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ABSTRACT

For various entering and transmission issues raised by human or
system, missing events often occur in event data, which record ex-
ecution logs of business processes. Without recovering these miss-
ing events, applications such as provenance analysis or complex
event processing built upon event data are not reliable. Following
the minimum change discipline in improving data quality, it is also
rational to find a recovery that minimally differs from the original
data. Existing recovery approaches fall short of efficiency owing
to enumerating and searching over all the possible sequences of
events. In this paper, we study the efficient techniques for recov-
ering missing events. According to our theoretical results, the re-
covery problem is proved to be NP-hard. Nevertheless, we are able
to concisely represent the space of event sequences in a branching
framework. Advanced indexing and pruning techniques are devel-
oped to further improve the recovery efficiency. Our proposed ef-
ficient techniques make it possible to find top-k recoveries. The
experimental results demonstrate that our minimum recovery ap-
proach achieves high accuracy, and significantly outperforms the
state-of-the-art technique for up to 5 orders of magnitudes improve-
ment in time performance.

1. INTRODUCTION
Business processes continuously generate huge volume of event

data, ranging from traditional enterprise office automation systems
or scientific workflows [14, 5] to recent Web services and online
transactions [24]. To manage the event data, provenance analysis
[26] identifies the sequence of steps leading to a data, and complex
event processing [11] detects interesting event patterns from the
data. While querying and mining upon event data are highlighted,
the quality of event data itself draws less attention. According to
our survey of real event data recorded by a train manufacturer, at
least 47.66% events are missed in the database. The missing events
occur for various reasons, such as forgot to submit when manually
recording event logs, suffered from system failures, or mess after
collecting the events from heterogeneous execution environment.

Without addressing these missing events, the aforesaid applica-
tions and mining over event data are not reliable. Simply ignoring
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the missing events will yield incomplete provenance answers and
lead to inaccurate event patterns. As indicated in [26], the prove-
nance of a data item is the sequence of steps used to produce the
data. Generally, it can be thought of as a graph which captures the
causal dependencies between entities involved in processes, and
queries of provenance as calculating transitive closures of depen-
dencies. Owing to the incomplete event log, not only the missing
events but also their corresponding prerequisites might be absent in
the transitive closures of provenance. In this paper, we study the
problem of recovering missing events, which can possibly provide
a (set of candidates of) more complete provenance.

In general, it can hardly be speculated without any prior knowl-
edge. Fortunately, most business events do not occur randomly. In-
stead, event data often follow certain business rules or constraints,
such as process specifications [11]. Therefore, we focus on recov-
ering missing events in the light of process specifications.

(a) process specification

ID Sequence of events

1 <A, B, C, D, E, G>

2 <A, B, C, E, G>

3 <A, B, C, D, G>

(b) event log of process execution

(c) process branching

Figure 1: Example of engineering drawing process

Example 1. Consider a real process specification in Figure 1 (a)

for producing an engineering drawing in a train manufacturer. Each

square (namely transition) denotes a task in the process specifica-

tion, e.g., transition A represents a task of drafting. All the arrows

attached to a transition denotes the corresponding flows should be

executed in parallel. For example, both the dimension checking

(task C) and the tolerance checking (task D) should be conducted

after line type proofing (task B) in the drawing. Moreover, the pro-

cess can carry on evaluating the drawing (task E) only if both C

and D are accomplished. Circles in the figure are choice nodes,

called places, which always appear between transitions. It indi-

cates that only one of the flows going out a place can be executed.

For instance, place b6 leads to either revising the drawing (task F),

archiving it (task G) or discarding it (task H) after evaluation (E).
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An execution of the process generates a sequence of events, where

each event corresponds to a task in the process specification. We

say that a sequence conforms to the specification if it successfully

executes from the source place bstart to the sink place bend exactly

following the flow constraints in the specification. For example, the

first sequence <ABCDEG> in Figure 1 (b) denotes a complete exe-

cution of engineering drawing including steps drafting, line

type proofing, dimension checking, tolerance

checking, evaluating, archiving from bstart to bend.

In practice, owing to various data quality issues, event logs are

often incomplete. For instance, the second sequence <ABCEG>

has an event D missed during the collection of event logs from

the database for dimension checking. Without recovering the miss-

ing event D, it is unlikely to find this provenance step. Moreover,

if such data transmission problems occur frequently in the dimen-

sion checking database, an absurd event pattern without dimension

checking step in engineering drawing will be mined.

