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ABSTRACT
The multi-core architectures of today’s computer systems make
parallelism a necessity for performance critical applications. Writ-
ing such applications in a generic, hardware-oblivious manner is a
challenging problem: Current database systems thus rely on labor-
intensive and error-prone manual tuning to exploit the full poten-
tial of modern parallel hardware architectures like multi-core CPUs
and graphics cards. We propose an alternative design for a parallel
database engine, based on a single set of hardware-oblivious oper-
ators, which are compiled down to the actual hardware at runtime.
This design reduces the development overhead for parallel database
engines, while achieving competitive performance to hand-tuned
systems.

We provide a proof-of-concept for this design by integrating op-
erators written using the parallel programming framework OpenCL
into the open-source database MonetDB. Following this approach,
we achieve efficient, yet highly portable parallel code without the
need for optimization by hand. We evaluated our implementation
against MonetDB using TPC-H derived queries and observed a per-
formance that rivals that of MonetDB’s query execution on the CPU
and surpasses it on the GPU. In addition, we show that the same set
of operators runs nearly unchanged on a GPU, demonstrating the
feasibility of our approach.

1. INTRODUCTION
The modern hardware landscape is getting increasingly diverse.

Today, a single machine can contain several different parallel pro-
cessors like multi-core CPUs or GPUs. This diversity is expected
to grow further in the coming years, with micro-architectures them-
selves diverging towards highly parallel and heterogeneous designs
[8]. We believe that making database engines ready to exploit the
capabilities of this diverse landscape of parallel processing plat-
forms will be one of the major challenges for the coming decade in
database research.
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Unfortunately, implementing parallel data operators is a tedious
and error-prone task that usually requires extensive manual tuning.
Most systems are therefore designed with a certain hardware ar-
chitecture in mind: they are hardware-conscious. Extending those
systems to new architectures usually requires the developer to im-
plement an additional set of hardware-specific operators, adding
significant development and maintenance overhead in the process.

Instead of maintaining multiple sets of operators, we believe that
a parallel database engine can be designed in a hardware-oblivious
manner, i.e., without any inherent reliance on a specific architec-
ture: All knowledge is encapsulated into a library that adheres to a
standardized interface and is provided by the manufacturer of the
respective hardware components. The system is designed around a
single set of operators, which can be mapped to a variety of paral-
lel processing architectures at runtime. We also argue that existing
systems can be extended to become hardware-oblivious. To support
these claims, we make the following contributions:

1. We present Ocelot1, a hardware-oblivious extension of the
open-source column-store MonetDB. Ocelot uses a standard-
ized interface provided by OpenCL to map operations to any
supported parallel processing architecture.

2. We demonstrate that a single hardware-oblivious implemen-
tation of the internal MonetDB operators can efficiently run
on such dissimilar devices like CPUs and GPUs.

3. We evaluate our approach against the hand-tuned query pro-
cessor of MonetDB and show that Ocelot can compete with
MonetDB’s performance when running on a CPU, and out-
perform it when using the graphics card.

The paper is structured as follows: In the next section, we moti-
vate and discuss the concept of hardware-oblivious database de-
signs. We also give an introduction to the kernel programming
model, and motivate why we chose this model for our prototype.
In Section 3, we give an overview of the design of Ocelot, with fur-
ther implementation details being discussed in Section 4. Section 5
presents our evaluation of Ocelot and discusses the results, Section
6 presents related work. In Section 7, we discuss possible direc-
tions for future research. Finally, the paper is concluded by Section
8, which summarizes our findings.

1The Ocelot source code is available at: goo.gl/GHeUv.
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Figure 1: Hardware-Conscious and Hardware-Oblivious
database designs: The left side illustrates a hardware-conscious
database engine that uses distinct sets of operators for each
supported architecture. The right side shows a hardware-
oblivious design, which relies on a parallel programming li-
brary to provide abstract operator implementations that are
compiled down at runtime to the actual hardware by a device
driver.

2. MOTIVATION
In this section, we motivate the idea of building a highly portable,

hardware-oblivious database engine to cope with the increasingly
diverse hardware landscape. We also provide a short introduction
to the kernel programming model, and motivate why we chose it to
implement hardware-oblivious operators for our prototype.

2.1 The Need for Hardware Abstraction
The increasingly diverse hardware landscape warrants the ques-

tion how to design a database engine that can efficiently use all
available compute resources. So far, this question has mostly been
discussed in the context of data processing on specialized hardware,
like graphics cards and FPGAs. The usual approach relies on using
a separate set of hand-tuned hardware-conscious database opera-
tors for each supported device type [19, 23, 28]. The left side of
Figure 1 illustrates this approach.

Using hand-tuned database operators will usually result in the
best performance for any given architecture. However, from a de-
velopment perspective, several problems arise when the number of
supported architectures grows:

• A significant increase in code volume and complexity is ex-
pected, incurring high development and maintenance costs.
Since development resources are limited, this forces the ven-
dor to focus on a few selected architectures.

• Adding support for “the next big thing” is quite expensive,
since it requires implementing and fine-tuning a completely
new set of operators. This means that the database vendor is
always chasing after the latest hardware developments. Fur-
thermore, this high entry burden hinders the adoption of spe-
cialized hardware for data processing.

• The database vendor has to build up expertise outside of its
core competences: Each supported architecture typically re-
quires at lest one specialized developer that focuses solely
on it. Especially for modern architectures, this can be a risky
investment that ultimately might not pay off. Furthermore,
acquiring developers specialized in programming for a spe-
cific hardware architecture is a challenging task.

Even when we discard the notion of supporting specialized hard-
ware, the outlined problems will still become imminent in the near

future: Experts expect a shift towards heterogeneous and highly
parallel micro-architectures that feature several different parallel
processing elements on a single chip, each with different instruction
sets and performance characteristics [8]. With these developments
in mind, we believe that building a portable engine will become
equally important as achieving optimal performance.

2.2 A Hardware-Oblivious Database Design
Instead of maintaining multiple code-paths for several architec-

tures, our suggested design is built around a single set of hardware-
oblivious parallel database operators. The operators are imple-
mented in a highly abstract fashion against a parallel programming
library, without any inherent reliance on a particular hardware ar-
chitecture. At runtime, a vendor-supplied compiler – or driver
– maps this representation to the actual hardware, performing all
device-dependent optimizations. The right side of Figure 1 illus-
trates this design.

