On the Complexity of Query Result Diversification

Ting Deng*

Wenfei Fan2?

!Big Data Research Center and SKLSDE Lab, Beihang University
2School of Informatics, University of Edinburgh

dengting@act.buaa.edu.cn, wenfei@inf.ed.ac.uk

Abstract

Query result diversification is a bi-criteria optimization
problem for ranking query results. Given a database D, a
query Q and a positive integer k, it is to find a set of k tuples
from Q(D) such that the tuples are as relevant as possible
to the query, and at the same time, as diverse as possible
to each other. Subsets of Q(D) are ranked by an objective
function defined in terms of relevance and diversity. Query
result diversification has found a variety of applications in
databases, information retrieval and operations research.

This paper studies the complexity of result diversification
for relational queries. We identify three problems in connec-
tion with query result diversification, to determine whether
there exists a set of k£ tuples that is ranked above a bound
with respect to relevance and diversity, to assess the rank
of a given k-element set, and to count how many k-element
sets are ranked above a given bound. We study these prob-
lems for a variety of query languages and for three objective
functions. We establish the upper and lower bounds of these
problems, all matching, for both combined complexity and
data complexity. We also investigate several special settings
of these problems, identifying tractable cases.

1. Introduction

Result diversification for relational queries is a bi-criteria
optimization problem. Given a query @, a database D and
a positive integer k, it is to find a set U of k tuples in the
query result Q(D) such that the tuples in U are as relevant
as possible to query @, and at the same time, as diverse as
possible to each other. More specifically, we want to find a
set U C Q(D) such that |U| = k, and the value F(U) of U
is maximum. Here F'(-) is called an objective function. It is
defined on sets of tuples from Q(D), in terms of a relevance
function (-, -) and a distance function ddis(-, -), where

e for each tuple t € Q(D), drei(t, Q) is a number indicat-
ing the relevance of answer ¢ to query @, such that the
higher &rel(t, Q) is, the more relevant ¢ is to @; and

e for all tuples ¢1,t2 € Q(D), ddis(t1,t2) is the distance
between t1 and t2, such that the larger dais(t1,t2) is,
the more diverse the answers ¢; and t2 are.

In particular, three generic objective functions have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 8

Copyright 2013 VLDB Endowment 2150-8097/13/06... $ 10.00.

577

proposed in [17] based on an axiom system, namely, maz-
sum diversification, mazx-min diversification and mono-
objective formulation. Each function is defined in terms of
generic functions &rl(,-) and dgis(-,), with a parameter A
specifying the tradeoff between relevance and diversity.

Query result diversification is to improve user satisfaction
by remedying the over-specification problem of retrieving
too homogeneous results. The diversity of query answers is
measured in terms of (a) contents, to include items that are
dissimilar to each other, (b) novelty, to retrieve items that
contain new information not found in previous results, and
(c) coverage, to advocate items in different categories [12].
It has proven effective in Web search [17, 36], recommender
systems [39, 40, 41], databases [9, 25, 35], as well as in
operations research and finance (see [12, 26| for surveys).

This paper investigates the complexity of result diversifi-
cation analysis for relational queries. While there has been
a host of work on result diversification, the previous work
has mostly focused on diversity and relevance metrics, and
on algorithms for computing diverse results [12, 26]. Few
complexity results have been developed for query result di-
versification, and the known results are mostly lower bounds
(NP-hardness) [3, 17, 25, 31, 36]. Furthermore, these re-
sults are established by assuming that query result Q(D)
is already known. In other words, the prior work conducts
diversification in two steps: first compute Q(D), and then
rank k-element subsets of Q(D) and find a set with the max-
imum F(-) value. The known complexity results are for the
second step only, based on a specific objective function F(-).
However, it is typically expensive to compute Q(D). To
avoid the overhead, one often wants to combine the two
steps by embedding diversification in query evaluation, and
stop as soon as top-ranked results are found based on F(-)
(i.e., early termination), rather than to retrieve entire Q(D)
in advance [9]. Nonetheless, the complexity of such a query
result diversification process has not been studied.

This highlights the need for establishing the complexity of
query result diversification, upper bounds and lower bounds,
when Q(D) is not provided, and for different query languages
and wvarious objective functions. Indeed, to develop practi-
cal algorithms for computing diverse query results, we have
to understand the impact of query languages and objective
functions on the complexity of result diversification. In oth-
er words, we need to know where the complexity arises.

