripleBit significantly speeds up queries with restricted
predicate P -value (see Section 5 for more detail). Furthermore,
the triple matrix is by design suitable for parallel processing of
queries. For example, Triple Matrix can be partitioned into sev-
eral sub-matrixes, each of which corresponds to a subgraph of the
whole RDF graph. Those sub-matrixes can be placed onto different
server nodes of a compute cluster. Thus, queries can be executed in
parallel across multiple nodes using a distributed framework, such
as MapReduce [11].

In addition, TripleBit can provide optimized storage for reified
statements and can store and process reified statements naturally
using its triple matrix by establishing a mapping of a reified state-
ment identifier to a row id, avoiding the use of four separate triples
for each reified statement. Due to the page limit, we refer readers
to our technical report1 for further detail.

4. INDEXING
With the triple matrix and the predicate-based triple buckets of

SO chunks and OS chunks, TripleBit only needs two of the six

1http://www.cc.gatech.edu/˜lingliu/TechReport/TripleBit-report-
v2.Dec.2012.pdf

Figure 3: ID-Chunk Bit Matrix

permutations of (S, P, O) in its physical storage, namely PSO and
POS. In order to speed up the processing of RDF queries, we design
two auxiliary index structures: ID-Chunk matrix and ID-Predicate
bit-Matrix.

4.1 ID-Chunk Index
ID-Chunk index is created as an ID-Chunk matrix for each dis-

tinct predicate and it captures the storage relationship between IDs
(rows) and Chunks (columns) having the same predicate. An entry
in the ID-Chunk matrix is a bit to denote the presence (’1’) or ab-
sence (’0’) of an ID in the corresponding chunk. Since the triples
having the same predicate is stored physically in two buckets, we
maintain two ID-Chunk index for each predicate: one for SO or-
dering chunks and the other for OS ordering chunks (Fig. 2).

In each ID-chunk matrix, rows and columns are sorted in an as-
cending order of IDs and sorted chunks respectively. Given an enti-
ty id, the set of chunks that store the triples with this id are adjacent
physically in the storage media and thus appeared in the consecu-
tive columns in the ID-chunk matrix with non-zero entries around
the main diagonal. The degree of shift of the non-zero diagonal
from the main diagonal of the matrix depends on the total number
of triples containing this id as subject or object. We can draw two
finite sequences of line segments, which bound the non-zero en-
tries of the matrix (as shown in Fig. 3). Considering the MinIDs
and MaxIDs of chunks as two set of data points, we can fit the up-
per boundary lines and lower boundary lines using curve fitting.
There are multiple curve fitting methods, such as lines, polynomial
curves or Bspline, etc. Complicated fitting methods involve large
overhead when computing index. Thus, currently we divide the
rows into several parts (e.g., 4 parts). The upper bound and the
lower bound of each part are fitted using two lines whose parame-
ters are determined by least square method. Since non-zero entries
of the ID-Chunk Matrix are expressed using two set of lines, we
only need to keep the parameters of two set of lines.

The ID-Chunk index gives the lower bound Chunk ID and up-
per bound of Chunk ID for each chunk in the given predicate bucket
(shown by the boundary lines). Thus, a query with a given predicate
and a given subject id (or object id) can be processed by first hash-
ing the given predicate to get the corresponding bucket. Then, in-
stead of a full scan over all chunks in the predicate bucket, TripleBit
only scan the range of contiguous chunks in the bucket where the
given subject or object id appears, namely finding the lower bound
Chunk ID and upper bound of Chunk ID corresponding to the giv-
en id using the ID-Chunk index. For those chunks identified by the
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Table 3: Index lookup under varying chunk sizes (time in µs)
Cold cache Warm cache

Chunk size 4KB 16KB 32KB 64KB 4KB 16KB 32KB 64KB
ID-Chunk 43 56 59 144 3.8 23.3 23.8 104
B+-Tree 16373 15393 15554 292378 16072 13797 13742 13647

Table 4: Query time of LUBM-Q2 under varying chunk sizes
Chunk size 1KB 2KB 4KB 16KB 32KB 64KB
cold caches 0.0497 0.0489 0.0466 0.0440 0.0336 0.0295

warm caches 0.00017 0.00018 0.00019 0.00025 0.00026 0.00021

ID-Chunk index, we can further examine the query relevance of
the triples stored in the chunks by utilizing the MinID and MaxID
stored at the head of each chunk and a binary search, instead of a
full scan of all triples in each chunk (recall Section 3.4).

To better understand the effectiveness of ID-Chunk index for
TripleBit, we compare ID-Chunk index with B+-Tree index under
different chunk sizes by constructing a B+-Tree index on chunks.
We choose triples sharing the same predicate rdf:type of LUBM-1B
as the test dataset. Generally, each subject declares its type. Thus
the dataset is big. The time to construct the ID-Chunk index is s-
lightly smaller (about 140s) than the construction time of B+-Tree
(about 146s). Table 3 shows lookup in B+-Tree is significantly s-
lower than lookup using ID-Chunk index in all chunk sizes. When
the chunk size is 64KB, the average times required to lookup in
B+-Tree and find the target pairs are 292.378ms (cold cache) and
13.647ms (warm cache) while the times for lookup in ID-Chunk are
0.144ms (cold cache) and 0.104ms (warm cache) respectively. A
primary reason is that B+-Tree require large storage space (8.6MB-
60MB) while ID-Chunk stores only parameters of functions (128
bytes). We also provide an experimental study of the performance
impact of chunk size on TripleBit. Table 4 shows the query time
(in seconds) of LUBM Q2 running on LUBM-500M under varying
chunk sizes. LUBM Q2 is chosen because triples matching Q2 are
in a single chunk and the intermediate result size of Q2 is also not
big. Thus, the factors impact on the performance of index lookup is
more obvious than other complex queries with larger intermediate
results. For both indexes, larger chunk has better performance in
cold cache because of less I/O, and smaller chunk has better per-
formance in warm cache cases. For more complex queries which
need access more inconsecutive chunks, ID-Chunk index outper-
forms B+-tree by higher orders of magnitude.