It is not surprising that multiple recoveries exist for an incom-
plete sequence. Previous studies on managing incomplete data are
dedicated to representing all possible worlds of recoveries [1]. For
event data, however, infinite sequences of events could be gener-
ated when loops exist in process specifications. For instance, to re-
cover the third sequence <ABCDG> in Figure 1, the results could be
<ABCDEG>, <ABCDEFBCDEG>, <ABCDEFBCDEFBCDEG>, . . . .
Following the minimum change discipline in improving data qual-
ity [7, 20], we can also identify the optimal recovery of missing
events that minimally differs from the original sequence. It is a ra-
tional assumption in improving data quality that people try to make
the minimum mistakes, which is also applicable to missing events.
The minimum recovery guarantees to conclude the minimum num-
ber of events that are missing, e.g., at least one event must be miss-
ing in the third sequence <ABCDG> in Figure 1. Without the min-
imum requirement, infinite results of possible recoveries may be
returned when dealing with loops.

To find the minimum recovery, the existing alignment approach
[9] studied in the business process management community enu-
merates all the valid sequences of events. It falls short of efficiency
owing to the redundancy in all possible event sequences. For in-
stance, to recover the sequence <ABCEG> in Example 1, the results
<ABCDEG> and <ABDCEG> have no difference w.r.t. the process
specification, as C and D are executed in parallel after B and be-
fore E. As summarized below, we can explore opportunities abound
both in indexing and pruning for improving the recovery efficiency.

Contributions. Our main contributions in this paper are summa-
rized as follows.

• We propose a linear time backtracking algorithm for the re-
covery of a simple case, where all the events are in parallel
execution without any choices.

• We reveal the NP-hardness of finding the minimum recovery
of missing events in general settings (with choices). To the
best of our knowledge, this is the first study on analyzing the
hardness of the missing event recovery problem.

• We present a branching framework for general cases. A branch-
ing index together with advanced pruning techniques are de-
veloped to accelerate recovery. The branching and pruning
techniques are extended further to support loops.

• We employ the information of recovery size and event fre-
quency to find a list of top-k recoveries.

• Finally, we report the extensive experimental evaluation on
real and synthetic data.

The remaining of this paper are organized as follows. Section 2
illustrates the preliminaries and NP-hardness of the recovery prob-
lem. The backtracking algorithm and the verification of time con-

Table 1: Frequently used notations

Symbol Description Place

N (P, T ,F) a net N with place set P , transition set T Def.1

bstart,bend source place, sink place Def.2

δ(ei, ej) maximum distance of occurrence time Def.5

π homomorphism mapping Def.10

t1 ⊜ t2 branching equivalence relation Def.12

T EC branching equivalence class Def.13

straints are presented in Section 3. We show the branching tech-
niques in Section 4 and extend them to loops in Section 5. The
top-k recoveries are introduced in Section 6. Section 7 reports the
experimental evaluation. We discuss related work in Section 8 and
the application of Petri nets in Section 9. Finally, Section 10 con-
cludes this paper.

2. PROBLEM STATEMENT
In this section, we present syntaxes, definitions and hardness

analysis for the missing event recovery problem. Table 1 lists the
frequently used notations.

2.1 Preliminaries

Definition 1 (Petri net). A Petri net is a triplet N (P, T ,F), where

P is a finite set of places, T is a finite set of transitions, P∩T = ∅,

and F ⊆ (P×T )∪(T ×P) is a set of directed arcs (flow relation).

For any node x ∈ P ∪ T , •x = {y | (y, x) ∈ F} denotes
the pre-set of x and x• = {y | (x, y) ∈ F} denotes the post-set
of x. The pre/post-set representation can be nested, such as •(•x)
denoting ∪y∈•x • y, i.e., (union of) the pre-sets of a pre-set.

Definition 2 (Process specification). A process specification is a

Petri net Ns(Ps, Ts,Fs), which has a unique source place bstart ∈
Ps, •bstart = ∅, and a unique sink place bend ∈ Ps, bend• = ∅.

Each node x ∈ Ps ∪ Ts is on a path from bstart to bend.

Each transition e ∈ Ts corresponds to an event in the execution
of the process. An event sequence σ, or simply sequence, with re-
spect to a process specification Ns(Ps, Ts,Fs) is a finite sequence
of events (transitions), i.e., σ ∈ T ∗

s . Each sequence logs an execu-
tion of the process defined by Ns.

A sequence with missing events may not exactly obey the pro-
cess specification constraint. To study whether an event sequence
is logged completely, we introduce a notation of firing sequence.

Definition 3 (Firing sequence). A firing sequence of a process

specification Ns(Ps, Ts,Fs), and its post-set, are defined recur-

sively as follows:

1. The empty sequence ε is a firing sequence, and ε• = {bstart};

2. If σ is a firing sequence, e ∈ Ts is a transition (event), and

•e ⊆ σ•, then σe is also a firing sequence, and (σe)• =
(σ•)− (•e) + (e•).

A sequence σ is said conforming to a process specification, denoted
by σ � Ns, if σ is a firing sequence w.r.t. Ns and σ• = {bend}.

