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ABSTRACT
Deco is a comprehensive system for answering declarative queries
posed over stored relational data together with data obtained on-
demand from the crowd. In this paper we describe Deco’s cost-
based query optimizer, building on Deco’s data model, query lan-
guage, and query execution engine presented earlier. Deco’s objec-
tive in query optimization is to find the best query plan to answer a
query, in terms of estimated monetary cost. Deco’s query semantics
and plan execution strategies require several fundamental changes
to traditional query optimization. Novel techniques incorporated
into Deco’s query optimizer include a cost model distinguishing
between “free” existing data versus paid new data, a cardinality es-
timation algorithm coping with changes to the database state dur-
ing query execution, and a plan enumeration algorithm maximizing
reuse of common subplans in a setting that makes reuse challeng-
ing. We experimentally evaluate Deco’s query optimizer, focusing
on the accuracy of cost estimation and the efficiency of plan enu-
meration.

1. INTRODUCTION
Crowdsourcing [8] enables programmers to incorporate human

computation into a variety of tasks that are difficult for computer
algorithms alone to solve well, e.g., tagging images, categoriz-
ing products, and extracting sentiments from Tweets. However, to
take advantage of crowdsourcing in practice, programmers have to
write custom code using low-level APIs, which leads to some com-
mon challenges even for simple applications: improving data qual-
ity by resolving inconsistencies in crowdsourced data, integrating
crowdsourced data with existing data, and optimizing crowdsourc-
ing workflows for monetary cost and latency.

To address these challenges, we are developing Deco (for “declar-
ative crowdsourcing”) [18, 19, 20], a system that answers declar-
ative queries posed over stored relational data together with data
obtained on-demand from the crowd. In [18], we defined a data
model and a query language for Deco: The data model was de-
signed to be general, flexible, and principled; the query language
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extends SQL with simple constructs necessary for crowdsourcing.
Based on the data model, we defined a precise semantics for ar-
bitrary queries. In [20], we described Deco’s query plans, and
how the system executes them to minimize monetary cost while re-
ducing latency. Deco’s query execution engine uses several novel
techniques to overcome the limitations of traditional query execu-
tion models in the crowdsourcing setting, including a hybrid ex-
ecution model, incremental view maintenance inside query plans,
two-phase query execution, and dynamic fetch prioritization.

In this paper, we describe Deco’s cost-based query optimizer.
Our goal is to find the best query plan to answer a query, where
“best” means the least estimated monetary cost across all possi-
ble query plans. (Recall in [20] we described how to execute a
given plan with least monetary cost. Now we seek to find the best
overall plan.) Although Deco’s query optimizer has similar overall
structure to a traditional query optimizer, there are several funda-
mental differences in plan costing and selection that needed to be
addressed in our setting, to reflect Deco’s query semantics and plan
execution strategies.
Distinguishing between existing vs. new data: To estimate mon-
etary cost properly, Deco’s cost model must distinguish between
existing data obtained by past queries (or otherwise present in the
database), versus new data to be obtained on-demand from the
crowd. Existing data is “free”, so all of the monetary cost is as-
sociated with new data. Deco’s cost model must take into account
the existing data that might contribute to the query result, in order
to estimate the cardinality of new data required to produce the re-
sult. In our setting, the estimated cardinality of new data directly
translates to the monetary cost to answer the query.
Estimating cardinality and database state simultaneously: As
Deco executes a query, it also changes the state of database by stor-
ing new data obtained from the crowd. Cardinality estimation obvi-
ously must be based on some final database state, which needs to be
estimated as well. Deco’s cardinality estimation algorithm simulta-
neously estimates cardinality and the end-state of the database, us-
ing a top-down recursive process: Starting from the root operator,
each operator passes a requirement for the end-state to its subplans;
as the recursion unwinds, the subplans return their estimated cardi-
nality based on the expected end-state. Note that Deco’s cardinality
estimation is holistic: the cardinality of a subplan depends on the
entire plan, not just the subplan.
Exploiting limited subplan reuse opportunities: In Deco, dif-
ferent physical plans corresponding to the same logical plan may
produce different query results. (We will see in our query seman-
tics that many possible results are valid in a crowdsourcing set-
ting.) Thus, unlike in traditional optimization, estimated cardinality
is a property of physical plans rather than logical plans. As a re-
sult, in comparison with traditional plan enumeration, there are far
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fewer opportunities to avoid redundant computation across alterna-
tive plans or prune inferior subplans early. Combined with holistic
cardinality estimation, Deco does need to explore a large number
of plans, but we reuse common subplans to the extend possible.

Our experiments show that Deco’s query optimizer succeeds in
choosing inexpensive query plans for a wide variety of settings,
within reasonable optimization time.

The rest of the paper proceeds as follows:
• We review Deco’s data model, query language, and query exe-

cution engine (Section 2), summarizing material from [18, 20].
• We describe how Deco estimates the monetary cost of execut-

ing a given query plan (Section 3).
• We describe the search space of alternative Deco query plans

(Section 4).
• We present Deco’s plan enumeration algorithm, which explores

the search space and applies the cost estimation algorithm to
choose the best plan (Section 5).

• We experimentally evaluate Deco’s query optimizer in terms
of the accuracy of cost estimation and the efficiency of plan
enumeration (Section 6).

Related work is covered in Section 7, and we conclude with future
directions in Section 8.

2. PRELIMINARIES
We begin by reviewing Deco’s data model and query language,

then we briefly describe Deco’s query execution engine. For more
details see [18, 20], from which these summaries are drawn.

2.1 Data Model and Query Language
Conceptual Relation: Conceptual relations are the logical rela-
tions specified by the Deco schema designer and queried by end-
users and applications. The schema designer also partitions the
attributes in each conceptual relation into anchor attributes and de-
pendent attribute-groups. Informally, anchor attributes typically
identify “entities” while dependent attribute-groups specify prop-
erties of the entities.

As a running example, suppose our users want to query two con-
ceptual relations with information about countries and cities:

Country(country, [language], [capital])

City(city, country, [population])

Each dependent attribute-group (single attributes in this case) is en-
closed within square brackets.
Raw Schema: Deco is designed to use a conventional RDBMS as
its back-end. The raw schema—the schemas for the data tables ac-
tually stored in the underlying RDBMS—is derived automatically
from the conceptual schema, and is invisible to both the schema de-
signer and end-users. For each relation R in the conceptual schema,
there is one anchor table containing the anchor attributes, and one
dependent table for each dependent attribute-group; dependent ta-
bles also contain anchor attributes.

For our example relation Country, we have the raw schema:
CountryA(country)

CountryD1(country, language)

CountryD2(country, capital)

Fetch Rules: Fetch rules allow the schema designer to specify how
data can be obtained from humans. A fetch rule takes the form
A1 ) A2 : P , where A1 and A2 are sets of attributes from one
conceptual relation (with A1 = ? permitted), and P is a fetch pro-
cedure that implements access to human workers. When invoked,
the fetch rule A1 ) A2 obtains new values for A2 given values

for A1, and populates raw tables using those values for attributes
A1 [A2. The schema designer also specifies a fixed monetary cost
for each fetch rule, to be paid to human workers once they complete
the fetch rule.