Example 1: Consider a recommender system to help people
find gifts for various events or occasions, e.g., [15]. Its un-
derlying database Dy consists of two relations specified by:
catalog(item, type, price, inStock),

history(item, buyer, recipient, gender, age, rel, event, rating).
Here each catalog tuple specifies an item for present, its type
(e.g., jewelry, book), price, and the number of the item in

stock. Purchase history is recorded by relation history: a
history tuple indicates that a buyer bought an item for a
recipient specified by gender, age and relationship with the
buyer, for an event (e.g., birthday, wedding, holiday), as well
as rating given by the buyer in the range of [1,5].

Uncle Peter wants to use the engine to find a Christmas
gift for his 14 year-old niece Grace, in the price range of [$20,
$30]. His request can be converted to a query Qo defined on
database Dg. The relevance e (t, Qo) of a tuple ¢ returned
by Qo(Do) can be assessed by using the information from
relation history, by taking into account previous presents
purchased for girls of 12-16 year old by the girls’ relatives
for holidays, as well as the rating by those buyers. The
distance (diversity) dais(t1,t2) between two items ¢; and to
returned by Qo(Do) can be estimated by considering the
differences between their types. Peter wants the system to
recommend a set of 10 items from Qo(Do) such that on
one hand, those items are as fit as possible as a Christmas
present for a teenage girl, and on the other hand, are as
dissimilar as possible to cover a wide range of choices.

Consider the computational complexity of processing such
requests. It depends on both the queries for expressing users’
requests and the objective function adopted by the system.

(1) Query languages. Query Qo can be expressed as a con-
junctive query (CQ). Nonetheless, if Peter wants a new gift
that is different from previous gifts he gave to Grace, we
need first-order logic (FO) to express Qo, by using nega-
tion on relation history. In practice one cannot expect that
Qo(Do) is already computed when Peter submits his request.
As remarked earlier, it is too costly to compute Qo(Do) first
and then pick a top set of k items from Qo(Do). Instead,
we want to embed result diversification in the evaluation of
Qo, and ideally, find a satisfactory set of k items without
retrieving the entire set Qo(Do). A question concerns what
difference CQ and FO make on the complexity of processing
such requests when Qo(Dy) is not necessarily available. We
want to know whether the complexity is introduced by the
query languages or is inherent to result diversification.

(2) Objective functions. Consider the objective function by
max-sum diversification proposed in [17] and revised in [36]:

FMS(U) = (k Zérel t Q +A Z 5d|s t t

tt'e
To assess the dlver51ty, FMS(U) only requires to compute

dais(t,t’) for t and ¢’ in a given k-element set U. In contrast,
consider a (revised) mono-objective function given by [17]:

Frnono(U) = > ((1=X)-drei(t, Q)+ A Z Sais(t, 1)
tev (D) -1 t/eQ(D)

It asks for dais(¢, ") for each t € U and for all t' € Q(D), i.e

the average dissimilarity w.r.t. all other results in Q(D) [26].

The question is what different impacts Fus(-) and Fmono(*)

have on the complexity of diversification. a

To the best of our knowledge, no prior work has answered
these questions. These issues require a full treatment for
different query languages and objective functions, to find out
where the complezity of query result diversification arises.

Contributions. We study several problems in connection
with result diversification for relational queries, and estab-
lish their upper bounds and lower bounds, all matching, for
a variety of query languages and objective functions.

Diversification problems. We identify three problems, de-
noted by QRD, DRP and RDC. Given a query @, a database

578

D, an objective function F(-), and a positive integer k,

(1) QRD is to determine whether there exists a k-element set
U C Q(D) such that F(U) > B for a given bound B, i.e.,
whether there exists a set U that satisfies the users’ need at
all; this is a decision problem fundamental to diversification;

(2) DRP is to decide the rank r of a given k-element set
U C Q(D), such that there exist no more than r — 1 sets
S C Q(D) of k elements with F(S) > F(U); as advocated
n [20], a decision procedure for DRP helps us assess how
well a given choice U satisfies the users’ request, and helps
vendors evaluate their products w.r.t. users’ need; and

(3) RDC is to count the number of k-element sets U C Q(D)
such that F(U) > B for a given bound B. It is a counting
problem that helps us find out how many k-element sets can
be extracted from Q(D) and be suggested to the users, and
as a result, provide a guidance for us to adjust our stock.

Complexity results. For all these problems we establish their
combined complexity and data complexity (i.e., when both
data D and query Q may vary, and when @ is fixed while D
may vary, respectively [1]). We parameterize these problems
with various query languages, including conjunctive queries
(CQ), unions of conjunctive queries (UCQ), positive exis-
tential FO queries (3FO™) and first-order logic queries (FO).
These languages have been used in query result diversifica-
tion tools, e.g., CQ [8], IFOT [35] and FO [9]. For each of
the languages, we study these problems with each of the ob-
jective functions proposed by [17]: max-sum diversification,
max-min diversification and mono-objective formulation.

