
On the Complexity of Query Result Diversification

Ting Deng1 Wenfei Fan2,1

1Big Data Research Center and SKLSDE Lab, Beihang University
2School of Informatics, University of Edinburgh
dengting@act.buaa.edu.cn, wenfei@inf.ed.ac.uk

Abstract
Query result diversification is a bi-criteria optimization
problem for ranking query results. Given a database D, a
query Q and a positive integer k, it is to find a set of k tuples
from Q(D) such that the tuples are as relevant as possible
to the query, and at the same time, as diverse as possible
to each other. Subsets of Q(D) are ranked by an objective
function defined in terms of relevance and diversity. Query
result diversification has found a variety of applications in
databases, information retrieval and operations research.
This paper studies the complexity of result diversification

for relational queries. We identify three problems in connec-
tion with query result diversification, to determine whether
there exists a set of k tuples that is ranked above a bound
with respect to relevance and diversity, to assess the rank
of a given k-element set, and to count how many k-element
sets are ranked above a given bound. We study these prob-
lems for a variety of query languages and for three objective
functions. We establish the upper and lower bounds of these
problems, all matching, for both combined complexity and
data complexity. We also investigate several special settings
of these problems, identifying tractable cases.

1. Introduction
Result diversification for relational queries is a bi-criteria

optimization problem. Given a query Q, a database D and
a positive integer k, it is to find a set U of k tuples in the
query result Q(D) such that the tuples in U are as relevant
as possible to query Q, and at the same time, as diverse as
possible to each other. More specifically, we want to find a
set U ⊆ Q(D) such that |U | = k, and the value F (U) of U
is maximum. Here F (·) is called an objective function. It is
defined on sets of tuples from Q(D), in terms of a relevance
function δrel(·, ·) and a distance function δdis(·, ·), where

• for each tuple t ∈ Q(D), δrel(t, Q) is a number indicat-
ing the relevance of answer t to query Q, such that the
higher δrel(t, Q) is, the more relevant t is to Q; and

• for all tuples t1, t2 ∈ Q(D), δdis(t1, t2) is the distance
between t1 and t2, such that the larger δdis(t1, t2) is,
the more diverse the answers t1 and t2 are.

In particular, three generic objective functions have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 8
Copyright 2013 VLDB Endowment 2150­8097/13/06... $ 10.00.

proposed in [17] based on an axiom system, namely, max-
sum diversification, max-min diversification and mono-
objective formulation. Each function is defined in terms of
generic functions δrel(·, ·) and δdis(·, ·), with a parameter λ
specifying the tradeoff between relevance and diversity.

Query result diversification is to improve user satisfaction
by remedying the over-specification problem of retrieving
too homogeneous results. The diversity of query answers is
measured in terms of (a) contents, to include items that are
dissimilar to each other, (b) novelty, to retrieve items that
contain new information not found in previous results, and
(c) coverage, to advocate items in different categories [12].
It has proven effective in Web search [17, 36], recommender
systems [39, 40, 41], databases [9, 25, 35], as well as in
operations research and finance (see [12, 26] for surveys).

This paper investigates the complexity of result diversifi-
cation analysis for relational queries. While there has been
a host of work on result diversification, the previous work
has mostly focused on diversity and relevance metrics, and
on algorithms for computing diverse results [12, 26]. Few
complexity results have been developed for query result di-
versification, and the known results are mostly lower bounds
(NP-hardness) [3, 17, 25, 31, 36]. Furthermore, these re-
sults are established by assuming that query result Q(D)
is already known. In other words, the prior work conducts
diversification in two steps: first compute Q(D), and then
rank k-element subsets of Q(D) and find a set with the max-
imum F (·) value. The known complexity results are for the
second step only, based on a specific objective function F (·).
However, it is typically expensive to compute Q(D). To
avoid the overhead, one often wants to combine the two
steps by embedding diversification in query evaluation, and
stop as soon as top-ranked results are found based on F (·)
(i.e., early termination), rather than to retrieve entire Q(D)
in advance [9]. Nonetheless, the complexity of such a query
result diversification process has not been studied.

This highlights the need for establishing the complexity of
query result diversification, upper bounds and lower bounds,
when Q(D) is not provided, and for different query languages
and various objective functions. Indeed, to develop practi-
cal algorithms for computing diverse query results, we have
to understand the impact of query languages and objective
functions on the complexity of result diversification. In oth-
er words, we need to know where the complexity arises.

Example 1: Consider a recommender system to help people
find gifts for various events or occasions, e.g., [15]. Its un-
derlying database D0 consists of two relations specified by:

catalog(item, type, price, inStock),
history(item, buyer, recipient, gender, age, rel, event, rating).

Here each catalog tuple specifies an item for present, its type
(e.g., jewelry, book), price, and the number of the item in

577

stock. Purchase history is recorded by relation history: a
history tuple indicates that a buyer bought an item for a
recipient specified by gender, age and relationship with the
buyer, for an event (e.g., birthday, wedding, holiday), as well
as rating given by the buyer in the range of [1,5].
Uncle Peter wants to use the engine to find a Christmas

gift for his 14 year-old niece Grace, in the price range of [$20,
$30]. His request can be converted to a query Q0 defined on
database D0. The relevance δrel(t, Q0) of a tuple t returned
by Q0(D0) can be assessed by using the information from
relation history, by taking into account previous presents
purchased for girls of 12–16 year old by the girls’ relatives
for holidays, as well as the rating by those buyers. The
distance (diversity) δdis(t1, t2) between two items t1 and t2
returned by Q0(D0) can be estimated by considering the
differences between their types. Peter wants the system to
recommend a set of 10 items from Q0(D0) such that on
one hand, those items are as fit as possible as a Christmas
present for a teenage girl, and on the other hand, are as
dissimilar as possible to cover a wide range of choices.
Consider the computational complexity of processing such

requests. It depends on both the queries for expressing users’
requests and the objective function adopted by the system.

(1) Query languages. Query Q0 can be expressed as a con-
junctive query (CQ). Nonetheless, if Peter wants a new gift
that is different from previous gifts he gave to Grace, we
need first-order logic (FO) to express Q0, by using nega-
tion on relation history. In practice one cannot expect that
Q0(D0) is already computed when Peter submits his request.
As remarked earlier, it is too costly to compute Q0(D0) first
and then pick a top set of k items from Q0(D0). Instead,
we want to embed result diversification in the evaluation of
Q0, and ideally, find a satisfactory set of k items without
retrieving the entire set Q0(D0). A question concerns what
difference CQ and FO make on the complexity of processing
such requests when Q0(D0) is not necessarily available. We
want to know whether the complexity is introduced by the
query languages or is inherent to result diversification.

(2) Objective functions. Consider the objective function by
max-sum diversification proposed in [17] and revised in [36]:

FMS(U) = (k − 1)(1− λ) ·
∑
t∈U

δrel(t, Q) + λ ·
∑

t,t′∈U

δdis(t, t
′).

To assess the diversity, FMS(U) only requires to compute
δdis(t, t

′) for t and t′ in a given k-element set U . In contrast,
consider a (revised) mono-objective function given by [17]:

Fmono(U) =
∑
t∈U

(
(1−λ)·δrel(t, Q)+

λ

|Q(D)| − 1
·

∑
t′∈Q(D)

δdis(t, t
′)
)
.

It asks for δdis(t, t
′) for each t ∈ U and for all t′ ∈ Q(D), i.e.,

the average dissimilarity w.r.t. all other results in Q(D) [26].
The question is what different impacts FMS(·) and Fmono(·)
have on the complexity of diversification. 2

To the best of our knowledge, no prior work has answered
these questions. These issues require a full treatment for
different query languages and objective functions, to find out
where the complexity of query result diversification arises.

Contributions. We study several problems in connection
with result diversification for relational queries, and estab-
lish their upper bounds and lower bounds, all matching, for
a variety of query languages and objective functions.

Diversification problems. We identify three problems, de-
noted by QRD, DRP and RDC. Given a query Q, a database

D, an objective function F (·), and a positive integer k,

(1) QRD is to determine whether there exists a k-element set
U ⊆ Q(D) such that F (U) ≥ B for a given bound B, i.e.,
whether there exists a set U that satisfies the users’ need at
all; this is a decision problem fundamental to diversification;

(2) DRP is to decide the rank r of a given k-element set
U ⊆ Q(D), such that there exist no more than r − 1 sets
S ⊆ Q(D) of k elements with F (S) > F (U); as advocated
in [20], a decision procedure for DRP helps us assess how
well a given choice U satisfies the users’ request, and helps
vendors evaluate their products w.r.t. users’ need; and

(3) RDC is to count the number of k-element sets U ⊆ Q(D)
such that F (U) ≥ B for a given bound B. It is a counting
problem that helps us find out how many k-element sets can
be extracted from Q(D) and be suggested to the users, and
as a result, provide a guidance for us to adjust our stock.

Complexity results. For all these problems we establish their
combined complexity and data complexity (i.e., when both
data D and query Q may vary, and when Q is fixed while D
may vary, respectively [1]). We parameterize these problems
with various query languages, including conjunctive queries
(CQ), unions of conjunctive queries (UCQ), positive exis-
tential FO queries (∃FO+) and first-order logic queries (FO).
These languages have been used in query result diversifica-
tion tools, e.g., CQ [8], ∃FO+ [35] and FO [9]. For each of
the languages, we study these problems with each of the ob-
jective functions proposed by [17]: max-sum diversification,
max-min diversification and mono-objective formulation.