4.2 ID-Predicate Index
The second index structure is the ID-Predicate bit matrix. We

use this index to speed up the queries with un-restricted predi-
cates. Given a query with no restriction on any predicate, instead
of a sequential scan of all predicate buckets, we introduce the ID-
Predicate bit matrix index structure. An entry with a bit of ’1’ in the
ID-Predicate matrix indicates the occurrence relationship between
the ID row and the predicate column. With the ID-Predicate index,
if a subject or an object is known in a query, TripleBit can determine
the set of relevant predicates. For each relevant predicate, TripleBit
can use ID-Chunk matrix to locate the relevant chunks and return
the matching triples by binary search within each relevant chunk.

The ID-Predicate matrix is huge and sparse for large scale RDF
data. In TripleBit we use semantic preserving compression tech-
niques that can make the matrix compact in storage and memory
but remain searchable by IDs. We decompose ID-Predicate matrix
into a set of block matrixes and treat each block of the ID-Predicate
matrix as a bit vector. We devise the following byte encoding tech-
nique by adapting the Word Aligned Hybrid (WAH) compression
scheme [26]. Instead of imposing the word alignment requirement
as is done by WAH, we choose to impose the byte alignment re-

Figure 4: Two compressed bit vectors

quirement on the blocks of the matrix. For example, we first divide
the bit vector into 7-bit segments and then merge the 7-bit seg-
ments into groups such that consecutive identical bit segments are
grouped together. A fill is a consecutive group of 7-bits where the
bits are either all 0 or all 1, and a literal is a consecutive group of
7-bits with a mixture of 0 and 1. Then we encode each fill as fol-
lows: The most significant bit of each byte is used to differentiate
between literal (0) and fill (1) bytes. The second most significant
bit of a fill word indicates the fill bit (0 or 1), and the remaining bits
store the fill length. Compressed blocks are stored into fixed-size
storage structure adjacently. Thus, given an id, it is easy to locate
the blocks where the idth row is.

Fig. 4 shows the compressed representation of two examples.
The second and third line in Fig. 4 show the hexadecimal repre-
sentation of the bit vector as 7-bit groups. The last two lines show
the compressed bytes also as hexadecimal numbers. For example,
the first byte of the last line (”56”) is a literal byte, and the sec-
ond and third are fill bytes. The fill byte ”C2” indicates a 1-fill of
14 bits long, and the fill byte ”93” denotes a 0-fill, containing 133
consecutive 0 bits.

4.3 Aggregate Indexes
The execution time of a query is heavily influenced by the num-

ber and execution order of joins to be performed and the mean-
s to find the results of the query. Therefore, the query processor
needs to utilize the selectivity estimation of query patterns to select
the most effective indexes, minimize the number of indexes needed
and determine the query plan. In SPARQL queries, there are eight
triple query patterns: one full scan and 7 triple selection pattern-
s. All triples in the store match (?s ?p ?o) and thus a full scan is
required. In the other end of the spectrum, the number of triples
matching (s p o) is 0 or 1. The selectivity of these two patterns is
known intuitively without aggregate indexes. The statistics of triple
pattern (?s p ?o) can be obtained directly in the storage structure
corresponding to the bucket of predicate p. Hence, we need to esti-
mate the selectivity of five triple query patterns: (s p ?o); (?s p o);
(s ?p o); (s ?p ?o); (?s ?p o).

In TripleBit, we additionally build two binary aggregate indexes:
SP and OP (instead of 9 aggregate indexes [16–18]). The SP ag-
gregate index stores the count of the triples with the same subject
and the same predicate. With SP aggregate index, we can com-
pute statistics about (s p ?o) and (s ?p ?o). For example, to get
the number of triples matching (s ?p ?o), TripleBit searches SP
aggregate index and locates the first tuples containing s. Since SP
pairs are stored lexicographically, TripleBit can count all the tuples
having the same s for each predicate and return the count of triples.
Similarly, the OP aggregate index gives the count of the triples hav-
ing the same object and the same predicate for fast computation of
the statistics about (?s ?p o) and (?s p o). Finally, statistics about
(s ?p o) can be computed efficiently using ID-Predicate index with
SP and OP indexes. Both aggregated indexes (SP and OP) are com-
pressed using delta compression [17] and stored in chunks.

In summary, the indexing structure in TripleBit is also compact.
We minimize the size of the indexes through storing ID-Chunk
index as a list of functions which requires tiny storage. We re-
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duce the number of indexes by utilizing a novel triple matrix based
storage layout and two auxiliary bit matrix indexes. More im-
portantly, the compactness of TripleBit storage and index struc-
tures makes it highly effective for complex long join queries, com-
pared to exhaustive-indexing used in some triples table [17, 24].
For example, using SO and OS chunk pairs in the storage and ID-
Chunk index, we can replace PSO, POS indexes. By adding the
ID-Predicate matrix, TripleBit can cover all the other four permuta-
tions of (S, P, O). To estimate selectivity, we only use two aggregate
indexes instead of all permutations of 9 aggregate indexes [16, 18].

5. QUERY PROCESSING
There are two types SPARQL queries: queries with single se-

lection triple pattern and queries with join triple patterns. Process-
ing queries with single selection triple pattern is straightforward.
When a query consists of multiple triple patterns that share at least
one variable, we call the query the join triple pattern query. For
this type of queries, TripleBit generates the query plan dynami-
cally, aiming at reducing the size of intermediate results and then
executes the final full joins accordingly. In this section we describe
how the triple matrix, the ID-Chunk and ID-Predicate indexes are
utilized to process these two types of queries efficiently.

5.1 Queries with Selection Triple Pattern
We have briefly discussed in Section 4.3 about the eight selec-

tion triple patterns: (?s p ?o); (s p ?o); (?s p o); (s p o); (s ?p o);
(s ?p ?o); (?s ?p o); (?s ?p ?o). Processing queries with these sim-
ple selection triple patterns is straightforward. Due to page length
limit, we below describe the steps for evaluating two representative
triple patterns: (s p ?o) and (s ?p o).