We provide a comprehensive account of upper and low-
er bounds for these problems, all matching. We also study
special cases of these problems, such as when either only
diversity or only relevance is considered, when @ is an iden-
tity query, and when k is a predefined constant. We identify
practical tractable cases. It should be remarked that all the
previous results (NP-hardness) are established for a special
case of QRD only, namely, when @ is an identity query.

Impact. These results tell us where the complexity arises.

(1) Query languages Lg. Query languages may dominate
the combined complexity analysis. For objective function-
s defined in terms of max-sum or max-min diversification,
QRD, DRP and RDC are NP-complete, coNP-complete and
#-NP-complete, respectively, when Lg is CQ. In contrast,
when it comes to FO, these problems become PSPACE-
complete, PSPACE-complete and #:PSPACE-complete, re-
spectively. This said, the presence of disjunction in Lg does
not complicate the diversification analyses. Indeed, these
problems remain NP-complete, coNP-complete and #-NP-
complete, respectively, when Lg is UCQ or IFO™.

In contrast, different query languages have no impact on
the data complexity of these problems. Indeed, for max-sum
or max-min diversification, QRD, DRP and RDC are NP-
complete, coNP-complete and #-NP-complete, respective-
ly, and for mono-objective formulation, they are in PTIME
(polynomial time), PTIME and #P-complete, respectively,
no matter whether Lq is CQ or FO. Intuitively, a naive algo-
rithm for QRD works in two steps: first compute Q(D), and
then finds whether there exists a k-element set U from Q(D)
such that F(U) > B; similarly for DRP and RDC. When Q
is fixed as in the setting of data complexity analysis, Q(D)
is in PTIME regardless of what query language Lo we use
to express Q. The data complexity of the problems arises

from the second step, i.e., the diversification computation.

(2) Objective functions F'(-). When F(-) is defined for mono-
objective formulation, however, the objective function dom-
inates the complexity: QRD, DRP and RDC are PSPACE-
complete, PSPACE-complete and #-:PSPACE-complete, re-
spectively, no matter whether Lg is CQ or FO. Contrast
these with their counterparts given above when F(-) is de-
fined for max-sum or max-min diversification.

The impact of F(-) is even more evident on the data com-
plexity. As remarked earlier, when F'(-) is for max-sum or
max-min diversification, these problems are NP-complete,
coNP-complete and #-NP-complete, respectively, for data
complexity, whereas they are in PTIME, PTIME and #P-
complete, respectively, when F(-) is the mono objective.

(3) Diversity vs. relevance. The complexity is mostly intro-
duced by the diversity requirement. This is consistent with
the observation of [36], which studied a special case of QRD
when F(-) is defined for max-sum diversification. Indeed,
when the relevance function dye (-,) is absent, the combined
complexity and data complexity remain unchanged for these
problems, when F'(-) is any of the three objective functions.
In contrast, when the distance function dgis(+,) is dropped,
QRD and DRP become tractable when data complexity
is considered. Moreover, for mono-objective F(-), when
ddis(+,) is absent, the combined complexity bounds of QRD,
DRP and RDC become NP-complete, coNP-complete and
#-NP-complete, down from PSPACE-complete, PSPACE-
complete and #-PSPACE-complete, respectively.

These results reveal the impacts of various factors on the
complexity of query result diversification. In particular, the
complexity of these problems for CQ, UCQ and IFO*may
be inherent to result diversification itself, rather than a con-
sequence of the complexity of the query languages. Various
techniques are used to prove these results, including a wide
range of reductions and constructive proofs with algorithms.

These results are not only of theoretical interest, but may
also help practitioners when developing diversification mod-
els and algorithms in practice. Indeed, to develop these,
we may want to decide on the following. What query lan-
guage should be supported? What diversification function
should be adopted? Would a relevance function alone suf-
fice in our applications so that we do not have to pay the
price of the complexity introduced by distance functions?
Would a fixed set of queries suffice for users to express their
requests? What is the best one can hope for a given query
language and objective function? These are not only useful
in the analyses of diversification, but are also of interest to
the study of recommender systems (see below).

Related work. This work is related to previous work on
result diversification (for search and queries), recommender
systems and top-k query answering, discussed as follows.