We provide a comprehensive account of upper and low-
er bounds for these problems, all matching. We also study
special cases of these problems, such as when either only
diversity or only relevance is considered, when Q is an iden-
tity query, and when k is a predefined constant. We identify
practical tractable cases. It should be remarked that all the
previous results (NP-hardness) are established for a special
case of QRD only, namely, when Q is an identity query.

Impact. These results tell us where the complexity arises.

(1) Query languages LQ. Query languages may dominate
the combined complexity analysis. For objective function-
s defined in terms of max-sum or max-min diversification,
QRD, DRP and RDC are NP-complete, coNP-complete and
#·NP-complete, respectively, when LQ is CQ. In contrast,
when it comes to FO, these problems become PSPACE-
complete, PSPACE-complete and #·PSPACE-complete, re-
spectively. This said, the presence of disjunction in LQ does
not complicate the diversification analyses. Indeed, these
problems remain NP-complete, coNP-complete and #·NP-
complete, respectively, when LQ is UCQ or ∃FO+.

In contrast, different query languages have no impact on
the data complexity of these problems. Indeed, for max-sum
or max-min diversification, QRD, DRP and RDC are NP-
complete, coNP-complete and #·NP-complete, respective-
ly, and for mono-objective formulation, they are in PTIME
(polynomial time), PTIME and #P-complete, respectively,
no matter whether LQ is CQ or FO. Intuitively, a naive algo-
rithm for QRD works in two steps: first compute Q(D), and
then finds whether there exists a k-element set U from Q(D)
such that F (U) ≥ B; similarly for DRP and RDC. When Q
is fixed as in the setting of data complexity analysis, Q(D)
is in PTIME regardless of what query language LQ we use
to express Q. The data complexity of the problems arises

578

from the second step, i.e., the diversification computation.

(2) Objective functions F (·). When F (·) is defined for mono-
objective formulation, however, the objective function dom-
inates the complexity: QRD, DRP and RDC are PSPACE-
complete, PSPACE-complete and #·PSPACE-complete, re-
spectively, no matter whether LQ is CQ or FO. Contrast
these with their counterparts given above when F (·) is de-
fined for max-sum or max-min diversification.
The impact of F (·) is even more evident on the data com-

plexity. As remarked earlier, when F (·) is for max-sum or
max-min diversification, these problems are NP-complete,
coNP-complete and #·NP-complete, respectively, for data
complexity, whereas they are in PTIME, PTIME and #P-
complete, respectively, when F (·) is the mono objective.

(3) Diversity vs. relevance. The complexity is mostly intro-
duced by the diversity requirement. This is consistent with
the observation of [36], which studied a special case of QRD
when F (·) is defined for max-sum diversification. Indeed,
when the relevance function δrel(·, ·) is absent, the combined
complexity and data complexity remain unchanged for these
problems, when F (·) is any of the three objective functions.
In contrast, when the distance function δdis(·, ·) is dropped,
QRD and DRP become tractable when data complexity
is considered. Moreover, for mono-objective F (·), when
δdis(·, ·) is absent, the combined complexity bounds of QRD,
DRP and RDC become NP-complete, coNP-complete and
#·NP-complete, down from PSPACE-complete, PSPACE-
complete and #·PSPACE-complete, respectively.

These results reveal the impacts of various factors on the
complexity of query result diversification. In particular, the
complexity of these problems for CQ, UCQ and ∃FO+may
be inherent to result diversification itself, rather than a con-
sequence of the complexity of the query languages. Various
techniques are used to prove these results, including a wide
range of reductions and constructive proofs with algorithms.
These results are not only of theoretical interest, but may

also help practitioners when developing diversification mod-
els and algorithms in practice. Indeed, to develop these,
we may want to decide on the following. What query lan-
guage should be supported? What diversification function
should be adopted? Would a relevance function alone suf-
fice in our applications so that we do not have to pay the
price of the complexity introduced by distance functions?
Would a fixed set of queries suffice for users to express their
requests? What is the best one can hope for a given query
language and objective function? These are not only useful
in the analyses of diversification, but are also of interest to
the study of recommender systems (see below).

Related work. This work is related to previous work on
result diversification (for search and queries), recommender
systems and top-k query answering, discussed as follows.

Result diversification. Diversification has been studied for
Web search [3, 6, 7, 17, 36], recommender systems [38, 39,
40, 41], and structured databases [9, 16, 25, 35] possibly
with user preferences [8, 31] (see [12, 26] for surveys). As
remarked earlier, the previous work has mostly focused on
metrics for assessing relevance and diversity, and algorithms
and optimization techniques for computing diverse answer-
s. The prior work often adopts specific objective functions
based on the similarity of, e.g., taxonomy [41], explanation-
s [38], features [35] or locations [16]. A general model for

result diversification was proposed in [17] based on an axiom
system, along with the three objective functions mentioned
earlier. A minor revision of the function for max-sum diver-
sification of [17] was presented in [36]. This work extends
the model of [17] by incorporating queries. Like in [6], we
focus on the objective functions proposed in [17].

The complexity of diversification has been studied in [3,
17, 25, 31, 36], which differ from ours in the following.

(1) The previous work provided lower bounds (NP-hardness)
but stopped short of giving a matching upper bound. In
contrast, we provide a complete picture of matching upper
and lower bounds, for both combined and data complexity.

(2) The prior work assumes that the search space Q(D) is al-
ready computed, and is taken as input. As remarked earlier,
this assumption is not very realistic in practice. In contrast,
we treat Q and D as input instead of Q(D), and investigate
the impact of query languages on the complexity of diver-
sification. As will be seen later, the complexity bounds of
these problems when Q(D) is not available is quite different
from their counterparts when Q(D) is assumed in place.

(3) The previous work focused on a special cases of QRD,
when Q is an identity query (i.e., Q(D) is already given). It
is one of the special cases studied in Section 5 of this paper.
Note that the intractability of QRD for max-sum or max-
min diversification given in the prior work [11, 17, 36] may
be adapted to establish the data complexity of QRD in these
settings. Nonetheless, the detailed proofs are not given in
those papers. Furthermore, for mono-objective formulation,
no previous work has studied the complexity of QRD for
identity queries, which is shown in PTIME in this work.

Problem DRP was first formulated in [20]. However, we
are not aware of any prior work on DRP and RDC stud-
ied here. These two problems are obviously important but
unfortunately, have been overlooked by and large.

(4) The prior results were established for one of the variants
of max-sum or max-min diversification [17, 11, 36] defined in
terms of specific δrel(·, ·) and δdis(·, ·) functions. In contrast,
we study all three objective functions defined with δrel(·, ·)
and δdis(·, ·) that are only assumed PTIME computable.

(5) This work also considers several special cases of diversi-
fication (Section 5), to identify tractable cases and explore
the impact of diversity and relevance requirements on the
complexity of the diversification analyses.

Recommender problems. Recommender systems are to rec-
ommend information items or social elements that are likely
to be of interest to users (see [2] for a survey). There has
been a host of work on recommender systems [4, 10, 23, 21,
28, 37], studying item recommendation and package recom-
mendation. Given a query Q, a database D of items and
a utility (scoring) function f(·) defined on items, item rec-
ommendation is to find top-k items from Q(D) ranked by
f(·), for a given positive integer k. Package recommendation
takes as additional input a set Σ of compatibility constraints,
two functions cost(·) and val(·) defined on sets of items, and
a bound C. It is to find top-k packages of items such that
each package satisfies the constraints in Σ, its cost does not
exceed C, and its val is among the k highest. Here a package
is a set of items that has a variable size.

There is an intimate connection between recommendation
and diversification: both aim to recommend top-k (sets of)
items from the result Q(D) of query Q in D. Among other

579

things, diversification has been used in recommender sys-
tems to rectify the problem of retrieving too homogeneous
results. However, there are subtle differences between them.

(1) Item recommendation is a single-criterion optimization
problem based on a utility function f(·) defined on indi-
vidual items. In contrast, query result diversification is a
bi-criteria optimization problem based on a relevance func-
tion δrel(·, ·) and a distance function δdis(·, ·) defined on sets
of items. In particular, the distance function δdis(U) assess
the diversity of elements in a set U , and is not expressible
as a utility function of item recommendation.

(2) Package recommendation is to find top-k sets of items
with variable sizes, which are ranked by val(·), subject to
compatibility constraints Σ and aggregate constraints de-
fined in terms of cost(·) and bound C, where cost(·) and
val(·) are generic PTIME computable function [10]. In con-
trast, query result diversification is to find a single set of k
items, based on a particular objective function F (·). When
F (·) is defined by max-sum or max-min diversification, di-
versification can be viewed as a special case of package rec-
ommendation for finding a single set of a fixed size k, based
on a particular F (·), and in the absence of compatibility
constraints and aggregate constraints. As a consequence of
the specific restrictions of F (·), the lower bounds developed
for package recommendation do not carry over to its coun-
terpart for diversification, and conversely, the upper bounds
for diversification may not be tight for package recommenda-
tion. When F (·) is defined by mono-objective formulation,
F (U) is not even expressible in the model of recommenda-
tion, since it assess the diversity of elements in a set U with
all tuples in Q(D), and is not in PTIME in |U |.
There has been work on the complexity of recommenda-

tion analyses [23, 21, 28, 37], including our own work [10]. In
addition to different settings of the two as remarked earlier,
this work differs from the prior work in the following.

(3) Problems QRD and DRP studied in this paper have not
been considered in the previous work for recommendation,
including [10]. This said, the results of this work on these
problems may be of interest to the study of recommendation.