For (s p ?o), we first hash by p to obtain the predicate bucket of
p and use the ID-Chunk index of the bucket p to locate the range of
chunks relevant to the given s. Next, the query processor examines
each of the candidate SO chunks to see if s falls inside the range
of MinID and MaxID of this chunk to prune out irrelevant chunks.
For the relevant chunks, a binary search is performed over each of
such chunks to find the matching SO pairs. There are three special
cases: (i) If the MinID and MaxID of a chunk equal to s, then all
the SO pairs in the chunk are matching the queries and the query
processor just return all the triples in the chunk. (ii) If the MinID
of a chunk equals to s, the query processor just locates the first pair
which does not match the query pattern and returns all the SO pairs
before that pair. (iii) If the MaxID of a chunk equals to s, similarly,
the query processor just locates the last pair whose subject is not s
and returns all the SO pairs after that pair.

To execute the selection triple query pattern (s ?p o), the query
processor first needs to determine which predicates are relevant us-
ing s and o. It searches the ID-Predicate index using both s and
o, and get two sets of candidate predicates, one based on s and the
other based on o. Then the query processor computes the intersec-
tion of the two sets of predicates, which gives the set of relevant
predicates connecting s to o. For each matching predicate p, the
query processor first determines whether to use SO chunks or OS
chunks by comparing the selectivity of sp and the selectivity of op
using the aggregate indexes: SP and OP, denoted by σf (sp) and
σf (op) respectively. If σf (sp) ≥ σf (op), then the chunks ordered
by s is more selective and we search the S-O chunk(s) correspond-
ing to p. Otherwise, we search the chunks ordered by o. Finally,
we output those triples matching (s p o).

5.2 Queries with Join Triple Patterns
A query with join triple patterns typically forms a query graph [5,

10, 21], with selection triple patterns or variables as nodes and the

Figure 5: Query graph and its query plan of LUBM Q5

types of joins as edges. We classify multi-triple pattern queries into
three categories: (i) star join where many triple patterns are joined
on one common variable, (ii) cyclic join where join variables are
connected as a cycle, and (iii) bridge join where several stars are
connected as a chain. In LUBM, Q1, Q2 are star joins; Q3, Q5, Q6
are cyclic joins; and Q4 is bridge join. SPARQL queries tend to
contain multiple star-shaped sub-queries [17]. For example, cyclic
joins and bridge joins are star joins connected as a cycle or a chain.

Here, we use the query graph model of [5] to represent a query.
In this query graph model, nodes are triple patterns and join vari-
ables. There are two kinds of edges connecting the nodes: One type
of edges between pattern nodes and variable nodes, indicating the
variables appearing in the corresponding triple patterns. The other
type of edges between two triple patterns, denoting one of the three
join types: SS-join, the subject-subject join, SO-join, the subject-
object join and OO-join, the object-object join. Fig. 5 is the query
graph of LUBM-Q5, with some edges (e.g., the join edge between
P1 and P6) omitted for presentation clarity.

When a query involves multiple join patterns as shown in Fig. 5,
the most important task is to produce an optimal execution order-
ing of the join nodes (join triple patterns) of the query graph. We
can compute the optimal ordering of join patterns in terms of three
factors: (i) the triple pattern selectivity estimation, (ii) the reduc-
tion on the size of intermediate results and (iii) the opportunity to
use merge joins instead of hash or nested-loop joins. All these fac-
tors aim at progressively reducing the cost of query processing by
following the optimal order of joins.

5.2.1 Dynamic Query Plan Generation
For executing queries with multiple join patterns, TripleBit em-

ploys a Dynamic Query Plan Generation Algorithm (DQPGA) and
the pseudo code is given in Algorithm 1. This algorithm consists of
three parts: processing star-joins (Lines 1 - 12); further reduction
(Lines 15 - 28); final join (Lines 29).

In DQPGA, a number of optimization tactics are employed to
produce an optimal execution order of the join patterns for the
query. Consider the example query in Fig. 5 with the optimal
join order marked on the edges. First, SPARQL queries general-
ly contain multiple star-shaped subqueries. Star joins are simple
tree queries [6] and impose restrictions on the common variables.
The query processor can reduce intermediate results by executing
star joins before other types of join queries. The second tactic is
to use semi-joins [5, 6, 20]. So we can further reduce the number
of bindings involved in the subsequent join operations. For exam-
ple, considering P4nP2, the bindings of P4, which do not match
P2, are removed. Semi-joins also reduce the amount of compu-
tation, such as sorting or hashing, required to perform subsequent
joins that are more expensive. In addition, to determine an optimal
execution plan, we consider three types of selectivity: triple pat-
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Algorithm 1 Dynamic Query Plan Generation
Input: queryGraph
1: jV ars=getJoinVar(queryGraph);
2: while jV ars IS NOT NULL do
3: var = getV arwithMaxSel(jV ars);
4: p=getPatternwithMaxSel(var);
5: for each pattern t adjacent to p do
6: e.v1 = p; e.v2 = t; e.sel=sel(p)× sel(t)× factor;
7: insert(jEdges, e);
8: sortjoinSelectivity(jEdges);
9: for i← 0 to sizeof [jEdges] - 1 do

10: semi-join(jEdges[i]);
11: remove the patterns which only contains one join variable

var from queryGraph;
12: remove var from jV ars;
13: if queryGraph is star joins then
14: goto 29;
15: p = getPatternwithMaxSel(queryGraph);
16: flag = true; jEdges = NULL;
17: while jEdges IS NOT NULL OR flag = true do
18: for each pattern t adjacent to p do
19: e.v1 = p; e.v2 = t; e.sel=sel(p)× sel(t)× factor;
20: if visited[e] == NULL then
21: insert(jEdges, e); visited[e]=false;
22: else
23: if visited[e] == false then
24: update(jEdges, e);
25: sortjoinSelectivity(jEdges);
26: e=getfirstEdge(jEdges);
27: semi-join(e); remove(jEdges,e); visited[e]=true;
28: p=e.v1 == p?e.v2 : e.v1; flag = false;
29: generate plan following the above steps and execute the plan

using full joins.

tern selectivity, variable selectivity and join selectivity. Triple pat-
tern selectivity is computed as the fraction of the number of triples
which match the triple pattern [21]. We refer to the largest triple
pattern selectivity as the variable selectivity. The join selectivity is
the product of the selectivity estimates of the two join patterns.

