
Streaming Quotient Filter: A Near Optimal Approximate
Duplicate Detection Approach for Data Streams

Sourav Dutta
∗

Max Planck Institute for
Informatics, Germany

sdutta@mpi-inf.mpg.de

Ankur Narang
IBM Research, India

annarang@in.ibm.com

Suman K. Bera
IBM Research, India

sumanber@in.ibm.com

ABSTRACT
The unparalleled growth and popularity of the Internet cou-
pled with the advent of diverse modern applications such as
search engines, on-line transactions, climate warning sys-
tems, etc., has catered to an unprecedented expanse in the
volume of data stored world-wide. Efficient storage, man-
agement, and processing of such massively exponential amount
of data has emerged as a central theme of research in this
direction. Detection and removal of redundancies and du-
plicates in real-time from such multi-trillion record-set to
bolster resource and compute efficiency constitutes a chal-
lenging area of study. The infeasibility of storing the entire
data from potentially unbounded data streams, with the
need for precise elimination of duplicates calls for intelligent
approximate duplicate detection algorithms. The literature
hosts numerous works based on the well-known probabilistic
bitmap structure, Bloom Filter and its variants.

In this paper we propose a novel data structure, Streaming
Quotient Filter, (SQF) for efficient detection and removal of
duplicates in data streams. SQF intelligently stores the sig-
natures of elements arriving on a data stream, and along
with an eviction policy provides near zero false positive and
false negative rates. We show that the near optimal per-
formance of SQF is achieved with a very low memory re-
quirement, making it ideal for real-time memory-efficient
de-duplication applications having an extremely low false
positive and false negative tolerance rates. We present de-
tailed theoretical analysis of the working of SQF, providing a
guarantee on its performance. Empirically, we compare SQF
to alternate methods and show that the proposed method
is superior in terms of memory and accuracy compared to
the existing solutions. We also discuss Dynamic SQF for
evolving streams and the parallel implementation of SQF.

1. INTRODUCTION AND MOTIVATION
∗The work was done while the author was at IBM Research,
India

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 8
Copyright 2013 VLDB Endowment 2150-8097/13/06... $ 10.00.

The tremendous spurt in the amount of data generated
across varied application domains such as information re-
trieval, tele-communications, on-line transaction records, on-
line climate prediction systems, and virus databases to name
a few, has evolved data intensive computing methods into a
major area of study both in the industry as well as in the
research community. Managing and processing such enor-
mous data constitutes a Herculean task, and is further com-
pounded by the presence of duplicates or redundant data
leading to wastage of precious storage space and compute
efficiency. Removing duplicates from such data sources, to
help improve performance of the applications, with real-time
processing capacity of 1 Gbps or higher provides an interest-
ing problem in this context. This paper deals with real-time
detection and elimination of duplicates in streaming envi-
ronments to alleviate the computational prohibitiveness of
processing such huge data sources. A record arriving on the
data stream is deemed redundant or duplicate if it has al-
ready occurred previously on the stream. Formally, this is
referred to as the data de-duplication, data redundancy re-
moval, (DRR) or the intelligent compression problem and
the terms have been used interchangeably in this paper.

Eliminating duplicates forms an important operation in
traditional query processing and Data Stream Management
Systems [3], and several algorithms [21] in this context such
as approximate frequency moments [2], element classifica-
tion [24], and correlated aggregate queries [23] have been
studied. The real-time nature of the de-duplication problem
demands efficient in-memory algorithms, but the inability to
store the whole stream (possibly infinite) makes exact dupli-
cate detection infeasible in streaming scenarios. Hence, in
most cases a fast approach at the expense of accuracy, but
with a tolerable error rate, is acceptable. In this paper, we
propose a novel and efficient algorithm to tackle the problem
of approximate duplicate detection in data streams.

Consider a large tele-communication network generating
call data records, (CDR), capturing vital information such
as the caller number, callee number, duration of call etc.
Errors in the CDR generation mechanisms might lead to du-
plicate data being generated. For downstream compute effi-
ciency, before the storage of the CDRs in the central reposi-
tory, de-duplication needs to be performed periodically over
around 5 billion multi-dimensional record-sets at real-time.
In such cases, solutions involving classical database access
are prohibitively slow and typical Bloom Filter [7] based
approaches [22] are extremely resource intensive.

Network monitoring and accounting provides an analy-
sis of the network users and their usage behavioral patterns

589

which are widely used for recommender systems and person-
alized web search. Classification of users as new or existing
and updating their profile information provides an interest-
ing application of the DRR problem. Duplicate detection in
click streams [33] also help to prevent fraudulent activities in
the Web advertisement domain, wherein the site publisher
fakes clicks to garner more profit from the advertiser. The
detection of duplicate user ID, IP, etc., by the advertiser
commission helps reduce such fraudulent activities.

Search engines periodically crawl the Web to update their
corpus of extracted URLs. Given a list of newly extracted
URLs, the search engine must probe its database archive to
determine if the URL is already present in its database, or
the contents need to be fetched [25]. With the exponential
number of web pages, data de-duplication becomes indis-
pensable in such scenarios. Imprecise duplicate detection
may lead to already present pages being visited again (false
negative, FN) thereby degrading performance, or may lead
to new web pages being ignored (false positive, FP) making
the corpus stale. Hence, a tolerable error rate on both fronts
has to be maintained for a healthy performance of the appli-
cation [12]. This poses a strong necessity of de-duplication
algorithms that work in-memory, support real-time perfor-
mance, as well as exhibit reasonably low FP and FN rates.

1.1 Contributions
In this paper, we propose Streaming Quotient Filter, (SQF)

which extends and generalizes the Quotient Filter struc-
ture [5], and accordingly a novel algorithm for detecting
duplicates in data streams. We further discuss the imple-
mentation of SQF on parallel architectures as well as on the
Map-Reduce framework. We also propose Dynamic SQF
for the case of evolving streams, wherein SQF adapts it-
self accordingly to provide a near-optimal performance. We
analyze and prove bounds for the error rates of SQF and
show that they are fast decaying and become nearly zero for
large streams, thereby making SQF far superior than the
existing methods. We also present the parameter setting is-
sues along with empirical results on huge datasets, both real
and synthetic, show-casing the efficiency of SQF in terms of
convergence, low error rates and memory requirements.

1.2 Roadmap
Section 2 presents the precise problem statement along

with a background study of the existing structures and ap-
proaches. The working principle of SQF is then presented
in Section 3. Section 4 provides the detailed theoretical
analysis on the error bounds of SQF. Section 5 provides a
glimpse of the Dynamic SQF for evolving data streams, and
the implementation of SQF on parallel architectures and
on Map-Reduce framework. Experimental evaluation of the
performance of SQF along with parameter settings are re-
ported in Section 6. Section 7 finally concludes the paper.

2. PRELIMINARIES AND RELATED WORK
Consider the input data stream to be a sequence of el-

ements, S = e1, e2, . . . , ei, . . . , eN , where N is the size of
the stream which can potentially be unbounded. We as-
sume that the elements of the stream are drawn uniformly
from a finite alphabet set Γ with cardinality U , |Γ| = U .
Each element of the stream can then be transformed into
a number using hashing or fingerprinting method [37], and

we later use this approach in our experimental set-up. For-
mally, the problem of de-duplication can be stated as: given
a data stream, S and a fixed amount of memory, M , re-
port whether each element ei in S has already appeared in
e1, e2, . . . , ei−1 or not. Since the storage of all the data ar-
riving on the stream is infeasible, an approximate estimate
minimizing the error is required.