Because of the involved abstraction, we expect that a hardware-
oblivious database would likely not perform as well as hand-tuned
operators. However, it provides a much more portable and main-
tainable engine. Besides the obvious advantage of reducing code
volume and complexity, it would also lead to a separation of con-
cerns during development: The expertise of finding the most effi-
cient execution strategy lies solely with the specialists at the hard-
ware vendor, while the database vendor can focus all of its devel-
opment resources on implementing the respective processing and
storage model. A hardware-oblivious engine would also make it
easy to add support for novel architectures - as long as the specific
hardware vendor provides a suitable implementation of the paral-
lel programming interface. This would accelerate both the adop-
tion and the acceptance of using specialized hardware like graphics
cards for data processing.

At the same time, database users would profit from the freedom
to choose among a broader range of devices, allowing them to ex-
ploit the processing power of either existing or newly acquired sys-
tems to their full extent. Additionally, the support for many archi-
tectures lessens the burden of upgrading the hardware of existing
machines, which can be a tedious task when migrating systems.

2.3 The Kernel Programming Model
Originating from stream programming, the kernel programming

model became the de-facto standard for a variety of different GPU
programming frameworks like OpenCL [35], CUDA [29], and Di-
rectCompute. In this model, programs are expressed through ker-
nels, which describe the operation on a single element of the data.
Within the terminology2 of the model, kernels are running on the
device, and are scheduled and controlled by the host3. Kernels are
scheduled across the complete input in a lock-free, data-parallel
fashion – they can thus be seen as the body of a loop over the in-
put data. Listing 1 shows a simple OpenCL kernel. The call to
global id in line four returns a unique identifier for each invoca-
tion of the kernel, controlling the input - and output - elements
it operates on. This call can be compared to accessing the loop
counter variable within the body of a loop.

Conceptually, the kernel programming model assumes a shared-
memory architecture: Each kernel invocation can access any global
memory address without restrictions. Global memory is not as-
sumed to be addressable by the host, requiring memory transfer

2While the discussed concepts are valid for all implementations,
we will primarily use terminology from OpenCL.
3Note that host and device can refer to the same physical device,
e.g., when running on a multi-core CPU.
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Listing 1: A simple OpenCL kernel.
1 __global T* res,
2 __global const T* inp, T cnst) {
3 res[global_id()] = inp[global_id()] + cnst;
4 }

– or mapping – between host & device. Offering further abstrac-
tion, kernel invocations are partitioned into work-groups, with all
threads within a work-group sharing access to a distinct amount
of local memory. Finally, each thread invocation has some private
memory, which is used to store local variables.

Due to the highly abstract specification, programs written in the
kernel programming model can be matched to a wide variety of par-
allel and sequential hardware architectures: On a single-core CPU,
the kernel can be invoked sequentially within a loop, potentially in-
troducing SIMD instructions to merge neighboring invocations. On
a multi-core CPU, a thread can be scheduled for each invocation,
mapping the threads of a single work-group onto the same core.
If the architecture supports it, local memory can be mapped to di-
rectly control the L2 cache. On a GPU, work-groups are mapped
to multi-processors, which each can run a few hundred invocations
in parallel and have access to a small amount of fast on-chip mem-
ory. There has also been work on mapping programs written in the
kernel programming model to FPGAs [34].

Summarizing, the kernel programming model is abstract enough
to build highly portable code across a wide variety of architec-
tures. At the same time, it is expressive enough to implement all
required operations: All major database operators – including ag-
gregation [24], selection [19], sorting [16, 22, 30, 31], joins [20],
hashing [2, 3, 14] and string operations [10] –, have been shown
to be efficiently implementable within the constraints of the model.
We therefore believe that the kernel programming model is a good
choice to form the basis of a hardware-oblivious parallel database
engine.

3. OCELOT: A HARDWARE-OBLIVIOUS
DATABASE ENGINE

In this section, we present an overview of Ocelot, our proto-
typical hardware-oblivious parallel database engine. Ocelot is in-
tegrated into the in-memory column-store MonetDB [7] and uses
OpenCL [35] to offer operators that are agnostic of the underlying
hardware. To the best of our knowledge, Ocelot is the first attempt
at designing a hardware-oblivious database engine for modern par-
allel hardware architectures.

3.1 System Overview
The primary design goal of Ocelot is to demonstrate the feasi-

bility of a hardware-oblivious database design based on the kernel
programming model. In order to quickly arrive at a a working pro-
totype, we limited our scope to supporting the main relational op-
erators – selection, projection, join, aggregation, and grouping –
on four-byte integer and floating point data types. On the technical
side, we chose to implement our operators using OpenCL, since it
is supported across a wide variety of platforms and by all major
hardware vendors.

From an architectural perspective, we implemented Ocelot as a
light-weight extension for MonetDB. This allowed us to reuse sev-
eral major components, including data layout, storage management
and query execution engine. We also made sure to model our op-
erators as drop-in replacements for MonetDB’s query operators,

Query Rewriter

MonetDB Optimizer & Execution Layer

MonetDB SQL Frontend

MonetDB Parallelization

Ocelot

Operators

MAL BindingHost CodeKernel
MonetDB Operators

MonetDB Storage Layer & Data Layout

Memory Manager

OpenCL Context 
Management

OpenCL

Figure 2: The architecture of Ocelot.

allowing us to recycle the plans generated by MonetDB’s query
optimizer. Due to the shared architecture, both systems can com-
plement each other, with MonetDB running operations that Ocelot
does not support.

Figure 2 shows the architecture of Ocelot and highlights its four
major components: The Operators are the central part and the
workhorse of Ocelot. Each operator implements a drop-in replace-
ment of a particular MonetDB operator using the kernel program-
ming model. The Memory Manager is used to abstract away details
of the memory architectures from the operators by transparently
handling device memory management. The Ocelot Query Rewriter
adjusts MonetDB query plans for Ocelot by rerouting operator calls
to the corresponding Ocelot implementations. The OpenCL Con-
text Management initializes the OpenCL runtime, triggers kernel
compilation, manages kernel scheduling, and offers access to im-
portant OpenCL data structures.