(4) Problem RDC considered here is similar to a counting
problem studied in [10] for recommendation. However, given
the different settings remarked earlier, RDC differs from that
counting problem from complexity bounds to proofs. In-
deed, the counting problem for recommendation is #·coNP-
complete when LQ is CQ, UCQ or ∃FO+ [10]; in contrast,
as will be seen in Section 4, for the same query languages,
(a) RDC is #·NP-complete when F (·) is defined by max-
sum or max-min diversification, while #·coNP = #·NP iff
P = NP; and (b) RDC is #·PSPACE-complete when F (·) is
defined by mono-objective formulation, substantially more
intriguing than the problem studied in [10]. Furthermore,
the proofs of this paper have to be tailored to specific ob-
jective functions, as opposed to the proofs of [10]. Indeed,
the proofs for F (·) defined by max-sum or max-min diversi-
fication are quite different from their counterparts for F (·)
defined by mono-objective formulation, as indicated by the
different combined complexity bounds in these settings.

Top-k query answering. Top-k query answering aims to re-
trieve top-k tuples from a query result, ranked by a scoring
function [19]. It typically assumes that the attributes of
tuples are already sorted, and studies how to combine dif-
ferent ratings of the attributes for the same tuple based on

a (monotonic) scoring function, possibly by incorporating
user preference [32]. A number of top-k query evaluation al-
gorithms have been developed (e.g., [14, 20, 24, 30]; see [19]
for a survey), focusing on how to achieve early termination
and reduce random access. This work differs from the prior
work in the following. (a) A scoring function for top-k query
answering is defined on individual items, as opposed to the
distance function δdis(·) and the objective function F (·) that
are defined on sets of items and are more involved. (b) We
focus on the complexity of diversification problems rather
than the efficiency or optimization of query evaluation.

Organization. We present a general model for query result
diversification in Section 2, by extending the model of [17].
Problems QRD, DRP and RDC are formulated in Section 3,
and their combined and data complexity are established in
Section 4. Special cases of these problems are studied in
Section 5, followed by directions for future work in Section 6.

2. Diversification and Objective Functions
In this section we first present a model for query result

diversification. We then review the three objective functions
proposed by [17], which are used to define diversification.

2.1 Query Result Diversification

Query result diversification is to improve user satisfaction
when computing answers to a query Q in a database D. We
specify D with a relational schema R = (R1, . . . , Rn).

We consider query Q expressed in a query language LQ.

Diversification. Given Q, D, a positive integer k and an
objective function F (·), query result diversification aims to
find a set U ⊆ Q(D) such that (a) |U | = k, and (b) F (U) is
maximum, i.e., for all other sets U ′ ⊆ Q(D), if |U ′| = k then
F (U) ≥ F (U ′). Here F (·) is an objective function defined
on sets of tuples of RQ, where RQ denotes the schema of
query result Q(D), such that given any set U of tuples of
RQ, F (U) returns a non-negative real number.

Intuitively, diversification is to retrieve a set U of k an-
swers to Q in D such that the tuples in U are as relevant
as possible to Q and meanwhile, as diverse as possible. It
extends the notion of result diversification given in [17] by
taking Q and D as input, rather than assuming that Q(D)
is already computed and available. In fact the notion of [17]
is a special case of query result diversification, when Q is an
identity query, i.e., when Q(D) = D is given as input.

Query result diversification is a bi-criteria optimization
problem characterized by objective function F (·), which is
defined in terms of a relevance function δrel(·, ·) and a dis-
tance function δdis(·, ·), presented as follows.

Relevance functions and distance functions. A rel-
evance function δrel(·, ·) is defined on tuples of schema RQ

and queries in LQ. It specifies the relevance of a tuple t
of RQ to a query Q ∈ LQ. More specifically, δrel(t, Q) is a
non-negative real number such that the larger δrel(t, Q) is,
the more relevant the answer t is to query Q.

A distance function δdis(·, ·) is a binary function defined
on tuples of schema RQ. It specifies the diversity between
two tuples t1, t2 ∈ Q(D): δdis(t1, t2) is a non-negative real
number such that the larger δdis(t1, t2) is, the more diverse
(dissimilar) the two tuples t1 and t2 are to each other. We as-
sume that δdis(·, ·) is symmetric, i.e., δdis(t1, t2) = δdis(t2, t1)
for all tuples t1, t2 of RQ. We also assume w.l.o.g. that
δdis(t, t) = 0, i.e., the distance between a tuple and itself is 0.

580

We simply assume that δrel(·, ·) and δdis(·, ·) are PTIME
computable functions, as commonly found in practice.

Example 2: Recall the request of Peter for shopping a gift
for Grace described in Example 1. It can be expressed as a
query Q0 in FO (written in relational calculus) as follows:

Q0(n) = ∃ t, p, s
(
catalog(n, t, p, s) ∧ p ≤ 30 ∧ p ≥ 20 ∧

∀n′, b, r, g, a, x, e, y ¬(history(n′, b, r, g, a, x, e, y) ∧
b = idP ∧ r = “Grace” ∧ n = n′)

)
,

where idP denotes Peter’s buyer id. The query selects such
gifts in the price range [$20, $30] that have not been pur-
chased by Peter for Grace earlier.
As remarked in Example 1, for each gift t ∈ Q0(D0), the

relevance δrel(t,Q0) of t to Q0 can be assessed in terms of the
rating of t if t appears in the history relation. For instance,
δrel(t, Q0) is high if t was presented as a gift for a girl of age
[12, 16] by a relative for a holiday, and was rated high. If t
is not in relation history, δrel(t,Q0) takes a default value.
For tuples t1, t2 ∈ Q0(D0), δdis(t1, t2) can be defined in

terms of the difference between their types, e.g., δdis(t1, t2) =
2 if t1 is in the “artsy” category and t2 is in “educational”,
and δdis(t1, t2) = 1 if t1 is of type “jewelry” and t2 is of “fash-
ion” [15]. The types can be classified into various categories
and brands, and δdis(t1, t2) is defined accordingly. 2

2.2 Objective Functions

An objective function F (·) is defined in terms of relevance
function δrel(·, ·) and distance function δdis(·, ·). Like in [6],
we focus on the objective functions proposed in [17].
Consider δrel(·, ·), δdis(·, ·), a parameter λ to balance rele-

vance and diversity (0 ≤ λ ≤ 1), a query Q, a database D
and a positive integer k. Let U ⊆ Q(D) be a set of tuples
with |U | = k. A minor revision of max-sum diversification
of [17] was given in [36] by associating (1− λ) with the rel-
evance component, which allows us to study two extreme
cases: diversity only (i.e., when λ = 1), and relevance only
(i.e., when λ = 0). Along the same line as [36], we consider
minor variations of the max-sum and max-min diversifica-
tion, as well as mono-objective functions introduced in [17].

Max-sum diversification. The first objective is to max-
imize the sum of the relevance and dissimilarity of the se-
lected set U , computed by objective function FMS(·) [17, 36]:
FMS(U) = (k − 1)(1− λ) ·

∑
t∈U

δrel(t, Q) + λ ·
∑

t,t′∈U

δdis(t, t
′).

It measures the sum of both the relevance of the tuples in
U to query Q, and the diversity among the k tuples in U .
Following [17], we scale up the two components δrel(·, ·) and
δdis(·, ·) by using k− 1 since the relevance sum ranges over k
numbers while the diversity sum is over k(k − 1) numbers.
As observed by [17, 36], when the objective function is

FMS(·) for max-sum diversification, result diversification can
be recast in terms of the Maxsum Dispersion Problem stud-
ied in operations research [29], when Q is an identity query.

Max-min diversification. The second objective is to max-
imize the minimum relevance and dissimilarity of the select-
ed set, computed by objective function FMM(·):
FMM(U) = (1− λ) ·min

t∈U
δrel(t,Q) + λ · min

t,t′∈U,t̸=t′
δdis(t, t

′).

It is computed in terms of both the minimum relevance of
the k tuple in U to query Q, and the minimum distance be-
tween any pair of the tuples in U . As shown in [17], diversifi-
cation by FMM(·) can be expressed as the Maxmin Dispersion
Problem studied in [29] when Q is an identity query.

Mono-objective formulation. The third objective aims
to combine the relevance and diversity values into a single
value for each tuple in Q(D), computed by Fmono(·) [17]:

Fmono(U) =
∑
t∈U

(
(1−λ)·δrel(t, Q)+

λ

|Q(D)| − 1
·

∑
t′∈Q(D)

δdis(t, t
′)
)
.

As opposed to FMS(U) and FMM(U) that compute intro-list
diversity, Fmono(U) measures the “global” diversity of a tuple
t ∈ U by taking the mean of its distance to each tuple in the
entire set Q(D), rather than its distances to the tuples in
U [17]. While mono-objective objective is not yet as popular
as FMS(·) and FMM(·), it represents an objective that does
not reduce to facility dispersion. It may also prove useful in
practical applications since it computes the average dissimi-
larity of tuples in U regarding all other results in Q(D) [26],
to assess the novelty and coverage of the results in U . Hence
we also study it in this work to give a complete picture for
various diversification objective functions.

Example 3: Consider the query Q0, database D0, and
the relevance and distance functions δrel(·, ·) and δdis(·, ·) de-
scribed in Example 2. Assume that k = 10. Then

(1) for max-sum diversification, query result diversification
with the objective function FMS(·) aims to find a set U1 of
10 gifts from Q0(D0) such that the weighted sum of the
relevance values of the selected gifts in U1 to Q0 and the
dissimilarity values among the gifts in U is maximum.

(2) For max-min diversification, function FMM(·) is to find a
set U2 of 10 gifts from Q0(D0) such that the weighted sum
of the minimum relevance of the gifts in U2 to Q0 and the
minimum distance between pairs of gifts in U2 is maximum.