Here are some example fetch rules for our running example:
• [Country] ? ) country: Ask for a country name, inserting

the obtained value into raw table CountryA.
• [Country] country) capital: Ask for a capital given a coun-

try name, inserting the resulting pair into table CountryD2.
For a full description of the allowable fetch rules in Deco, see [18].
Resolution Rules: Suppose we’ve obtained values for our raw ta-
bles, but we have inconsistencies in the collected data. We use res-
olution rules to cleanse the raw tables—to get values for conceptual
relations that are free of inconsistencies. For each conceptual rela-
tion, the schema designer can specify a resolution rule ?! A : f

for the anchor attributes A treated as a group, and one resolution
rule A ! D : f for each dependent attribute-group D. Resolu-
tion function f is a black-box that adheres to a simple API, taking
as input a set of values for the right-hand side attributes (corre-
sponding to a specific value for the left-hand side) and returning a
“cleaned” set of values. If the empty set is returned, more input
values are needed to produce an output. In addition, the schema
designer should specify the minimum and average number of input
values needed for f to produce an output value, which is used both
for cost estimation and to optimize plan execution.

In our example, we might have the following resolution rules:
• [Country] ?! country : dupElim
• [Country] country! language (or capital) : majority-of-3

Resolution function dupElim produces distinct country values for
Country. Resolution function majority-of-3 produces the majority
of three or more language (or capital) answers for a given coun-
try. We assume a “shortcutting” version that can produce an answer
with only two values, if the values agree. Note any resolution func-
tions are permitted, not just the types used here for illustration.
Data Model Semantics: The semantics of a Deco database is de-
fined as a potentially infinite set of valid instances for the concep-
tual relations. A valid instance is logically defined by a Fetch-
Resolve-Join sequence: (1) Fetching additional data for the raw
tables using fetch rules; this step may be skipped. (2) Resolving
inconsistencies using resolution rules for each of the raw tables.
(3) Outerjoining the resolved raw tables to produce the conceptual
relations.
Query Language and Semantics: A Deco query Q is simply a
SQL query over the conceptual relations. Deco’s query semantics
dictate that the answer to Q must represent the result of evaluating
Q over some valid instance of the database. Since by this semantics
Q could always be answered correctly using the “current” valid
instance (which may be empty), we add to our query language a
“MinTuples n” constraint: The result of Q must be over some valid
instance for which the answer has at least n tuples without NULL
attributes. (As future work we will address other constraints such
as “MaxCost c” and “MaxTime t” [20].)

In this paper we consider Select-Project-Join queries.

2.2 Query Execution
Suppose the query optimizer has selected a plan for a query with

“MinTuples n” constraint. The query execution engine is designed
with the primary goal of producing at least n result tuples while
minimizing monetary cost. A secondary goal is to reduce latency
by exploiting parallelism when accessing the crowd. Achieving
both goals during query execution translates to the following over-
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Figure 1: Query plans

all objective: Maximize parallelism while fetching data from the
crowd (to reduce latency), but only when the parallelism will not
waste work (to minimize monetary cost).

In our design of Deco, the query optimizer selects the plan with
the least estimated monetary cost, without explicitly considering la-
tency. Then the execution engine considers both cost and latency as
outlined above. We could alternatively have used a multi-objective
approach [4] in the optimizer, where it estimates both monetary
cost and latency, and offers a tradeoff between them. We did not
use this approach in our initial optimizer since latency is difficult
to estimate in a crowdsourcing setting [10, 15], and empirically we
found cost and latency to be correlated. For now, users can trade
higher cost for lower latency by increasing the degree of parallelism
when executing the chosen plan (as shown with experimental re-
sults in [20]). As future work, we may consider multi-objective
optimization and compare the results with our current approach.

To meet our objective while respecting Deco’s semantics, we in-
corporated several novel techniques into Deco’s query execution
engine: a hybrid execution model, incremental view maintenance
inside query plans, two-phase query execution, and dynamic fetch
prioritization. These techniques are discussed in detail in [20].
Here we summarize only those aspects that are relevant to the query
optimization problem.
• Deco executes queries in two phases. In the materialization

phase, the “current” result is materialized using the existing
contents of the raw tables without invoking additional fetches.
If this result does not meet the MinTuples constraint, the ac-
cretion phase invokes fetch rules to obtain more results. This
second phase extends the result incrementally as fetch rules
complete, and invokes more fetches as necessary until the Min-

Tuples constraint is met.
• In certain cases, minimizing monetary cost is especially diffi-

cult because existing data can make some fetches more prof-
itable than others. Deco’s query execution engine incorporates
an algorithm that identifies specific “good” fetches. Individ-
ual query operators do not always have enough information to
choose the good fetches, so our approach is to invoke more
fetches than needed in parallel, but prioritize them so the bet-
ter fetches are more likely to complete first (thus minimiz-
ing cost). When enough data has been obtained, outstanding
fetches are canceled.

We will see in Section 3 how Deco’s cost estimation algorithm
takes these aspects into account.
Example Query Plan: Figure 1a shows one possible query plan
for the following query on the example database from Section 2.1:

SELECT country, capital FROM Country

WHERE language=‘Spanish’ MINTUPLES 8

Abbreviations in the plan should be self-explanatory. Deco-specific
query operators used in this plan are as follows:
• The Fetch operator corresponds to a fetch rule A1 ) A2 : P .

It receives values for A1 from its parent and invokes procedure
P . It does not wait for answers, so many procedures may be
invoked in parallel. When values for A1 [ A2 are returned by
P , they are sent to one or more Scan operators that work with
the Fetch operator. Scan operators insert the new tuples into
raw tables and also pass them up to their parent.

• The Resolve operator corresponds to a resolution rule A1 !
A2 : f . It receives from its child tuples containing attribute
values for A1 [ A2. It applies function f based on groups of
tuples with the same A1 value, and passes up resolved values
for A1 [A2.

• The DLOJoin (for Dependent Left Outerjoin [11]) operator is
similar to a relational indexed nested-loop join. It receives
attribute values from its outer child, which it passes to its inner
child to obtain additional attributes that constitute join result
tuples. In our plans, DLOJoin always obtains anchor attributes
from its outer child and dependent attributes from its inner.

• The MinTuples operator determines when the answer is com-
plete.

We describe the case where there are no existing tuples in any of
the raw tables. First, the root operator sends eight getNext requests
to its child operator (based on MinTuples). These requests propa-
gate down the left (outer) side of the joins, and eventually invoke
fetch rule ? ) country eight times, without waiting for answers.
At this point, there are eight outstanding fetches in parallel.

As these outstanding fetches complete, the new country values
are inserted into raw table CountryA and passed up the plan by
the Scan operator. Through the DLOJoin, new countries trigger
invocations of fetch rule country ) language. For each coun-

try value, two instances of this fetch rule are invoked in parallel
because the resolution function majority-of-3 requires at least two
language values as input. At this point, we may have many fetches
going on in parallel: some to fetch more countries, and some to
fetch languages for given countries.

Until the MinTuples constraint is met, the query plan invokes
additional fetches as needed. For example, if the two instances
of fetch rule country ) language for a given country return two
different language values, the plan invokes another instance of the
same fetch rule to obtain the third language value. Likewise, as
soon as a resolved language value for a certain country turns out
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to not be Spanish, the plan invokes a new instance of fetch rule
? ) country. For countries whose resolved language value is
Spanish, the plan obtains capital values for the country, in parallel
with other fetches similarly to how language values were obtained.
Once the MinTuples constraint is met, the result tuples are returned
to the client.

For further details of Deco’s query execution engine, see [20].

3. COST ESTIMATION
We describe how Deco’s query optimizer estimates the cost of

executing a given query plan. As discussed in Section 1, our op-
timization metric is the total monetary cost incurred by fetches.
Thus, Deco’s cost estimation algorithm takes as input a query plan
and statistics about data (both local data and crowdsourced data),
and produces as output the estimated cost in dollars. In a sense our
cost model estimates resource consumption in a similar fashion to
traditional database systems, except the resource is money instead
of CPU, I/O, and communication costs.