3.2 Operators
Ocelot’s operators are advertised to MonetDB via a MonetDB

Assembly Language (MAL) binding, describing the interface and
entry function. The entry function – also called the operator host-
code – checks input parameters, sets up in- and output resources
using the Memory Manager, initializes the required kernels, and
schedules them for execution using the Context Management. It
also handles error cases, ensuring that all held resources are re-
leased upon encountering an unrecoverable error. It should be noted,
that host-code is written completely device-independent. All device-
dependent decisions are abstracted away by the kernel program-
ming model, the OpenCL framework, the Memory Manager and
the Context Management. Further details about the operators, in-
cluding which implementations were chosen, can be found in Sec-
tion 4.

3.3 Memory Manager
The Memory Manager acts as a storage interface between Ocelot

and MonetDB, hiding details of the device memory architecture
from the operator host-code. MonetDB operates on so-called Bi-
nary Association Tables (BATs), which reside in host memory. The
OpenCL kernels, however, can only operate on cl mem buffers,
which reside on the device. Consequently, we have to transform
each BAT into an OpenCL buffer object before operating on it. This
transformation is handled by the Memory Manager.

Internally, the Memory Manager keeps a registry of OpenCL
buffers for BATs. When a BAT is requested, the corresponding
buffer object is returned from this registry. If there is no corre-
sponding entry, a new buffer is allocated and registered. When
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Ocelot is running on a device that operates in host memory – e.g.,
on the CPU –, this is a zero-copy operation. Things get more com-
plicated for devices like graphics cards that operate on discrete stor-
age. These devices require a data transfer between host and device
to copy the BAT content. In order to avoid these expensive trans-
fers, the Memory Manager acts as a device cache, keeping copies
on the device as long as possible.

All resource requests from operators are piped through the Mem-
ory Manager. If a request cannot be fulfilled due to insufficient
device storage, resources are automatically freed up. This happens
through evicting cached BATs in LRU order. Once all cached BATs
are evicted, the Memory Manager resorts to offloading result and
intermediate buffers to the host4. This also happens in LRU or-
der, giving preference to auxiliary data structures like hash-tables
before offloading result buffers. The Memory Manager uses refer-
ence counting to prevent evicting buffers that are currently in use.
By manually increasing the reference count of a BAT, this mecha-
nism can be used to pin frequently accessed BATs permanently to
the device.

The Memory Manager also plays an important role in transfer-
ring data between operators. Since we need to stay compatible with
MonetDB’s calling interface, we cannot directly pass cl mem ob-
jects. Instead, our operators return a newly created BAT, and use
the Memory Manager to link it with the generated result buffer.

3.4 Query Execution Model
Ocelot follows the operator-at-a-time model of MonetDB. Con-

ceptually, each operator consumes its complete input and material-
izes its output before the next operator is started. However, contrary
to MonetDB, we employ a lazy evaluation model, as our operators
only schedule kernel invocations and data transfers, they do not
wait for them to finish.

The execution model of Ocelot is built upon OpenCL’s event
model. In OpenCl, events are associated to specific device op-
erations, like a kernel invocation or a memory transfer. When
scheduling a new operation, the user can pass a wait-list of events,
which have to finish execution before the operation will start. In
Ocelot, we use this mechanism to pass scheduling information to
the device driver, allowing it to potentially reorder operations to
improve performance. Internally, we maintain a registry of events
for each buffer, keeping producer events – tied to operations writ-
ing the buffer – and consumer events5 – tied to operations reading
it. When kernels – or data transfers – are scheduled, we pass the
producer events of all consumed buffers to OpenCL, ensuring that
the operation will only execute once all of its inputs are ready. Af-
terwards, we register the new operation’s event both as a producer
for its result and as a consumer for its input buffers.

Due to the different scheduling models, we had to define strict
data ownership rules for interactions between Ocelot and Mon-
etDB. Every BAT that is generated by an Ocelot operator is owned
by Ocelot, if MonetDB operates on a BAT that is owned by Ocelot,
results are undefined. We added an explicit synchronization oper-
ator that hands ownership of a BAT back to MonetDB. Internally,
this operator waits on the producer events of the buffer associated
with the BAT and – depending on the architecture – transfers or
maps the buffer back to the host. Our query rewriter automatically
inserts this operation when required, e.g., before returning the re-
sult set or before calling MonetDB operators.

4We cannot simply drop these buffers, as they contain computed
content. Instead, we offload them to the host and copy them back
when needed.
5Maintaining consumer events is important to decide whether it is
safe to discard a buffer, e.g., when freeing up device storage.

Figure 3 illustrates an exemplary query execution schedule in
Ocelot. The lower half shows the sequence of operators on the
host, while the upper half shows the scheduled kernels and allo-
cated memory buffers on the device. Note that BATs t1, t2, and t3
are never owned by MonetDB – they are solely used to pass refer-
ences to device buffers between operators. A sync operation occurs
after the ./-kernel, triggering the result transfer of BAT r to the
host. The figure also illustrates two cases where an OpenCL device
driver might reorder operations: First, data transfer tb is indepen-
dent of kernels σ2, σ3, and ∨ - it could be moved forward, hiding
transfer latency by interleaving it with any of those kernels. Sec-
ond, kernels σ2 and σ3 are independent of each other. Depending
on device load, the driver might decide to interleave those kernels
to achieve higher throughput.

4. IMPLEMENTATION DETAILS
In this section, we take a look under the hood of Ocelot. In

particular, we will discuss which implementations were chosen for
our operators, give an example demonstrating the limitations of our
approach, and list the changes we made to MonetDB for our inte-
gration.

4.1 Operator Details
We based most of the implementations of our operators on exist-

ing work from the area of GPU-accelerated databases. In particular,
several operators are based on work of Bingshen He et al. [18, 19,
20].