Result diversification. Diversification has been studied for
Web search [3, 6, 7, 17, 36], recommender systems [38, 39,
40, 41], and structured databases [9, 16, 25, 35] possibly
with user preferences [8, 31] (see [12, 26] for surveys). As
remarked earlier, the previous work has mostly focused on
metrics for assessing relevance and diversity, and algorithms
and optimization techniques for computing diverse answer-
s. The prior work often adopts specific objective functions
based on the similarity of, e.g., taxonomy [41], explanation-
s [38], features [35] or locations [16]. A general model for

579

result diversification was proposed in [17] based on an axiom
system, along with the three objective functions mentioned
earlier. A minor revision of the function for max-sum diver-
sification of [17] was presented in [36]. This work extends
the model of [17] by incorporating queries. Like in [6], we
focus on the objective functions proposed in [17].

The complexity of diversification has been studied in [3,
17, 25, 31, 36|, which differ from ours in the following.

(1) The previous work provided lower bounds (NP-hardness)
but stopped short of giving a matching upper bound. In
contrast, we provide a complete picture of matching upper
and lower bounds, for both combined and data complexity.

(2) The prior work assumes that the search space Q(D) is al-
ready computed, and is taken as input. As remarked earlier,
this assumption is not very realistic in practice. In contrast,
we treat @ and D as input instead of Q(D), and investigate
the impact of query languages on the complexity of diver-
sification. As will be seen later, the complexity bounds of
these problems when Q(D) is not available is quite different
from their counterparts when Q(D) is assumed in place.

(3) The previous work focused on a special cases of QRD,
when @ is an identity query (i.e., Q(D) is already given). It
is one of the special cases studied in Section 5 of this paper.
Note that the intractability of QRD for max-sum or max-
min diversification given in the prior work [11, 17, 36] may
be adapted to establish the data complexity of QRD in these
settings. Nonetheless, the detailed proofs are not given in
those papers. Furthermore, for mono-objective formulation,
no previous work has studied the complexity of QRD for
identity queries, which is shown in PTIME in this work.
Problem DRP was first formulated in [20]. However, we
are not aware of any prior work on DRP and RDC stud-
ied here. These two problems are obviously important but
unfortunately, have been overlooked by and large.

(4) The prior results were established for one of the variants
of max-sum or max-min diversification [17, 11, 36] defined in
terms of specific drel(-,) and dais(-, -) functions. In contrast,
we study all three objective functions defined with &rel(-,)
and dgis(+,) that are only assumed PTIME computable.

(5) This work also considers several special cases of diversi-
fication (Section 5), to identify tractable cases and explore
the impact of diversity and relevance requirements on the
complexity of the diversification analyses.

Recommender problems. Recommender systems are to rec-
ommend information items or social elements that are likely
to be of interest to users (see [2] for a survey). There has
been a host of work on recommender systems [4, 10, 23, 21,
28, 37], studying item recommendation and package recom-
mendation. Given a query @, a database D of items and
a utility (scoring) function f(-) defined on items, item rec-
ommendation is to find top-k items from Q(D) ranked by
f(), for a given positive integer k. Package recommendation
takes as additional input a set ¥ of compatibility constraints,
two functions cost(-) and val(-) defined on sets of items, and
a bound C. It is to find top-k packages of items such that
each package satisfies the constraints in 3, its cost does not
exceed C, and its val is among the k highest. Here a package
is a set of items that has a variable size.

There is an intimate connection between recommendation
and diversification: both aim to recommend top-k (sets of)
items from the result Q(D) of query @ in D. Among other

things, diversification has been used in recommender sys-
tems to rectify the problem of retrieving too homogeneous
results. However, there are subtle differences between them.

(1) Item recommendation is a single-criterion optimization
problem based on a utility function f(-) defined on indi-
vidual items. In contrast, query result diversification is a
bi-criteria optimization problem based on a relevance func-
tion drel(+,) and a distance function dgis(-,) defined on sets
of items. In particular, the distance function d4is(U) assess
the diversity of elements in a set U, and is not expressible
as a utility function of item recommendation.

(2) Package recommendation is to find top-k sets of items
with variable sizes, which are ranked by val(-), subject to
compatibility constraints ¥ and aggregate constraints de-
fined in terms of cost(-) and bound C, where cost(-) and
val(:) are generic PTIME computable function [10]. In con-
trast, query result diversification is to find a single set of k
items, based on a particular objective function F'(-). When
F(-) is defined by max-sum or max-min diversification, di-
versification can be viewed as a special case of package rec-
ommendation for finding a single set of a fixed size k, based
on a particular F'(-), and in the absence of compatibility
constraints and aggregate constraints. As a consequence of
the specific restrictions of F(-), the lower bounds developed
for package recommendation do mot carry over to its coun-
terpart for diversification, and conversely, the upper bounds
for diversification may not be tight for package recommenda-
tion. When F'(+) is defined by mono-objective formulation,
F(U) is not even expressible in the model of recommenda-
tion, since it assess the diversity of elements in a set U with
all tuples in Q(D), and is not in PTIME in |U|.