Example 2 (example 1 continued). Consider the process specifi-

cation Ns in Figure 1 and a sequence σ = <ABCDEG>. To inves-

tigate whether σ is a firing sequence with respect to Ns, we start

from the empty sequence ε with ε• = {bstart}. Since the first event

A has •A = {bstart} ⊆ ε•, the augmentation <A> is also a firing

sequence with <A>• = {b1}. It follows <AB>• = {b2, b3}. For

the next C, as •C = {b2} ⊂ <AB>•, the firing sequence becomes

<ABC> with post-set {b3, b4}. Similarly, we have <ABCD>• =
{b4, b5} by appending D. As •E = {b4, b5} and E• = {b6}, it

leads to <ABCDE>• = {b6}, and finally <ABCDEG>• = {bend}.

Therefore, the sequence <ABCDEG> conforms to the specification.
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As mentioned, missing events may occur either in the start/middle
of a sequence which prohibit it being a firing sequence, or at the end
of the sequence having σ• 6= {bend}.

Definition 4 (Gap). Let σ be a firing sequence. For the next event

(transition) e, if •e * σk•, we call (σk•, •e) a gap with at least

one missing event between σk and e.

A gap indicates that the previous firing sequence σ is success-
fully executed so far and it is impossible to execute the next event e
further. In other words, σe is not a firing sequence. There are some
events missing between σ and e.

Example 3 (example 2 continued). Let us consider another se-

quence <ABCEG>. As illustrated, <ABC> is a firing sequence with

<ABC>• = {b3, b4}. For the next event E, however, we have

•E = {b4, b5} 6⊆ <ABC>•. Thereby, there is a gap between

<ABC> and E, where an event D is missing indeed.

Moreover, a sequence <ABCDE> is a firing sequence but does

not conform to the specification as <ABCDE>• = {b6} 6= {bend}.

At least one event is missing at the end of the sequence.

Besides logical controls specified by Petri nets, additional con-
straints could be further declared to restrict the occurrence of events.

Definition 5 (Time constraint). A time constraint of two consecu-

tive events ei, ej , ei ∈ •(•ej), denoted as δ(ei, ej), is the maximum

distance of occurrence time of the events ej and the most recent ei
that appear in any firing sequence.

A recovered firing sequence can be verified whether conforms to
the process specification with time constraints. For instance, con-
sider a time constraint δ(A,B) between consecutive events A and
B in Figure 1 (a). Suppose that the occurrence time of event B is
ot(B) in the sequence σ = <ABCDEG> in Example 2. For the most
recent occurrence of event A in the sequence, the time constraint
requires ot(B)− ot(A) ≤ δ(A,B).

2.2 Problem Definition
We aim at recovering the missing events in a sequence.

Definition 6. A recovery of a sequence σ is also a sequence σ′,

such that σ′
� N and σ is a subsequence of σ′.

The subsequence requirement implies that, for each i-th event
σ[i], 1 ≤ i < |σ| in the sequence, there must exist a j-th event
σ′[j], j ≥ i in the recovery having σ[i] = σ′[j], and σ[i + 1] =
σ′[j + k], k > 0.

The distance between σ′ and σ is given by ∆(σ′, σ) = |σ′|−|σ|.
Following the convention of minimum changes in improving data
quality [7], we can also find a recovery that minimally differs from
the original sequence. As mentioned, without this minimum dis-
tance principle, infinite recoveries could be generated when loops
exist in the process specification.

Problem 1. Given a sequence σ over the process specification Ns,

σ not conforming with Ns, the minimum recovery problem is to find

a recovery σ′ of σ such that σ′
� Ns and the distance ∆(σ′, σ)

between σ′ and σ is minimized.

Example 4 (example 3 continued). To fill the gap (<ABC>•, •E)
in a sequence <ABCEG>, we look for the next event w.r.t. firing

sequence. There is only one candidate D whose preset is involved

in the post-set of <ABC>•. The firing sequence carries on with the

new post-set <ABCD>• = {b4, b5}. It matches with •E and finally

constitutes a recovery <ABCDEG> that conforms to the specifica-

tion. A recovery <ABCDEFBCDEG> with a complete loop between

<ABC> and E is not minimal. It is probably quite rare in practice

that all the events in a loop are missing.

For the sequence <ABCDE>, which is already a firing sequence,

the recovery can directly move on (by considering all possible al-

ternatives w.r.t. firing sequence) till bend is reached. Since there

are two candidate events G/H to carry on, both <ABCDEG> and

<ABCDEH> could be returned as the minimum recovery.

Hardness analysis. Owing to choices and parallelization of flows,
there exist vast alternatives to enumerate in the recovery. de Leoni
et. al. [9] propose an alignment based solution with exponential
time complexity but fail to uncover the hardness of the problem.

As one of our major contributions in this paper, we find that gen-
erating the optimal recovery of missing events is indeed NP-hard.
In other words, it is NP-complete to determine whether a recovery
exists with distance less than a certain constant.