We assume there is a fixed monetary cost associated with each
fetch rule, and this cost is specified by the schema designer through
Deco’s data definition language (DDL). For example, fetch rules
country ) language and country ) capital may cost $0.03 and
$0.05 per fetch, respectively. Although costs may differ across
fetch rules, we assume the cost-per-fetch of one rule A1 ) A2

does not depend on the specific values for A1 (even though, con-
ceivably, the level of difficulty to answer such questions may vary
based on the values for A1).

It turns out we can reduce the monetary cost estimation problem
to the cardinality estimation problem. However, the notion of car-
dinality from traditional databases has to be adjusted, since Deco
inserts new tuples into raw tables during query execution. In Deco,
we estimate cardinality of a subplan or operator as the total num-
ber of output tuples expected in order to obtain a query result with
a sufficient number of tuples. Since no Deco query operators ex-
cept Fetch cost money, we have the following formula for estimated
monetary cost:

monetary cost =

X

Fetch operatorF

F.cost-per-fetch⇥ F.card (1)

where F.cost-per-fetch and F.card denote the cost-per-fetch and
estimated cardinality of Fetch operator F , respectively.

Because the schema designer specifies F.cost-per-fetch, esti-
mating the monetary cost amounts to estimating F.card, the cardi-
nality of each Fetch operator F . Of course to estimate the cardinal-
ity of each Fetch operator, we need to estimate cardinality for other
parts of the plan as well. The next section gives a high-level de-
scription of our challenges in cardinality estimation. Sections 3.2
and 3.3 specify the cardinality estimation algorithm and provide
cardinality and cost estimation examples.

3.1 Challenges and Approach
Deco’s query semantics gives us several new challenges in car-

dinality estimation.
Existing vs. New Data: Under the valid-instance semantics, Deco’s
query result must reflect all existing data in the raw tables. In addi-
tion, Deco obtains new data from the crowd until a sufficient num-
ber of result tuples are present. Since existing data is “free” and
new data is not, Deco’s cost model must distinguish between ex-
isting data and new data to estimate monetary cost properly. We
will see in Section 3.2 how Resolve and Fetch operators take into
account the amount of relevant existing data to estimate the cardi-
nality of required new data.

Statistical Information: To estimate cardinality we require some
statistical information about both existing data and new data. For
existing data, we use statistical information maintained by the back-
end RDBMS. Since we have the limited knowledge about reso-
lution functions, we rely on the statistics of the resolved raw ta-
bles rather than the raw tables. For data obtained from the crowd,
we primarily rely on information provided by the schema designer
and/or end-user. We require a selectivity factor to be provided by
the schema designer for each resolution function (further discussed
below). For filters, we allow the end-user to provide a selectivity
factor; if none is provided we resort to “magic numbers” [5]. As
a simple alternative, the end-user can specify that new data is ex-
pected to follow the same statistics as existing data.
Selectivity Factors: The selectivity factor for a predicate has a
slightly different meaning in our setting than in traditional databases.
Essentially, a selectivity factor of � for a predicate p over concep-
tual relation R says that a tuple of R (current or future) has a �

chance of satisfying p. For example, the selectivity of predicate
language=‘Spanish’ may be around 0.1 in the Country relation,
because there are about 20 Spanish-speaking countries out of about
200 countries in the world. For resolution functions, the selectivity
factor estimates how many output tuples are produced on average
by each input tuple. For example, the selectivity factor of resolu-
tion function majority-of-3 with shortcutting depends on how often
shortcutting is expected to happen, ranging from 1/3 (when the first
two values are never expected to agree) to 1/2 (when the first two
values are always expected to agree).
Estimating Cardinality and Database State Simultaneously: As
Deco executes a query, it also changes the state of database because
it stores newly crowdsourced data. Thus, cardinality estimation ob-
viously must be based on some estimated final database state, and
our algorithm estimates cardinality and end-state simultaneously.
Note that the end-state depends on the entire query plan: a subplan
cannot estimate the end-state without considering the rest of plan.
Therefore, Deco’s cardinality estimation must be holistic.

Cardinality estimation is a top-down recursive process. Each op-
erator calls its subplan(s) with a set of predicates, and the number of
tuples it needs from its subplan that satisfy the predicates. The pro-
cess begins with the “MinTuples n” operator calling its child with
no predicates and n tuples needed. As the recursion unwinds, sub-
plans return their estimated cardinality to their parent (with some
complexities discussed below).

For example, in Figure 1a, when the recursion reaches Fetch op-
erator 8, the operator receives predicate language=‘Spanish’ and
eight tuples needed. Since the selectivity of the predicate is 0.1,
the Fetch operator returns an estimated cardinality of 80. In Figure
1b (note the only change from Figure 1a is operator 8a, which ob-
tains countries with a certain language), Fetch operator 8a is also
called with predicate language=‘Spanish’ and eight tuples needed.
However, since the fetch rule in this case is instantiated with left-
hand side value “Spanish”, the operator expects the predicate to be
satisfied by all fetched data, and returns estimated cardinality of 8.

In some cases, Deco’s cardinality estimation is similar to esti-
mating “stopping cardinality” for traditional queries with Top (or
Limit) clauses [2]: The system estimates how many tuples a partic-
ular subplan must produce in order to produce a sufficient number
of result tuples satisfying the Top clause. However, Deco’s valid-
instance semantics forces us to use all existing data in the raw tables
regardless of the MinTuples clause, making cardinality estimation
somewhat more complex.
Propagating Cardinality: During query execution, multiple raw
tables and fetch rules may feed a single Filter operator. Thus, a
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Filter operator may process different classes of data: data from
existing raw tables; data obtained by fetch rules with a predicate
corresponding to the Filter; data obtained by fetch rules without a
predicate corresponding to the Filter. As a result, during cardinality
estimation, we cannot apply just one selectivity at a given Filter
operator. Instead, as cardinality estimates are returned up a plan,
they need to notate the breakdown of cardinality according to the
set of predicates that were received from the parent in the top-down
phase, so the right selectivity is applied.

For example, in Figure 1a, when DLOJoin operator 5 returns its
estimated cardinality of 80, it indicates that only eight tuples are
expected to satisfy predicate language=‘Spanish’. On the other
hand, in Figure 1b, DLOJoin operator 5 returns an estimated car-
dinality of 8, with all eight tuples expected to satisfy the predicate.
This breakdown provides Filter operator 4 enough information to
distinguish among different classes of data.

3.2 Cardinality Estimation Algorithm
Now we describe a procedure EstimateCard that estimates car-

dinality for each operator op in a query plan. This procedure is
specialized for each operator type and takes two parameters:
• preds: an array of k predicates (with their selectivities)
• target: a target number of output tuples (at operator op) satis-

fying the predicates in preds

Using these two parameters, operator op receives information nec-
essary for estimating its cardinality (and the end-state of the data-
base) from op’s parent operator. To estimate cardinality, opera-
tor op recursively calls the EstimateCard procedure on its children
with appropriate parameters, and uses its own arguments. Before
the EstimateCard procedure returns, operator op stores its output
in the following three member variables:
• op.card: estimated cardinality of operator op
• op.cards: an array of 2k elements representing the breakdown

of op.card by evaluation results of the k predicates in preds

• op.distincts: an array containing the number of distinct values
for each output attribute

To define op.cards[i] (0  i < 2

k) precisely, let b0, b1, . . . , bk�1

denote the binary representation of i (i.e., i =

Pk�1
j=0 bj2

k�j�1

and bj2{0, 1}). The binary value bj encodes whether predicate
preds[j] is satisfied (bj=1) or not. Thus, op.cards[i] is the esti-
mated cardinality corresponding to the combination of predicate
evaluation results encoded by the index i. The following equation
holds by definition: op.card =

P
0i2k�1 op.cards[i]. Note that

the default cards array is exponential in size, i.e., 2k. If k is ex-
pected to be large, the implementation could assume independence
and represent cards by the sum of arrays of size k, capturing differ-
ent distributions of existing and new data while reducing the space
and time complexity. We have not implemented this approach yet,
but it is a simple modification to our system.