4.1.1 Selection
Our selection implementation follows the approach outlined in

[37]: We encode the selection result as a bitmap, with each thread
evaluating the predicate on a small chunk of the input. We found
that evaluating the predicate on eight four-byte values – generat-
ing one byte of the result bitmap per thread – gave the best re-
sults across architectures. Using bitmaps as intermediate results of
the selection operator allows us to efficiently evaluate even com-
plex predicates by combining multiple bitmaps using bit opera-
tions. Note that, to ensure compatibility with MonetDB’s selection
operator, bitmaps are never exposed in the interface and are only
passed via Memory Manager references. The system transparently
materializes bitmaps into lists of qualifying tuple IDs if MonetDB
operators access them.

4.1.2 Projection
Conceptually, the projection operation in a column-store is a join

between a list of tuple IDs and a column. Practically, since the tu-
ple IDs directly identify the join partner, it can be implemented by
directly fetching the projected values from the column. We use
a parallel gather primitive to implement this operation efficiently
[18]. If the left input is a bitmap – e.g., when projecting on a selec-
tion result –, we first have to transform it into a list of tuple IDs by
materializing the list of set bits. This materialization requires two
steps: First, we compute a prefix sum [33] over bit counts to get
unique write offsets for each thread. Then, each thread writes the
positions of set bits within its assigned bitmap chunk to its corre-
sponding offset.

4.1.3 Sorting
We use a binary radix sort implementation following the ideas of

Satish et al. [31, 32]. In a first step, we generate local histograms of
the current radix for each work-group. Afterwards, we shuffle the
histograms to ensure that all buckets for the same radix are laid out
consecutively in memory, using a prefix sum to calculate the offset
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Figure 3: Illustration of the execution schedule for the query: “SELECT b FROM . . . WHERE a IN (2,3)”.

for each value and all work-groups. Finally, we reorder the val-
ues according to the offsets in the global histogram. We repeat this
procedure until the complete key was processed. Our actual im-
plementation is based on the work of Helluy [22] with minor mod-
ifications to handle arbitrary input sizes and negative values. We
currently do not support sorting over multiple columns. Due to the
nature of the radix sort, sorting by multiple columns increases the
size of the keys, requiring multiple passes over the data. Therefore,
for multi-column sorting we would require a different comparator-
based implementation to stay competitive.

4.1.4 Hashing
Our parallel hashing algorithm builds on ideas from [2, 3, 14]. It

begins with an optimistic round, letting each thread insert its keys
without any form of synchronization. If a collision occurs, this will
result in keys being overwritten. We test for this case in a second
round, where each thread checks whether its keys ended up in the
hash table. If the test failed for at least one key, we start a pes-
simistic round, that uses re-hashing and atomic compare-and-swap
operations to re-insert failed keys. We found that in practice, a
probing strategy that re-hashes with six strong hash functions be-
fore reverting to linear probing gave us a good balance of achieved
load factors and hashing cost.

In contrast to prior work, we do not use a stash for failed ele-
ments, as we did not observe any noteworthy improvements from
using one. Instead, if the pessimistic approach fails for at least one
key, we restart with an increased table size. Since restarting is ex-
pensive, we try to avoid it by picking an adequate initial table size.
In particular, we observed that our hash tables have a filling rate
of around 75% and consequently over-allocate the hash table by a
factor of 1.4.

Based on this general hashing scheme, we built a multi-stage
hash lookup table for joins and grouping operation as described in
[19].

4.1.5 Join
We use parallel implementations of two join algorithms, based

on work from [20]: A nested loop join is used for theta-joins, equi-
joins are handled using a hash join6. Both nested-loop and hash
join use a two-step approach to avoid thread synchronization: In a

6A special case are PK-FK joins, which are precomputed by Mon-
etDB. These joins only require a projection against the join index.

first step, each thread counts the number of result tuples it will gen-
erate. From these counts, unique write offsets into a result buffer
are computed for each thread using a prefix sum. In the second
stage, the join is actually performed, with each thread storing its
result tuples at its respective offset. Opposed to [20], we only use
this two-step procedure if the number of join partners is unknown.
In several common cases – for instance when joining against a key
column –, the number of results – or at least a tight upper bound
of it – is known beforehand. In those cases, we execute the join
directly, omitting the additional overhead.

4.1.6 Group-By
The grouping operator in MonetDB produces a column that as-

signs a dense group ID to each tuple. Ocelot uses two different im-
plementations for this operation. If the input is sorted, we identify
group boundaries by having each thread compare its value with its
successor. Then, a prefix sum operation is used to generate dense
group IDs. If the input is unsorted, we use a hash table to gener-
ate dense group IDs. Afterwards, we build the assignment table
via hash look-ups. Multi-column grouping is implemented by re-
cursively calling the group-by operation on the combined IDs from
two group assignment columns.

4.1.7 Aggregation
Ungrouped aggregation is implemented using a parallel binary

reduction strategy [18]. Grouped aggregation uses a hierarchical
scheme, scheduling multiple work-groups on disjunct data parti-
tions to build intermediate aggregation tables using atomic opera-
tions7 in local memory. Afterwards, a single thread is scheduled per
group to compute the final aggregate. As discussed in Section 4.2,
we found that scheduling one work-group per processor gave us
the best performance across architectures. When aggregating val-
ues for just a small number of groups, we observed significant per-
formance losses due to synchronization overhead. This overhead is
introduced by the atomic operations frequently accessing the same
memory address simultaneously. In order to reduce this number
of concurrent accesses, we distribute the aggregation evenly across
multiple memory addresses within each work-group: The values
for each group are aggregated across multiple accumulators, with

7Since the current version of the OpenCL standard does not provide
atomic operations on floating point data, we had to emulate those
through atomic compare-and-swap operations on integer values.
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the number of accumulators per group being chosen inversely pro-
portional to the number of groups. If the aggregation table does
not fit into local memory, we fall back to using the same scheme in
global memory.

4.2 Kernel Scheduling Strategy
The majority of architecture-dependent code in Ocelot is used

to abstract away hardware properties from the operators. One ex-
ample for this is the Memory Manager, another one occurs when
scheduling a kernel. The default OpenCL scheduling parameters –
e.g., the size of the work-groups – are often suboptimal, and usually
require manual tuning to the architecture. Through trial-and-error,
we found a device-dependent scheduling scheme that seems to give
robust performance across architectures. For a compute device with
nc cores, where each core features na compute units, we schedule
one work-group per core, with each work-group being roughly of
size 4 × na

8. Figure 4 illustrates this scheduling model for both
a multi-core CPU (small number of compute units per core) and a
GPU (multiple compute units per core).