Näıve approaches involving database and archive query-
ing or pair-wise string comparison are prohibitively slow and
may involve disk accesses defeating the real-time character-
istic of the problem. Straightforward caching and buffering
methods [21] involve populating a fixed-sized buffer with el-
ements from the stream and checking the presence of each
new element within the buffer. After the buffer becomes full,
a new element may be stored by evicting an element from
the buffer. Several replacement policies have been proposed
in [21]. However, it can be observed that the performance of
the buffering technique depends largely on the eviction pol-
icy adopted and the behavior of the stream. Hence, fuzzy
duplicate detection mechanisms [6, 43] were proposed.

The problem of bit shaving to address fraudulent adver-
tiser traffic was investigated in [38]. Approximate duplicate
detection for search engines and Web applications were pro-
posed in [10, 11, 31]. [1, 16, 42] uses file-level hashing in
storage systems to detect duplicates, but suffers from a low
compression ratio. Secure hashes were studied for fixed-sized
data blocks in [36].

In order to address this computational challenge, Bloom
Filters [7] are typically used in such applications [8, 9, 41, 14,
26, 30, 32, 15]. Bloom Filter provides a space-efficient prob-
abilistic synopsis structure to approximately answer mem-
bership queries in sets. A Bloom Filter comprises a bit vec-
tor of m elements initially set to 0. Typical Bloom Filter
approach involves comparison of k selected bits (by k hash
functions) from the vector to decide if it is distinct or dupli-
cate. Insertion of an element ei also involves the setting of
k bit positions of the Bloom Filter computed by k indepen-
dent hash functions, h1(ei), h2(ei), . . . , hk(ei). However, the
memory and compute efficiency is achieved at the expense of
a small false positive rate, FPR, wherein a distinct element
is falsely reported as duplicate. The probability of a false
positive rate for a standard Bloom Filter is given by [34],

FPR ≈
(

1− e−kn/m
)k

where m is the number of bits in the Bloom Filter and n
is the number of distinct elements seen so far. Bloom Fil-
ters were first used by the TAPER system [28]. Disk-based
Bloom Filters have also been proposed [35], but suffer from
overall performance degradation.

To support the situation where elements are continually
inserted and deleted from the Bloom Filter structure, [18]
introduces counting Bloom Filters. This approach replaces
the bits of the filter by small counters maintaining the num-
ber of elements hashed to a particular bit position. The
deletion of elements now gives rise to false negative rate,
FNR, wherein a duplicate element is wrongly reported as
unique. Further variants of the Bloom Filter model have
been proposed to suit the various needs of modern applica-
tions. These include compressed Bloom Filter [34], space-
code Bloom Filters [30], Decaying Bloom Filter [40], and
spectral Bloom Filters [39] to name a few. Window model
of Bloom Filters such as landmark window, jumping win-

590

dow [33], and sliding window [40] operating with a definite
amount of stream history to drawn conclusions for the future
elements of the streams have also been studied.

Bloom Filters have also been applied to network-related
applications such as heavy flows for stochastic fair blue queue
management [19] to assist routing , packet classification [4],
per-flow state management and longest prefix matching [14].
For representation of multi-attribute items with a low false
positive rate, a variant of the Bloom Filter structure was
proposed by [27]. [26] extends Bloomjoin for distributed
joins to minimize network usage in database statistic query
execution. [32] discusses the use of Bloom Filters to speed-up
the name-to-location resolution process in large distributed
systems. Parallel versions of Bloom Filters were also pro-
posed for multi-core applications [13, 22, 27]. A related
problem of computing the number of distinct elements in a
data stream was studied in [20].

Recently an interesting Bloom Filter structure, Stable Bloom
Filter, (SBF) [12] provides a guarantee regarding the per-
formance of the structure. It continuously evicts elements
from the structure and provides a constant upper bound on
the FPR and FNR. This constant performance and stabil-
ity provides huge improvements in the real-time efficiency
of de-duplication applications. However, SBF suffers from
a high FNR and theoretically the convergence to stability
is attained at infinite stream length. To alleviate the issues
faced in SBF, [17] proposed Reservoir Sampling based Bloom
Filter, (RSBF), a novel combination of reservoir sampling
technique with the Bloom Filter structure.

The inherent problem of high FNR can be attributed to
the fact that deletion of a bit in the Bloom Filter may result
in the logical deletion of more than one element, i.e., all the
elements mapped to that bit position. Quotient Filter [5]
eliminated this problem using quotienting technique [29], al-
lowing a Bloom Filter to be “deletion-friendly”. However,
it does not naturally support data stream queries.

In this paper, we propose the Streaming Quotient Filter,
(SQF) for the de-duplication problem, providing near zero
FPR and FNR with extremely low memory requirements
as compared to the existing structures. We establish the-
oretical bound for the near-optimal performance of SQF,
and also discuss the dynamic variant of SQF for evolving
streams. Empirical results supporting the accuracy and effi-
ciency of SQF are also presented in this paper. To the best
of our knowledge, SQF provides the lowest FPR, FNR and
memory constraints as compared to the prior approaches.

3. STREAMING QUOTIENT FILTER
In this section, we describe the Streaming Quotient Filter,

(SQF) a memory-efficient data structure for data duplicate
removal with extremely low error rates. The main work-
ing principle of SQF is the storage of multi-set of elements
(in some data structure, F) by intelligent representation of
the p-bit fingerprint of each element arriving on the data
stream. We assume that each element of the stream, S
is uniformly drawn from a finite universe, Γ of cardinal-
ity U and is hashed to a p-bit fingerprint using Rabin’s
method [37]. The fingerprint of the elements are provided
as input to SQF. Conceptually, F = h(S) = {h(e) | e ∈ S},
where h : Γ→ {0, 1, . . . , 2p − 1}. Insertion of an element, e
involves the insertion of h(e) into F , and similarly, deletion
of e involves the deletion of h(e) from F . The member-
ship query of e then reduces to checking whether h(e) ∈ F .

T [q] [i] = signature (e)

2

ee
1 2 3

e

Stream

stores

reduced

(r’)

remainder

O

bucket

k buckets

signature

buckets

[r’ + log (r) bits] count of 1s in r

quotient (q) = e / 2

remainder (r) = e % 2

e

q

1

1

r

r

Hash Table (T)

Figure 1: The structure of SQF .

We also compute and show that the amount of memory re-
quired by the SQF structure is extremely low making it an
in-memory de-duplication structure.

3.1 Structure
SQF stores the p-bit fingerprint of each element in T , an

open hash table with the number of rows, RT = 2q (where
q < p), by the quotienting technique suggested in [29]. In
this method, the input fingerprint of an element e, fe, is
partitioned into its r least-significant bits, fre = fe mod 2r

(remainder), and its q = p − r most-significant bits, fqe =
bfe/2rc (quotient). Insertion of the element e in SQF in-
volves storing certain characteristics of fre in the hash table
T at row fqe ; i.e., T [fqe] = σ(fre).

Each row of the hash table, T is further subdivided into k
buckets, each storing the characteristics of the remainder of
the element hashed into the particular row. For an element
e, SQF stores two characteristics of the remainder of e.
(i) Oe, denoting the number of bits set to 1 in fre , and

(ii) Assume Ω to be a function, Ω : Rr → Rr
′
, selecting

r′(< r) bit positions of fre . The number formed by the r′

chosen bits, fr
′
e is termed as reduced remainder.

Oe along with the reduced remainder, fr
′
e is henceforth re-

ferred to as the signature of the element e, σe. SQF stores
the signatures of the input elements in the hash table, T .
The structure of SQF is depicted in Figure 1.

Example: For example, assume the fingerprint (p = 8)
of an element e, fe, to be (10100111)2 and r = 4. Hence,
q = p−r = 4 with the hash table T containing RT = 2q = 16
rows, and let each row of T to consist of k = 1 buck-
ets. Binary representation of decimal numbers are explicitly
stated with their radix in this example. The quotient of fe,
fqe = (1010)2 = 10 and the remainder, fre = (0111)2. Let Ω
be a simple function selecting r′ = 2 most-significant bits of

fre . Hence, the reduced remainder, fr
′
e becomes (01)2. The

number of ones in fre , Oe = 3 = (11)2. The signature of the

element e is σe = 0111, computed by appending Oe to fr
′
e

(both in their binary representation). Considering element
e to be unique, σe is stored in a bucket in row T [fqe] = T [10].