There has been work on the complexity of recommenda-
tion analyses [23, 21, 28, 37], including our own work [10]. In
addition to different settings of the two as remarked earlier,
this work differs from the prior work in the following.

(3) Problems QRD and DRP studied in this paper have not
been considered in the previous work for recommendation,
including [10]. This said, the results of this work on these
problems may be of interest to the study of recommendation.

(4) Problem RDC considered here is similar to a counting
problem studied in [10] for recommendation. However, given
the different settings remarked earlier, RDC differs from that
counting problem from complexity bounds to proofs. In-
deed, the counting problem for recommendation is #-coNP-
complete when Lg is CQ, UCQ or IFO™" [10]; in contrast,
as will be seen in Section 4, for the same query languages,
(a) RDC is #:NP-complete when F(-) is defined by max-
sum or max-min diversification, while #-coNP = #-NP iff
P = NP; and (b) RDC is #-PSPACE-complete when F(-) is
defined by mono-objective formulation, substantially more
intriguing than the problem studied in [10]. Furthermore,
the proofs of this paper have to be tailored to specific ob-
jective functions, as opposed to the proofs of [10]. Indeed,
the proofs for F(-) defined by max-sum or max-min diversi-
fication are quite different from their counterparts for F(-)
defined by mono-objective formulation, as indicated by the
different combined complexity bounds in these settings.

Top-k query answering. Top-k query answering aims to re-
trieve top-k tuples from a query result, ranked by a scoring
function [19]. It typically assumes that the attributes of
tuples are already sorted, and studies how to combine dif-
ferent ratings of the attributes for the same tuple based on

580

a (monotonic) scoring function, possibly by incorporating
user preference [32]. A number of top-k query evaluation al-
gorithms have been developed (e.g., [14, 20, 24, 30]; see [19]
for a survey), focusing on how to achieve early termination
and reduce random access. This work differs from the prior
work in the following. (a) A scoring function for top-k query
answering is defined on individual items, as opposed to the
distance function dgis(+) and the objective function F(-) that
are defined on sets of items and are more involved. (b) We
focus on the complexity of diversification problems rather
than the efficiency or optimization of query evaluation.

Organization. We present a general model for query result
diversification in Section 2, by extending the model of [17].
Problems QRD, DRP and RDC are formulated in Section 3,
and their combined and data complexity are established in
Section 4. Special cases of these problems are studied in
Section 5, followed by directions for future work in Section 6.

2. Diversification and Objective Functions

In this section we first present a model for query result
diversification. We then review the three objective functions
proposed by [17], which are used to define diversification.

2.1
Query result diversification is to improve user satisfaction
when computing answers to a query @ in a database D. We
specify D with a relational schema R = (Ra,..., Ry).
We consider query () expressed in a query language Lq.

Query Result Diversification

Diversification. Given @, D, a positive integer k and an
objective function F(-), query result diversification aims to
find a set U C Q(D) such that (a) |U| =k, and (b) F(U) is
maximum, i.e., for all other sets U’ C Q(D), if [U’| = k then
F(U) > F(U'). Here F(-) is an objective function defined
on sets of tuples of Rg, where Rg denotes the schema of
query result Q(D), such that given any set U of tuples of
Rq, F(U) returns a non-negative real number.

Intuitively, diversification is to retrieve a set U of k an-
swers to Q in D such that the tuples in U are as relevant
as possible to Q and meanwhile, as diverse as possible. It
extends the notion of result diversification given in [17] by
taking @@ and D as input, rather than assuming that Q(D)
is already computed and available. In fact the notion of [17]
is a special case of query result diversification, when @ is an
identity query, i.e., when Q(D) = D is given as input.

Query result diversification is a bi-criteria optimization
problem characterized by objective function F(-), which is
defined in terms of a relevance function (-,) and a dis-
tance function dais(-, -), presented as follows.

Relevance functions and distance functions. A rel-
evance function (-,) is defined on tuples of schema Rq
and queries in Lg. It specifies the relevance of a tuple ¢
of Rg to a query Q € Lg. More specifically, drl(t, Q) is a
non-negative real number such that the larger (¢, Q) is,
the more relevant the answer t is to query Q.