DQPGA begins by selecting the star sub-query associated with
the maximum variable selectivity, orders its edges based on their
join selectivity and adds them to the query plan (Lines 1 - 12 in Al-
gorithm 1). In the example of Fig. 5, it is the star query associated
with ?y. In star query ?y (we name the star query using its common
variable), we first choose the pattern node with the largest selectiv-
ity, namely P2. Then we compute the join selectivity, which is the
product of selectivity of two join patterns, namely the SO-join be-
tween P2 and P4 and the SO-join between P2 and P5, denoted
by the two edges directly connected with P2 from P4 and P5. By
comparing the join selectivity, we determine the join order with the
SO-join between P2 and P4 first and followed by the SO-join be-
tween P2 and P5. Now the query processor will execute each of
the two SO-joins using semi-join. A semi-join between two pat-
terns can be implemented in two ways, for example, P4 n P2 or
P2nP4. To reduce the communication cost incurred during semi-
join of the two patterns, TripleBit chooses the semi-join order hav-
ing the largest selectivity to reduce the bindings of the other pattern
having smaller selectivity. Considering the semi-join between P2
and P4, TripleBit will execute P4nP2 instead of P2nP4. Once
the star sub-query is processed, the patterns containing one variable
(e.g. P2) can be removed from the query graph because bindings
of those patterns are joined with other patterns. Similarly, the bind-

ings of patterns, such as P4 may be dropped and the triple pattern
selectivity may change. We compute variable selectivity again, or-
der the remaining variable nodes and process next star sub-query
associated with the maximum variable selectivity after all patterns
associated to the first star query ?y is processed. The query proces-
sor will repeat this process until all variable nodes are processed.

After all variable nodes are processed, for cyclic queries and
bridge queries, the query processor will repeat the similar proce-
dure as mentioned above. Concretely, the query processor will
choose the pattern with the largest triple pattern selectivity from
the remaining patterns, order the edges based on their join selec-
tivity, add them to the query plan and execute it using semi-joins
(Lines 15 - 28 in Algorithm 1). Consider Fig. 5, the query of the
remaining patterns (P4, P5, P6) is a cyclic query. P4 is most
selective as it has the largest selectivity. By comparing the join s-
electivity of P4 and P6, P4 and P5, we can determine the join
order by executing the join between P4 and P6 first and followed
by the join between P4 and P5.

Once the above process ends, the query processor will generate
a final plan for the remaining patterns, execute the plan using full
joins (Lines 29 in Algorithm 1), and final results will be generated.

5.2.2 Reducing the Size of Intermediate Results
The query response time can be further improved if we can min-

imize the size of intermediate results produced during query evalu-
ation. Regarding intermediate results, we refer to both the number
of triples that match the query patterns and the data loaded into
the main memory during query evaluation. The compact design
of TripleBit reduces the size of intermediate data in several ways.
First, TripleBit does not load triples of the form (x, y, z), but (x, y)
pairs. Thus, the size of the intermediate results is at most 2

3
of

the size of the intermediate results of (x, y, z) format. Second,
TripleBit uses less indexes for each query, which leads to less data
loaded into main memory during query evaluation.

Furthermore, TripleBit reduces the number of triples with match-
ing patterns in two phases: initializing patterns and join processing.

To initialize the triple patterns involved in a query, TripleBit con-
siders the minimal and maximal IDs of matching triples of adjacent
patterns when loading bindings of a pattern. For example, in Fig.
5, the query processor first initializes P2 since it has the largest
selectivity. When triples matching P2 are loaded, the bindings of
join variable ?y should be bounded. Obviously, it is not neces-
sary to load the triples beyond the boundaries even though they
are bindings of P4. TripleBit will filter those triples beyond the
boundaries. Filtering before materializing is super efficient for star
queries, such as Q1, Q2 of LUBM. By filtering early, TripleBit re-
duces the intermediate results when loading triples.

When processing queries using semi-joins, the query processor
tries to further reduce the bindings of triple patterns. Consider Fig.
5, P4 n P2, P5 n P2. Those bindings of the former, which have
no matching in the latter are dropped. Hence, the constraints on
join variable bindings of the latter are propagated to the former.

By reducing intermediate results, we gain two benefits: (i) we
achieve lower memory bandwidth usage and (ii) we accomplish the
computation of joins with smaller intermediate results.

5.2.3 Join Processing
The most efficient way to execute star joins is merge-join which

is faster than hash join or nested-loop join [17]. TripleBit uses
merge joins extensively. This entails preserving interesting orders.
The bindings of joins of triple patterns with a given predicate p are
either SO ordered pairs or OS ordered pairs in TripleBit storage.
Note that the second elements of these pairs are also sorted if they
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Table 5: Dataset characteristics
Dataset #Triples #S #O #(S

⋂
O) #P

LUBM 10M 13,879,970 2,181,772 1,623,318 501,365 18
LUBM 50M 69,099,760 10,857,180 8,072,359 2,490,221 18
LUBM 100M 138,318,414 21,735,127 16,156,825 4,986,781 18
LUBM 500M 691,085,836 108,598,613 80,715,573 24,897,405 18
LUBM 1B 1,335,081,176 217,206,844 161,413,041 49,799,142 18
UniProt 2,954,208,208 543,722,436 387,880,076 312,418,311 112
BTC 2012 1,048,920,108 183,825,838 342,670,279 165,532,701 57,193

Table 6: LUBM 500M (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Geom.

#Results 10 10 0 8 2528 219772 Mean
Cold caches

RDF3X 0.2684 0.2077 21.9648 0.2473 1198.6520 295.0343 6.8911
MonetDB 279.4118 281.0015 366.9872 283.1664 524.3888 468.7374 355.1170
TripleBit 0.0319 0.0328 9.3829 0.0824 23.4303 26.2114 0.8900

Warm caches
RDF-3X 0.0013 0.0027 16.8547 0.0035 1114.5000 45.9599 0.4687
MonetDB 1.4475 1.2411 66.8715 3.3124 45.1842 86.2431 10.7585
TripleBit 0.0001 0.0002 3.5898 0.0009 14.2093 17.7789 0.0504

have the same first element. Thus, merge joins can be utilized nat-
urally. For the triple patterns with un-restricted predicates, such as
(s ?p ?o), (?s ?p o) or (?s ?p ?o), the bindings are PSO ordered or
POS ordered. Given that the intermediate data format is often or-
dered pairs, we say that TripleBit by design facilitates merge joins.