3.2 Algorithm

591

As discussed above, SQF stores the signatures from the
remainders of the input element fingerprints arriving on the
data stream in the buckets (Lines 19-23 of Algorithm 1) of
the corresponding rows (obtained from the quotient of the
fingerprints) in the hash table, T (Line 7 in Algorithm 1).
The membership query for an element of the stream, thus,
simply involves checking the presence of the signature of
the element in the buckets of the corresponding row of the
hash table (obtained as described above) (Lines 13-18 of
Algorithm 1), providing an elegant yet efficient algorithm
for duplicate detection.

If two fingerprints f and f ′ map to the same row of T ,
i.e., have the same quotient (fq = f ′q), we refer to it as soft
collision as in [5]. However, since each row of T contains
only k buckets, when more than k distinct elements of the
stream are mapped to the same row of T , we refer to it
as hard collision. As such, the (k + 1)th colliding element
uniformly and randomly chooses an element signature (out
of k stored signatures in the buckets) to be evicted and is
stored in its place (Lines 21-22 of Algorithm 1). The pseudo-
code for the working of SQF is presented in Algorithm 1.

Thus, SQF can easily be implemented with the help of
a hash table (with buckets) and operates on bit-operations
(quotienting) making it extremely fast, thereby catering to
the real-time nature of the concerned problem.

3.3 Memory Requirements
We now consider the amount of memory space required

by the SQF structure and show that it can easily be stored
in-memory making the algorithm extremely efficient for real-
time applications.

Let the fingerprints of the stream elements to be of p bits,
q be the number of bits in the quotient, r′ the number of bits
in the reduced remainder (computed by Ω), and k to be the
number of buckets in each row of the hash table T . Hence,
the number of rows in T , RT = 2q and r = p−q. Since each
row of T contains k buckets, the total number of buckets in
T is k.RT = k.2q. Each bucket stores the signature of the

elements computed from the reduced remainder, fr
′
e and the

number of ones in the remainder, Oe.

fr
′
e consists of r′ bits selected by Ω, and the number of

ones present in the remainder, Oe is upper bounded by the
number of bits in the remainder, given by r. Hence, Oe can
be represented by log r bits. Therefore, the signature of an
element can be stored in (r′+log r) bits, which provides the
size of each bucket in T . Thus, the total memory taken by
SQF (in bits) is given by,

M = k.2q.(r′ + log r) (1)

Considering the example provided in Section 3.1, we have
p = 8, q = 4, r = 4, k = 1, and r′ = 2. Substituting
these values in Equation (1), we observe that the memory
consumed by SQF is,

M = 1.24.(2 + log 4) = 16.(2 + 2) = 64 bits

or 8 bytes only. Hence, with merely 8 bytes, SQF is able to
represent k.RT = 1.24 = 16 unique element signatures.

Empirically we later show (in Section 6) that even with
such small memory requirements, SQF not only outper-
forms the existing approaches, but also provides near op-
timal performance in terms of error rates. This makes SQF
an extremely memory-efficient and effective structure for de-
duplication scenarios.

Algorithm 1: SQF (S)

Require: Stream (S), Number of bits in the fingerprint of
elements (p), Memory available in bits (M), and Bit
selection function (Γ)

Ensure: Detecting duplicates and distinct elements in S
with low error rates

1: Set the parameters: Number of bits in the remainder
(r(< p)), Number of buckets in each row of hash table
(k), and Size of each bucket in bits (sb)

2: Bits in quotient, q ← p− r. Create a hash table, T ,
with RT ← 2q rows.

3: Each row is further divided into k buckets each of size
sb bits. Initialize T to null or empty.

4: for Each element e of the stream S do
5: Result← DISTINCT
6: Let fe be the p-bit fingerprint of e.
7: Quotient of fe, f

q
e ← bfe/2rc

8: Remainder of fe, f
r
e ← fe%2r

9: Oe ← number of ones in fre .
10: Select r′(< r) bit positions using function Γ.

11: The reduced remainder of e, fr
′
e ← number formed

by the r′ selected bits.

12: Signature of element e, σe comprises Oe and fr
′
e .

13: for Each bucket, bi in row fqe of T do
14: if Entry at bi = σe then
15: Result← DUPLICATE
16: break
17: end if
18: end for
19: if Result = DISTINCT then
20: Let bempty be an empty bucket at row fqe of T

(T [fqe]).
21: if bempty does not exist, i.e., no empty buckets are

found at T [fqe] then
22: bempty ← a bucket uniformly and randomly

selected from the k buckets in T [fqe]
23: end if
24: Store σe in bucket bempty
25: end if
26: end for

4. THEORETICAL FRAMEWORK
This section presents the detailed theoretical analysis for

the performance of SQF, and provides bounds on its error
rates. The event of false positive (FP) occurs when a distinct
element is mis-reported as duplicate. False negative (FN)
occurs when a duplicate element is mistakenly considered
as distinct. We show that SQF exhibits extremely low FP
and FN rates, making it better than the existing approaches.

4.1 False Positive Rate
Let Pr(FP)m+1 represent the probability of occurrence of

a false positive when the (m + 1)th element, em+1, arrives
on the stream. Such an event occurs when em+1 is actually
unique (had not occurred previously in the stream), but SQF
contains an entry with the same signature as that of em+1 in
the corresponding row of the hash table T , leading to em+1

being wrongly reported as duplicate. Since the elements of
the stream are considered to be uniformly drawn from a

592

finite universe, Γ of cardinality U , the probability of em+1

actually being unique is given by,

Pr(em+1 is unique) =

(
U − 1

U

)m
(2)

We now compute the probability for the event of T con-
taining the same signature as that of em+1 in the corre-
sponding row. em+1 will thus be reported as false positive if
all the following three conditions hold for another element,
E which arrived earlier in the stream:
(i) E was hashed to the same row as that of em+1 (i.e.
quotient(E) = quotient(em+1)).
(ii) E and em+1 have the same reduced remainder.
(iii) The number of ones in the remainder is the same for
both E and em+1.
Conditions (ii) and (iii) produce the same signatures for E
and em+1.

Since the quotient (obtained as described previously) con-
tains q bits and the number of rows in T , RT = 2q, the
probability associated with condition (i) is given by,

Pq =
1

RT
=

1

2q
(3)

Similarly, the reduced remainder obtained from function Ω
contains r′ bits. Hence, the probability of condition (ii) is,

Pr′ =
1

2r′
(4)

The remainder of an element is represented by r bits.
However, a remainder consisting only of 1s or 0s can be
associated to only one element. Hence, no two elements can
have the same remainder in such cases. We therefore con-
sider the other cases, where an element contains o ∈ [1, r−1]
bits set to 1 in its remainder.

The probability that em+1 has only one bit set to 1 out
of its r remainder bits is given by

(
r
1

)
/2r. For condition (iii)

to occur, E must also contain exactly one bit set to 1 in
its remainder, albeit at a different position to that of em+1

(since E 6= em+1). The probability of this event is given
by
(
r−1
1

)
/2r. However, since o can range from [1, r − 1],

the probability that E has the same number of ones in its
remainder as that of em+1 is given by,

Pone =

r−1∑
i=1

((
r
i

)
2r
.

(
r−1
i

)
2r

)
≤

r−1∑
i=1

((
r
i

)
2r

)2

≤
r∑
i=0

((
r
i

)
2r

)2

=

(
2r
r

)
22r

(5)

The rth Catalan number has a value of,

Cr =
1

r + 1
.