Theorem 1. Given a sequence σ over a process specification Ns

and a constant k, the problem is NP-complete to determine whether

there exist a recovery σ′ of σ such that σ′
� Ns and ∆(σ′, σ) ≤ k.

The NP-hardness of the problem can be proved by a reduction
from the Set Cover problem. Given n sets over a universe of m
elements, it is to construct a process specification for the transfor-
mation such that there is a set cover of size k if and only if an empty
sequence has a recovery with size n+ k + 1.

3. GETTING STARTED ON CAUSAL NET
Let us start from a simple special case of process specifications

where no choices of flows exist. Such a special case is interesting
for two reasons. First, as we will see soon, it can be easily extended
to more general cases with choices. Second, the existing aligning
approach [9] even fails to perform efficiently in this simple case.

Definition 7 (Causal net). A causal net is a Petri net N (P, T ,F),
such that for every b ∈ P, | • b| ≤ 1 and |b • | ≤ 1.

According to the definition of process specifications, only the
bstart/bstart places can have empty pre/post-sets. The remaining
places have exactly one in degree and one out degree, respectively.
Consequently, a causal net can be equivalently represented as di-
rected acyclic graph (DAG), where transitions (events) in T denote
vertexes, and places with |•b| = |b•| = 1 are interpreted as edges.

Figure 2: Example of causal net

Example 5. Consider the process specification in Figure 2 (a),

which is a causal net according to Definition 7. All the places

b1, . . . , b7 other than bstart/bend have | • bi| = |b •i | = 1, for

instance, •b1 = {A}, b1• = {B}. It can be interpreted as an edge

between A and B as illustrated in Figure 2 (b). Following the same

line, the causal net can be equivalently represented as a DAG.

Lemma 1. Given a sequence σ over a causal net specification Ns,

the checking of conformance is equivalent to validate whether the

sequence σ is one of the topological sorts on the DAG of Ns.

The lemma can be easily verified. First, according the definition
of firing sequence, an event e can be executed only when all the
places in •e appear in the post-set of the current firing sequence, say
σ•. Since non-start place has |•p| = 1 in the causal net, each place
in •e corresponds to an event in σ. It follows •(•e) ⊆ σ. In other
words, all the prerequisites of e in the DAG have been conducted
in σ. Moreover, since there is no choice in a causal net, all the
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transitions (events) in Ts should be performed. Therefore, each
firing sequence with post-set {bend} corresponds to a topological
sort in the DAG of Ns.

Lemma 2. For an incomplete sequence σ over a casual net Ns,

any topological sort σ′ on the DAG of Ns such that σ is a subse-

quence of σ′ is always the minimum recovery of σ.

According to Lemma 1, any recovery of σ should be a topolog-
ical sort. As each topological sort outputs a vertex exactly once,
all the recoveries must have the same size, in other words, having
the same minimum distance to σ. Consequently, the recovery prob-
lem is indeed to find any topological sort that can contain the input
sequence σ as a subsequence.

The existing alignment approach [9] considers the space of all
possible firing sequences. That is, it enumerates all the possible
topological sorts with respect to the causal. As another contribu-
tion of our study, we have indicated that any topological sort is an
optimal solution and there is no need to enumerate all of them.

Example 6 (example 5 continued). To recover a sequence <AEF>

over the process specification in Figure 2 (a), the existing aligning

approach enumerates all possible combinations of events in paral-

lel, i.e., <ABCDEF>, <ABDCEF>, <ACBDEF>, <ACDBEF>,

<ADBCEF> and <ADCBEF>. According to Lemma 2, however,

any topological sort should always be a minimum recovery, e.g.,

<ABCDEF> with the minimum distance 3 to the input sequence

<AEF>. There is no need to enumerate other redundant recoveries.

A backtracking idea. Motivated by the defeat of enumerating un-
necessary firing sequences, we propose a backtracking approach to
find a topological sort as the optimal recovery. Let us first introduce
how to fill a gap in a sequence. Then, a recovery can be found by
checking possible gaps in one pass through the sequence.

Definition 8 (Fill). For a gap (σ•, •e), we call a transition (event)

sequence τ ∈ T ∗ a fill of the gap, if it ensures

1. στ is a firing sequence,

2. •e ⊆ (στ)•.

The GAP(σ•, •e) function in Algorithm 1 fills the gap between
post-set places σ• and the following event e. As shown in Lines
2-5, let X denote the places in •e but not in σ•. According to the
definition of firing sequence, events in •X are necessary to execute
e, which are not observed in the current firing sequence σ, i.e.,
missing events. The program checks and adds each event ei ∈
•X into τ in Line 9. It also fills the gap between στ and ei by
recursively calling the function in Line 8.