Within this model, each kernel is invoked exactly 4 × nc × na

times, meaning each invocation has to have a sequential part that
operates on d n

4×nc×na
e elements. This sequential part leads to

another architecture-dependent problem: Graphics cards and CPUs
use different methods to increase memory bandwidth. While graph-
ics cards try to coalesce multiple neighboring accesses from dif-
ferent threads into a single operation, multi-core CPUs rely on
prefetching and caching. This results in different optimal mem-
ory access patterns for the threads within a work-group. Graphics
cards prefer that neighboring threads access neighboring locations
in memory, since this pattern can easily be coalesced. On multi-
core CPUs on the other hand, a single thread should access con-
secutive locations in main memory, since this pattern will lead to
optimal caching behavior. This is also shown in Figure 4.

We introduce these different access patterns into our kernels by
injecting the current architecture as a pre-processor constant into
the kernel build process. The access patterns are then chosen within
the kernel based on the value of this constant.

8Choosing a higher number of invocations than there are compute
units allows the device to hide transfer latencies by swapping out
invocations that wait for I/O.

4.3 Modifications to MonetDB Code
Integrating Ocelot into MonetDB proved to be surprisingly light-

weight. In particular, we only needed to make four small changes
to existing MonetDB code parts to fully integrate Ocelot:

• We added a flag to MonetDB’s BAT descriptor to indicate
whether a given BAT is currently owned by Ocelot.

• In order to make Ocelot aware of MonetDB’s resource man-
agement decisions, we added callbacks to our Memory Man-
ager when BATs are deleted or recycled. The Memory Man-
ager uses this information to directly remove buffers for un-
used and deleted BATs from the device cache.

• We added a new optimizer pipeline that includes the Ocelot
query rewriter. This pipeline is based on the sequential op-
timizer pipeline, which is identical to the default MonetDB
optimizer pipeline, minus parallelization.

• Since the Intel OpenCL SDK makes extensive use of SSE
operations, which only operate on 128-byte aligned memory,
we modified MonetDB’s memory management to return 128-
byte aligned memory chunks.

5. EVALUATION
In this section, we provide an analysis of the performance of

Ocelot on various hardware configurations. We investigate the per-
formance and scaling characteristics of single operators through
microbenchmarks and demonstrate how our system behaves for
complex SQL statements by running experiments using a modified9

TPC-H [36] benchmark.

5.1 Experimental Setting
In our evaluation, we compare the following four configurations:

Sequential MonetDB This configuration marks the baseline for
our comparisons. We run MonetDB without any parallelism
on the CPU to get an understanding of the performance when
running on a single CPU core.

Parallel MonetDB In this configuration, we use the Mitosis and
Dataflow optimizers of MonetDB to achieve efficient intra-
operator parallelism [25]. This confiugration demonstrates
the performance that is achievable by hand-tuning operators
for a multi-core CPU.

Ocelot on CPU For this configuration, we run Ocelot on a multi-
core CPU, demonstrating how it compares with MonetDB’s
hand-tuned operators.

Ocelot on GPU The final configuration runs Ocelot on an off-the-
shelf graphics card to demonstrate that our system is indeed
hardware-oblivious.

Note, that when running on the GPU, Ocelot features the same
functionality as on the CPU. However, due to limited device mem-
ory, the scope is restricted to smaller input sizes. We thus see the
GPU component of Ocelot as a way to quickly answer queries on a
small hot set of the data, which can be kept resident in the device’s
global memory.

Due to limited resources, we tested our prototype only on an
nVidia graphics card and an Intel x86 CPU. In general, Ocelot
should however run on a much wider variety of devices. In par-
ticular, OpenCL has been ported to several device classes, such as
9For details, see Appendix Section A.
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FPGAs [4], APUs [1] and the IBM Cell and Power processor line.
We believe that more vendors will start to support this program-
ming framework in the future, making our implementation portable
even to future devices.

We conducted our experiments on a custom-built server with the
following specification:

• Intel Xeon E5620, 64-bit, four cores running at 2.4GHz, 12MB
Cache.

• 32GB of DDR-3 RAM, clocked at 1333MHz.

The server is equipped with a middle-class NVIDIA GTX460 graph-
ics card, sitting in a PCIexpress 2.1 x16 slot. The graphics card has
the following specification:

• NVIDIA Fermi GF104 core:

– Seven multiprocessors, each having 48 compute units.
– 48KB of local device memory, 64KB of constant buffer

per compute unit.

• 2GB of DDR4 graphics memory, clocked at 1800MHz.

The experiments were conducted on a 64-bit Scientific Linux 6.2
(Linux kernel 2.6.32-220.7.1.e16.x86 64). The graphics card was
controlled with the NVIDIA 310.32 driver for 64-bit Linux sys-
tems. We used Intel’s SDK for OpenCL Applications 2013 XE
Beta to run our operators on the CPU.

5.2 Microbenchmarks
We use microbenchmarks to get an understanding of the per-

formance characteristics and scaling behaviour of single operators.
Each microbenchmark was created by piping a simple SQL query
containing the operation of interest through MonetDB’s EXPLAIN
command. The resulting plan was then manually stripped of un-
necessary operators to focus on the relevant parts. Unless other-
wise noted, all microbenchmarks were run on synthetic, uniformly
distributed test data.

We ran each benchmark ten times, measuring the average run-
time across those invocations. Single timings were measured with
millisecond accuracy using MonetDB’s mtime.msec() function. For
the GPU configuration, measurements do not include data transfer
to or from the device, as we are only interested in the actual op-
erator performance. The results of our experiments are depicted
in Figure 5. In the figures, CPU & GPU denote the runtime of
our Ocelot operators on the respective configurations, MS denotes
MonetDB’s sequential performance, and MP MonetDB’s perfor-
mance when utilizing all cores. If a line for GPU measurements
ends midway, we reached the device memory limit for this opera-
tor.