(
2r

r

)
≈ 4r

p3/2.
√
π

∴

(
2r

r

)
≈ (r + 1).4r

r3/2.
√
π
≈ 4r√

πr
(6)

Substituting Equation (6) in Equation (5), we have

Pone ≈
4r

22r
√
πr

=
1√
πr

(7)

Using Equations (3), (4), and (7), the probability that an
element E exists in T at the same row and having the same

signature as that of em+1 (false positive event) is given by,

Pdup ≈
1

2q+r′
.

1√
πr

(8)

Assume that E had last occurred on the stream at position
l and was inserted into the hash table T . For em+1 to be
reported as a FP, E should not be deleted from T by the
arrival of elements from (l + 1)th to mth position of the
stream (denote event by φ). For the sake of simplicity, we
assume that all the buckets of T are already filled. So for
each element arriving after E, it will not be deleted from T
(event φ) if either of the following three cases hold:
(i) The element maps to different row of T .
(ii) The element maps to the same row as that of E, but
is a duplicate (i.e. any of the k buckets contains the same
signature), and is hence not inserted.
(iii) The element maps to the same row as that of E and
has a different signature than any of the buckets in the row,
but randomly selects a bucket other than that containing E
for eviction.

Hence the probability of the event φ using Equations (3), (4), (7),
and (8) is given by,

Pndel =

m∏
i=l+1

[(
1− 1

2q

)
+

k

2q+r′
.

1√
πr

+
1

2q
.

(
1− 1

2r′
√
πr

)k
.

(
1− 1

k

)]

=

[
1− 1

2q
+

k

2q+r′
.

1√
πr

+
1

2q
.

(
1− 1

2r′
√
πr

)k
.

(
1− 1

k

)]m−l
(9)

However, the value of l can vary between [1,m]. Hence,
the probability that em+1 is reported as a false positive,
Pr(FP)m+1 using Equations (2), (8), and (9) is,

Pr(FP)m+1 ≈
(
U − 1

U

)m
.

m∑
l=1

{
1

2q+r′
.

1√
πr
.

(
1− 1

2q
+

k

2q+r′
.

1√
πr

+
1

2q
.

(
1− 1

2r′
√
πr

)k
.

(
1− 1

k

))m−l
≈
(
U − 1

U

)m
.

1

2q+r′
.

1√
πr
.

(
1− 1

2q
+

k

2q+r′
.

1√
πr

+
1

2q
.

(
1− 1

2r′
√
πr

)k
.

(
1− 1

k

))
(10)

(ignoring higher order terms)

From Equation (10) it can be observed that the FPR
encountered by SQF is extremely small. With increase in
stream length, m, the factor

(
U−1
U

)m
becomes nearly 0, pro-

ducing near-optimal results. For smaller values of m, the
inverse exponential factors of q and r′ dominate making the
FPR extremely low.

With increase in the number of bits in the quotient (q) and
stream length (m), the FPR of SQF exponentially decreases
and provides near optimal results. The effect of the number
of buckets (k) on FPR can be considered to be insignifi-

cant as it is suppressed by the 2q+r
′

factor (Equation (10)).
Later, we provide empirical results showing the FPR of SQF
to be nearly 0 with low memory requirements.

593

4.2 False Negative Rate
In this section, we compute the false negative rate of SQF.

A false negative occurs when a duplicate element is mis-
reported as distinct. Let Pr(FN)m+1 denote the probability
of the (m+1)th element on the stream, em+1 being reported
as a false negative. Such an event occurs when the element
em+1 had previously arrived on the stream and its signature
was stored in the hash table T , but was subsequently deleted
by the eviction policy of SQF (due to hard collisions). Also,
no other element, E having the same quotient and signature
arrived after the deletion of em+1 from T .

Let event φ represent the last occurrence of element em+1

on the stream at position l, i.e. el = em+1. Assuming
that the stream elements are drawn uniformly from a finite
universe, Γ with cardinality U , the probability associated
with event φ is,

Pr(em+1 at l) =
1

U
.

m∏
i=l+1

U − 1

U
=

1

U
.

(
U − 1

U

)m−l
(11)

Similar to the analysis of FPR, for the sake of simplicity
we assume that all the buckets of T are already occupied at
the time of event φ. The signature of em+1 will be evicted
from T by another element, X in the following conditions:
(i) The element, X maps to the same row as that of em+1,
(ii) The signature of X is not present in the buckets of T at
that row, and
(iii) The bucket containing the signature of em+1 is selected
for deletion.

Using Equations (3) and (8), the probability of the above
events occurring simultaneously is given by,

Pdel =
1

k.2q
.

(
1− 1

2q+r′
.

1√
πr

)k
(12)

Assume em+1 to be deleted by a stream element at posi-
tion p. For the event of false negative to occur for em+1,
no element E arriving after position p should have the same
quotient and signature as that of em+1. The associated prob-
ability using Equation (8) is given by,

PE =

m∏
i=p+1

(
1− 1

2q+r′
.

1√
πr

)
=

(
1− 1

2q+r′
.

1√
πr

)m−p
(13)

Hence, the probability that em+1 was deleted at position
p of the stream and no element E having the same quo-
tient and signature arrived subsequently can be obtained by
combining Equations (12) and (13). However, the value of
p can vary between [l + 1,m], as em+1 can be deleted by
any of the stream elements arriving at these positions. Us-
ing Equations (12) and (13), the probability of em+1 being
reported as false negative (given its last occurrence was at
position l) is,

PFN =

m∑
p=l+1

[
1

k.2q

(
1− 1

2q+r′
.

1√
πr

)k (
1− 1

2q+r′
.

1√
πr

)m−p]

=

m∑
p=l+1

[
1

k.2q
.

(
1− 1

2q+r′
1√
πr

)m−p+k]

∴ PFN ≈
1

k.2q
.

(
1− 1

2q+r′
.

1√
πr

)k
(14)

(ignoring higher order terms)

The last occurrence of em+1 was considered to be at posi-
tion l, which can again vary from [1,m]. Hence, the proba-
bility that em+1 is reported as a false negative, Pr(FN)m+1,
is given by combining Equations (11) and (14) as,

Pr(FN)m+1 =

m∑
l=1

[
1

U
.

(
U − 1

U

)m−l
.PFN

]

≈
m∑
l=1

[
1

U
.

(
U − 1

U

)m−l
.

1

k.2q
.

(
1− 1

2q+r′
.

1√
πr

)k]
(15)

It can be observed from Equation (15) that for large stream
lengths (m), the FNR exhibited by SQF is nearly zero due

to the factor
(
U−1
U

)m−l
. Similarly, for small values of m,

the factor 1
2q

dominates and produces extremely low FNR.
Equation (15) states that FNR increases exponentially as

the number of reduced remainder bits (r′) increases and the
number of bits in the quotient (q) decreases. The effects of
r, the number of bits in the remainder of an element, on the
FNR of SQF can be considered nearly insignificant. FNR is
also seen to decrease with the increase in k, the number of
buckets in each row of the hash table T . We later present
empirical results to validate our claims.

5. GENERALIZED SQF
In this section, we describe a variant of SQF, Dynamic

SQF for handling evolving data streams. We also discuss
the working of SQF on parallel architectures and on the
Map-Reduce framework. We argue that with parallel and
distributed settings, SQF can efficiently manage petabytes
of data with relatively low memory (in the order of hundreds
of gigabytes) while keeping the error rate nearly zero.

5.1 Dynamic SQF
Previously, we presented a thorough analysis of SQF as-

suming a uniform data stream model. However, for certain
applications such as news reports, weather systems etc., the
stream evolves with time. That is, as the stream advances
the distribution of the elements (still considered to be drawn
from a finite universe) on the stream changes. To this end,
we propose the Dynamic Streaming Quotient Filter, DSQF.