For op.distincts, no array element can be larger than op.card.
Note we only need certain elements involved in join predicates,
although our notation is defined for all attributes. These outputs
are stored rather than simply returned to the caller for two reasons.
First, we need card values of all Fetch operators to compute the to-
tal monetary cost. Second, a card value of a Fetch operator may be
updated when the EstimateCard procedure is called again through
another parent. (Technically, except for Fetch operators, these out-
puts could be returned to the caller.) To initiate cardinality estima-
tion for a plan, we call root.EstimateCard(0, ?).

Having defined the signature of the EstimateCard procedure, we
now go through the actual implementation for each operator type.

MinTuples.EstimateCard(target, preds)
1 child.EstimateCard(this.minTuples, ?)
2 this.card child.card
3 this.cards child.cards
4 this.distincts child.distincts

Since the root of every Deco query plan is a MinTuples operator,
MinTuples.EstimateCard is the entry point of our cardinality esti-
mation algorithm as a whole. It calls EstimateCard recursively on
its child, with parameter target set to the number of tuples in the
MinTuples clause, and no predicates for parameter preds. (Note
that output tuples of the child operator of the root are guaranteed to
satisfy all predicates in the query.) When the recursive call returns,
the cardinality estimation algorithm terminates, and each F .card
stores estimated cardinality for Fetch operator F , from which we
calculate the estimated monetary cost using Equation (1).

Project.EstimateCard(target, preds)
1 child.EstimateCard(target, preds)
2 this.card child.card
3 this.cards child.cards
4 this.distincts ⇧ child.distincts

For the Project operator, the EstimateCard procedure simply con-
tinues the recursion because the cardinality does not change at all.

Filter.EstimateCard(target, preds)
1 child.EstimateCard(target, preds [ {this.pred})
2 this.card 0
3 this.cards {0, . . . , 0}
4 for i = 0 to 2

len(preds)�1 do
5 this.card this.card + child.cards[2i+1]
6 this.cards[i] child.cards[2i+1]
7 end for
8 this.distincts minelementwise(

child.distincts, {this.card, . . . , this.card})

The Filter operator recursively calls EstimateCard on its child op-
erator with its own predicate as well as the k predicates received
from its parent operator. When the recursive call returns, child.cards
contains 2

k+1 elements. Then, the Filter computes its estimated
cardinality by summing up the 2k elements whose indexes indicate
that its own predicate is satisfied.

DLOJoin.EstimateCard(target, preds)
1 outer.EstimateCard(target, preds)
2 d outer.distincts[this.pred.left]
3 if outer.cards[2len(preds)�1] > target then
4 inner.EstimateCard(

↵ ⇥ target ⇥ d / outer.card + (1� ↵) ⇥ d, ?)
5 else
6 inner.EstimateCard(d, ?)
7 end if
8 this.card outer.card
9 this.cards outer.cards

10 this.distincts outer.distincts [ inner.distincts

For the DLOJoin operator, we first call EstimateCard on the outer
child operator. We intentionally pass all predicates in preds to the
outer, even though some dependent attributes are obtained from the
inner. (We will see shortly how Resolve and Fetch operators use
these predicates to estimate the number of required anchor values.)
Note that we do not pass the left outerjoin predicate, which is al-
ways satisfied by definition.
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Once the recursive call on the outer returns, we call Estimate-

Card on the inner child to eventually estimate the number of new
dependent values required to produce a query result. Without con-
sidering dynamic fetch prioritization [20], parameter target would
be simply d = outer.distincts[this.pred.left]. However, when there
are more anchor values than needed due to existing data, fetch pri-
oritization takes effect as described in Section 2.2: Deco prioritizes
those fetches filling in dependent attributes so that a sufficient num-
ber of result tuples are produced as soon as possible. As a result,
some anchor values are not expected ever to be joined.

Since it is very difficult to predict the exact outcome of fetch
prioritization due to its heuristic approach, we discount parameter
target using a configurable weight 0  ↵  1. With ↵ = 0, we
overestimate the number of new dependent values, because joining
all d anchor values may eventually produce far more result tuples
than needed. On the other hand, with ↵ = 1, we assume optimal
fetch prioritization as well as no unfavorable correlations in the ex-
isting data, so we underestimate the number of dependent values.
In Section 6.1, we empirically determine a good range for ↵.

Resolve.EstimateCard(target, preds)
1 compute this.card, this.cards and this.distincts based on the

existing data in the resolved raw tables (using the back-end
RDBMS)

2 t this.cards[2len(preds)�1]
3 fetch.EstimateCard(

max(0, target - t), preds [ {this.resolution function})
4 card 0
5 for i = 0 to 2

len(preds)�1 do
6 card card + fetch.cards[2i+1]
7 this.card this.card + fetch.cards[2i+1]
8 this.cards[i] this.cards[i] + fetch.cards[2i+1]
9 end for

10 this.distincts this.distincts + {card, . . . , card}

The Resolve operator first computes card, cards and distincts based
on the existing data in the resolved raw tables, without considering
parameter target. Our current approach is to exploit the available
statistics provided by the back-end RDBMS. Once card, cards and
distincts are computed based on the existing data, the Resolve op-
erator calls EstimateCard procedure on its child Fetch operator to
estimate the cardinality of required new data. Since existing data
contributes to t = cards[2len(preds)�1] output tuples satisfying all
predicates in preds, parameter target is set to max(0, target�t).
Also, the Resolve operator passes the selectivity of its resolution
function as part of parameter preds.

Fetch.EstimateCard(target, preds)
1 card target

2 for each pred 2 preds do
3 if pred.left /2 this.lhs attrs then
4 card card / pred.selectivity
5 end if
6 end for
7 if this.card < card then
8 this.card card
9 this.cards {card, . . . , card}

10 for i = 0 to 2

len(preds)�1 do
11 for j = 0 to len(preds)�1 do
12 if preds[j].left 2 this.lhs attrs then
13 selectivity 1.0
14 else
15 selectivity preds[j].selectivity

16 end if
17 if i & 2

len(preds)�1�j == 0 then
18 this.cards[i] this.cards[i] ⇥ (1�selectivity)
19 else
20 this.cards[i] this.cards[i] ⇥ selectivity
21 end if
22 end for
23 end for
24 end if

As a base case of our recursive process, the Fetch operator esti-
mates its cardinality based on its associated fetch rule and the pa-
rameters target and preds. We assume that new data obtained by
the Fetch operator always satisfies those predicates in preds that
are used to instantiate the left-hand side of the fetch rule. (For ex-
ample, in Figure 1b, new countries obtained by Fetch operator 8a
satisfy predicate language=‘Spanish’.) Moreover, we assume the
other predicates in preds are independent: the probability of a new
tuple satisfying a predicate p is the selectivity of p.

Unlike all other operator types, a Fetch operator may have more
than one parent operator, when the right-hand side of its fetch rule
contains dependent attributes spanning multiple raw tables and no
anchor attributes. (Fetch operator 11a in Figure 1c is one such ex-
ample.) In this case, the EstimateCard procedure is called on the
Fetch operator as many times as the number of its parent Resolve
operators. Since the distribution of new data remains the same, the
Fetch operator simply retains the maximum estimated cardinality
across all calls.