Considering the join P4nP2, the query processor loads OS or-
dered pairs to initialize P2 because there exists two bounded com-
ponents in P2. For the subsequent join, we transform the bind-
ings of P2 into SO ordered pairs easily because O is a fixed value.
TripleBit can load OS ordered pairs or SO ordered pairs to initialize
P4 because S and O of the pattern are variables. Considering the
subsequent merge-join with P2, TripleBit loads OS ordered pairs
to initialize P4 since the bindings of P2 are SO ordered pairs.

TripleBit makes use of order-preserving merge-joins whenever
possible. If the intermediate results are not in an order suitable for
a subsequent merge-join (e.g., P4 n P1), we can transform them
into suitable ordered pairs such that merge sort can be used effi-
ciently. The transformation is cheap because the bindings of most
patterns are (x, y) ordered pairs.

If it is expensive to transform bindings of two patterns to an or-
der suitable for later merge join, TripleBit will switch to hash-joins.
The query processor will also execute hash joins when intermedi-
ate results of triple joins are not in the form of (x, y) pairs, such as
P4 ./ P5 in Fig. 5.

6. EVALUATION
TripleBit was implemented using C++, compiled with GCC, us-

ing -O2 option to optimize. In this section we evaluate the TripleBit
against some existing popular RDF stores using the known RD-
F benchmark datasets. We choose RDF-3X (v0.3.5), MonetDB
(2010.11 release) and BitMat [5] for our evaluation, since they
show much better performance than many others [5, 18]. BitMat
did not have a dictionary component and cannot translate strings to
IDs and IDs to strings [5]. Thus, we only use it in some selected
experiments, such as core execution time comparison (Table 8).

All experiments are conducted using the three well-known bench-
marks: LUBM [13], UniProt (2012.2 release) [2] and Billion Triples
Challenge (BTC) 2012 data set [1]. Table 5 gives the characteris-
tics of the datasets. All experiments (except those in Table 8, 9,
10) were conducted on a server with 4 Way 4-core 2.13GHz Intel
Xeon CPU E7420, 64GB memory; Red Hat Enterprise Linux Serv-
er 5.1 (2.6.18 kernel), 64GB Disk swap space and one SAS local
disk with 300GB 15000RPM. The server is also connected with a
storage system which consists of 20 disks, each of which is 1TB
7200 RPM. Other experiments (Table 8, 9, 10) were running on a

Table 7: LUBM 1 Billion (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Geom.

#Results 10 10 0 8 2528 439997 Mean
Cold caches

RDF-3X 0.3064 0.3372 53.3966 0.3616 2335.8000 496.1967 11.4992
MonetDB 560.3912 562.0915 3081.1862 579.2889 966.9349 4929.8527 1178.575
TripleBit 0.0623 0.0721 13.2015 0.1034 36.8445 53.1482 1.5132

Warm caches
RDF-3X 0.0018 0.0029 33.4861 0.0035 2227.5900 91.5595 0.7069
MonetDB 2.5824 2.4552 910.7387 6.8218 95.7446 4608.3609 50.8953
TripleBit 0.0002 0.0002 7.5977 0.0009 27.2772 36.5613 0.0805

server with the same configuration except that its OS is CentOS 5.6
(2.6.18 kernel) and it did not connect with the storage system.

6.1 LUBM dataset
To evaluate how well TripleBit can scale, we used 5 LUBM

datasets of varying sizes generated using LUBM data generator [13]
(Table 5). We run almost the same set of LUBM benchmark queries
as [5] did, except that Q4 and Q2 in [5] are similar, so we modify
Q2 in [5] and name it as Q4. Given that Q6 in [5] is similar to Q2
in terms of both query pattern and result size, we drop Q6 when
plotting the experimental results, considering the space constraint.
All queries are listed in Appendix A. To account for caching, each
of the queries is executed for three times consecutively. We took
the average result to avoid artifacts caused by OS activity. We al-
so include the geometric mean of the query times. All results are
rounded to 4 decimal places. Furthermore, due to page limit, we
only report the experimental results on LUBM-500M, LUBM-1B
(Table 6, 7, best times are boldfaced) because larger datasets tend
to put more stress on RDF stores for all queries.

The first observation is that TripleBit performs much better than
RDF-3X and MonetDB for all queries. TripleBit outperforms RDF-
3X in both the cold-cache cases and warm cache cases. The typical
factors (the query run time of opponents divided by the query run
time of TripleBit) in the geometric mean are among 7.5-7.7 (cold
cache) and 8-10 (warm cache), and sometimes even by more than
78 (Q5 in LUBM-1B). TripleBit improves MonetDB on the cold
cache time by nearly a factor of 399-778 in the geometric mean,
and the warm-cache time by a factor of 213-632 in the geometric
mean. Furthermore, for several queries (such as Q1, Q2, Q4 in
LUBM-1B) the performance gain of TripleBit is more than a factor
of 1000.

Another important factor for evaluating RDF systems is how the
performance scales with the size of data. It is worth noting that
the TripleBit scales linearly and smoothly (no large variation is ob-
served) when the scale of the LUBM datasets increases from 500M
to 1 Billion triples. Furthermore, the experimental results show
that the storage and index structures in TripleBit are compact and
efficient such that only data relevant to the queries will be accessed
most of the time. Thus the time spent for accessing data in TripleBit
is directly related to the type of query patterns, but less sensitive to
the scale of data in the RDF store. For example, the variation in
the execution times of Q1, Q2, Q4 for 2 LUBM data sets are 0-
0.0001s (warm cache). The variation in the execution times of Q3,
Q5, Q6 for the two datasets are larger. This is because intermedi-
ate results related with the query patterns increase with the scale of
the dataset. The query processor needs to access more chunks and
perform more joins, thus the query run-time increases. In fact, this
set of experiments also shows that TripleBit prevails over RDF-3X
and MonetDB in terms of the size of intermediate results and the
compactness of its storage and index structures.

We also compared our core query execution time (without dictio-
nary lookup) with RDF-3X, MonetDB and BitMat in Table 8 (time
in seconds). In this set of experiments, we execute the queries on
RDF-3X and TripleBit and obtain their core query execution time
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Table 8: LUBM 500M (excluding dictionary lookup)
Q1 Q2 Q3 Q4 Q5 Q6 Geom.