DSQF is based on on-demand dynamic memory allocation
to handle the changes in the stream behavior. As such, in
DSQF the hash table T (of SQF) is replaced by a vector
of 2q pointers, V . DSQF also computes the quotient and
the signature of the input element, similar to that of SQF.
When an element is to be inserted in row fqe (in T), a bucket
is dynamically allocated and is attached to the pointer in
the corresponding position of the vector V . Deletion of an
element involves the removal of the bucket in which the sig-
nature of the element was stored and returning the freed
space to the global pool of unallocated memory. Member-
ship queries, similar to the procedure of SQF, are handled by
checking the buckets chained to the pointer corresponding
to the vector position in which the element is mapped.

When the entire available free space is allocated (i.e. no
more buckets can be created), the condition of hard collision
arises and an eviction policy is triggered. Each position of
the vector now maintains the time-stamp of its last access.
DSQF uses the least recently used, LRU eviction policy. It
uniformly and randomly selects a bucket from the least re-
cently accessed position of V , allocates it to the pointer cor-
responding to the quotient of the new element, and stores

594

the new signature. This enables DSQF to intelligently dis-
tribute the buckets among the different positions of V to
capture the evolving nature of the stream.

Each bucket in DSQF also contains an addition field to
store the memory location of the subsequent bucket, if any.
This leads to a slight increase in the memory requirements
of DSQF as compared to SQF. However, given the memory-
efficiency of SQF, this increase in memory space does not
degrade the performance of DSQF compared to the existing
methods. As the stream evolves, the allocation of buckets
corresponding to the various positions of the vector V dy-
namically change to reflect the most recent history of the
stream. Hence, DSQF efficiently adapts itself to handle
evolving streams, exhibiting near-optimal performance as
before, albeit with a small increase in memory requirements.

5.2 Parallel Implementation
In this section, we present the parallel working model

of SQF for multi-core and multi-node architectures. We
show that SQF (and similarly DSQF) is easily paralleliz-
able, making it suitable even for applications with enormous
amounts of data. This enables SQF to efficiently handle de-
duplication of petabytes of data using low memory space
(hundreds of gigabytes).

Assuming that the parallel setting consists of P proces-
sors, the input data stream is partitioned into blocks of C
elements. The elements of a block, bi are distributed among
the P processors along with their position, pos in bi. Hence,
each processor receives β = C/P elements of block bi for de-
duplication. The hash table T storing the signature of the
elements is evenly distributed among the P processors, with
each node containing RT /P consecutive rows of T . We con-
sider each processor to internally run two parallel threads,
t1 and t2, which can easily be generalized to α(≥ 2) threads.

For the C elements of batch bi, let each node Nj re-
ceive element fingerprints ejβ , ejβ+1, . . . e(j+1)β−1, where j ∈
[0, P − 1]. Thread tj1 in node Nj computes the quotient of

the input elements, ejl . Depending on the quotient obtained

for the element, Nj transfers ejl along with its quotient and
position pos to the node Nq containing the rows of T cor-
responding to the quotient of ejl , i.e. the node in which the
particular row of T is stored.

The second thread tq2 of node Nq now computes the sig-

nature of ejl . Checking the membership of the element in T
involves accessing the buckets of T in the row correspond-
ing to the quotient computed. However, if the membership
query proceeds as before, the accuracy of the algorithm may
degrade. For example, consider C = P = 3 and the elements
of a block to be {x, y, y∗}, where y = y∗, (but the arrival
time of y∗ is greater than that of y), and y has not occurred
previously in the stream. In accordance with the problem
statement mentioned in Section 2, y should be reported as
distinct and y∗ as duplicate. However, in case node N3 (al-
located both y and y∗ as quotient(y) = quotient(y∗)) con-
taining the corresponding row of T processes y∗ before y, it
will report y∗ as distinct and subsequently y as duplicate.

To alleviate this problem, each bucket of T now contains
an extra field, pos, capturing the position of the stored el-
ement within the block. Consider, node Nq to query the
buckets of T for membership of ejl . If the signature of ejl
is absent in T , Nq stores the signature in a bucket, B and
sets the pos field to poseq

l
. So, when the signature of a later

REDUCE PHASE: The signatures of
the output elements are checked for

membership in the hash table, T.

the (key, value) pair.

MAP PHASE: The workers computes

The quotient comprises the key,

while the (element, position)
becomes the value.

COMBINE PHASE: The local results

are checked for duplicates by computing

the quotients and signatures.

The (key−value) pair for the disitnct

elements within a block is reported.

Generate the data as a set of 2−tuple

Distribute the rows of the hash table

among the reduce workers.

input elements
e e
1 2

Figure 2: SQF on Map-Reduce Framework

element, E = ejl is found in T , Nq checks the pos field of
the bucket, B. Observe that if posE > Bpos, then E had
indeed occurred in the stream after ejl and is hence correctly
reported as duplicate by Nq. However, posE < Bpos indi-
cates that E had occurred earlier on the stream but was
processed later. Nq in this case reports ejl to be duplicate
and updates Bpos to posE . After the entire block is pro-
cessed, elements corresponding to the pos fields of the buck-
ets accessed are reported as distinct, and the next block of
elements are fetched.

For the example considered above, assume N3 processes
y∗ first. Since its signature is not found in T , N3 stores it
in bucket B and sets Bpos to 3, as y∗ is the third element
of the block. When y is later processed, its signature is
found to be present in T . Now, N3 checks the pos field of
B, and since posy(= 2) < Bpos(= 3) infers correctly that
y had occurred on the stream before y∗ (the stored one).
Hence, N3 reports the third element (since Bpos = 3) to be
duplicate and updates Bpos to 2. After all the elements of
the block have been processed, the pos field of B is set to 2.
The algorithm now reports the second element of the block,
y (as Bpos = 2) to be distinct.

5.3 SQF on Map-Reduce Architecture
We now discuss a simple implementation of SQF (and

similarly DSQF) on the popular Map-Reduce framework.
Assume that the Map-Reduce framework contains m map

workers and r reduce workers. As discussed in the previous
section, the input data stream is partitioned into blocks of C
elements each. Data generation for the map phase involves
the construction of a set of 2-tuples consisting of the input
element fingerprint (f) and its position in the block (pos),
D = {(f1, posf1), (f2, posf2), . . . , (fC , posfC)}. The input
data D is then distributed evenly among the m map workers
by the splitter function.

In the map phase, each worker computes the quotient of

595

its input elements (as described previously), and generates
a key-value pair for each element. The quotient computed
is considered as the key, while the element along with its
position constitutes the value.

The combine phase of the framework, consumes the local
data produced by each map worker. It calculates the signa-
tures of the elements (from the value field) sharing the same
quotient (key field). For elements with the same signature
and quotient, the key-value pair of the element having the
lowest position value (obtained from the value field) is emit-
ted as the result, while the other elements with a higher
position value are reported as duplicate.

Similar to the implementation discussed in Section 5.2, the
rows of the hash table T are distributed among the reduce
workers. In the reduce phase, each reduce worker consumes
the key-value pair produced from the combine phase and
computes the signature of the elements.

For elements having the same quotient and signature,
their position values are again compared to find the ele-
ment with the lowest position value, Elow. The other ele-
ments with the same signature are reported as duplicates,
and Elow is checked if present in T or not. If the signature
of Elow is found, it is reported as duplicate, else is catego-
rized as distinct and stored in T . The next block of elements
re-executes the framework on the updated T . The flowchart
for implementation of the parallel version of SQF on Map-
Reduce is shown in Figure 2.

6. EXPERIMENTS AND OBSERVATIONS
In this section, we experimentally evaluate the perfor-

mance of SQF as compared to the prior approaches. The
Stable Bloom Filter (SBF) exhibits the lowest false positive
rate (FPR), while the Reservoir Sampling based Bloom Fil-
ter (RSBF) attains the lowest false negative rate (FNR) and
fastest convergence to stability. Hence, it is against these
two state-of-art structures that we compared the error rates
of Streaming Quotient Filter (SQF), using both real as well
as synthetic datasets.