(3) For mono-objective, function Fmono(·) is to find a set U3

of 10 gifts from Q0(D0) such that the weighted sum of the
relevance values of the gifts in U3 to Q0 and the mean of the
distances between the selected gifts in U3 and all candidate
gifts in the entire set Q0(D0) is maximized. In particular,
here the diversity criterion is to assess the coverage of various
gifts in the entire set Q0(D0) by the set U chosen. 2

Remarks. Observe the following.
(1) Objective functions FMS(·), FMM(·) and Fmono(·) are de-
fined in terms of relevance (δrel(·, ·)) and diversity (δdis(·, ·)).
The larger λ is, the more weight we place on the diversity of
the results selected. When λ = 0 (resp. 1), FMS(·), FMM(·)
and Fmono(·) measure the relevance (resp. diversity) only.

(2) For a given set U ⊆ Q(D), FMS(U) and FMM(U) are
PTIME computable as long as δrel(·, ·) and δdis(·, ·) are PTIME
computable. In contrast, Fmono(U) may not be PTIME com-
putable when Q and D are given as input but Q(D) is not
assumed available. Indeed, for each tuple t ∈ U , Fmono(U)
has to compute δdis(t, t

′) for all tuples t′ ∈ Q(D).

3. The Analyses of Result Diversification
In this section we identify three problems in connection

with query result diversification. In the next two sections
we will provide the complexity of these problems.

Consider a database D, a query Q in a language LQ, a
positive integer k, and an objective function F (·) defined
with relevance and distance functions δrel(·, ·) and δdis(·, ·).
The query result diversification problem. We start
with a decision problem, referred to as the query result di-
versification problem and denoted by QRD(LQ, F (·)). To
formulate this problem, we need the following notations.

581

We call a set U ⊆ Q(D) a candidate set for (Q,D, k) if
|U | = k. Given a bound B, we refer to a candidate set U
as a valid set for (Q,D, k, F,B) if F (U) ≥ B. That is, the
F (·) value of U is large enough to meet the objective B.
Given these, QRD(LQ, F (·)) is stated as follows.

QRD(LQ, F (·)): The query result diversification problem.
INPUT: A database D, a query Q ∈ LQ, an

objective function F (·), a real number
B and a positive integer k ≥ 1.

QUESTION: Does there exist a valid set for
(Q,D, k, F,B)?

Intuitively, QRD(LQ, F (·)) is to decide whether there
exists a candidate set U ⊆ Q(D) that meets the objective B.
This is the decision version of the function problem for com-
puting a top-ranked set U based on F (·), and is fundamental
to understanding the complexity of query result diversi-
fication. As remarked earlier, we simply consider generic
PTIME functions δrel(·, ·) and δdis(·, ·) when defining F (·).
The diversity ranking problem. In practice, given a
candidate set U picked by users or produced by a system,
we want to assess how well U meets a diversification ob-
jective and hence, satisfies the users’ need. This suggests
that we study another decision problem, referred to as the
diversity ranking problem and denoted by DRP(LQ, F (·)), to
determine the rank of a given candidate set based on F (·).
To state this problem, we use the following notion of ranks.
Consider a candidate set U and a positive integer r. We

say that the rank of U is r, denoted by rank(U) = r, if
there exists a collection S of r − 1 distinct candidate sets
for (Q,D, k) such that (a) for all S ∈ S, F (S) > F (U); and
(b) for any candidate set S′ for (Q,D, k), if S′ ̸∈ S, then
F (U) ≥ F (S′). That is, there exist at most r−1 candidates
sets for (Q,D, k) that are ranked above U based on F (·).
Intuitively, the less rank(U) is, the higher U is ranked.
Given this, problem DRP(LQ, F (·)) is stated as follows.

Assume a positive integer r that is a constant.

DRP(LQ, F (·)): The diversity ranking problem.
INPUT: D, Q, F (·) and k as in QRD(LQ, F (·)),

and a candidate set U for (Q,D, k).
QUESTION: Does rank(U) ≤ r?

This problem was first advocated in [20]. The need for
studying this is evident: on one hand, users may employ a
decision procedure for DRP to assess how good their selec-
tions are; on the other hand, vendors may also leverage the
procedure to evaluate how popular their products are and
hence, adjust their sale and promotion, among other things.

The result diversity counting problem. Given an ob-
jective B, one often wants to know how many valid sets are
out there and hence, can be selected. This suggests that we
study the counting problem below, referred to as the result
diversity counting problem and denoted by RDC(LQ, F (·)).

RDC(LQ, F (·)): The result diversity counting problem.
INPUT: D, Q, F (·), k and B as in problem

QRD(LQ, F (·)).
QUESTION: How many valid sets are there for

(Q,D, k, F,B)?

That is, RDC(LQ, F (·)) is to count the number of can-
didate sets in D that satisfy the users’ request. An ef-
fective counting procedure obviously finds applications in

practice [10]. For instance, it helps the manager of a recom-
mender system find out how many items carried by the sys-
tem meet the users’ need, and adjust the stock accordingly.

Parameters of the problems. We study these problems
for (a) objective functions F (·) ranging over FMS(·) for max-
sum diversification, FMM(·) for max-min diversification, and
Fmono(·) for mono-objective formulation (Section 2), and for
(b) query languages LQ ranging over the following (see [1]
for details of these languages):

(1) conjunctive queries (CQ), built up from atomic formulas
with constants and variables, i.e., relation atoms in database
schema R and built-in predicates (=, ̸=, <,≤, >,≥), by clos-
ing under conjunction ∧ and existential quantification ∃;
(2) union of conjunctive queries (UCQ) of the form Q1∪· · ·∪
Qr, where for each i ∈ [1, r], Qi is in CQ;

(3) positive existential FO queries (∃FO+), built from atomic
formulas by closing under ∧, disjunction ∨ and ∃; and
(4) first-order logic queries (FO) built from atomic formulas
using ∧, ∨, negation ¬, ∃ and universal quantification ∀.

To the best of our knowledge, no prior work has studied
DRP(LQ, F (·)) and RDC(LQ, F (·)) for diversification. When
it comes to QRD(LQ, F (·)), only a special case was studied,
when LQ consists of identity queries and F (·) is FMS(·) or
FMM(·). No previous work has considered QRD(LQ, F (·))
when LQ is CQ or beyond, or when F (·) is Fmono(·).

4. Complexity Results
In this section we establish the complexity of problems

QRD(LQ, F (·)), DRP(LQ, F (·)) and RDC(LQ, F (·)). We ex-
plore the impact of query languages LQ and objective func-
tions F (·) on the complexity of these problems, for LQ rang-
ing over query languages CQ, UCQ, ∃FO+and FO, and when
F (·) is FMS(·) (max-sum diversification), FMM(·) (max-min
diversification), or Fmono(·) (mono-objective formulation).

For each of these problems, we establish (a) its combined
complexity, when both query Q and database D may vary,
and (b) its data complexity, when query Q is predefined and
fixed, but database D may vary, i.e., the complexity of eval-
uating a fixed query for variable database inputs (see [1] for
details). The latter is also of practical interest since in many
real-life applications, one often uses a fixed set of queries,
while the database may be frequently updated.

4.1 Combined Complexity

We first study the combined complexity of these problems.

The query result diversification problem. We start
with the decision problem QRD(LQ, F (·)). Given a query Q
in LQ, a database D, an objective function F (·), a positive
integer k, and an objective bound B, it is to decide whether
there exists a set U ⊆ Q(D) such that |U | = k and F (U) ≥
B, i.e., whether there exists a valid set for (Q,D, k, F,B).

Recall the naive algorithm for QRD: first compute Q(D),
and then rank k-element sets U of Q(D) based on F (U).
One might think that the complexity of QRD would equal
the higher complexity of the two steps. The result below
tells us that this is the case when F (·) is FMS(·) or FMM(·).
However, when F (·) is Fmono(·), the story is quite different.

(1) When the objective is for max-sum or max-min diver-
sification, query language LQ has impact on the combined
complexity of QRD(LQ, F (·)): it is NP-complete when LQ

is CQ, UCQ or ∃FO+, but becomes PSPACE-complete when

582

LQ is FO. That is, while the presence of disjunction (UC-

Q and ∃FO+) does not make our lives harder than CQ, the
presence of negation (FO) does complicate the analysis.

(2) When it comes to mono-objective formulation, the
problem becomes harder when LQ is CQ, UCQ or ∃FO+:
it is already PSPACE-complete, the same as its complexity
for FO. Note that the membership problem for CQ is
NP-complete, which is to determine, given a CQ query Q, a
database D and a tuple t, whether t ∈ Q(D). In contrast,
QRD(CQ, Fmono(·)) is PSPACE-complete. This is because
mono-objective requires to aggregate distances between
elements in U and all tuples in Q(D), and is more intriguing
to compute than max-sum and max-min diversification, as
remarked in Section 2. Hence in this case, the complexity
is inherent to query result diversification, and is not equal
to the higher complexity of the two steps given above.

Theorem 1. For QRD(LQ, F (·)), when objective func-
tion F (·) is FMS(·) or FMM(·), the combined complexity is

• NP-complete when LQ is CQ, UCQ or ∃FO+, and

• PSPACE-complete when LQ is FO.

Nevertheless, the combined complexity is

• PSPACE-complete when LQ is CQ, UCQ, ∃FO+or FO,

when F (·) is Fmono(·).

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), we show
that QRD(LQ, F (·)) is NP-hard when LQ is CQ, by reduc-
tions from the 3SAT problem, which is known to be NP-
complete (cf. [27]). We also show that the problem is in NP
when LQ is ∃FO+, by providing an NP algorithm that checks
whether there exists a valid set for given (Q,D, k, F,B).