A distance function ddis(-,-) is a binary function defined
on tuples of schema Rqg. It specifies the diversity between
two tuples t1,t2 € Q(D): dais(t1,t2) is a non-negative real
number such that the larger dais(t1,t2) is, the more diverse
(dissimilar) the two tuples t1 and 2 are to each other. We as-
sume that dais(+,-) is symmetric, i.e., dais(t1, t2) = dais(t2, t1)
for all tuples t1,t2 of Rg. We also assume w.l.o.g. that
ddis(t,t) = 0, i.e., the distance between a tuple and itself is 0.

We simply assume that dre(-,-) and dgis(-,) are PTIME
computable functions, as commonly found in practice.

Example 2: Recall the request of Peter for shopping a gift
for Grace described in Example 1. It can be expressed as a
query Qo in FO (written in relational calculus) as follows:
Qo(n) =3 t,p,s (catalog(n, t,p,s) Ap<30Ap>20A
vn',b,r, g, a, x,e, y —(history(n',b,7,g,a,z,e,y) A
b=idp Ar = “Grace” An=n')),
where idp denotes Peter’s buyer id. The query selects such
gifts in the price range [$20, $30] that have not been pur-
chased by Peter for Grace earlier.

As remarked in Example 1, for each gift t € Qo(Do), the
relevance drei(t, Qo) of t to Qo can be assessed in terms of the
rating of t if ¢ appears in the history relation. For instance,
Orel(t, Qo) is high if ¢ was presented as a gift for a girl of age
[12, 16] by a relative for a holiday, and was rated high. If ¢
is not in relation history, d.i(t, Qo) takes a default value.

For tuples t1,t2 € Qo(Do), ddis(t1,t2) can be defined in
terms of the difference between their types, e.g., dais(t1,t2) =
2 if t; is in the “artsy” category and t2 is in “educational”,
and dgis(t1,t2) = 1if t1 is of type “jewelry” and ts is of “fash-
ion” [15]. The types can be classified into various categories
and brands, and dgis(t1,t2) is defined accordingly. O

2.2 Objective Functions

An objective function F(-) is defined in terms of relevance
function dye(+,) and distance function dgis(-,). Like in [6],
we focus on the objective functions proposed in [17].

Consider dyei(-, -), ddis(-,), a parameter A to balance rele-
vance and diversity (0 < A < 1), a query @, a database D
and a positive integer k. Let U C Q(D) be a set of tuples
with |[U| = k. A minor revision of max-sum diversification
of [17] was given in [36] by associating (1 — \) with the rel-
evance component, which allows us to study two extreme
cases: diversity only (i.e., when A = 1), and relevance only
(i.e., when X = 0). Along the same line as [36], we consider
minor variations of the max-sum and max-min diversifica-
tion, as well as mono-objective functions introduced in [17].

Max-sum diversification. The first objective is to max-
imize the sum of the relevance and dissimilarity of the se-
lected set U, computed by objective function Fus(-) [17, 36]:

Fus(U) = (k= 1)(1=X) > 6t Q)+ X Y bais(t,t).
teU t,t'eU

It measures the sum of both the relevance of the tuples in
U to query Q, and the diversity among the k tuples in U.
Following [17], we scale up the two components (-,) and
ddis(+, -) by using k — 1 since the relevance sum ranges over k
numbers while the diversity sum is over k(k — 1) numbers.

As observed by [17, 36], when the objective function is
Fus(+) for max-sum diversification, result diversification can
be recast in terms of the Maxsum Dispersion Problem stud-
ied in operations research [29], when @ is an identity query.

Max-min diversification. The second objective is to max-
imize the minimum relevance and dissimilarity of the select-
ed set, computed by objective function Fum(+):
R = (1 —)) - min & (t A in Ggis(t, t').
MM(U) () ItIéIIIJl rel(7Q) + t,t’IenUl,rg;ét/ dIS(5)

It is computed in terms of both the minimum relevance of
the k tuple in U to query @), and the minimum distance be-
tween any pair of the tuples in U. Asshown in [17], diversifi-
cation by Fum(-) can be expressed as the Maxmin Dispersion
Problem studied in [29] when @ is an identity query.

581

Mono-objective formulation. The third objective aims
to combine the relevance and diversity values into a single
value for each tuple in Q(D), computed by Fmono(-) [17]:

Frono(U) = 3 ((1-A)-a(t, Q4. S st 1)
teu QD) -1 t'eQ(D)

As opposed to Fus(U) and Fum(U) that compute intro-list
diversity, Fmono(U) measures the “global” diversity of a tuple
t € U by taking the mean of its distance to each tuple in the
entire set Q(D), rather than its distances to the tuples in
U [17]. While mono-objective objective is not yet as popular
as Fus(-) and Fum(-), it represents an objective that does
not reduce to facility dispersion. It may also prove useful in
practical applications since it computes the average dissimi-
larity of tuples in U regarding all other results in Q(D) [26],
to assess the novelty and coverage of the results in U. Hence
we also study it in this work to give a complete picture for
various diversification objective functions.