5.2.1 Selection
Figure 5(a) shows the scaling behavior for a range10 selection

with .05 selectivity. As expected, the operation scales linearly
with the input size on all configurations. It is interesting to note
that Ocelot is faster on the CPU than parallel MonetDB. This is
caused by Ocelot’s selection operator generating bitmaps as a re-
sult, while MonetDB returns the list of qualifying oids – which is
simply larger. Figure 5(b) shows the impact of predicate selectivity
for a range selection on a 400MB column. Since Ocelot returns
bitmaps, the runtime stays constant, while MonetDB has to mate-
rialize the list of qualifying oids, which gets more expensive as the
result set grows.

10We only measured range selections, as point selections use a hash
selection in MonetDB, which Ocelot does not support yet.

5.2.2 Left Fetch Join
The left fetch join is one of the most frequently used operators

in MonetDB/Ocelot. Its main task is to merge two columns, for
instance when running a projection, building a result set, or running
a PK-FK join using a join index. Figure 5(c) shows how the runtime
of the left fetch join changes with increasing input size. For this
benchmark, two columns of the same relation were joined via their
row identifiers, i.e., the left fetch join performs a projection of two
columns. As expected, all configurations scale linearly with the
input size. The relative positioning of the four configurations meets
the expectations: Ocelot is as fast11 as the parallel – and faster than
the sequential – MonetDB instance when running on the CPU, and
is clearly the fastest option, when running on the GPU.

5.2.3 Aggregation
Figure 5(d) shows the runtimes of the minimum aggregation op-

erator. While the operation scales linearly with the input size for
all configurations, it is interesting to note that parallel MonetDB
is roughly 30% faster than Ocelot on the CPU. This is somewhat
surprising, as aggregation is an operation that is very easy to paral-
lelize and should therefore not introduce a significant performance
penalty. We believe that this issue is likely caused by either a com-
piler or a runtime problem of the used Intel OpenCL SDK, which
was still a beta version when we ran the experiment.

5.2.4 Hash Table Creation
As discussed in Section 4, our hashing algorithm uses atomic

operations to build a hash table in parallel. Especially on the CPU,
these atomic operations lead to a drastic loss in performance, as
can be seen in Figure 5(e), which illustrates the time it takes to
build a hash table for a column with 100 distinct values. While our
algorithm scales linearly with the input, it is clearly slower than
the sequential hash table creation used by MonetDB. Figure 5(f)
shows how the number of distinct values affects the time to build
a hash table. Since resolving a hash collision in parallel is rather
costly, hashing in Ocelot becomes more expensive as the number
of distinct values – and thus hash collisions – grows. In contrast
to the other configurations, the hashing performance of Ocelot on
the CPU actually increases, due to the higher overhead caused by
atomic operations frequently accessing the same memory address.
Interestingly, the GPU does not show this pattern.

Looking at these results, it is obvious that hashing is one of the
major shortcomings of Ocelot. This is partly caused by the inherent
difficulty of building a global hash table in parallel – an operation
that usually requires either partitioning or extensive synchroniza-
tion efforts. In order to make Ocelot fully competitive, it will be vi-
tal to invest further research into a more efficient, portable hashing
strategy that does not rely extensively on atomic operations. This
could for instance build on work from hashing in main-memory
database systems, which use partitioning to avoid building a single
global hash table [26].

5.2.5 Grouping
Figure 5(g) illustrates how the group-by operator scales with in-

creasing input size on a column with uniformly distributed values
from 1 to 100. As can be seen, the operator scales linearly for
all configurations. Figure 5(h) shows how the group-by operator
scales when we increase the number of groups, fixing the size of

11Note that we excluded the time required to merge the final result
for the parallel MonetDB configuration. This final step introduced
significant overhead in our test scenario, increasing the runtime by
about one order of magnitude.
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(c) Left fetch join scaled by input size.
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Figure 5: Microbenchmarks.

the grouping column to 400MB. There are some interesting ob-
servations: First, Ocelot on the CPU is clearly the slowest option
among the tested configurations. Second, even when running on the
GPU, Ocelot is only as fast as parallel MonetDB. This can be ex-
plained by the shortcomings of Ocelot’s parallel hashing algorithm,
which is extensively used by the grouping operator.

5.2.6 Hash Join
We tested our hash join implementation with a primary key - for-

eign key (PK-FK) join scenario. In the experiment, we increased
the size of the probing table, while keeping the build side fixed to
100 keys. Looking at Figure 5(i), we observe12 linear scaling with
the input size for all configurations. Seemingly, once the hash-table
is built, the actual look-up is highly efficient in Ocelot, clearly out-
performing both parallel and sequential MonetDB. Since building
hash-tables is highly expensive compared to actually using them,
we maintain a cache of all built hash tables of base tables in the
Memory Manager.

12Note that the measurements for this experiment do not include the
time it takes to build the hash table.

5.2.7 Sort
Figure 6 shows the performance of our sorting operator. As dis-

cussed in Section 4, Ocelot uses a binary radix sort implementation
[22], which requires a constant number of passes over the whole
data set. The number of passes depends on the size of the key and
the chosen radix. For the CPU implementation, we use a radix of
eight bits, for the GPU a radix of four bits. We observe linear sort-
ing performance with an increasing input size for all configurations.
With this sort strategy, both on CPU and GPU Ocelot outperforms
MonetDB’s sort algorithm, which is based on quick- and merge-
sort.

5.3 TPC-H
In this Section, we demonstrate the performance of Ocelot when

executing complete SQL queries. For these experiments, we chose
the TPC-H benchmark [36], modifying it slightly to match the fea-
ture set of Ocelot. Details about the modifications can be found
in Appendix A13. While these modifications change the size and
shape of the final result sets, they do not impact performance com-

13Note, while the workload in the Appendix contains query 18, we
had to skip it due to problems with MonetDB.
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Figure 6: Performance of the sort operation.

parisons with MonetDB. We used TPC-H in scale-factors 1, 2, 4, 8
& 50 for our experiments.