DepJoin.EstimateCard(target, preds)
1 outer.EstimateCard(target, preds [ {this.pred})
2 inner.EstimateCard(outer.distincts[this.pred.left], ?)
3 this.card 0
4 this.cards {0, . . . , 0}
5 for i = 0 to 2

len(preds)�1 do
6 this.card this.card + outer.cards[2i+1]
7 this.cards[i] outer.cards[2i+1]
8 end for
9 this.distincts minelementwise(

outer.distincts [ inner.distincts, {this.card, . . . , this.card})

The DepJoin operator [20] is another Deco-specific query operator
that supports joining conceptual relations with predicates explicitly
specified in Where clauses. (Note the example plans in Figure 1 do
not have DepJoin operators.) As a variant of traditional dependent
join, DepJoin sends join values extracted from outer tuples to its
inner child to receive matching inner tuples. However, unlike in
DLOJoin, the inner tuples returned do not necessarily match outer
tuples and constitute join result tuples, because we cannot guaran-
tee the results of fetch rules and resolution functions that may feed
join predicates.

Roughly, our implementation of EstimateCard for DepJoin com-
bines EstimateCard of DLOJoin and Filter. One simplifying as-
sumption we make is that new outer tuples produced by the crowd
do not match existing inner tuples. This assumption will hold if
queries typically join the same combinations of conceptual rela-
tions, since past queries will tend to have materialized either both
or neither of a joining pair of tuples. Of course this assumption
may not always hold. For example, if the inner relation is queried
more frequently than the outer, the assumption can be violated to
a large degree, resulting in large error. Note in the case where we
have a bound on the number of distinct values for a join attribute,
we could potentially remove this assumption.
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MinTuples-1.EstimateCard(0, ?)
DLOJoin-3.EstimateCard(8, ?)

Filter-4.EstimateCard(8, ?)
DLOJoin-5.EstimateCard(8, {Spanish})

Resolve-6.EstimateCard(8, {Spanish})
Fetch-8.EstimateCard(5.9, {Spanish, dupElim})

card=59, cards={0, 53.1, 0, 5.9}
card=63, cards={55, 8}

Resolve-9.EstimateCard(63, ?)
Fetch-11.EstimateCard(60, {majority-of-3})

card=150, cards={90, 60}
card=63

card=63, cards={55, 8}
card=8

Resolve-12.EstimateCard(8, ?)
Fetch-14.EstimateCard(7, {majority-of-3})

card=17.5, cards={10.5, 7}
card=8

(a) Basic plan

MinTuples-1.EstimateCard(0, ?)
DLOJoin-3.EstimateCard(8, ?)

Filter-4.EstimateCard(8, ?)
DLOJoin-5.EstimateCard(8, {Spanish})

Resolve-6.EstimateCard(8, {Spanish})
Fetch-8a.EstimateCard(5.9, {Spanish, dupElim})

card=5.9, cards={0, 0, 0, 5.9}
card=9.9, cards={1.9, 8}

Resolve-9.EstimateCard(9.9, ?)
Fetch-11.EstimateCard(6.9, {majority-of-3})

card=17.25, cards={10.35, 6.9}
card=9.9

card=9.9, cards={1.9, 8}
card=8

Resolve-12.EstimateCard(8, ?)
Fetch-14.EstimateCard(7, {majority-of-3})

card=17.5, cards={10.5, 7}
card=8

(b) Reverse plan
Figure 2: Trace of EstimateCard

3.3 Cost Estimation Examples
Let us walk through two simple example runs of our cost estima-

tion algorithm. Suppose we execute the example query in Section
2.2, starting with the following resolved raw tables:

CountryA

country

Chile
Korea
Peru
Spain

CountryD1

country language

Korea Korean
Peru Spanish
Spain Spanish

CountryD2

country capital

Korea Seoul
Spain Madrid

We assume the selectivity factor of predicate language=‘Spanish’

is 0.1. Also, we assume the selectivity factors of resolution func-
tions dupElim and majority-of-3 are 1.0 and 0.4, respectively. Fi-
nally we assume each fetch costs $0.05, for all fetch rules.
Basic Plan: Figure 2(a) shows a trace of our cardinality estima-
tion algorithm for the query plan in Figure 1a. Starting with calling
EstimateCard(0, ?) on the MinTuples operator 1, we recursively
call EstimateCard until we reach Resolve operator 6. At this point,
target is eight, and preds has predicate language=‘Spanish’. Con-
sidering existing data in resolved CountryA and CountryD1, there
are two tuples satisfying the predicate (Peru and Spain), one tu-
ple not satisfying the predicate (Korea), and one tuple unknown
(Chile). Since the unknown tuple has 10% chance of satisfying the
predicate, we have card = 4 and cards = {1.9, 2.1}. To pro-
duce eight tuples satisfying the predicate, we need 8 � 2.1 =

5.9 more tuples, so Resolve operator 6 calls EstimateCard(5.9,
{language=‘Spanish’, dupElim}) on Fetch operator 8. Since the
fetch rule of operator 8 is ?) country, we have card = 59 and
cards = {0, 53.1, 0, 5.9} at Fetch operator 8.

As recursion unwinds, Resolve operator 6 and DLOJoin operator
5 have estimated cardinality of 63. Since resolved CountryD1 has
three existing tuples, Resolve operator 9 needs to produce 63�3 =

60 more tuples, and Fetch operator 11 has estimated cardinality of
60/0.4 = 150. Similarly, Filter operator 4 has estimated cardinal-
ity of eight, and Resolve operator 12 needs to produce 8 � 1 = 7

more tuples. (Note only the Spain tuple in resolved CountryD2

is “relevant” at this point.) Thus, Fetch operator 14 has estimated
cardinality of 7/0.4 = 17.5. The final estimated monetary cost is
$0.05⇥ (59 + 150 + 17.5) = $11.325.
Reverse Plan: Figure 2(b) shows a trace of our cardinality estima-
tion algorithm for the same query but using the plan in Figure 1b.

Notice that the trace is exactly same until we reach Fetch operator
8a with target of 5.9 and preds being {language=‘Spanish’, dupE-
lim}. Since the fetch rule of operator 8a is language) country,
we assume all new tuples satisfy predicate language=‘Spanish’.
Thus, we have card = 5.9 and cards = {0, 0, 0, 5.9} at Fetch op-
erator 8a. As recursion unwinds, Resolve operator 6 and DLOJoin
operator 5 have estimated cardinality of 9.9. Thus Resolve operator
9 needs to produce 9.9 � 3 = 6.9 more tuples, and Fetch opera-
tor 11 has estimated cardinality of 6.9/0.4 = 17.25. The rest of
the trace is the same as above, and the estimated monetary cost is
$0.05⇥ (5.9 + 17.25 + 17.5) = $2.0325.

Our cost estimation indicates that the basic plan is expected to
be about six times as expensive as the reverse plan for this setting.

4. SEARCH SPACE
We describe the search space of alternative plans that Deco’s

query optimizer considers. Even for Select-Project-Join (SPJ) que-
ries, Deco’s Fetch-Resolve-Join semantics enables interesting plan
alternatives. Specifically, our plan alternatives are defined by se-
lecting a join tree and a set of fetch rules.
(1) Join tree: A join tree is a binary expression tree whose op-

erators (internal nodes) are either cross-products or left outer-
joins, and whose operands (leaf nodes) are resolved raw tables.
In Section 4.1 we discuss the space of join trees we consider.

(2) Fetch rules: For each raw table, a Deco query plan requires
one fetch rule assigned to obtain additional tuples for the raw
table. Section 4.2 discusses the space of possible fetch rules.

In our setting, we construct a logical query plan based on a selected
join tree, and expand the logical plan into a set of physical plans by
selecting fetch rules. As it happens, all three plans in Figures 1a–
1c correspond to the same join tree; however, different fetch rules
were chosen. We will see different join trees in Section 4.1.