Example 3: Consider the query Qo, database Do, and
the relevance and distance functions dre (-, -) and dgis(+,) de-
scribed in Example 2. Assume that £ = 10. Then

(1) for max-sum diversification, query result diversification
with the objective function Fus(-) aims to find a set Uy of
10 gifts from Qo(Do) such that the weighted sum of the
relevance values of the selected gifts in U; to Qo and the
dissimilarity values among the gifts in U is maximum.

(2) For max-min diversification, function Fym(-) is to find a
set Uz of 10 gifts from Qo(Do) such that the weighted sum
of the minimum relevance of the gifts in Uz to Qo and the
minimum distance between pairs of gifts in Uz is maximum.

(3) For mono-objective, function Fmeno(+) is to find a set Us
of 10 gifts from Qo(Do) such that the weighted sum of the
relevance values of the gifts in Us to Qo and the mean of the
distances between the selected gifts in Us and all candidate
gifts in the entire set Qo(Do) is maximized. In particular,
here the diversity criterion is to assess the coverage of various
gifts in the entire set Qo(Do) by the set U chosen. m|

Remarks. Observe the following.

(1) Objective functions Fus(-), Fmm(-) and Frono(-) are de-
fined in terms of relevance (dvei(+,-)) and diversity (dais(-,-)).
The larger A is, the more weight we place on the diversity of
the results selected. When A = 0 (resp. 1), Fus(-), Fum(-)
and Fono(-) measure the relevance (resp. diversity) only.

(2) For a given set U C Q(D), Fus(U) and Fuu(U) are
PTIME computable as long as de (-, -) and dais(+,) are PTIME
computable. In contrast, Fimono(U) may not be PTIME com-
putable when @ and D are given as input but Q(D) is not
assumed available. Indeed, for each tuple t € U, Fmono(U)
has to compute &qis(t,t") for all tuples t' € Q(D).

3. The Analyses of Result Diversification

In this section we identify three problems in connection
with query result diversification. In the next two sections
we will provide the complexity of these problems.

Consider a database D, a query @ in a language Lg, a
positive integer k, and an objective function F(-) defined
with relevance and distance functions dre(-, -) and dgis(-, -).

The query result diversification problem. We start
with a decision problem, referred to as the query result di-
versification problem and denoted by QRD(Lgq, F(-)). To
formulate this problem, we need the following notations.

We call a set U C Q(D) a candidate set for (Q, D, k) if
|[U| = k. Given a bound B, we refer to a candidate set U
as a valid set for (Q,D,k,F,B) if F(U) > B. That is, the
F(-) value of U is large enough to meet the objective B.

Given these, QRD(Lq, F(+)) is stated as follows.

QRD(Lg, F(-)): The query result diversification problem.

INPUT: A database D, a query Q € Lg, an
objective function F(-), a real number
B and a positive integer k > 1.

QUESTION: Does there exist a valid set for

(Q,D,k, F,B)?

Intuitively, QRD(Lq, F(-)) is to decide whether there
exists a candidate set U C Q(D) that meets the objective B.
This is the decision version of the function problem for com-
puting a top-ranked set U based on F(), and is fundamental
to understanding the complexity of query result diversi-
fication. As remarked earlier, we simply consider generic
PTIME functions rel(+,-) and d4is(-, -) when defining F(-).

The diversity ranking problem. In practice, given a
candidate set U picked by users or produced by a system,
we want to assess how well U meets a diversification ob-
jective and hence, satisfies the users’ need. This suggests
that we study another decision problem, referred to as the
diversity ranking problem and denoted by DRP(Lq, F(+)), to
determine the rank of a given candidate set based on F(-).
To state this problem, we use the following notion of ranks.

Consider a candidate set U and a positive integer . We
say that the rank of U is r, denoted by rank(U) = r, if
there exists a collection S of r — 1 distinct candidate sets
for (Q, D, k) such that (a) for all S € S, F(S) > F(U); and
(b) for any candidate set S’ for (Q, D, k), if S’ ¢ S, then
F(U) > F(S’). That is, there exist at most r — 1 candidates
sets for (@, D, k) that are ranked above U based on F(-).
Intuitively, the less rank(U) is, the higher U is ranked.