Mean
Cold caches

BitMat 0.2669 394.2805 3.9379 28.2388 193.9220 123.0972 25.5679
RDF-3X 0.1190 0.1260 18.9420 0.1700 1139.3210 207.1380 4.7437
MonetDB 12.287 11.963 125.371 236.139 147.849 287.328 75.4758
TripleBit 0.0318 0.0327 9.3829 0.0823 23.4196 25.5188 0.8848

Warm caches
BitMat 0.2190 381.0911 1.9379 26.0217 190.6282 119.9245 21.4058
RDF-3X 0.0010 0.0020 16.4640 0.0030 1115.5120 46.0710 0.4146
MonetDB 0.099 0.094 53.033 2.273 22.861 24.472 2.9260
TripleBit 0.0001 0.0002 3.5898 0.0008 14.1987 17.0969 0.0440

by inserting performance measurement codes. However, it is not
easy to get the core query execution time of MonetDB. BitMat
did not have dictionary components. Thus, to provide a mean-
ingful comparison, for MonetDB and BitMat, we load MonetDB
and BitMat by inserting the integer IDs generated out of RDF-3X
dictionary mapping [5]. TripleBit shows better performance than
RDF-3X, MonetDB and BitMat (except Q3). Moreover, by Ta-
ble 6, 8, TripleBit shows better performance in both queries with
small result set and queries with large result set. Thus, the dictio-
nary lookup is not a dominating factor for the better performance
of TripleBit. For Q3, BitMat is the best, because the result set of
Q3 is empty and BitMat has a mechanism to check early stop con-
dition [5]. Once BitMat knows that the query returns zero result, it
terminates the query evaluation immediately.

In summary, TripleBit outperforms the other three systems thanks
for the following three design characteristics:
Compact design in storage and index. The saving from compact
storage and index structure design also leads to efficient memory u-
tilization and reduced I/O cost. For example, the run-time of RDF-
3X increases rapidly for Q5 and Q6 because these queries produce
much larger intermediate results, and thus require more time for
I/O and sometimes it may induce I/O burst (e.g., many memory
swap in/out). Concretely, in LUBM-500M there are 52M triples
matching P6 of Q5 (Fig. 5). For initializing P6 of Q5, RDF-3X
needs to load and decompress about 600MB data in a short time in
addition to loading aggregate indexes to help the selection of per-
mutation indexes. However, TripleBit only requires about 278MB
because its intermediate results are SO pairs or OS pairs. It fur-
ther reduces intermediate results using the techniques described in
Section 5.2.2. Also TripleBit needs not decompress the data. In
comparison, RDF-3X places heavier burden on I/O and requires
much time for decompression. Furthermore, the storage structure
of TripleBit allows more efficient data access than RDF-3X and
BitMat as we discussed in Section 3.4.
Efficient indexes. First, index scan using TripleBit is fast as we
discussed in Section 4.1. Second, TripleBit is fast in selecting the
suitable indexes from many available indexes. For example, to e-
valuate Q3, RDF-3X needs to access 3 aggregate indexes and 3
permutation indexes whereas TripleBit only accesses one aggre-
gate index and the ID-Chunk index. Consequently, RDF-3X loads
more indexes into memory for scan. It also requires much memory
to hold the indexes.
Join processing. TripleBit mainly uses merge join for join pro-
cessing in star queries (Q1, Q2) and bridge queries (Q4). RDF-3X
employs merge join, hash join and nested loop join depending on
actual cases. However, by storing (x, y, z) triples, RDF-3X has
less opportunities to execute merge join than TripleBit does. Bit-
Mat reduces bindings of each pattern in the reduction phase and
then processes join using nested loop join [5]. In star queries and
bridge queries (Q1, Q2, Q4), TripleBit improves BitMat and Mon-
etDB on the cold cache time by a factor of 8 to 12507, and the
warm-cache time by a factor of 2190 to 1,905,455 because these
queries have one highly selective pattern. For such queries, RDF-

Table 9: UniProt (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Geom.

#Results 0 0 26 1 14 838568 4196 167 Mean
Cold caches

RDF-3X 0.4039 0.3047 0.5046 0.3152 0.3859 377.4531 16.7898 3.0905 1.8675
MonetDB 98.2642 41.8234 >30min 26.2415 56.9313 792.3241 112.4354 76.3957 >88.2798
TripleBit 0.0558 0.0352 0.1701 0.0864 0.1159 8.4504 0.6447 1.4522 0.2678

Warm caches
RDF-3X 0.0047 0.0015 0.0099 0.0079 0.0053 14.4739 0.1679 0.8786 0.0398
MonetDB 15.5636 3.4345 >30min 0.0032 0.0153 26.7242 17.1546 3.5359 >1.2293
TripleBit 0.0002 0.0001 0.0032 0.0002 0.0008 6.1344 0.0474 0.6862 0.0061

Table 10: BTC 2012 dataset (time in seconds)
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Geom.

#Results 4 2 1 4 13 1 664 321 Mean
Cold caches

RDF-3X 0.3506 0.3205 0.392 0.7232 0.7658 0.675 6.5977 6.5589 0.9585
MonetDB >30min 0.601 >30min 0.413 106.3342 >30min >2.9774
TripleBit 0.0785 0.1432 0.0705 0.2834 0.1969 0.2966 1.5299 3.1717 0.2989

Warm caches
RDF-3X 0.0047 0.0046 0.0061 0.0114 0.0852 0.0204 0.569 1.0528 0.0334
MonetDB >30min 0.0249 >30min 0.0262 0.3806 >30min >0.0629
TripleBit 0.0005 0.0012 0.0003 0.0041 0.0033 0.0028 0.2504 0.0232 0.0038

3X is also faster than BitMat and MonetDB. Moreover, TripleBit
can reduce intermediate results during query evaluation as early as
possible, thus join queries have smaller intermediate results, lead-
ing to better performance in cyclic queries Q5, Q6. Another reason
that TripleBit outperforms the others is due to its capability to em-
ploy merge join and hash join to process join operations. Compar-
ing with executing LUBM Q1-Q4, it still takes TripleBit relatively
much time to execute LUBM Q5, Q6, because TripleBit executes
each join operation sequentially. We can overlap some join opera-
tions and thus further improve the performance of join processing.