In this section we first describe the join trees, then we describe
the selection of fetch rules given a join tree. Section 5 addresses
how to explore the search space described in this section, and find
the best plan using the cost estimation algorithm described in Sec-
tion 3.

4.1 Join Tree
Given a SPJ query Q over conceptual relations, our first goal is to

find all join trees over raw tables that evaluate the cross product of
all conceptual relations in the From clause of the query Q. Based
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on a join tree, we construct a complete logical plan by placing the
query’s join and local predicates. Because we aim to minimize
monetary cost, the only sensible logical plan based on a join tree
is the one that evaluates all predicates as early as possible. Thus,
once we have all join trees for Q, it is straightforward to construct
all equivalent logical plans for Q in our search space.

Let us first consider a Deco query containing only one concep-
tual relation R in its From clause. Here we are interested in finding
all join trees equivalent to the following left-deep tree:

R = ((A ./D1) ./D2) ./ · · · ./Dk

where A and D1, . . . , Dk denote the resolved anchor table and de-
pendent tables for R, respectively. Although left outerjoins do not
commute in general, we can reorder them using the following equa-
tion when neither outerjoin predicates are between Y and Z [22]:

(X ./ Y ) ./ Z = (X ./ Z) ./ Y (2)
By repeatedly applying Equation (2) to the left-deep join tree above,
we obtain all k! left-deep join trees with A as the first (left-most)
operand and D1, . . . , Dk in any order after that.

Now consider the general case where a query Q contains n con-
ceptual relations R1, . . . , Rn in its From clause. The goal is to find
all join trees equivalent to the following default tree:

R1⇥ · · ·⇥Rn = (((A1 ./D11) ./D12) ./ · · · ./D1k1)⇥ · · ·
⇥ (((An ./Dn1) ./Dn2) ./ · · · ./Dnkn) (3)

where Ai and Di1, . . . , Diki (ki � 0) denote the resolved anchor
table and dependent tables for Ri, respectively. In addition to Equa-
tion (2), the following equation holds when the outerjoin predicate
is between Y and Z [22]:

X ⇥ (Y ./ Z) = (X ⇥ Y ) ./ Z (4)
This equation allows us to “interleave” resolved raw tables from
different conceptual relations in a join tree, opening up more op-
portunities to push down predicates (thus reducing monetary cost).

Finally we can use the commutativity and associativity of cross-
products:

X ⇥ Y = Y ⇥X, X ⇥ (Y ⇥ Z) = (X ⇥ Y )⇥ Z (5)
Now we are interested in every join tree derived by repeatedly ap-
plying Equations (2), (4), or (5) to the default join tree. We obtain
a space of join trees satisfying the following properties:
• All raw tables appear in the leaf nodes exactly once.
• Each outerjoin node has some dependent table Dij as its right

child and the corresponding anchor table Ai in its left subtree.
• Each dependent table Dij is the right child of some outerjoin

node.
We prove in our extended technical report [21] that the space of join
trees we obtain satisfies the properties above, and furthermore any
join tree satisfying these properties is equivalent the default tree.
Thus, these properties exactly characterize our valid join trees.

So far we defined the entire space of join trees that are equiva-
lent to the default tree. To reduce the search space somewhat, we
heuristically prune some join trees when a query contains three or
more conceptual relations in its From clause. Specifically, we pro-
hibit a cross-product node from having another cross-product in its
right subtree. This restriction is analogous to considering left-deep
join trees only in traditional optimizers, and makes sense in our
setting of dependent joins.

4.2 Fetch Rule Selection
Given a logical plan corresponding to a selected join tree, the

next step is to create a set of physical plans. Currently there is
a one-to-one mapping between logical and physical operators for

all components of any plan, except the leaves. Thus, translating a
logical plan into a physical plan amounts to selecting a fetch rule
to use for each raw table.

To select fetch rules for a particular logical plan, we first compute
a set of candidate fetch rules for each raw table, described shortly.
Selection of one fetch rule each from all candidate sets yields a
physical plan. Depending on the logical plan and set of available
fetch rules, some raw tables may have an empty set of candidate
fetch rules; in this case there are no physical plans corresponding
to the logical plan, so we discard the logical plan. (If every logical
plan is discarded, the database does not include enough fetch rules
to execute the query.)

Let us consider a Fetch operator F that is a child of Resolve
operator R, whose Scan child is associated with raw table T . (See
examples in the query plans in Figures 1a–1c.) Now consider the
set of candidate fetch rules for Fetch operator F . In Deco’s query
execution engine, Resolve operator R requests tuples from Fetch
operator F to feed its resolution function. To make this mechanism
work, the fetch rule A1 ) A2 deployed in Fetch operator F must
satisfy the following conditions:
• Condition 1: Each attribute in A1 is instantiated by either a

value from an outer tuple passed to Fetch operator F by a de-
pendent join operator, or a constant value in a local Where

clause predicate.
• Condition 2: The attributes in A1 [ A2 cover all attributes in

raw table T , and some attributes in A2 are attributes of T .
The first condition allows Fetch operator F to invoke the fetch rule
by instantiating all attributes in A1. The second condition allows
new tuples obtained using the fetch rule to be inserted into T and
passed up to Resolve operator R.

Note the first condition is specific to the logical plan, while the
second one is not. Thus one possible algorithm to compute a can-
didate set would first find the available fetch rules satisfying the
second condition, then discard those violating the first condition.

As an example, our original Figures 1a–1c show three different
physical plans expanded from the same logical plan. It can be eas-
ily verified (and is intuitive) that the two conditions are satisfied for
the selected fetch rules. The search space for the example query in-
cludes many more physical plans deploying different combinations
of fetch rules.

5. ENUMERATION ALGORITHM
We now consider how to efficiently enumerate query plans in

the search space and apply the cost estimation algorithm to find
the predicted best query plan. As briefly discussed in Section 1,
Deco’s specific setting invalidates some key assumptions behind
enumeration in traditional query optimizers:
• In Deco, different physical plans corresponding to the same

logical plan may produce different query results: the fetch
rules selected in a physical plan determine the valid instance
over which the query result is evaluated. Thus, estimated cardi-
nality is a property of physical plans rather than logical plans,
violating a typical assumption exploited by extensible query
optimizers such as Volcano [13] and Cascades [12].

• Deco’s cardinality estimation is holistic: the cardinality and
cost of a subplan depend in part on the rest of the plan. Thus, a
bottom-up enumeration strategy as in the System R optimizer
[23] is not applicable to Deco.

Given these constraints, our goal is to devise a plan enumeration
algorithm for Deco that generates complete physical plans in the
search space while maximizing reuse of common subplans. This
strategy is expected to make Deco’s query optimizer slower than
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FindBestPlanNaive(ast)
1 bestPlan NULL
2 minCost 1
3 for each joinTree do
4 for each fetchRuleSelection do
5 plan BuildPlan(ast, joinTree, fetchRuleSelection)
6 if plan.isValid() then
7 plan.EstimateCard(0, ?)
8 cost plan.EstimateCost()
9 if cost < minCost then

10 bestPlan plan

11 end if
12 end if
13 end for
14 end for
15 return bestPlan

Figure 3: Naive plan enumeration algorithm

traditional query optimizers for queries with similar complexity;
however, we will see in Section 6 that the optimization time tends to
be insignificant compared to typical query execution time in Deco.

In this section we first describe a naive exhaustive enumeration,
then we describe a more efficient version of the same strategy. In
Section 6.2 we compare the performance of the more efficient enu-
meration against the naive one.

5.1 Naive Enumeration
In its simplest form, Deco’s plan enumeration algorithm gener-

ates all query plans in the search space and applies the cost estima-
tion algorithm to each plan to find the predicted best plan. The sim-
ple FindBestPlanNaive procedure in Figure 3 illustrates the entire
query optimization process at a high level.