(2) When F (·) is FMS(·) or FMM(·), we show that the problem
is PSPACE-hard by reductions from the membership prob-
lem for FO (see the statement of the problem above), which
is known to be PSPACE-complete [34]. We also develop a
PSPACE algorithm to check the existence of a valid set.

(3) When F (·) is Fmono(·), the proof is more involved. We
show that QRD(LQ, F (·)) is already PSPACE-hard when LQ

is CQ, by reduction from Q3SAT. Q3SAT is to decide whether
a quantified sentence φ = P1x1, . . . , Pmxmψ is true, where
Pi is either ∃ or ∀; it is known to be PSPACE-complete
(cf. [27]). The reduction is defined in terms of (a) a CQ

query Q and a database D, such that Q(D) encodes all the
2m truth assignments for variables x1, . . . , xm; (b)B = 1 and
k = 1; and (c) Fmono(·) with a distance function δdis(·, ·) and
λ = 1 as follows. Consider a pair of tuples u⃗ = (u1, . . . , um)
and v⃗ = (v1, . . . , vm) such that ui = vi for i ∈ [1, l], and
ul+1 ̸= vl+1, i.e., u⃗ and v⃗ agree on the first l attribute
values but have different values for the (l + 1)th attribute,
where m− 1 ≥ l ≥ 0. Denote by u⃗l the prefix of u⃗ of length
l. We define δdis(·, ·) to ensure the following.

Given a truth assignment µl
X for variables x1, . . . , xl,

Pl+1xl+1, . . . , Pmxm ψ is true with µl
X iff there exist u⃗ =

(u1, . . . , um) and v⃗ = (v1, . . . , vm) such that δdis(u⃗, v⃗) = 1,
where u⃗l = v⃗l = µl

X but ul+1 ̸= vl+1 (u⃗l and v⃗l encode µ
l
X).

Leveraging this property, we show that there exists a valid
set U with |U | = k = 1 and Fmono(·) ≥ B = 1 iff ψ is true.
This is verified by a nontrivial counting argument. Intu-
itively, to find such a U with a single tuple t0, we need to
inspect 2m truth assignments t generated by Q(D) and eval-
uate δdis(t0, t), which is equivalent to verifying that ψ is true.

For the upper bound, we provide a PSPACE algorith-
m to determine whether there exists a valid set for given
(Q,D, k, F,B), when LQ is FO and F (·) is Fmono(·). 2

The diversity ranking problem. We next study the de-
cision problem DRP(LQ, F (·)). It is to assess the rank of a
candidate set U for (Q,D, k), i.e., whether rank(U) ≤ r for
a given r. From the result below we can see the following.

(1) Like QRD(LQ, F (·)), when F (·) is FMS(·) or FMM(·), dif-
ferent query languages LQ lead to different combined com-
plexity of DRP(LQ, F (·)). In contrast, when F (·) is Fmono(·),
the complexity is inherent to diversification.

(2) When F (·) is FMS(·) or FMM(·), DRP(LQ, F (·)) is coNP-
complete for CQ, UCQ and ∃FO+, as opposed to NP-
complete for QRD(LQ, F (·)) for the same languages.

Theorem 2. For DRP(LQ, F (·)), when F (·) is FMS(·) or
FMM(·), the combined complexity is

• coNP-complete when LQ is CQ, UCQ or ∃FO+, and

• PSPACE-complete when LQ is FO.

However, the combined complexity is

• PSPACE-complete when LQ is CQ, UCQ, ∃FO+or FO,

when F (·) is Fmono(·).

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), and
when LQ is CQ, we show that DRP(LQ, F (·)) is coNP-hard
by reduction from the complement of the 3SAT problem. For
its upper bound, we show that DRP(LQ, F (·)) is in coNP
when LQ is ∃FO+by developing an NP algorithm to check
whether rank(U) > r for a given set U and a rank r.

(2) The proofs of the lower and upper bounds for the follow-
ing are variations of their counterparts for QRD(LQ, F (·)):
(a) when F (·) is FMS(·) or FMM(·), and LQ is FO, and (b)
when F (·) is Fmono(·) and LQ is CQ, UCQ, ∃FO+or FO. 2

The result diversity counting problem. We now study
the counting problem RDC(LQ, F (·)). Given a bound B, it
is to count the number of valid sets for (Q,D, k, F,B), i.e.,
those sets U ⊆ Q(D) such that |U | = k and F (U) ≥ B. Here
we use the framework of predicate-based counting classes in-
troduced in [18]. For a complexity class C of decision prob-
lems, #·C is the class of all counting problems (i.e., func-
tions) f associated with a C-computable predicate RL and
a polynomial q, such that for every string x, f is to compute
the cardinality of the set {y | RL(x, y), |y| ≤ p(|x|)}.

The following result tells us that when F (·) is FMS(·) or
FMM(·), the problem becomes harder for FO than for CQ, UC-

Q and ∃FO+. In contrast, Fmono(·) has greater impact on the
complexity than LQ. This is consistent with its counterparts
for QRD(LQ, F (·)) and DRP(LQ, F (·)). The results are ver-
ified by parsimonious reductions. A parsimonious reduction
from a counting problem #A to a counting problem #B is
a PTIME function σ(·) such that for all x, |{y | (x, y) ∈ A}|
= |{z | (σ(x), z) ∈ B}|, i.e., σ(·) is a bijection [13].

Theorem 3. For RDC(LQ, F (·)), when F (·) is FMS(·) or
FMM(·), the combined complexity is

• #·NP-complete when LQ is CQ, UCQ or ∃FO+, and

• #·PSPACE-complete when LQ is FO.

However, when F (·) is Fmono(·), the combined complexity is

• #·PSPACE-complete for CQ, UCQ, ∃FO+and FO.

All the results hold under parsimonious reductions.

583

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), we show
that RDC(CQ, F (·)) is #·NP-hard by parsimonious (one-to-
one and surjective) reduction from the #Σ1SAT problem,
which is #·NP-complete [13]. An instance of #Σ1SAT con-
sists of an existentially quantified Boolean formula of the
form φ(X,Y) = ∃Xψ(X,Y), where ψ is an instance of 3SAT
on variables in X = {x1, . . . , xm} and Y = {y1, . . . , yn}. It
is to count the number of truth assignments of Y that satisfy
φ. For the upper bound, it suffices to show that it is in NP
to verify whether a given set U is valid for (Q,D, k, F,B).

(2) For FMS(·) and FMM(·), we show that RDC(FO, F (·))
is #·PSPACE-hard by parsimonious reductions from #QBF,
which is #·PSPACE-complete [22]. An instance of #QBF is
a formula φ=∃X ∀y1 P2y2 · · · Pnyn ψ, where Pi ∈ {∃,∀}
for i ∈ [2, n], and ψ is a quantifier-free Boolean formula over
the variables in {x1, . . . , xm} and {y1, . . . , yn}. It is to count
the number of truth assignments of X variables that satisfy
φ. The upper bound is verified by showing that the problem
for deciding whether a given set U is valid is in PSPACE.

(3) When F (·) is Fmono(·), we show that RDC(LQ, F (·)) is
#·PSPACE-hard when LQ is CQ, and that the problem is
in #·PSPACE when LQ is FO. The lower bound is verified
also by parsimonious reduction from #QBF, and by using a
counting argument. The upper bound is proven along the
same lines as its counterpart for (2) given above. 2

4.2 Data Complexity

We next re-investigate these problems for data complexity.
As remarked in Section 1, when it comes to data complexity,
objective functions dominate the data complexity.

The query result diversification problem. When F (·)
is FMS(·) or FMM(·), fixing query Q does not simplify the
analysis of QRD(LQ, F (·)) for CQ, UCQ and ∃FO+: the prob-
lem remains NP-complete, the same as its combined com-
plexity. In contrast, fixed queries make our lives easier when

(1) LQ is FO, and when F (·) is FMS(·) or FMM(·):
QRD(FO, F (·)) becomes NP-complete; or

(2) when F (·) is Fmono(·): the problem becomes tractable.

Contrast these with the PSPACE-completeness of their
combined complexity (Theorem 1). These demonstrate that
when Q is fixed, query languages have no impact.

Theorem 4. For QRD(LQ, F (·)), the data complexity is

• NP-complete when F (·) is FMS(·) or FMM(·), and
• in PTIME when F (·) is Fmono(·),

when LQ is CQ, UCQ, ∃FO+or FO.

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), we show
that QRD(CQ, F (·)) is NP-hard for fixed identity queries,
which are a special case of CQ queries (see Section 5 for
details), by reduction from the 3SAT problem. We also show
that QRD(FO, F (·)) is in NP for fixed FO queries, by giving
an NP algorithm to check the existence of a valid set.

(2) For Fmono(·), we develop a PTIME algorithm to compute
a valid set, if it exists. This is possible since when Q is
fixed, we can compute Q(D) in PTIME, and hence, for each
t ∈ Q(D), its relevance to Q and its distances to all tuples in
Q(D) can also be computed in PTIME. We can simply pick
the set U consisting of k tuples with the highest relevance
and distances, if there exist k tuples in Q(D), in PTIME. 2

The diversity ranking problem. Like QRD(LQ, F (·))
(Theorem 4), fixing Q makes DRP(LQ, F (·)) simpler only
(1) when F (·) is Fmono(·), or (2) when LQ is FO, and F (·)
is FMS(·) or FMM(·). Its data complexity remains the same
as its combined complexity when LQ is CQ, UCQ or ∃FO+,
and when F (·) is FMS(·) or FMM(·) (see Theorem 2).