Given this, problem DRP(Lq, F(-)) is stated as follows.
Assume a positive integer r that is a constant.

DRP(Lq, F(-)): The diversity ranking problem.

INPUT: D, Q, F(-) and k as in QRD(Lq, F(+)),
and a candidate set U for (Q, D, k).
QUESTION: Does rank(U) < r?

This problem was first advocated in [20]. The need for
studying this is evident: on one hand, users may employ a
decision procedure for DRP to assess how good their selec-
tions are; on the other hand, vendors may also leverage the
procedure to evaluate how popular their products are and
hence, adjust their sale and promotion, among other things.

The result diversity counting problem. Given an ob-
jective B, one often wants to know how many valid sets are
out there and hence, can be selected. This suggests that we
study the counting problem below, referred to as the result
diversity counting problem and denoted by RDC(Lq, F'(+)).

RDC(Lq, F(-)): The result diversity counting problem.

INPUT: D, Q, F(), k and B as in problem
QUESTION: How many valid sets are there for

(Q? D’ k? F7 B)?

That is, RDC(Lq, F(+)) is to count the number of can-
didate sets in D that satisfy the users’ request. An ef-
fective counting procedure obviously finds applications in

582

practice [10]. For instance, it helps the manager of a recom-
mender system find out how many items carried by the sys-
tem meet the users’ need, and adjust the stock accordingly.

Parameters of the problems. We study these problems
for (a) objective functions F'(-) ranging over Fus(-) for max-
sum diversification, Fium(-) for max-min diversification, and
Frono(+) for mono-objective formulation (Section 2), and for
(b) query languages Lg ranging over the following (see [1]
for details of these languages):

(1) conjunctive queries (CQ), built up from atomic formulas
with constants and variables, i.e., relation atoms in database
schema R and built-in predicates (=, #, <, <, >, >), by clos-
ing under conjunction A and existential quantification 3;

(2) union of conjunctive queries (UCQ) of the form Q1 U---U
Qr, where for each ¢ € [1,7], Q; is in CQ;

(3) positive existential FO queries (3FO*), built from atomic
formulas by closing under A, disjunction V and 3; and

(4) first-order logic queries (FO) built from atomic formulas
using A, V, negation -, 3 and universal quantification V.

To the best of our knowledge, no prior work has studied
DRP(Lq, F(-)) and RDC(Lq, F'(-)) for diversification. When
it comes to QRD(Lg, F'(+)), only a special case was studied,
when L consists of identity queries and F'(-) is Fus(-) or
Fum(-). No previous work has considered QRD(Lg, F(+))
when Lg is CQ or beyond, or when F(-) is Fmono(-)-

4. Complexity Results

In this section we establish the complexity of problems
QRD(Lq, F(+)), DRP(Lq, F(:)) and RDC(Lg, F(-)). We ex-
plore the impact of query languages Lo and objective func-
tions F'(-) on the complexity of these problems, for £ rang-
ing over query languages CQ, UCQ, 3FO"and FO, and when
F(-) is Fus(-) (max-sum diversification), Fym(+) (max-min
diversification), or Fmono(+) (mono-objective formulation).

For each of these problems, we establish (a) its combined
complexity, when both query) and database D may vary,
and (b) its data complezity, when query @ is predefined and
fixed, but database D may vary, i.e., the complexity of eval-
uating a fized query for variable database inputs (see [1] for
details). The latter is also of practical interest since in many
real-life applications, one often uses a fixed set of queries,
while the database may be frequently updated.

4.1
We first study the combined complexity of these problems.

Combined Complexity

The query result diversification problem. We start
with the decision problem QRD(Lq, F(-)). Given a query Q
in Lo, a database D, an objective function F'(-), a positive
integer k, and an objective bound B, it is to decide whether
there exists a set U C Q(D) such that |U| = k and F(U) >
B, i.e., whether there exists a valid set for (Q, D, k, F, B).
Recall the naive algorithm for QRD: first compute Q(D),
and then rank k-element sets U of Q(D) based on F(U).
One might think that the complexity of QRD would equal
the higher complexity of the two steps. The result below
tells us that this is the case when F'(-) is Fus(-) or Fum(-).
However, when F() is Fmono(+), the story is quite different.

(1) When the objective is for max-sum or max-min diver-
sification, query language Lo has impact on the combined
complexity of QRD(Lq, F(+)): it is NP-complete when Lg
is CQ, UCQ or IFO*, but becomes PSPACE-complete when

Lg is FO. That is, while the presence of disjunction (