6.2 UniProt
UniProt is a protein dataset [2]. We choose two queries from

[16], one query from [5], and design five additional queries in or-
der to compare the performance of the four RDF stores using a
representative set of queries. All queries are listed in Appendix B.
Among 8 queries, Q1, Q3, Q6, Q7 are bridge joins, and Q2, Q4,
Q5 are star joins. Q8 is a query with loop joins. Table 9 shows
the results. BitMat cannot handle datasets over 1 billion triples and
thus cannot be included in the results of the experiments. TripleBit
again outperforms RDF-3X and MonetDB for all queries in both
cold and warm cache. Comparing with RDF-3X, TripleBit gain-
s the performance by factor of 6.97 (cold cache) and 6.47 (warm
cache) in geometric mean. For MonetDB, the typical factor ranges
19-500, and sometimes higher than 77,818 (e.g. Q1). For 4 queries:
Q1, Q2, Q3, Q7, TripleBit gained more than 361x improvement
over the MonetDB in warm cache. In summary, TripleBit reduces
the geometric means to 0.2678s (cold) and 0.0061s (warm), which
is significantly faster than RDF-3X and MonetDB.

6.3 BTC 2012 Dataset
Billion Triples Challenge (BTC) 2012 dataset was crawled dur-

ing May/June 2012 and provided by the Semantic Web Challenge
2012 [1]. BTC dataset is a composition of multiple RDF web
sources. We ignored those redundant triples that appeared many
times in the dataset. This resulted in 1,048,920,108 unique triples
(Table 5). An obvious feature of the BTC dataset, different from
other datasets, is that there are 57,193 distinct predicates. The
space consumption of RDF-3X, MonetDB and TripleBit for this
dataset is shown in Table 11, 12. We ran almost the same set of
benchmark queries as those in [16] (See Appendix C). The sizes
of results returned by the queries are not big: from 1 to 664. Pred-
icates of some triple patterns in Q1, Q2, Q4, Q5, Q8 are blank
nodes. In the SPARQL specification, blank nodes are treated as
non-distinguished variables [23]. It is not an issue for RDF-3X
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Table 11: Storage space in GB
LUBM

10M
LUBM
50M

LUBM
100M

LUBM
500M

LUBM
1B UniProt BTC 2012

RDF-3X 0.67 3.35 6.83 34.84 69.89 145.74 81.32
MonetDB 0.35 1.7 3.5 22.8 45.6 78.34 46.98
TripleBit 0.42 2.39 4.88 22.01 44.5 63.81 53.08

Table 12: Storage space (Excluding dictionary) in GB
LUBM

10M
LUBM
50M

LUBM
100M

LUBM
500M

LUBM
1B UniProt BTC 2012

RDF-3X 0.40 2.00 4.12 21.16 42.49 98.17 43.65
MonetDB 0.14 0.67 1.6 5.9 12 22.04 8.33
BitMat 0.69 3.5 6.9 34.1 abort abort abort
TripleBit 0.17 1.24 2.58 11.12 22.68 28.37 23.51

and TripleBit to process queries containing non-fixed predicates,
but MonetDB with the vertical partitioning approach handles this
poorly [16]. The query run-times are shown in Table 10. TripleBit
performs consistently the best for all queries.

6.4 Storage space
We compare the required disk space of TripleBit with RDF-3X

and MonetDB in Table 11. BitMat is excluded because BitMat
does not have the dictionary facility in its public released package.
TripleBit outperforms RDF-3X for all datasets in storage space.
The reason is that RDF-3X maintains all six permutations of S, P
and O in separate indexes, plus 9 aggregate indexes [17]. The s-
torage of TripleBit is larger than MonetDB when loading smaller
datasets, such as LUBM-50M, LUBM-100M datasets. The rea-
son is that MonetDB only stores SO pairs of RDF data. However,
MonetDB requires more storage space than TripleBit when load-
ing LUBM-500M, LUBM-1B and UniProt. For UniProt, TripleBit
only needs 63.81GB storage, more compact than MonetDB and
significantly more efficient than RDF-3X since TripleBit only con-
sumes 43.8% of storage required by RDF-3X. Although BTC 2012
contains fewer triples than LUBM-1B, TripleBit consumes more
storage space when loading BTC 2012 than LUBM-1B for two
reasons: (i) More predicates leads to larger storage for aggregate
indexes and ID-Predicate index; and (ii) strings of BTC 2012 do
not share as many common prefixes as other two datasets.

Since the dictionary is usually large, Table 12 shows a compari-
son of the core storage (not including storage for dictionary) among
4 systems. TripleBit remains to be more compact than RDF-3X
and BitMat. BitMat has the largest storage among the four systems
(BitMat experiments on LUBM-1B, UniProt and BTC 2012 abort-
ed). According to Table 11, 12, the dictionary sizes of TripleBit in
all data sets are smaller than the dictionary sizes of RDF-3X.

During query processing, the memory is allocated for holding
intermediate results and data structures for join processing. For
example, RDF-3X will construct several hash tables for hash join-
s. Larger intermediate results lead to larger hash tables. Thus, the
size of memory allocated for data structures used in processing join
is also highly relevant with the size of intermediate results. We
note that intermediate results are not only the triples matching pat-
terns, but also the intermediate data, such as indexes loaded into
memory during query evaluation. Table 13 shows a comparison of
TripleBit with RDF-3X and MonetDB on the peak memory usage
during the execution of LUBM Q6. LUBM Q6 is chosen because
of its large intermediate results. Both the peak virtual and physical
memory usage of MonetDB are the largest compared to TripleBit
and RDF-3X. The query time in MonetDB also grew quickly. To
some extent, this showed that the MonetDB process spent much
more time in the kernel waiting for the memory pages to be al-
located. Table 13 also showed that the memory consumption of
RDF and TripleBit is in proportion to the result sizes. For exam-

Table 13: Peak memory usage in GB
LUBM 10M LUBM 50M LUBM 100M LUBM 500M LUBM 1B

#Results 4,462 22,001 44,190 219,772 439,997
virtual phy. virtual phy. virtual phy. virtual phy. virtual phy.