Theorem 5. For DRP(LQ, F (·)), the data complexity is

• coNP-complete when F (·) is FMS(·) or FMM(·), and
• in PTIME when F (·) is Fmono(·),

when LQ is CQ, UCQ, ∃FO+or FO.

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), we show
that DRP(LQ, F (·)) for CQ is coNP-hard by reduction from
the complement of 3SAT by using fixed identity queries. We
also show that the problem is in coNP for fixed FO queries,
by giving an NP algorithm to check whether rank(U) > r.

(2) For Fmono(·), we give a constructive proof: we provide a
PTIME algorithm to check whether rank(U) ≤ r for a given
set U and a rank r. The algorithm first finds a collection S of
top-r candidate sets for (Q,D, k), and then checks whether
either U ∈ S or there exists S ∈ S such that F (U) = F (S).
It returns true iff one of the conditions holds. When Q is
fixed, we can sort Q(D) in PTIME based on Fmono(·), and
identify S in PTIME. In contrast, for FMS(·) and FMM(·), we
cannot sort Q(D) or find S in PTIME, since in those cases,
the diversity has to be computed for each subset of Q(D).
Hence Fmono(·) yields a lower data complexity. 2

The result diversity counting problem. When it comes
to RDC(LQ, F (·)), fixing queries makes our lives easier:

(1) for FMS(·) and FMM(·), RDC becomes #P-complete un-
der parsimonious reductions, down from #·NP-complete (for
CQ, UCQ and ∃FO+) and #·PSPACE-complete (for FO); and

(2) for Fmono(·), RDC is #P-complete under polynomial Tur-
ing reductions, instead of #·PSPACE-complete (Theorem 3).

Here #P is the class of functions that count the number
of accepting paths of nondeterministic PTIME Turing ma-
chines, in the machine-based framework of [33]. It is known
that #P = #·P [13], where #·P is the predicate-based
counting class defined with a PTIME predicate (Section 4.1).

A counting problem #A is polynomial Turing reducible to
#B if there exists a PTIME function σ(·) such that for all x,
|{y | (x, y) ∈ A}| is PTIME computable by making multiple
calls to an oracle that computes |{z | (σ(x), z) ∈ B}|. Parsi-
monious reductions (Section 4.1) are stronger than polyno-
mial Turing reductions, i.e., a parsimonious reduction from
#A to #B is also a polynomial Turing reduction from #A
to #B, but not necessarily vice versa.

Note that a parsimonious reduction from #A to #B is
also a PTIME reduction from its decision problem A to the
decision problem B of #B. Hence if B is in P, #B cannot be
#P-complete under parsimonious reductions since for many
NP-complete problems, e.g., 3SAT, their counting problems
are in #P. This is precisely the case for RDC(LQ, F (·)) when
F (·) is Fmono(·) and LQ is CQ, UCQ, ∃FO+or FO (data com-
plexity). Indeed, its decision problem QRD(LQ, F (·)) is in
P (Theorem 4). Thus RDC(LQ, F (·)) is #P-complete under
polynomial Turing reductions, but not under parsimonious
reductions. In contrast, for FMS(·) or FMM(·), RDC(LQ, F (·))
is #P-complete under parsimonious reductions.

584

Theorem 6. For RDC(LQ, F (·)), the data complexity is

• #P-complete under parsimonious reductions, when
F (·) is FMS(·), FMM(·); and

• #P-complete under polynomial Turing reductions,
when F (·) is Fmono(·),

when LQ is CQ, UCQ, ∃FO+or FO.

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), we show
that RDC(LQ, F (·)) for fixed identity queries is already #P-
hard by parsimonious reduction from #SAT. An instance of
#SAT is an instance φ(X) of 3SAT over a set X of variables.
It is to count the number of truth assignments of X that sat-
isfy φ, and is known to be #P-complete under parsimonious
reductions (cf. [27]). For the upper bound, we show that it
is in PTIME to verify whether a given set U is a valid set for
fixed Q in FO, by the definition of #P (i.e., #·P).
(2) When F (·) is Fmono(·), the proof is more involved. We
show that the problem for fixed identity queries is #P-hard
by polynomial Turing reduction from #SSP, the #subset
sum problem, which is known to be #P-complete [5]. Given
a finite set W , a function π :W → N and a natural number
s ∈ N, #SSP is to count the number of subsets T ⊆W such
that

∑
w∈T π(w) = s. To do it, we first show that #SSPk is

#P-complete by parsimonious reduction from #SSP, where
#SSPk is to count the number of sets T ⊆W such that |T | =
l and

∑
w∈T π(t) = s, for a given natural number l. We

then show that RDC(LQ, F (·)) is #P-hard for fixed identity
queries by polynomial Turing reduction from #SSPk. For
the upper bound, we show that it is also in PTIME to verify
whether a given set U is valid for (Q, D, k, F , B), for fixed
FO queries and for objective given by Fmono(·). 2

Summary. From the results above we find the following.

(1) Both query languages and objective functions have im-
pact on the combined complexity of these problems. More
specifically, (a) when F (·) is FMS(·) or FMM(·), these prob-
lems for FO have a higher combined complexity than their
counterparts for CQ, UCQ and ∃FO+; and (b) for mono-
objective formulation, the objective function dominates the
combined complexity; moreover, for CQ, UCQ or ∃FO+,
Fmono(·) makes our lives harder than FMS(·) and FMM(·).
(2) The data complexity is inherent to result diversification
itself, rather than a consequence of the complexity of query
languages. Indeed, the data complexity bounds of these
problems remain unchanged when LQ is CQ, UCQ, ∃FO+or
FO, for a given objective function F (·). Moreover, when
F (·) is Fmono(·), QRD(LQ, F (·)) and DRP(LQ, F (·)) become
tractable, but it is not the case for FMS(·) and FMM(·).

5. Special Cases of Result Diversification
In this section we identify and investigate special cases

of QRD(LQ, F (·)), DRP(LQ, F (·)) and RDC(LQ, F (·)). The
reason for studying this is twofold. (1) The results of Sec-
tion 4 tell us that these problems have rather high complex-
ity. This suggests that we find their special yet practical
cases that are tractable. (2) We want to further understand
the impact of various parameters of these problems on their
complexity, including query languages with low complexity,
relevance functions δrel(·, ·), distance functions δdis(·, ·), and
the bound k for selecting query answers.

Identity queries. We first consider LQ consisting of iden-
tity queries only, i.e., when Q is a CQ query of the form:

Q(x⃗) = R(x⃗),

where R is a relation atom, and |x⃗| is the arity of R. Note
that D = Q(D) for any instance D of schema R. As re-
marked early, in this setting QRD(LQ, F (·)) was shown NP-
hard by [17] for max-sum and max-min diversification. No
prior work has studied QRD(LQ, F (·)) for mono-objective,
or DRP(LQ, F (·)) and RDC(LQ, F (·)) for any F (·).

We show that identity queries indeed simplify the analyses
of query result diversification, to an extent.

(1) QRD(LQ, Fmono(·)) and DRP(LQ, Fmono(·)) are in PTIME,
as opposed to the NP-hardness of QRD(LQ, F (·)) for FMS(·)
and FMM(·) [17], and RDC(LQ, F (·)) becomes #·P-complete.
In contrast, these problems are PSPACE-complete, PSPACE-
complete, and #·PSPACE-complete (Theorems 1, 2 and 3),
respectively, when LQ is CQ. This further verifies that query
languages have impact on the complexity of diversification.

(2) In contrast, for FMS(·) and FMM(·), the combined com-
plexity and data complexity of these problems are the same
as their counterparts for CQ. In other words, in this setting,
query languages with a low complexity (for its membership
problem) do not simplify the diversification analyses.

The result below also tells us that the combined com-
plexity and data complexity of these problems for identity
queries coincide with their data complexity counterparts for
CQ (Theorems 4, 5 and 6). Intuitively, this is because Q(D)
can be computed in PTIME when Q is either an identity
query or is fixed. Nonetheless, there are subtle differences
between the proofs in these two settings.

Corollary 1. For identity queries, when F (·) is FMS(·)
or FMM(·), both the combined and data complexity are

• NP-complete for QRD(LQ, F (·)),
• coNP-complete for DRP(LQ, F (·)), and
• #P-complete for RDC(LQ, F (·)) under parsimonious

reductions.

For Fmono(·), both the combined and data complexity are

• in PTIME for QRD(LQ, F (·)),
• in PTIME for DRP(LQ, F (·)), and
• #P-complete for RDC(LQ, F (·)) under polynomial

Turing reductions.

These are the same as their data complexity given in Theo-
rems 4, 5 and 6, respectively.

Proof sketch: (1) For FMS(·) and FMM(·), the lower bounds
follow from their counterparts of Theorems 4, 5 and 6, which
uses fixed identity queries in the reductions. Moreover, the
upper bound proofs given there have shown that if Q(D)
is PTIME computable (e.g., when Q is an identity query),
these problems are in NP, coNP and #P, respectively.

(2) When F (·) is Fmono(·), the proofs of Theorems 4, 5 and 6
for mono-objective remain intact for identity queries Q, even
when Q is not fixed, since Q(D) and Fmono(U) are both
PTIME computable for any set U ⊆ Q(D). Moreover, the
lower bound proof of Theorem 6 for Fmono(·) uses a fixed
identity query only. Hence those results carry over here. 2

When λ = 0. We next study the impact of the rele-
vance and diversity requirements on the complexity of di-
versification analyses. We show that diversity has bigger
impact than relevance, which is consistent with the observa-
tion of [36]. We first consider the case when λ = 0, i.e., when

585

only the relevance function δrel(·, ·) is used in F (·) (recall the
definitions of FMS(·), FMM(·) and Fmono(·) from Section 2).