Algorithm 1 GAP(σ•, •e)

Input: A firing sequence post-set σ• and a transition pre-set •e
Output: A fill of the gap between σ and e

1: τ := ε
2: X := •e
3: for each place bi ∈ X do

4: if bi ∈ σ• then

5: X := X − bi
6: if X 6= ∅ then

7: for each transition ei ∈ •X, ei 6∈ τ do

8: τ ′ := GAP((στ)•, •ei)
9: τ := ττ ′ei

10: return τ

The correctness of Algorithm 1 is ensured by showing that the
produced result στe is always a firing sequence. First, if there is no
gap between (σ•, •e), i.e., X = ∅ in Line 6, it returns τ = ε and
σe is a firing sequence. Otherwise, for each ei ∈ •X , it either has
been included in the current τ , or generates a fill between ei and the
firing sequence στ w.r.t. the current τ . According to topological
sorting, as long as the prerequisite relationship is guaranteed, the
order of inserting ei will not affect τ being a firing sequence.

Example 7 (example 6 continued). To recover the gap between a

firing sequence <A> and event E, the program generates a set of

places X = {b4, b5, b6} in •E but not in <A>• = {b1, b2, b3}.

For each event in •X = {B,C,D}, e.g., B, we fill the gap be-

tween the current firing sequence <A>• and •B. It outputs a firing

sequence <AB> with post-set <AB>• = {b4, b2, b3}. Next, by

inserting C ∈ •X , we have <ABC>• = {b4, b5, b3}. It follows

<ABCD>• = {b4, b5, b6}. Finally, the gap between <A> and E is

filled by <BCD> such that •E ⊆ <ABCD>•.

Finally, we can recover a sequence over a causal net specifica-
tion by iteratively calling the GAP(σ′•, •σ[k]) function for each
event σ[k] in σ, where σ′ denotes the current firing sequence. Ini-
tially, σ′ is empty, i.e., GAP({bstart}, •σ[1]), and at the end τ =
GAP(σ′•, {bend}) leads the firing sequence σ′ to the sink place.
The minimum recovery σ′τ is computed.

The complexity is linear on the number of transitions and places
in the specification. The backtracking visits each vertex (event) at
most once by trying possible edges (places). It is obvious to see the
complexity O(|Ts|+ |Ps|).

Verifying time constraints. Consider a process specification where
the time constraint δ(ei, ej) is given for each pair of consecutive
events ei, ej , ei ∈ •(•ej). Let σ′ be a firing sequence where the
original events are associated with a label time ot(e) and the recov-
ered events have ot(e) = null. Intuitively, the time constraint val-
idation problem aims to verifying whether any two events have the
occurrence time distance no greater the (derived) time constraint.

Algorithm 2 VALIDATETIME(σ)

Input: A firing sequence σ
Output: A boolean on whether σ satisfies the time constraints
1: transform σ into a causal net N (P, T ,F)
2: for each e ∈ T do

3: if ot(e) = null then

4: bound(e) := infinity
5: else

6: bound(e) := ot(e)
7: S := T
8: while S is not empty do

9: enow := argmine∈S bound(e)
10: S := S \ {enow}
11: for each enext ∈ (enow•)• do

12: if ot(enext) 6= null and ot(tnext) > bound(enow) +
δ(enow, enext) then

13: return false
14: if ot(enext) = null and bound(enow) + δ(enow, enext) <

bound(enext) then

15: bound(enext) := bound(enow) + δ(enow, enext)
16: return true

Specifically, in the equivalent DAG derived from the causal net
of σ′, each arc corresponds to a weight δ(ei, ej) according to time
constraints. For any connected event pair e1, e2, we can find a

shortest weighted path with total arc weight δ̂(e1, e2) =
∑

δ(ei, ej),
(ei, ej) in the shortest path. It is interpreted as the derived time
constraint. The validation problem is indeed to verify whether

ot(e2)− ot(e1) ≤ δ̂(e1, e2) for any two events with ot(e1), ot(e2)
defined, ot(e1) ≤ ot(e2). In light of computing the shortest path,
the validation can be conducted by deriving a least bound of oc-
currence time bound(e) for each e, as shown in Algorithm 2. If
the actual occurrence time ot(e) is later than bound(e), the time
constraint is violated and σ′ is invalid, as shown in Line 14.

Example 8 (example 7 continued). Let the number on each edge in

Figure 2 (b) denote the time constraint of two consecutive events as

defined in Definition 5, e.g., δ(A,B) = 2. Each event in the input

σ is associated with a label of occurrence time such as ot(A) = 1,

while the recovered event has no occurrence time available, i.e.,
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ot(B) = null. According to the time constraint, it is required

that the occurrence time of B should be no later than bound(B) =
ot(A) + δ(A,B) = 3. Similarly, we can derive that the largest oc-

currence time of E w.r.t. B, i.e., ot(A) + δ(A,B) + δ(B,E) = 5.

Considering all the paths from A to E, the shortest path ACE in-

dicates that E should occur no later than bound(E) = ot(A) +

δ̂(A,E) = ot(A) + δ(A,C) + δ(C,E) = 4. Since the observed

occurrence time of E is ot(E) = 3 < bound(E), the recovery σ′ is

valid w.r.t. time constraints.