To enumerate all possible join trees (line 3), we use a straightfor-
ward recursive algorithm based on the properties of join trees from
Section 4.1. Given a join tree, we build a plan with each possible
fetch rule selection satisfying Condition 2 in Section 4.2 (lines 4–
5). In this step, The BuildPlan procedure places the query’s pred-
icates so that they are evaluated as early as possible. Finally, we
retain those plans satisfying Condition 1 in Section 4.2 (line 6),
and choose the plan with the least estimated cost (lines 7–11).

5.2 Efficient Enumeration
The FindBestPlanNaive procedure in Figure 3 handles each al-

ternative plan independently, so it may perform some redundant
computation across iterations of the inner loop (lines 5–12). Specif-
ically, the EstimateCard procedure in Section 3.2 may be called
multiple times on the same subplans with the same arguments for
target and preds. Since those calls produce the same result (card and
cards), we “memo-ize” [13]: the first call computes and stores the
result, and subsequent calls reuse it. (Even if the order of predicates
in parameter preds in a subsequent call is different from the original
order of predicates used to compute the stored result, we can reuse
the result by shuffling cards appropriately; recall the definitions of
preds and cards in Section 3.2.)

It turns out that we can maximize reuse of common subplans by
storing only one plan at a time (with its cardinality estimates), if we
iterate over the alternative plans in a particular order. This order is
determined based on two properties. First, given a left (outer) sub-
plan S, all complete plans containing the subplan S must appear
consecutively in the order, so that we can reuse the subplan S and
its estimated cardinality. Moreover, we further order those plans
containing the subplan S by the first raw table T joining with S

(a) Basic plan (b) Reverse plan (c) Hybrid plan

Figure 4: Accuracy of cost estimation: no existing data

so that the Resolve operator corresponding to T can reuse the es-
timated cardinality of the relevant existing data. Note that these
properties apply recursively to different layers of subplans. As a
result, we enumerate physical plans by alternately selecting raw ta-
bles and their corresponding fetch rules. Note in contrast the naive
enumeration first selects a join tree and then selects a fetch rule for
each raw table in the tree.

6. EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation of Deco’s

query optimizer. We first evaluate the accuracy of our cost esti-
mation algorithm in a variety of settings. Then, we evaluate the
efficiency of our plan enumeration algorithm.

For all experiments, we used an Intel Core i5 laptop running Mac
OS X, but any commodity machine should produce similar results.
Currently Deco uses Python 2.7 and PostgreSQL 9.2.

6.1 Accuracy of Cost Estimation
To evaluate the accuracy of Deco’s cost model, we compare the

estimated costs against the actual costs for three different scenar-
ios: no existing data in the raw tables (Experiment 1), existing data
with fetch prioritization (Experiment 2), and existing data with lit-
tle effect of fetch prioritization (Experiment 3).
Experiment 1: No Existing Data In [18], we reported the mone-
tary cost and latency of executing the example query in Section 2.2
using Mechanical Turk, for the following query plans:
• Basic plan (Figure 1a): ?) country,

country ) language, and country ) capital

• Reverse plan (Figure 1b): language ) country,
country ) language, and country ) capital

• Hybrid plan (Figure 1c): language ) country,capital

and country ) language,capital

The cost of each fetch was set to $0.05 for all fetch rules. Starting
with empty raw tables, the actual costs of the example query were
$12.05, $2.30, and $1.35 for the basic, reverse, and hybrid plans,
respectively. For details see [18].

For cost estimation, we set the selectivity factor of predicate lan-
guage=‘Spanish’ to 0.1. Also, we set the selectivity factors of
resolution functions dupElim and majority-of-3 to 1.0 and 0.4, re-
spectively. Given these settings, Deco’s cost estimation algorithm
produces estimated costs of $15.00, $2.40, and $1.40 for the ba-
sic, reverse, and hybrid plans, respectively. Figure 4 shows the
estimated and actual costs for the three query plans. The different
portions of the bars show the costs incurred by the different fetch
rules in each setting. Even though our overall estimated costs were
reasonably close to the actual costs with a mean percentage error
of 11%, estimated costs for individual Fetch operators were less
accurate. We now explain why.
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(a) Empty dependent tables (b) 100 tuples in dependent tables (c) 200 tuples in dependent tables
Figure 5: Accuracy of cost estimation: existing data, fetch prioritization (part 1)

(a) 100 European cities (b) 200 World cities (c) 100 Synthetic cities (worst case)
Figure 6: Accuracy of cost estimation: existing data, fetch prioritization (part 2)

First, our selectivity factor settings were not accurate enough.
Using the basic plan, for example, resolution function majority-
of-3 did not need the third input value as often as expected, and
we observed an actual selectivity factor of 0.47. Also, we ended
up collecting 64 distinct countries with 87 answers, translating to
actual selectivity factors of 0.74 and 0.125 for resolution function
dupElim and predicate language=‘Spanish’, respectively. In gen-
eral, selectivity factors for the different operators in a particular
plan have different impact on the accuracy of estimated cost. As an
example, the cost of the reverse plan is most sensitive to the selec-
tivity of majority-of-3: a difference of 0.1 in the selectivity trans-
lates to about 20% error in the estimated cost. We ran experiments
(not reported in detail due to space constraints) to explore how se-
lectivity errors affect estimated cost. In most cases, the selectivity
error needs to be quite high before a poorer plan is selected.

Second, our cardinality estimation algorithm makes some sim-
plifying assumptions when handling “reverse” fetch rules (i.e., fetch
rules obtaining anchor values given some dependent values). For
example, we assume new countries obtained using language) co-

untry satisfy predicate language=‘Spanish’, but in reality workers
may return values that do not satisfy this predicate. We could re-
move this assumption from the Fetch.EstimateCard procedure, if
we are given a “selectivity factor” for the fetch rule. In addition,
a reverse fetch rule inserts new tuples into some dependent tables,
thus effectively decreasing the additional number of required val-
ues to resolve the dependent attributes. To address this problem,
we could adjust the selectivity factors of those resolution functions
that have interactions with reverse fetch rules.
Experiment 2: Existing Data, Fetch Prioritization For this ex-
periment and the next one, we used our crowd simulator, which
enables a large number of experiments without significant latency
and dollar cost. (Note that repeating these experiments on a real
crowdsourcing platform would either be extremely costly, or would
mean far fewer trials.) The simulator responds to fetch requests by
selecting values from a predetermined set; we can either set our

simulator to always give “correct” answers, or specify a fixed prob-
ability for each fetch rule that “incorrect” answers are given. We
first built the simulator for the experiments in [20], which also give
us the actual costs used here.

For cost estimation, recall from Section 3.2 that our cost model
includes a configurable weight ↵ to emulate the effectiveness of
fetch prioritization, with a larger ↵ indicating better prioritization.
For each experiment, we computed the estimated costs using ↵ val-
ues of 0.6, 0.75, and 0.9, to empirically determine a good value
for ↵. In addition, we assume that statistics about the existing data
available in the back-end RDBMS are accurate, so that we can eval-
uate Deco’s cost model in isolation.

Figure 5 shows the estimated and actual costs of obtaining X

result tuples for the following simple query. We vary MinTuples

X on the x-axis.
SELECT country, language, capital FROM Country

MINTUPLES X

As in [20], we seed anchor table CountryA with 100 different coun-
try names, and the two dependent tables with 0, 100, and 200 ran-
domly chosen tuples (across both tables) for Figures 5a, 5b, and 5c,
respectively. The query plan uses two fetch rules, country ) lan-

guage and country ) capital, to produce resolved language and
capital values. Overall, our cost estimates are reasonably close to
the actual costs: With ↵=0.75, we observed mean absolute per-
centage errors of 6.7%, 12.4%, and 44.4%, for Figures 5a, 5b, and
5c, respectively. Note the large error for Figure 5c is mainly due to
the 100% error for the X  30 data points.