RDF-3X 0.793 0.145 4.058 0.816 8.249 1.6 42.1 9.6 84.1 18
MonetDB 1.577 0.851 5.104 4 10.5 8.1 44.8 40 89.3 61
TripleBit 0.713 0.331 2.818 1.8 5.545 3.7 23.7 16 47.8 33

ple, the virtual memory consumption of RDF-3X in LUBM-1B is
about 2 times of its virtual memory consumption in LUBM-500M.
We can find the similar phenomenon in other data sets. It is also
true for TripleBit. However, comparing with RDF-3X and Mon-
etDB, TripleBit requires the smallest virtual memory, and the size
of virtual memory for TripleBit grows slower than RDF-3X and
MonetDB. In LUBM-1B, TripleBit’s virtual memory size is about
40% of those of RDF-3X and MonetDB. These experimental re-
sults show that comparing with RDF-3X and MonetDB, TripleBit
can significantly reduce the intermediate result size.

7. CONCLUSION AND FUTURE WORK
We have presented TripleBit, a fast and compact system for large

scale RDF data. TripleBit is both space efficient and query efficient
with three salient features. First, the design of a triple matrix stor-
age structure allows us to utilize the variable-size integer encoding
of IDs and the column-level compression scheme for storing huge
RDF graphs more efficiently. Second, the design of the two auxil-
iary indexing structures, ID-Chunk bit matrix and ID-Predicate bit
matrix, allow us to reduce both the size and the number of indexes
to the minimum while providing orders of magnitude speedup for
scan and merge-join performance. In addition, the query process-
ing framework of TripleBit best utilizes its compact storage and in-
dex structures. Our experimental comparison shows that TripleBit
consistently outperforms RDF-3X, MonetDB, BitMat and delivers
up to 2-4 orders of magnitude better performance for complex join
queries over large scale RDF data.

Our work on TripleBit development continues along two dimen-
sions. First, we are working on extending TripleBit for scaling big
RDF data using distributed computing architecture. Second, we
are interested in exploring the potential of using TripleBit as a core
component of RDF reasoners [15] to speedup the reasoning using
conjunctive rules.
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APPENDIX
A. LUBM QUERIES
PREFIX r: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/∼zhp2/2004/0401/univbench.owl#>
Q1-Q3: Same as Q5, Q4, Q3 respectively in [5].
Q4: SELECT ?x WHERE {?x ub:worksFor <http://www.Department0.-

University0.edu>. ?x r:type ub:FullProfessor . ?x ub:name ?y1 . ?x
ub:emailAddress ?y2 . ?x ub:telephone ?y3 .}

Q5-Q6: Same as Q1 and Q7 respectively in [5].

B. UNIPROT QUERIES
PREFIX r: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX u: <http://purl.uniprot.org/core/>
Q1: Same as Q6 in [5].
Q2-Q3: Same as Q1, Q3 respectively in [16].
Q4: SELECT ?a ?vo WHERE { ?a u:encodedBy ?vo. ?a s:seeAlso <http://-

purl.uni-prot.org/refseq/NP 346136.1>. ?a s:seeAlso <http://purl.uni-
prot.org/tigr/SP 1698>. ?a s:seeAlso <http://purl.uniprot.org/pfam/-
PF00842>. ?a s:seeAlso <http://purl.uniprot.org/prints/PR00992>.
}

Q5: SELECT ?a ?vo WHERE { ?a u:annotation ?vo. ?a s:seeAlso <http://-
purl.uniprot.org/interpro/IPR000842>. ?a s:seeAlso <http://purl.uni-
prot.org/geneid/-945772>. ?a u:citation <http://purl.uniprot.org/cita-
tions/9298646>. }

Q6: SELECT ?p ?a WHERE { ?p u:annotation ?a . ?p r:type uni:Protein .
?a r:type <http://purl.uniprot.org/core/Transmembrane Annotation>
. ?a u:range ?range . }

Q7: SELECT ?p ?a WHERE { ?p u:annotation ?a . ?p r:type uni:Protein .
?p u:organism taxon:9606 . ?a r:type <http://purl.uniprot.org/core/Di-
sease Annotation> . ?a rs:comment ?text . }

Q8: SELECT ?a ?b ?ab WHERE { ?b u:modified ”2008-07-22” . ?b r:type
uni:Protein . ?a u:replaces ?ab . ?ab u:replacedBy ?b . }

C. BTC 2012 QUERIES
PREFIX geo: <http://www.geonames.org/>
PREFIX pos: <http://www.w3.org/2003/01/geo/wgs84 pos#>
PREFIX dbpedia: <http://dbpedia.org/property/>
PREFIX dbpediares: <http://dbpedia.org/resource/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
Q1: SELECT ?lat ?long where { ?a [] ”Bro-C’hall” . ?a geo:ontology#in-

Country geo:/countries/#FR . ?a pos:lat ?lat . ?a pos:long ?long . }
Q2: Same as Q2 in [16],
Q3: SELECT ?t ?lat ?long WHERE { ?a dbpedia:region dbpediares:List of -

World Heritage Sites in Europe . ?a dbpedia:title ?t . ?a pos:lat ?lat .
?a pos:long ?long . ?a dbpedia:link <http://whc.unesco.org/en/list/728>
. }

Q4-Q5: Same as Q4, Q5 in [16],
Q6: SELECT DISTINCT ?d WHERE { ?a dbpedia:senators ?c . ?a db-

pedia:name ?d . ?c dbpedia:profession dbpediares:Politician . ?a
owl:sameAs ?b . ?b geo:ontology#inCountry geo:countries/#US . }

Q7: SELECT DISTINCT ?a ?b ?lat ?long WHERE { ?a dbpedia:spouse
?b . ?a rdf:type <http://dbpedia.org/ontology/Person> . ?b rdf:type
<http://dbpedia.org/-ontology/Person> . ?a dbpedia:placeOfBirth ?c
. ?b dbpedia:placeOfBirth ?c . ?c owl:sameAs ?c2 . ?c2 pos:lat ?lat .
?c2 pos:long ?long . }

Q8: SELECT DISTINCT ?a ?y WHERE { ?a a <http://dbpedia.org/class/-
yago/Politician110451263> . ?a dbpedia:years ?y. ?a <http://xmlns.-
com/foaf/0.1/name> ?n. ?b [] ?n. ?b rdf:type <http://dbpedia.org/onto-
logy/OfficeHolder> . }
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