4. THE BRANCHING FRAMEWORK
Now, we consider a general process specification with both choices

and parallelization of flows. Different from causal net, there will
be multiple choices of execution flows. A straightforward idea is
to enumerate all possible flows in choice nodes by branching [12,
22], where each branch denotes a causal net without any choice. By
applying the aforesaid GAP algorithm on causal net, we can find a
minimal recovery for each branch, if exists. The minimum recov-
ery can be find by traversing all the possible branches.

Branching idea. Let us first introduce the idea of branching over
a process specification.

Definition 9 (Occurrence net). An occurrence net is a Petri net

N (P, T ,F), such that for every p ∈ P, | • p| ≤ 1.

While a causal net requires both the in-degree | • p| ≤ 1 and the
out-degree |p • | ≤ 1, an occurrence net only needs the in-degree
to be | • p| ≤ 1 for each place. In other words, there are only
choice-splits but no choice-join in the process branching. To estab-
lish the relationship between process branching and specification,
we introduce the following mapping.

Definition 10 (Homomorphism). A homomorphism from a net

Nu(Pu, Tu,Fu) to another net Ns(Ps, Ts,Fs) is a mapping π :
Pu ∪ Tu → Ps ∪ Ts such that

1. π(Pu) ⊆ Ps and π(Tu) ⊆ Ts,

2. for every t ∈ Tu, π(•t) is a bijection between •t and •π(t),
and π(t•) is a bijection between t• and π(t)•.

A process specification net Ns(Ps, Ts,Fs) can be unfolded, where
each branch is to a non-choice execution, i.e., a causal net.

Definition 11 (Process branching). A process branching of a spec-

ification Ns(Ps, Ts,Fs) is a pair (Nu, π), where

1. Nu(Pu, Tu,Fu) is an occurrence net,

2. π is a homomorphism from Nu to Ns, and

3. for every t1, t2 ∈ Tu, if •t1 = •t2 and π(t1) = π(t2), then

t1 = t2.

According to the requirement of occurrence net, only one place
in the branching can be mapped to bstart, while there may be multi-
ple places mapping to bend. Each sink place pi having π(pi) = bend
denoted as pi : bend exactly corresponds to a branch, i.e., a causal
net projected by recursively backtracking all the pre-set nodes from
pi : bend to p0 : bstart. It involves all the places and transitions that
are ancestors of pi in the branching net, denoted as AN(pi).

Proposition 1. Each branch in the branching net Nu is a causal

net Nb(Pb, Tb,Fb) leading to a unique sink place pi : bend having

Pb ⊆ Pu, Tb ⊆ Tu,Fb ⊆ Fu,Pb ∪ Tb = AN(pi).

A straightforward algorithm can apply the aforesaid topological
sorting based approach to compute the recovery on each branch,
and return the one with the minimum size among all the branches.

Example 9. Consider the process specification Ns in Figure 3 (a).

The corresponding process branching as illustrated in Figure 3 (b)

is an occurrence net with only choice-split but no choice-join. Ac-

cording to the homomorphism π, each node in the branching maps

Figure 3: Example of branching

to a node in the specification, such as π(t1) = A denoted as t1 : A
or π(p1) = b1 denoted by p1 : b1, p1 ∈ Pu, b1 ∈ Ps.

There are two places p5 and p6 mapping to bend, which corre-

spond to two branches ended with p5 : bend and p6 : bend, respec-

tively. Each branch is a causal net obtained by a projection on all

the ancestors of an end place, such as (p0 → t1 → p1 → t2 →
p3 → t5 → p5) as represented in dashed line in Figure 3 (b).

For a sequence σ = <AG>, we call the GAP function on each

branch. The first branch returns a recovery <ABG>, while the sec-

ond one outputs <ADFG>. Referring to the minimum distance prin-

ciple, <ABG> is returned as the minimum recovery of <AG>.

4.1 Branching Index
Intuitively, there is no need to trying all the branches, especially

on those not containing the events of the input sequence. For in-
stance, to recover a sequence <AF>, the first branch with events
ABG is not necessary to be considered, as it would never generate a
sequence containing event F. Motivated by this, we construct an in-
dex on branching to efficiently identify potentially valid branches.

Index on branches. For any event e ∈ Ts, we can identify all the
transitions t in the branching net Nu, whose π(t) = e, denoted by
Tu(e). It is worth noting that two different events sharing the same
name is not allowed in a process specification. Referring to the
third term in Definition 11 of branching, duplicate events should
not appear in a branch as well.1

Proposition 2. No events appear twice in one branch.

According to this proposition, each t ∈ Tu(e) uniquely identifies
all the distinct branches that may output a recovery containing e. As
mentioned, the other branches can be safely pruned.