The real dataset of clickstream data1 contains more than 3
million records, while the synthetic datasets were generated
using Zipfian as well as uniform distribution having 1 billion
entries. We also vary the percent of distinct elements in the
synthetic datasets to capture varied streaming scenarios.

Initially, we discuss the setting of the parameters r, r′ and
k for enhanced performance of SQF. Using these settings, we
then perform experiments to capture variations of FPR and
FNR with:

• Number of input records,

• Percentage of distinct elements, and

• Memory requirements.

We also measure the query execution time of the algorithms.

6.1 Setting of Parameters
Here, we empirically explore the optimal setting of the

parameters for SQF, namely:
(a) Number of buckets in each row of the hash table T (k),
(b) Number of bits in the remainder (r), and
(c) Number of bits in the reduced remainder (r′)

1obtained from http://www.sigkdd.org/kddcup/index.
php?section=2000&method=data

A uniformly randomly generated synthetic dataset of 1 bil-
lion entries with 15% distinct records has been used.

Figure 3(a) depicts the effect of the number of buckets (k)
in each row of the hash table, T on the FPR and FNR of
SQF, with the number of bits in the remainder, r set to 2.
FPR is observed to be nearly independent of k, as shown by
Equation (10) in Section 4.1. However, we find that FNR
decreases sharply with increase in k (Equation (15)) and
approaches 0 for k = 4. When k decreases, the number of
hard collisions increases and more elements are evicted from
T , leading to a rise in the false negative events.

Figure 3(b) shows the variation of FPR and FNR in SQF,
with sufficient memory, when the number of bits in the re-
mainder (r) of the input element is changed. FNR is seen to
remain nearly constant with change in r, as discussed in Sec-
tion 4.2. However, FPR increases as r is increased. This can
be attributed to the fact that with increase in r, the number
of bits in the quotient (q) decreases, as q = p − r, leading
to an increase in the soft collisions in T . This decreases
the spread of data in the hash table and also increases the
probability that two elements have the same number of ones
in their remainder, both leading to a higher FPR.

Figure 3(c) portrays the effect of the number of bits in
the reduced remainder (r′) on the performance of SQF when
memory is kept constant at 64 MB and r = 7. We find that
as r′ increases the FPR decreases, since the probability of oc-
currence of the same signature for two or more elements de-
creases. However, with increase in r′, FNR increases (shown
by Equation (15)) as the bucket size increases, and thus the
number of buckets decreases leading to more elements being
evicted from the hash table T due to hard collisions. Hence,
to minimize both FPR and FNR, r′ should be set to r/2.

From the above observations, we find that SQF performs
best when the parameters are set as: r = 2, k = 4 and
r′ = r/2 = 1. In the rest of the section, we use these
parametric values for our experimental set-up. Without loss
of generality, we assume the function Ω to select the most-
significant bit of the remainder as the reduced remainder for
obtaining the signature of an element.

6.2 Detailed Analysis
We now present the detailed results of the SQF algorithm

as compared to that of the competing methods, for both real
and synthetic datasets.

6.2.1 Real Datasets
Table 1 tabulates the results for the real clickstream datasets.

We use two such datasets, R1 and R2, with nearly 3 mil-
lion and 300,000 records respectively. We vary the amount
of memory space provided to the de-duplication structures,
and find that with increase in memory, the performance of
all the structures improve.

For the R1 dataset, initially, at an extremely low memory
of 64 bytes only, SQF provides comparable FNR as that
of SBF (RSBF exhibits the lowest), but has 2x more FPR
than SBF. However, as the memory is increase to 512 bytes,
SQF exhibits near-zero) error rates, with FPR and FNR
both in the order of 10−4. SBF and RSBF with 512 bytes
memory attains an FPR of 1.03% and 1.69% respectively,
and an FNR of 29.76% and 21.16% respectively. SQF thus
converges quickly to produce near zero FPR and FNR even
at low memory, providing more than 10000× improvement
over SBF and RSBF, for FPR and FNR both.

596

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4

%
 E

rr
o

r

of buckets (k)

|Dataset| = 1 billion, Distinct = 15%, r = 2

FPR
FNR

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

%
 E

rr
o

r

bits in remainder (r)

|Dataset| = 1 billion, Distinct = 15%

FPR
FNR

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

%
 E

rr
o

r

bits in reduced remainder (r’)

|Dataset| = 1 billion, Distinct = 15%, Memory = 64 MB, r = 7

FPR
FNR

(a) (b) (c)

Figure 3: FPR and FNR versus parameter (a) k (b) r (c) r′

Table 1: Performance Comparisons on Real Clickstream Datasets

Datasets Memory
FPR (%) FNR (%)

SBF RSBF SQF SBF RSBF SQF

|R1| = 3367020
64 B 6.88 8.75 12.72 61.36 47.06 60.54
256 B 2.11 3.56 8.22 40.16 30.36 40.70
512 B 1.03 1.69 0.0001 29.76 21.16 0.0005
1024 B 0.22 0.38 0.00006 19.01 13.82 0.0001

|R2| = 358278
64 KB 1.23 2.01 4.19 13.25 8.86 12.71
128 KB 0.41 1.15 0.0001 7.92 4.73 0.0001
256 KB 0.02 0.32 0.00004 3.37 1.46 0.00005

For the dataset R2 having more than 300,000 records, we
observe a similar behaviour of SQF and the other structures.
SQF converges to FPR and FNR in the order of 10−4 at
128 KB memory, while SBF and RSBF exhibits 0.41% and
1.15% respectively in FPR and 7.92% and 4.73% in FNR re-
spectively. For R2 also, SQF provides nearly 1000× perfor-
mance improvements over the competing methods. However
in R2, the convergence to near optimality for SQF occurs
at a much higher memory requirement of 128 KB (as com-
pared to R1), as the dataset contains larger click counts
consolidated over a longer period of time.

Hence, we observe that for varying real datasets, SQF far
outperforms the other structures and exhibit near zero FPR
and FNR with low memory requirements.

6.2.2 Synthetic Datasets
In this section, we benchmark the performance of SQF

against huge datasets generated randomly using uniform
and Zipfian distributions. To simulate the observed devi-
ations in real streams, we vary the percentage of distinct
elements present in the datasets. Table 2 reports the per-
formance of SQF and the other algorithms on the uniform
datasets with varying memory, while Table 3 shows the re-
sults for the Zipfian dataset. In general, for all the datasets
we observe that initially the FPR of SQF is high (2x) com-
pared to SBF, with comparable FNR, at very low memory
space. But with a slight increase in memory, SQF converges
quickly to produce near optimal (near-zero) error rates.

For the 1 billion dataset with 15% distinct element, at only
64 MB memory SQF exhibits an FPR of 0.0031%, while SBF
has an FPR of 2.92%. Hence, SQF provides nearly 1000×
performance improvement. Similarly, with 64 MB memory,
SQF produces 0.0042% FNR, which is nearly 10000× better
than that of RSBF, which attains 43.17% FNR.

SQF requires 128 MB to converge for the dataset with
695 million records and 60% distinct elements as shown in
Table 2. SQF exhibits 0.004% FPR, while SBF and RSBF
attains 4.31% and 6.73% FPR respectively at 128 MB. How-
ever, for even lower memory space, SQF obtains an FPR 2x
worse than that of SBF and FNR comparable to RSBF.