(1) These problems have lower data complexity: when F (·)
is FMS(·) or FMM(·), QRD(LQ, F (·)) and DRP(LQ, F (·)) be-
come tractable for fixed Q. Moreover, RDC(LQ, F (·)) is in
FP for max-min diversification, where FP is the class of all
functions that can be computed in PTIME (cf. [27]).

(2) When F (·) is Fmono(·), the combined complexity analyses
of these problems become simpler, for CQ, UCQ or ∃FO+.

Corollary 2. For λ = 0, when F (·) is either FMS(·) or
FMM(·), the combined complexity bounds of QRD(LQ, F (·)),
DRP(LQ, F (·)) and RDC(LQ, F (·)) remain the same as their
counterparts given in Theorems 1, 2 and 3, respectively; but
their data complexity bounds for CQ, UCQ, ∃FO+and FO are

• in PTIME for QRD(LQ, F (·)),
• in PTIME for DRP(LQ, F (·)), and
• #P-complete under polynomial Turing reductions for

RDC(LQ, F (·)) when F (·) is FMS(·), but it is in FP
when F (·) is FMM(·).

When F (·) is Fmono(·), the combined complexity becomes

• NP-complete for QRD(LQ, F (·)) when LQ is CQ, UCQ

or ∃FO+, and PSPACE-complete when LQ is FO;

• coNP-complete for DRP(LQ, F (·)) when LQ is CQ, UC-

Q or ∃FO+, and PSPACE-complete for FO; and

• #·NP-complete for RDC(LQ, F (·)) when LQ is CQ,
UCQ or ∃FO+, and #·PSPACE-complete for FO.

Their data complexity bounds remain the same as their coun-
terparts given in Theorems 4, 5 and 6, respectively.

Proof sketch: (1) When F (·) is FMS(·) or FMM(·), the lower
bounds of Theorems 1, 2 and 3 are established by taking λ =
0. Furthermore, the upper bound proofs of those theorems
obviously remain intact in the special case when λ = 0.

(2) When F (·) is FMS(·) or FMM(·), for the data com-
plexity we show the following. (a) For fixed FO queries,
QRD(LQ, FMS(·)) and DRP(LQ, FMS(·)) are in PTIME, by p-
resenting corresponding PTIME algorithms. These are pos-
sible because in the absence of distance function δdis(·, ·),
Q(D) can be computed in PTIME (for fixed Q) and can be
sorted based on F (·) values in PTIME. (b) When F (·) is
FMS(·), RDC(CQ, F (·) is #P-hard by polynomial Turing re-
duction from #SSPk, which is shown #P-complete in the
proof of Theorem 6. Moreover, RDC(FO, FMS(·)) is in #P
since it is in PTIME to verify whether a set is valid. (c)
When F (·) is FMM(·), we show that the number of valid sets
can be computed in PTIME for fixed FO queries by giving
such an algorithm, and thus RDC(FO, F (·)) is in FP. The
algorithm leverages certain properties of FMM(·).
(3) When F (·) is Fmono(·), for the combined complexity we
show that when only relevance function δrel(·, ·) is used to
define F (·), Fmono(·) and FMS(·) are equivalent when k = 2.
Moreover, the lower bounds proofs of Theorems 1, 2 and 3
for FMS(·) use λ = 0 and k = 2. Therefore, the combined
complexity bounds of these problems for FMS(·) carry over to
their counterparts for Fmono(·). In addition, the algorithms
given in the upper bound proofs of those theorems also work
for Fmono(·) when λ = 0. Hence the statement follows.
For the data complexity, the PTIME algorithms given

for Fmono(·) in the proofs of Theorems 4 and 5 carry over
to the special case when λ = 0. Moreover, the #P lower

bound proof of Theorem 6 uses λ = 0 for Fmono(·), and its
corresponding upper bound obviously holds for λ = 0. 2

When λ = 1. In contrast to Corollary 2, dropping the
relevance function δrel(·, ·) from F (·) does not make our lives
easier. Indeed, in this setting, both the combined complex-
ity and data complexity of QRD(LQ, F (·)), DRP(LQ, F (·))
and RDC(LQ, F (·)) remain the same as their counterparts
when both relevance and diversity are taken into account.
This further verifies that the diversity requirement δdis(·, ·)
dominates the complexity of these problems.

Theorem 7. When λ = 1, the combined complexity of
Theorems 1, 2 and 3 and the data complexity of Theo-
rems 4, 5 and 6 remain unchanged for QRD(LQ, F (·)),
DRP(LQ, F (·)) and RDC(LQ, F (·)), respectively, when the
objective function F (·) is FMS(·), FMM(·) or Fmono(·), and
when the query language LQ is CQ, UCQ, ∃FO+or FO.

Proof sketch: The proofs of the results for λ = 1 are more
involved than their counterparts for λ = 0. While the upper
bounds of Theorems 1–6 carry over to this special case, the
lower bounds require new proofs when λ is fixed to be 1.

(1) When F (·) is FMS(·) and FMM(·), Theorems 4, 5 and 6
remain intact for the data complexity. Indeed, those lower
bounds are verified when λ is set to be 1.

We prove the following lower bounds for the combined
complexity when λ = 1, i.e., only δdis(·, ·) is used in F (·),
with different reductions when F (·) is FMS(·) or FMM(·).
(1.1) We show that QRD(LQ, F (·)) is NP-hard by reduction
from 3SAT, when LQ is CQ. The proof is different from its
counterpart given in the proof of Theorem 1, which uses the
relevance function δrel(·, ·) in the reduction (when λ = 0).

(1.2) We verify that DRP(LQ, F (·)) is coNP-hard by reduc-
tion from the complement of 3SAT, when LQ is CQ.

(1.3) We prove that RDC(LQ, F (·)) is #·NP-hard by parsi-
monious reduction from #Σ1SAT, when LQ is CQ.

(1.4) When LQ is FO, we show that both QRD(LQ, F (·))
and DRP(LQ, F (·)) are PSPACE-hard by reduction from the
membership problem for FO, using δdis(·, ·) only.
(1.5) When LQ is FO, we verify that RDC(CQ, FMS(·)) is
#·PSPACE-hard by parsimonious reduction from #QBF.

(2) When F (·) is Fmono(·), the combined complexity bounds
of Theorems 1, 2 and 3 remain intact here, since their lower
bounds are established when λ is set to 1. In addition,
the PTIME algorithms given in the proofs of Theorems 4
and 5 for mono-objective functions still work when λ = 1.
Moreover, the #P upper bound of Theorem 6 remains the
same when λ = 1. In light of these, we only need to prove:

(2.1) RDC(LQ, Fmono(·)) is #P-hard for CQ, by polynomial
Turing reduction from #SSPk (see Theorem 6). 2

When k is a predefined constant. Finally, we study the
impact of the cardinality |U | of the selected sets U of query
answers. When |U | is required to be a predefined constant
k, the result below tells us the following.

(1) When Q is also fixed, QRD(LQ, F (·)), DRP(LQ, F (·))
and RDC(LQ, F (·)) are all tractable. That is, fixing the size
of U simplifies their data complexity analyses.

(2) In contrast, fixing k does not make our lives easier when
it comes to combined complexity.

586

Corollary 3. For a predefined constant k,

• the combined complexity bounds given in Theorem-
s 1, 2 and 3 remain unchanged for QRD(LQ, F (·)),
DRP(LQ, F (·)) and RDC(LQ, F (·)), respectively; and

• the data complexity is in

– PTIME for QRD(LQ, F (·)),
– PTIME for DRP(LQ, F (·)), and
– FP for RDC(LQ, F (·)),

no matter whether F (·) is FMS(·), FMM(·) or Fmono(·), and
when LQ ranges over CQ, UCQ, ∃FO+and FO.

Proof sketch: (1) For the combined complexity, the lower
bounds of Theorems 1, 2 and 3 are established by using
k = 2 when F (·) = FMS(·), and k = 1 when F (·) is FMM(·)
or Fmono(·). Hence these lower bounds remain intact when k
is a constant. Moreover, the upper bounds of these problems
obviously hold in the special case when k is a constant.

(2) When it comes to the data complexity, observe the fol-
lowing. (a) When query Q is fixed, Q(D) is PTIME com-
putable. (b) When k is a constant, there are only poly-
nomially many subsets of Q(D) that consist of k elements.
Putting these together, we can develop PTIME algorithm-
s for QRD(LQ, F (·)), DRP(LQ, F (·)) and RDC(LQ, F (·)).
Hence these problems are in PTIME, PTIME and FP, re-
spectively, when Q is fixed and k is a constant. 2

Summary. From these results we can see the following.

(1) The impact of LQ. When F (·) is FMS(·) or FMM(·), prob-
lems QRD(LQ, F (·)), DRP(LQ, F (·)) and RDC(LQ, F (·))
have higher combined complexity for FO than their coun-
terparts for CQ, UCQ and ∃FO+(Theorems 1, 2 and 3). In
contrast, the complexity bounds remain intact when LQ is
CQ or the class of identity queries (Corollary 1).
When F (·) is Fmono(·), the combined complexity bounds

of these problems remain unchanged when LQ subsumes CQ

(Theorems 1, 2 and 3). In contrast, for the class of identity
queries, all these problems become simpler (Corollary 1).
Query languages LQ have no impact on the data complex-

ity of these problems (Theorems 4, 5, 6 and Corollary 1).