Figure 6 shows the estimated and actual costs of obtaining X

result tuples for the following join query.
SELECT city, country, population, language

FROM Country, City

WHERE City.country = Country.country MINTUPLES X

Anchor tables CountryA and CityA are populated from real datasets
for Figures 6a and 6b, and a synthetic dataset for Figure 6c to
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(a) Existing data state 1 (b) Existing data state 2 (c) Existing data state 3
Figure 7: Accuracy of cost estimation: existing data, no fetch prioritization (part 1)

(a) Existing data state 1 (b) Existing data state 2 (c) Existing data state 3
Figure 8: Accuracy of cost estimation: existing data, no fetch prioritization (part 2)

demonstrate the worst case. All dependent tables are initially empty
and populated on-demand using fetch rule country) language for
relation Country and fetch rule city,country ) population for re-
lation City. In Figures 6a and 6b, our cost estimates are reasonably
accurate as in Figure 5: With ↵=0.75, the mean absolute percent-
age errors are 4.8% and 11.1% for Figures 6a and 6b, respectively.
In Figure 6c, we deliberately generated a synthetic dataset to make
fetch prioritization work as poorly as possible. (Details were given
in [20].) Hence, the estimated costs (even with ↵ of 0.6) are smaller
than the actual costs for the entire range of X . This result is con-
sistent with the definition of ↵ in Section 3.2: a smaller ↵ means
less effective prioritization.

Based on our experiments, we believe by setting ↵=0.75 as a
rule of thumb, our cost model will produce acceptable estimates for
many cases. Note that the best value for ↵ depends on the heuristic
approach for fetch prioritization; we would need to use a larger ↵
for some more sophisticated heuristics described in [20].
Experiment 3: Existing Data, No Fetch Prioritization Now we
consider a similar scenario but without fetch prioritization. Figure
7 shows the estimated and actual costs of obtaining X result tuples
for the example query from Section 2.2. Again, we vary MinTuples

X on the x-axis.

SELECT country, capital FROM Country

WHERE language=‘Spanish’ MINTUPLES X

We start the query with three different initial states of the raw ta-
bles, resulting in the three graphs in Figure 7. For each initial state,
we measured the actual costs of executing the reverse plan (Figure
1b) and the hybrid plan (Figure 1c), with the crowd simulator set
to correspond to the selectivities observed using Mechanical Turk
in Experiment 1. (Note the simulator flips a coin to produce data,
and we report the average of ten trials.) For cost estimation, we use
the same selectivity setting as in Experiment 1. Overall, our esti-
mated costs were reasonably accurate across all three initial states
and both plans, with a mean absolute percentage error of 18.6%.

This result is comparable to Experiment 1 (no existing data) and
implies that our cost model is able to distinguish between existing
data versus new data.

Figure 8 shows the estimated and actual costs of obtaining X

result tuples for the following query.

SELECT capital, population, language

FROM Country, City

WHERE City.country = Country.country AND

City.city = Country.capital

MINTUPLES X

Again we start the query with three different initial states of the
raw tables, resulting in the three graphs in Figure 8. For each initial
state, we execute the following query plans:
• Plan 1: Join tree (((CountryA ./ CountryD2) ./ CityA) ⇥

CountryD1) ./ CityD1, with “basic” fetch rules
• Plan 2: Join tree (((CityA ⇥ CountryA) ./ CountryD2) ./

CountryD1) ./ CityD1, with “basic” fetch rules
Note despite the simplicity of the original query, these plans are
5-way joins over the raw tables. For Plan 2, we set the crowd sim-
ulator to produce capital cities with a probability of 0.3 (for fetch
rule ?) city,country), and also used the corresponding selectivity
setting for cost estimation. In Figures 8a and 8b, our cost estimates
are reasonably close to the actual costs with a mean absolute per-
centage error of 20.3%. Figure 8c illustrates a case where our cost
model often fails to predict the better plan: We populated relation
City only with capital cities, resulting in large discrepancy between
the actual selectivity of join predicate City.city=Country.capital

and the provided selectivity setting.

6.2 Efficiency of Plan Enumeration
To evaluate the efficiency of plan enumeration, we compare the

efficient enumeration from Section 5.2 against the naive enumer-
ation from Section 5.1, in terms of the overall optimization time,
i.e., time taken to find the predicted best plan given a parsed query.
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Figure 9: Efficiency of plan enumeration

Experiment 4: Varying Number of Raw Tables Because the size
of the search space heavily depends on the number of raw tables m,
we generated queries with a varying number of raw tables based on
their From clauses. For each query, we created a set of fetch rules
so that each raw table has exactly one candidate fetch rule. (Here
we use a conservative setting: more fetch rules make the efficient
enumeration even faster than the naive one.) Figure 9 shows the
optimization times for the naive and efficient enumeration in loga-
rithmic scale, for m=2..7. Not surprisingly the efficient enumera-
tion performs better than the naive enumeration for the entire range
of m values. Moreover, the percent improvement tends to increase
as m increases, because the amount of redundant computation also
increases. With m=7, the efficient enumeration is 2.35 times faster
than the naive enumeration.

7. RELATED WORK
Several recent data-oriented systems have used a declarative ap-

proach to leverage crowdsourced data [1, 7, 10, 16, 17]. Among
those systems, CrowdDB [10] bears the closest similarity to Deco
in terms of the data model and query language; however, Deco opts
for more generality and flexibility, thus requiring the novel query
execution techniques described in [20]. (A detailed comparison be-
tween the two systems can be found in [18].) Qurk [16] is a work-
flow engine that uses crowdsourcing primarily as part of its opera-
tors, and reference [16] studied how to reduce the monetary cost of
its crowd-powered sort and join operators by improving worker in-
terfaces. Since Deco makes no assumption about worker interfaces,
their work is complimentary to Deco and can be incorporated into
Deco to improve fetch procedures. To the best of our knowledge,
CrowdDB and the other systems in this category do not yet have a
cost-based query optimizer.

There has been a large body of previous work addressing query
optimization in traditional systems [3]. Sections 3 and 5 elaborated
on several key differences between traditional query optimizers and
Deco’s query optimizer in plan costing and enumeration.

Also related is prior work on query optimization over diverse
data sources in the context of heterogeneous or federated data-
base systems [6, 9, 14]. In some sense, Deco’s overall architecture
[19] is analogous to federated database systems: Deco’s query pro-
cessor, fetch procedures, and the crowd correspond to a mediator,
wrappers, and data sources, respectively. However, as far as the
query optimization problem is concerned, all of the fundamental
differences between Deco and traditional database systems that we
have described earlier also apply when comparing Deco and feder-
ated database systems.

8. CONCLUSIONS AND FUTURE WORK
We presented Deco’s query optimizer that finds the best plan to

answer a query in terms of estimated monetary cost. We incorpo-
rated several novel techniques into the query optimizer to reflect

Deco’s query semantics and plan execution strategies. Coupled
with Deco’s query execution engine that executes the chosen plan
with least monetary cost, Deco’s query processor as a whole pro-
vides a complete solution for answering a Deco query while mini-
mizing monetary cost.

For future work, we would like to incorporate alternatives to
MinTuples, such as MaxCost and MaxTime, enabling end-users
to specify a monetary or time budget to answer a query, while max-
imizing the number of result tuples. We are also interested in in-
corporating adaptive query processing techniques into Deco.
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