The third synthetic dataset contains 100 million records
with 90% distinct elements (Table 2). We observe similar
performance of SQF as discussed above. When 32 MB of
memory is allocated, SQF has an FPR and FNR of around
0.003%, while SBF (and RSBF) suffers from 4.13% (and
6.04%) FPR and 48.88% (and 30.29%) FNR. Thus, SQF
performs superior to SBF and RSBF both in terms of FPR
and FNR, giving around 1000× and 10000× performance
improvements respectively, providing near optimal results.
Further, the membership query execution time of SQF is
better or comparable to the existing approached, making
it extremely efficient for real-time applications. The query
time slightly increases with memory for all the algorithms.

SQF exhibits similar behavior for the Zipfian distributed
synthetic datasets as shown in Table 3.. We observe that
for the 1 billion dataset with 15% distinct elements, SQF
performs better than both SBF and RSBF in terms of FPR,
FNR and query time. At 1 MB memory, the performance of
SQF is comparable to that of SBF for FPR and to that of
RSBF in terms of FNR. However, as the memory is increased
to 8 MB, SQF quickly converges to near-zero performance.
At 8 MB, SQF has an FPR and FNR of 0.008% both, while
SBF has 0.91% FPR and 1.41% FNR and RSBF exhibits
1.29% and 0.31% FPR and FNR respectively. Hence, SQF
provides a performance improvement of around 100× in
FPR and around 15× as compared to the other algorithms.

Similarly, for the 695 million dataset with 60% distinct
elements, SQF attains near-zero error rates at around 8 MB

597

memory, while SBF shows 1.03% FPR and 17.08% FNR and
RSBF produces 2.16% FPR and 10.52% FPR and FNR re-
spectively. The query execution time for SQF is also better
than that of SBF and RSBF for varying memory sizes. It
can thus be seen that SQF has an extremely quick conver-
gence rate to produce nearly zero FPR and FNR with low
memory requirements for various synthetic datasets. This
makes SQF a far better de-duplication structure than the
existing ones in terms of FPR, FNR, convergence to stabil-
ity, and also memory space at the same time catering to low
real-time processing time demands.

Figure 4 studies the effect of stream length (or dataset
size) on the performance of SQF. Figure 4(a) depicts the
FPR obtained by SBF, RSBF, and SQF for varying dataset
sizes with 60% distinct element and 256 MB available mem-
ory. We observe that the FPR of SBF and RSBF increases
with stream length. However, the performance of SQF re-
mains stable producing near zero FPR. This validates the
near-optimal performance of SQF for large data streams.

Further, Figure 4(b) portrays the variation of FNR with
stream length for 15% distinctness and 64 MB memory space.
We find that SQF again outperforms SBF and RSBF, pro-
viding nearly zero FNR. The FNR obtained in SBF and
RSBF is much higher (> 40%) as compared to that of SQF.
This makes SQF an extremely efficient structure for de-
duplication exhibiting near zero FPR and FNR. Similar re-
sults are observed for the Zipfian datasets.

To study the memory requirement of SQF better and com-
pare it with the other methods, we simulate an application
with threshold FPR and FNR of 2% and 10% respectively. A
uniform synthetic dataset of 695 million records with vary-
ing percentage of distinct elements is used to portray the
memory space required to honor the error thresholds of the
application. The findings are reported in Figure 5.

From Figures 5(a) and 5(b) we observe that for 30% dis-
tinct elements, SQF uses 50 MB memory for obtaining the
threshold FPR while SBF and RSBF require more than 100
MB space. Similarly for attaining the threshold FNR, SQF
requires 75 MB while SBF and RSBF both use more than
400 MB memory space.

With increase in the percentage of distinct elements, the
gap in the memory requirement for SQF and the other struc-
tures increases. For 90% distinctness, we find that SBF and
RSBF require around 450 MB to obtain the threshold FPR,
while SQF requires only 250 MB (Figure 5(a) and 5(b)).
SQF thus consumes around 2× less memory compared to the
prior approaches, making it an extremely memory-efficient.

7. CONCLUSIONS
Real-time in-memory data de-duplication in streaming sce-

narios poses a very challenging problem given the vast amounts
of data stored from varied applications. In this paper we
have presented a novel algorithm based on Streaming Quo-
tient Filter, SQF structure catering to all the demands of
such applications. SQF using simple hash table structure
and bit operations provides improved FPR and FNR com-
pared to the existing approaches. In fact, SQF exhibits near
optimal error rates. We also theoretically prove the bounds
on the error rates guaranteed by SQF.

We also presented Dynamic SQF, DSQF for evolving streams
and provided a basic parallel framework for the implementa-
tion of SQF to cater to applications working in distributed

environment. Empirical results depict SQF to be far supe-
rior to the competing methods both in terms of error rates
as well as in memory requirement. SQF demonstrates near
zero FPR and FNR with far less memory requirements for
huge datasets of 1 billions records. SQF exhibits nearly
1000× and 10000× performance improvements in terms of
FPR and FNR respectively, while using 2× less memory
space. This makes SQF an extremely effective, attractive
and memory-efficient structure in the domain of duplicate
detection. To the best of our knowledge SQF is the first
such structure to exhibit near zero FPR and FNR.

Further study and empirical analysis of DSQF along with
a complete architectural design and implementation for par-
allelizing SQF and DSQF provides an exciting direction of
future work, leading to advancements in de-duplication.

8. ACKNOWLEDGMENTS
The authors would like to thank Abhinav Srivastav of

IBM Research, India for his valuable suggestions pertaining
to the parallel and Map-Reduce implementation of SQF.

9. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, R. J. Lorch,
M. Theimer, and R. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely
trusted environment. In OSDI, pages 1–14, 2002.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In STOC, pages 20–29, 1996.

[3] B. Babcock, S. Singh, and G. Varghese. Load
shedding for aggregation queries over data streams. In
ICDE, pages 350–361, 2004.

[4] F. Baboescu and G. Varghese. Scalable packet
classification. In SIGCOMM, pages 199–210, 2001.

[5] M. A. Bender, M. Farach-Colton, R. Johnson,
R. Kraner, B. C. Kuszmaul, D. Medjedovic,
P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don’t thrash: How to cache your hash on flash.
VLDB, 5(11):1627–1637, 2012.

[6] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
SIGKDD, pages 39–48, 2003.

[7] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[8] A. Z. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2003.

[9] Y. Chen, A. Kumar, and J. Xu. A new design of
bloom filter for packet inspection speedup. In
GLOBECOMM, pages 1–5, 2007.

[10] A. Chowdhury, O. Frieder, D. Grossman, and
M. McCabe. Collection statistics for fast duplicate
document detection. ACM Transactions on
Information Systems, 20(2):171–191, 2002.

[11] J. Conrad, X. Guo, and C. Schriber. Online duplicate
document detection: Signature reliability in a dynamic
retrieval environment. In CIKM, pages 443–452, 2003.

[12] F. Deng and D. Rafiei. Approximately detecting
duplicates for streaming data using stable bloom
filters. In SIGMOD, pages 25–36, 2006.