(2) The impact of δrel(·, ·) and δdis(·, ·). The complexity of
diversification also arises from the diversity requiremen-
t. The absence of the distance function δdis(·, ·) simpli-
fies (a) the data complexity analyses of QRD(LQ, F (·)) and
DRP(LQ, F (·)) when F (·) is FMS(·) or FMM(·), (b) the data
complexity of RDC(LQ, F (·)) for FMM(·), and (c) the com-
bined complexity analyses of all these problems when F (·)
is Fmono(·) (Corollary 2). In contrast, the absence of δrel(·, ·)
does not make our lives easier (Theorem 7).

(3) The impact of k. When k is a fixed constant, the data

complexity analyses of QRD(LQ, F (·)), DRP(LQ, F (·)) and
RDC(LQ, F (·)) become tractable, no matter whether F (·) is
FMS(·), FMM(·) or Fmono(·) (Corollary 3).

6. Conclusions
We have extended the result diversification model of [17]

by incorporating query languages, without assuming the en-
tire set Q(D) of query answers as input. We have identified
three decision and counting problems in connection with
query result diversification. We have established the up-
per and lower bounds of these problems, all matching, for

both combined complexity and data complexity, when the
query language LQ is CQ, UCQ, ∃FO+or FO, and when F (·)
ranges over the three objective functions FMS(·), FMM(·) and
Fmono(·) given in [17]. We have also studied special cases of
these problems, and identified tractable cases.

The main complexity results are summarized in Table 1
annotated with their corresponding theorems. The com-
plexity bounds of special cases are shown in Table 2, when
they differ from their unrestricted counterparts. These re-
sults provide a comprehensive picture of the complexity of
the analyses of query result diversification. The tables al-
so show the impact of various factors on the complexity of
diversification analyses, such as query languages LQ, ob-
jective functions F (·), relevance functions δrel(·, ·), distance
functions δdis(·, ·), and bound k on the number of answers.
As remarked earlier, these results may help practitioners de-
cide what query language, objective function and query set
should be supported when developing diversification models
and recommender systems, and help vendors evaluate their
products and adjust their stock of items.

Several extensions are targeted for future work. First,
query result diversification analyses are mostly intractable.
We need to identify more special cases that are practical and
tractable. Second, we also need to determine whether these
problems are approximation hard, and develop approximate
algorithms when it is possible. Finally, in practice one may
want to incorporate user preferences [8, 31] into the diver-
sification model. While we may encode certain preferences
in, e.g., the relevance and distance functions δrel(·, ·) and
δdis(·, ·), this issue deserves a full treatment.

Acknowledgments. Deng is supported in part by the 863

2012AA011203, NSFC 91118008, 61103031 and MOST project

2012BAH46B04 of China. Fan is supported in part by EPSRC

EP/J015377/1 of the UK, the 973 Program 2012CB316200 and
NSFC 61133002 of China.

7. References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] G. Adomavicius and A. Tuzhilin. Toward the next gen-
eration of recommender systems: A survey of the state-
of-the-art and possible extensions. TKDE, 17(6):734–
749, 2005.

[3] R. Agrawal, S. Gollapudi, A. Halverson, and S. Leong.
Diversifying search results. In WSDM, 2009.

[4] S. Amer-Yahia. Recommendation projects at Yahoo!
IEEE Data Eng. Bull., 34(2):69–77, 2011.

[5] G. Berbeglia and G. Hahn. Counting feasible solutions
of the traveling salesman problem with pickups and de-
liveries is #P-complete. Discrete Applied Mathematics,
157(11):2541–2547, 2010.

[6] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversi-
fication, monotone submodular functions and dynamic
updates. In PODS, pages 155–166, 2012.

[7] G. Capannini, F. M. Nardini, R. Perego, and F. Sil-
vestri. Efficient diversification of Web search results. In
VLDB, pages 451–459, 2011.

[8] Z. Chen and T. Li. Addressing diverse user preferences
in SQL-query-resul navigation. In SIGMOD, 2007.

[9] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl.
DivQ: Diversification for keyword search over struc-

587

Table 1: Combined complexity and data complexity

Objective functions Languages Problems
QRD(LQ, F (·)) (Th. 1, 4) DRP(LQ, F (·)) (Th. 2, 5) RDC(LQ, F (·)) (Th. 3, 6)

Combined complexity

FMS(·) and FMM(·) CQ, UCQ, ∃FO+ NP-complete coNP-complete #·NP-complete
FO PSPACE-complete PSPACE-complete #·PSPACE-complete

Fmono(·) CQ, UCQ, ∃FO+, FO PSPACE-complete PSPACE-complete #·PSPACE-complete

Data complexity
FMS(·) and FMM(·) CQ,UCQ,∃FO+,FO NP-complete coNP-complete #P-complete (parsimonious)

Fmono(·) CQ,UCQ,∃FO+,FO PTIME PTIME #P-complete (Turing)

Table 2: Special cases

Conditions Complexity Problems
QRD(LQ, F (·)) DRP(LQ, F (·)) RDC(LQ, F (·))

identity queries; F (·) is Fmono(·) combined (Cor. 1) PTIME PTIME #P-complete (Turing)
λ = 0; F (·) is FMS(·) data (Cor. 2) PTIME PTIME #P-complete (Turing)
λ = 0; F (·) is FMM(·) data (Cor. 2) PTIME PTIME FP

λ = 0; F (·) is Fmono(·); LQ is CQ, UCQ or ∃FO+ combined (Cor. 2) NP-complete coNP-complete #·NP-complete
k is a constant; F (·) is FMS(·), FMM(·) or Fmono(·) data (Cor. 3) PTIME PTIME FP

tured databases. In SIGIR, pages 331–338, 2010.

[10] T. Deng, W. Fan, and F. Geerts. On the complexity of
package recommendation problems. In PODS, 2012.

[11] M. Drosou and E. Pitoura. Diversity over continuous
data. IEEE Data Engineering Bulletin, 32(4), 2009.

[12] M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Record, 39(1):41–47, 2010.

[13] A. Durand, M. Hermann, and P. G. Kolaitis. Sub-
tractive reductions and complete problems for counting
complexity classes. TCS, 340(3):496–513, 2005.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. JCSS, 66(4):614–656, 2003.

[15] FindGift. http://www.findgift.com.

[16] P. Fraternali, D. Martinenghi, and M. Tagliasacchi.
Top-k bounded diversification. In SIGMOD, 2012.

[17] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, pages 381–390, 2009.

[18] L. A. Hemaspaandra and H. Vollmer. The satanic no-
tations: Counting classes beyond #P and other defini-
tional adventures. SIGACT News, 26(1):2–13, 1995.

[19] I. F. Ilyas, G. Beskales, and M. A. Soliman. A sur-
vey of top-k query processing techniques in relation-
al database systems. ACM Comput. Surv., 40(4):11:1–
11:58, 2008.

[20] W. Jin and J. M. Patel. Efficient and generic evaluation
of ranked queries. In SIGMOD, pages 601–612, 2011.

[21] G. Koutrika, B. Bercovitz, and H. Garcia-Molina.
FlexRecs: expressing and combining flexible recom-
mendations. In SIGMOD, pages 745–758, 2009.

[22] R. E. Ladner. Polynomial space counting problems.
SIAM J. Comput., 18(6):1087–1097, 1989.

[23] T. Lappas, K. Liu, and E. Terzi. Finding a team of ex-
perts in social networks. In KDD, pages 467–476, 2009.

[24] C. Li, M. A. Soliman, K. C.-C. Chang, and I. F.
Ilyas. RankSQL: Supporting ranking queries in rela-
tional database management systems. In VLDB, 2005.

[25] Z. Liu, P. Sun, and Y. Chen. Structured search result
differentiation. In VLDB, 2009.

[26] E. Minack, G. Demartini, and W. Nejdl. Current ap-
proaches to search result diversification. In ISWC, 2009.

[27] C. H. Papadimitriou. Computational Complexity. AW,
1994.

[28] A. G. Parameswaran, P. Venetis, and H. Garcia-Molina.
Recommendation systems with complex constraints: A
course recommendation perspective. TOIS, 29(4), 2011.

[29] O. A. Prokopyev, N. Kong, and D. L. Martinez-Torres.
The equitable dispersion problem. European Journal of
Operational Research, 197(1):59–67, 2009.

[30] K. Schnaitter and N. Polyzotis. Evaluating rank joins
with optimal cost. In PODS, pages 43–52, 2008.

[31] K. Stefanidis, M. Drosou, and E. Pitoura. Perk: Person-
alized keyword search in relational databases through
preferences. In EDBT, pages 585–596, 2010.

[32] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey
on representation, composition and application of pref-
erences in database systems. TODS, 36(3), 2011.

[33] L. Valiant. The complexity of computing the perma-
nent. TCS, 8(2):189 – 201, 1979.

[34] M. Y. Vardi. The complexity of relational query lan-
guages. In STOC, pages 137–146, 1982.

[35] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat,
and S. A. Yahia. Efficient computation of diverse query
results. In ICDE, pages 228–236, 2008.

[36] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Had-
jieleftheriou, D. Srivastava, C. T. Jr., and V. J. Tsotras.
On query result diversification. In ICDE, 2011.

[37] M. Xie, L. V. S. Lakshmanan, and P. T. Wood. Com-
posite recommendations: From items to packages. FCS,
6(3):264–277, 2012.

[38] C. Yu, L. Lakshmanan, and S. Amer-Yahia. It takes va-
riety to make a world: Diversification in recommender
systems. In EDBT, pages 368–378, 2009.

[39] C. Yu, L. V. Lakshmanan, and S. Amer-Yahia. Recom-
mendation diversification using explanations. In ICDE,
2009.

[40] M. Zhang and N. Hurley. Avoiding monotony: Improv-
ing the diversity of recommendation lists. In RecSys,
2008.

[41] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In WWW, 2005.

588