The size of index is linear on the number of transitions in Tu.
Let d be the maximum out-degree of a place in the specification
Ns. There will be O(d|Ps|−1) branches, and the number of places

|Pu|in branching net is bounded by O(d|Ps|). According to occur-
rence net, each place can have at most one transition. Thereby, the
number of transitions |Tu| in a branching net should not be greater

than |Pu|, i.e., bounded by O(d|Ps|) as well.

Branch algorithm. To fill gaps on possible branches, we consider
the firing sequence σu of transitions Tu in the branching net instead
of the specification net. According to the homomorphism mapping,
it can be transformed to a firing sequence σ = π(σu) with respect
to the specification.

Figure 4: Index on branches

Algorithm 3 presents the recovery with branching. Given a cur-
rent firing sequence σu in branching net as illustrated in Figure

1The case of process specifications with loops needs further instru-
ments to ensure non-duplicate events. See Section 5 for details.

845



4, let σ[k] : e be the k-th (current) event in the input sequence.
For each transition t ∈ Tu(e), we call the GAP(σu•, •t) func-
tion for causal net. It returns a fill τ between σu and t, if ex-
ists, i.e., the new firing sequence σuτ t. The program carries on
by recursively branching on the next event σ[k + 1], in Line 11
BRANCH(σuτ t, σ[k + 1]). Finally, the minimum recovery is ob-
tained by transform the results σmin = BRANCH(ε, σ[1]) to π(σmin).

Algorithm 3 BRANCH(σu, σ[k])

Input: A firing sequence σu and k-th event σ[k] in σ
Output: A minimum recovered sequence after σu

1: σmin := an infinite sequence
2: if σ[k] is null then

3: for each sink place p ∈ Pu, π(p) = bend do

4: τ := GAP(σu•, {p})
5: if |σmin| > |τ | then

6: σmin := τ
7: else

8: for each t ∈ Tu(σ[k]) do

9: τ := GAP(σu•, •t)
10: if τ exists then

11: σ∗ := BRANCH(σuτ t, σ[k + 1])
12: if |σmin| > |τ tσ∗| then

13: σmin := τ tσ∗

14: return σmin

In the worst case, the program needs to traverse all the transitions
in branching. In each iteration, the GAP function visits at most
O(|Ts| + |Ps|) places and transitions, according to Proposition 2.
Referring to the size analysis of branching net, the complexity of
Algorithm 3 is O((|Ts| + |Ps|) · d

|Ps|), where d is the maximum
out-degree of a place in Ns.

Example 10 (example 9 continued). For a sequence σ = <F>,

we call BRANCH(σu, σ[1]) function, where σu = ε, σ[1] = F. It

first locates possible branches via Tu(σ[1]) = {t4}, i.e., only one

branch containing F, as illustrated in Figure 3 (b). The GAP(ε•, •t4)

function returns a fill τ =< t1t3 > of the gap between ε and t4. It

follows the branching on the next event σ[2], i.e., null. A recovered

sequence σ∗ = BRANCH(< t1t3t4 >, σ[2]) =< t5 > is returned.

Finally, the minimum recovered sequence is σ =< t1t3t4t5 > and

transformed to <ADFG> as the minimum recovery.

4.2 Pruning Branches
Although branching index significantly reduces irrelevant branches,

there still have some branches that could not lead to any valid or
minimum recovery. In the following, we focus on reducing the
search space during the on-line computation of minimal recovery.

Path reachability pruning. Intuitively, if all the places in σu•
(e.g., {p1, p2} in Figure 4) are not reachable to a candidate (e.g.,
t2) in Tu(e), it is impossible to generate a fill between σu and t2.
That is, all the branches yielded by t2 can be ignored. However, the
branching containing t2 is still considered by Algorithm 3.

To avoid unnecessary branching, we only need to consider those
t ∈ Tu(e) whose ancestor overlaps with the post-set of the current
firing sequence σu•. It is indeed to decide whether there exists at
least one place p ∈ σu• such that p is reachable to t. By encoding
on processes [14, 6], one can answer whether a place is reachable
to a transition in constant time, with logarithmic encoding length.

We modify BRANCH(σu, σ[k]) function by adding a reachability
checking for each t ∈ Tu(σ[k]) in Algorithm 3. For all places in
σu•, if none of them is reachable to t, then no fill τ exists between
σu and t, and there is no need to execute GAP(σu•, •t) in Line 9.

Example 11 (example 9 continued). For a sequence σ = <ADG>,

let σu =< t1t3 > be the current firing sequence with post-set

{p2} and G be the next event. According to branching index, both

branches on t5 and t6 in Tu(G) will be considered as illustrated in

Figure 3 (b). However, according to the reachability checking, all

the places in σu•, i.e., p2, are not reachable to t5. Therefore, the

branch on t5 leading to a sink place p5 can be safely pruned.