598

Table 2: Performance Comparisons on Synthetic Datasets (Uniform Random)
Datasets

Memory
FPR (%) FNR (%) Query Time (µsec)

(% Distinct) SBF RSBF SQF SBF RSBF SQF SBF RSBF SQF

1 billion (15 %)

8 MB 9.06 18.69 11.74 84.38 69.76 84.45 1.07 0.80 0.76
32 MB 5.22 8.93 11.96 72.63 55.81 61.08 1.07 0.81 0.77
64 MB 2.92 4.29 0.0031 60.89 43.17 0.0042 1.08 0.83 0.79
128 MB 1.26 1.61 0.0006 45.96 29.55 0.001 1.10 0.86 0.81
512 MB 0.13 0.14 0.0001 17.13 10.20 0.0003 1.12 0.87 0.86

695 million (60 %)

32 MB 8.64 17.26 13.91 79.16 62.82 72.70 1.10 0.84 0.80
64 MB 6.77 12.24 12.00 70.83 52.89 53.53 1.12 0.85 0.80
128 MB 4.31 6.73 0.004 57.97 39.27 0.003 1.14 0.87 0.81
256 MB 2.09 2.77 0.001 42.08 25.76 0.001 1.15 0.90 0.85
512 MB 0.82 0.92 0.0003 24.29 15.20 0.0004 1.15 0.92 0.88

100 million (90 %)

8 MB 8.83 17.30 13.92 75.02 57.25 70.70 1.07 0.83 0.72
16 MB 6.83 11.92 12.05 64.03 44.82 49.76 1.08 0.84 0.72
32 MB 4.13 6.04 0.003 48.88 30.29 0.0032 1.08 0.89 0.76
64 MB 2.05 3.17 0.0006 29.61 20.38 0.0007 1.09 0.91 0.77
128 MB 0.64 1.12 0.0001 16.20 11.45 0.0001 1.09 0.92 0.80

Table 3: Performance Comparisons on Synthetic Datasets (Zipfian)
Datasets

Memory
FPR (%) FNR (%) Query Time (µsec)

(% Distinct) SBF RSBF SQF SBF RSBF SQF SBF RSBF SQF

1 billion (15 %)

1 MB 2.38 3.72 1.02 4.19 1.45 1.03 0.30 0.19 0.09
2 MB 1.98 3.00 0.83 3.75 1.05 0.92 0.32 0.20 0.11
4 MB 1.29 2.42 0.09 2.56 0.71 0.05 0.35 0.27 0.17
8 MB 0.91 1.29 0.008 1.41 0.14 0.008 0.40 0.31 0.20
16 MB 0.38 0.92 0.0009 0.85 0.05 0.001 0.42 0.36 0.15

695 million (60 %)

512 KB 4.13 6.72 4.29 37.41 25.07 23.61 0.46 0.19 0.13
1 MB 3.75 5.24 3.16 32.81 21.76 19.41 0.49 0.24 0.15
2 MB 2.99 4.19 0.24 27.31 18.48 0.89 0.49 0.34 0.22
4 MB 2.18 3.74 0.05 21.56 15.63 0.08 0.52 0.35 0.26
8 MB 1.03 2.16 0.008 17.08 10.52 0.004 0.57 0.39 0.30

[13] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull,
and J. W. Lockwood. Deep packet inspection using
parallel bloom filters. IEEE Micro, 24(1):52–61, 2004.

[14] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor.
Longest prefix matching using bloom filters. In ACM
SIGCOMM, pages 201–212, 2003.

[15] P. C. Dillinger and P. Manolios. Bloom filters in
probabilistic verification. In FMCAD, pages 367–381,
2004.

[16] F. Douglis, J. Lavoie, J. M. Tracey, P. Kulkarni, and
P. Kulkarni. Redundancy elimination within large
collections of files. In USENIX, pages 59–72, 2004.

[17] S. Dutta, S. Bhattacherjee, and A. Narang. Towards
“intelligent compression” in streams: A biased
reservoir sampling based bloom filter approach. In
EDBT, pages 228–238, 2012.

[18] L. Fan, P. Cao, J. Almeida, and Z. Broder. Summary
cache: a scalable wide area web cache sharing
protocol. In IEEE/ACM Transaction on Networking,
pages 281–293, 2000.

[19] W. Feng, D. Kandlur, D. Sahu, and K. Shin.
Stochastic fair blue: A queue management algorithm
for enforcing fairness. In IEEE INFOCOM, pages
1520–1529, 2001.

[20] P. Flajolet and G. N. Martin. Probabilistic counting

algorithms for database applications. Computer and
System Science, 31(2):182–209, 1985.

[21] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database System Implementation. Prentice Hall, 1999.

[22] V. K. Garg, A. Narang, and S. Bhattacherjee.
Real-time memory efficient data redundancy removal
algorithm. In CIKM, pages 1259–1268, 2010.

[23] J. Gehrke, F. Korn, and J. Srivastava. On computing
correlated aggregates over continual data streams. In
SIGMOD, pages 13–24, 2001.

[24] P. Gupta and N. McKeown. Packet classification on
multiple fields. In SIGCOMM, pages 147–160, 1999.

[25] A. Heydon and M. Najork. Mercator: A scalable,
extensive web crawler. In World Wide Web, volume 2,
pages 219–229, 1999.

[26] T. Hofmann. Optimizing distributed joins using bloom
filters. Distributed Computing and Internet technology
(Springer / LNCS), 5375:145 – 156, 2009.

[27] Y. Hua and B. Xiao. A multi-attribute data structure
with parallel bloom filters for network services. In
International Conference on High Performance
Computing, pages 277–288, 2006.

[28] N. Jain, M. Dahlin, and R. Tewari. Taper: Tiered
approach for eliminating redundancy in replica

599

-2

 0

 2

 4

 6

 8

 100 200 300 400 500 600 700 800 900 1000

%
 F

P
R

Size of dataset (x10
6
)

Distinct = 60%, Memory = 256 MB

SBF
RSBF

SQF

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800 900 1000

%
 F

N
R

Size of dataset (x10
6
)

Distinct = 15%, Memory = 64 MB

SBF
RSBF

SQF

(a) (b)

Figure 4: Effect of dataset size on (a) FPR and (b) FNR

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90

M
e
m

o
ry

 (
in

 M
B

)

%Distinct in dataset

|Dataset| = 695M, FPR < 2%

SBF
RSBF

SQF

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80 90

M
e
m

o
ry

 (
in

 M
B

)

%Distinct in dataset

|Dataset| = 695M, FNR < 10%

SBF
RSBF

SQF

(a) (b)

Figure 5: Amount of memory on varying distinct % for constant (a) FPR (b) FNR

synchronization. In FAST, pages 281–294, 2005.

[29] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison Wesley,
1973.

[30] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li.
Space-code bloom filter for efficient per-flow traffic
measurement. In IEEE INFOCOM, pages 1762–1773,
2004.

[31] D. Lee and J. Hull. Duplicate detection in
symbolically compressed documents. In ICDAR, pages
305–308, 1999.

[32] M. Little, N. Speirs, and S. Shrivastava. Using bloom
filters to speed-up name lookup in distributed
systems. The Computer Journal (Oxford University
Press), 45(6):645 – 652, 2002.

[33] A. Metwally, D. Agrawal, and A. E. Abbadi.
Duplicate detection in click streams. In WWW, pages
12–21, 2005.

[34] M. Mitzenmacher. Compressed bloom filters. In
IEEE/ACM Transaction on Networking, pages
604–612, 2002.

[35] F. Putze, P. Sanders, and J. Singler. Cache-, hash-,
and space-efficient bloom filters. ACM Journal of
Experimental Algorithmics, 14:4–18, 2009.

[36] S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. In FAST, pages 89–101, 2002.

[37] M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[38] M. Reiter, V. Anupam, and A. Mayer. Detecting
hit-shaving in click-through payment schemes. In
USENIX, pages 155–166, 1998.

[39] C. Saar and M. Yossi. Spectral bloom filters. In ACM
SIGMOD, pages 241–252, 2003.

[40] H. Shen and Y. Zhang. Improved approximate
detection of duplicates for data streams over sliding
windows. Journal of Computer Science and
Technology, 23(6):973–987, 2008.

[41] H. Song, S. Dharmapurikar, J. Turner, and
J. Lockwood. Fast hash table lookup using extended
bloom filter: An aid to network processing. In ACM
SIGCOMM, pages 181–192, 2005.

[42] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,
T. C. Bressoud, and A. Perrig. Opportunistic use of
content addressable storage for distributed file
systems. In USENIX, pages 127–140, 2003.

[43] M. Weis and F. Naumann. Dogmatrix tracks down
duplicates in xml. In ACM SIGMOD, pages 431–442,
2005.

600