Each query was run directly from the MonetDB SQL interface,
using MonetDB’s optimizer and Ocelot’s query rewriter to trans-
parently generate a correct query plan that uses Ocelot’s operators.
For each query, we computed the average runtime over five runs,
using the timing reported by the SQL front-end of MonetDB as our
measurements. The collected measurements can be seen in Figure
5.3.

All experiments were performed using a hot cache, i.e., we ran
each query multiple times and only started measuring with the sec-
ond run. For the GPU measurements, this means that parts of the
input were already cached on the device when measurement be-
gan. However, the measured times still contain all data transfer of
uncached input data and the complete result transfer time.

5.3.1 Small Data Set
For the first test series, we ran our workload on a TPC-H data set

with a scale factor of one. The results of this experiment are de-
picted in Figure 7(a). A few interesting observations: First, Ocelot
on the CPU clearly offers the worst performance. The runtimes
are often multiple times slower than even those of sequential Mon-
etDB. In fact, there is not a single query where any other configura-
tion is slower than Ocelot on the CPU. Second, Ocelot on the GPU
offers competitive performance to MonetDB: For most queries, we
outperform the parallel MonetDB configuration. In particular, the
GPU is only significantly slower for query 21, which contains sev-
eral joins that require hashing. In summary, for small data-sets,
Ocelot offers very good performance on the GPU. However, the
CPU implementation fails to meet the expectations for this data
set.

5.3.2 Intermediate Data Set
For the next test series, we increased the data volume slightly

to a scale-factor of eigth. Figure 7(b) shows the measurements for
this experiment. Looking at the figure, we see a much more bal-
anced picture than in the last case. The performance difference
between parallel MonetDB and Ocelot on the CPU are much less
dramatic, with Ocelot offering clearly competitive runtimes for sev-
eral queries. However, there are still a few queries where Ocelot
is much slower than MonetDB, in particular queries 10, 11, 17,
and 21. Taking a closer look at these queries, we again found
that the primary offender for this drop in performance were hash-
join operations. When running the intermediate-sized scenario on
the GPU, Ocelot still offers very good performance. However, the
performance lead over parallel MonetDB is visibly smaller than in
the last scenario. This is caused by device memory limitations on

the graphics card: The scale-factor eight TPC-H instance was the
largest one we could run on the graphics card. Internally, Ocelot
had to continuously swap data in and out of the device memory
to free up resources during query execution. This incurred high
data transfer costs, that ate up the performance lead of Ocelot over
MonetDB.

Looking at the results of this experiment, it seems that Ocelot
on the CPU seems to have a better scaling behaviour than Mon-
etDB. While Ocelot was clearly outmatched for the small scenario,
it can provide competitive performance when the data volume is in-
creased. We decided to take a closer look at the scaling behaviour
of Ocelot with increasing data volume. For this evaluation, we took
query 01 of TPC-H and measured its runtime on TPC-H instances
with increasing scale-factors. Figure 7(d) illustrates the results of
this experiment. There are a few interesting observations. First, as
expected, all configurations scale linearly with the input size. How-
ever, on the GPU, there is a clear non-linear drop in performance for
the larger scale-factor, which is caused by increased data transfer
due to swapping operations. Second, by extrapolating the measure-
ments in Figure 7(d) to an empty dataset, we can see that Ocelot
has roughly a one second overhead when running on the CPU, ex-
plaining the bad performance for the small input size. For all other
configurations, this extrapolated overhead estimate is close to zero.
Note that this overhead is neither caused by Ocelot itself, nor by
a fundamental limitation of the programming model, as in those
cases the GPU trend should show a similar overhead. Instead, we
believe that this indicates framework overhead that is introduced by
the Intel OpenCL SDK. We hope that future releases of the SDK
will improve performance and help to remove this overhead, so that
Ocelot becomes competitive even for small data sets when running
on the CPU.

5.3.3 Large Data Set
For the final test series, we tried to minimize the impact of the In-

tel OpenCL framework overhead on our measurements by scaling
the test up to a very large data set. We decided to pick a scale-factor
of 50 for this experiment. Figure 7(c) shows the results of for se-
quential & parallel MonetDB, and Ocelot on the CPU. Due to the
small amount of device memory, we could not use the graphics card
for this experiment. The results clearly show that Ocelot can com-
pete with the parallel MonetDB implementation for large data sets.
In fact, apart from three queries, Ocelot is on par – or even outper-
forms – MonetDB. This confirms our belief, that the Intel OpenCL
SDK we used has some performance issues with small data sets.

5.4 Summary of Results
In this paper, we wanted to demonstrate that a hardware-oblivious

database engine design is feasable and can provide competitive per-
formance to hand-tuned parallel database operators. To achieve
this goal, we ran a series of experiments comparing our hardware-
oblivious prototype Ocelot against MonetDB.

While our experiments showed comparable – or even superior –
performance in most scenarios, there were also multiple cases for
which our prototype was clearly beaten by MonetDB. However, we
believe that future iterations of Ocelot will close this performance
gap. There are multiple reasons for this: First, Ocelot is at an early
development stage and still has several opportunities to improve
performance, e.g. by fine-tuning parameters, introducing new al-
gorithms, and optimizing existing ones. Second, existing OpenCL
frameworks and compilers are still in their infancy, and often have
bugs and performance problems. We believe that as OpenCL be-
comes more mature, and as vendors become more familiar with it,
we will automatically see performance improvements. Third, we
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Figure 7: TPC-H Measurements.

were reusing MonetDB’s query plans, which were generated by
a query optimizer that is tuned towards CPU-based architectures.
Given that different compute devices have vastly different capabil-
ities and characteristics, it is likely that they also require different
query plans to provide optimal perfomance. Ideally, an “hardware-
oblivious optimizer” would understand these differences and take
them into account during plan generation.

Taking these considerations into account, and given that Ocelot
offered competitive performance in most experiments, we achieved
our goal of demonstrating that a hardware-oblivious database de-
sign is not only feasible, but is indeed a solid potential choice when
building a parallel database engine for tommorrow’s hardware.

6. RELATED WORK
Already back in 1978, DeWitt proposed to use co-processors to

accelerate data processing in DIRECT [13]. However, at the time,
these co-processors were rapidly overtaken by the fast development
of single-core CPUs. With the wide-spread availability of graphics
cards, the interest in data co-processing grew anew. Govindaraju
et al. presented their work on relational operators on graphics
adapters in [17]. He et al. investigated relational query processing
on GPUs by implementing a complete set of relational operators
for the GPU and a distinct set for the CPU in their custom-tailored
database system GPUDB [19]. In general, all of those systems were
limited by the small amount of device memory, and the compara-
bly slow PCIe bus. In [21], Heimel et al. suggested circumventing
this problem by using a GPU to assist during query optimization
instead. Besides graphics cards, there is a plethora of work on
data processing on other non-traditional architectures: The work
of Mueller et al. explained how to express database operations us-

ing the building blocks of FPGAs [28]. Gold et al. analyzed data
processing on network processors [15] and Heman et al. addresses
data processing on Cell processors [23].

A common point among these research papers is the focus on a
single architecture. They analyze the suitability of a certain device
for data processing considering performance. While this is a valid
and important aspect on it’s own, our approach differs greatly. We
focus on the maintainability and complexity of a system incorporat-
ing more than just CPUs for data processing and show that through
using hardware abstraction, we arrive at a highly portable system
whose performance is competitive to hand-tuned implementations.

The benefit of aiming for hardware-oblivious operations has been
demonstrated before, for instance by Balkesen et al. in [5], who fo-
cus on auto-tuning a hash-join operator to different multi-core ar-
chitectures. There has also been work on designing programming
models that can easily be mapped to multiple architectures. An ex-
ample for this is the data-parallel Haskell project [11], which has
been demonstrated to be easily mappable to both CPU and GPUs
[27]. However, to the best of our knowledge, we provide the first
analysis of designing a hardware-oblivious database engine that tar-
gets such diverse architectures as CPUs and GPUs.

7. FUTURE WORK
At the moment, Ocelot uses the exact same algorithm on all de-

vices, which is probably overly optimistic: It will thererefore be
interesting to take a closer look at the limits of hardware-oblivious
designs. As a first step, we plan to provide a set of alternative
algorithms for each operator, with the optimizer selecting the best-
fitting algorithm for the given device. This will require an auto-
matic understanding of the performance characteristics of the given
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hardware, which could – for instance –, be obtained by automati-
cally generating a device profile from standardized benchmarks.

Another restriction of Ocelot is that it only uses one device at a
time. Reasonably supporting multiple devices would call for auto-
matic operator placement. As a prerequisite, this requires an un-
derstanding of specific hardware properties, which could also be
based on automatically generated device profiles. Once the cost
model is defined, a hardware-aware query optimizer strategy is re-
quired to decide on the actual placement. This work could build on
existing work on self-tuning cost models and search strategies for
CPU/GPU hybrids [9, 19]. Given the heterogeneous environments
that Ocelot targets, it would also be highly interesting to investigate
non-traditional cost-metrics for query optimization, such as energy
consumption or (monetary) cost per result tuple.

While the kernel programming model offers a suitable abstrac-
tion for hardware-oblivious parallel operators, it is rather low-level
and has a steep learning curve. This makes it a bad choice for a
user-facing programming model: Designing or adopting a different
model will be essential to support more complex user-defined func-
tions. This could build on existing work on programming models
for large-scale data processing like MapReduce [12] or PACT [6],
or programming languages for multi-core architectures like data-
parallel Haskell [11]. In order to fully support such a model, we
would also require a code generation module that maps the model
to OpenCL code.

8. CONCLUSION
This paper motivates the idea of designing database engines in

a hardware-oblivious manner to cope with the increasingly diverse
hardware landscape. Our proposed design centers around a single
set of operators, which are implemented against an abstract hard-
ware representation. At runtime, a vendor-provided driver maps
this abstract representation down to the actual hardware. This ap-
proach reduces the development overhead for database systems that
support multiple architectures.

We demonstrated the feasibility of such a design by present-
ing Ocelot14, our hardware-oblivious extension of the open-source
column-store MonetDB. Ocelot uses OpenCL to implement a set
of hardware-oblivious drop-in replacements for MonetDB’s opera-
tors. Through experimental evaluation against MonetDB via micro-
benchmarks and a TPC-H-derived workload, we demonstrated that
a hardware-oblivious design can achieve competitive performance
when running on a multi-core CPU. Furthermore, we could show
that – if the problem fits onto the device memory – we can outper-
form MonetDB by running Ocelot on a graphics card.
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APPENDIX
A. MODIFICATIONS TO TPCH-H

Due to the limited scope of our implementation, we had to make
some changes to TPC-H [36] for the evaluation. While these mod-
ifications change the size and content of the final result sets, they
do not impact our performance comparison with MonetDB. The
schema modifications were relatively straightforward: Since Ocelot
does not support operations on data types that are larger than four
bytes, we replaced all DECIMAL fields by REAL fields.

The query modifications were more involved since we needed to
remove unsupported features. In particular, Ocelot does not sup-
port operations on strings beside equality comparisons, joins be-
tween eight-byte columns, multi-column sorting, and an efficient
top-k operator for limit operations. Note that those missing oper-
ations are not caused by any fundamental restriction of the kernel
programming model, and could be integrated with moderate over-
head.

A.1 Modified Workload
In total we omitted seven queries (2, 9, 13, 14, 16, 20 and 22),

and modified six queries (1, 3, 7, 10, 18 and 21). The remaining
nine queries were not modified. The detailed list of changes is
given next:

Q1 Removed the sorting clause for l linestatus.

Q2 Omitted, since it requires both a string like expression and a
join between eight-byte columns in the MonetDB plan.

Q3 Removed the sorting clause for o orderate. Removed limit ex-
pression.

Q7 Removed the sorting clauses for supp nation and l year.

Q9 Omitted, since it requires a like expression on p name.

Q10 Removed limit expression.

Q13 Omitted, since it requires a like expression on p comment.

Q14 Omitted, since it requires a like expression on p type.

Q16 Omitted, since it requires a like expression on p type.

Q18 Removed the sorting clause for o orderdate. Removed limit
expression.

Q20 Omitted, since it requires a like expression on p name.

Q21 Removed the sorting clause for s name.

Q22 Omitted, since it requires substring expressions on c phone.
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