Branch and bound. Next, we prune those branches that may lead
to possible recoveries but cannot be the minimum one. The idea
is to develop a lower bound of recovery sizes on these branches.
Consequently, the branches whose lower bound of sizes is higher
than the current minimum solution can be safely pruned without
computing the remaining results of the recovery.

Figure 5: Branch and bound

The key issue is how to develop the lower bounding function.
For each place in the post-set of the current firing sequence p ∈
σu•, it must lead to some sink places p′ : bend in order to form
a possible recovery, e.g., from p1 to p14 or p15 in Figure 5. Intu-
itively, the place p ∈ σu• can be interpreted as a source place of a
“sub-process” towards sink places p′. We can investigate the mini-
mum branches (causal net) projected by p and p′ in the branching
net. More precisely, let AN(p′) denote all the ancestors of p′ and
DE(p) be all the descendants of p in the branching net. The pro-
jection of branch with respect to p and p′ can be represented by
DE(p) ∩ AN(p′), π(p′) = bend. The lower bound of a sequence
that can lead the place p to a sink place could be defined as

LB(p) = min
p∈σu•,p′∈DE(p),π(p′)=bend

|DE(p)∩AN(p′)∩Tu|, (1)

For example, in Figure 5, the “sub-process” projected by p1 and
p14 is illustrated in a dotted eclipse. There are 6 transitions in the
projected causal net. Similarly, the number of transitions in the
projected causal net of p15 is 5, which is smaller. According to
formula (1), the lower bound is LB(p1) = 5.

It is worth noting that, other than the pruning by checking reach-
ability on-line, the aforesaid lower bound on each place in Pu can
be off-line computed when constructing the branching index. Con-
sidering all the places, the lower bound of a sequence that can lead
the current firing sequence σu to a sink place is

LB(σu) = max
p∈σu•

LB(p).

For the firing sequence σu with post-set {p1, p2} in Figure 5, we
have LB(p1) = 5 and LB(p2) = 2, according to formula (1). It
follows LB(σu) = 5, that is, the sequence needs at least 5 more
events to form a complete firing sequence ended with sink place.

Let σmin be the minimum recovery in the currently computed re-
covery solutions. Then, all the branches on σu with a lower bound

LB(σu) ≥ |σmin| − |σu| (2)

can be safely pruned. This lower bound checking can be deployed
at the beginning of BRANCH(σu, σ[k]) in Algorithm 3.

Example 12 (example 9 continued). For an input sequence σ =
<AG>, let σu =< t1 > be the current firing sequence with post-set

{p1} and G be the next event. According to branching index and

reachability checking, both branches on t5 and t6 in Tu(G) will be

considered as illustrated in Figure 3 (b). Suppose that t5 is con-

sidered in the first iteration, which returns a result < t1t2t5 >
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of recovery <ABG>. For the second iteration on t6, according to

formula (2), we can compute a lower bound LB(σu) = 3 of se-

quence that can lead σu to a sink place. Although it is also reach-

able to p1, the current recovery with size 3 is already smaller than

the lower bound of minimum recoveries with respect to t6, i.e.,

LB(σu) + |σu| = 4. Consequently, the branch on t6 leading to a

sink place p6 can be safely pruned.

4.3 Local Optimality
In general, for any intermediate event e, we cannot obtain the

minimal recovery on the branches w.r.t. e until all these branches
are fully computed. According to the intuition of firing sequence
semantics, however, the branching produced by any two firing se-
quences with the same post-sets should be exactly the same. In the
following, we identify those t ∈ Tu(σ[k]) that may lead to firing
sequences with the same post-set, and prove that a local optimal re-
sult could be generated by only branching on one of the transitions.

Branching equivalence classes. To define such groups of transi-
tions in Tu(σ[k]), we first introduce a binary relation on transitions,
namely branching equivalence relation, denoted as ⊜. Let σ1 be a
minimum prefix firing sequence of a transition t1, which only con-
sists of transitions AN(t1) ∩ Tu that are ancestor transitions of t1
and can form a new firing sequence σ1t1. It is equivalent to the
minimum fill of the gap between an empty firing sequence ε to t1,
i.e., GAP(ε•, •t1).

Definition 12 (Branching equivalence relation). For any two tran-

sitions t1, t2 ∈ Tu, let σ1 and σ2 be the minimum prefix firing se-

quences of t1 and t2, respectively. Then, t1 and t2 are said branch-
ing equivalent, denoted by t1 ⊜ t2 iff:

1. π(t1) = π(t2);
2. π((σ1t1)•) = π((σ2t2)•).

Obviously, relation ⊜ is reflexive, symmetric and transitive. We
define the branching equivalence classes as follows.

Definition 13 (Branching equivalence classes). For an event e, the

transitions Tu(e) can be divided into a collection of n subsets,

{T EC
1 , T EC

2 , . . . , T EC
n }, namely branching equivalence classes,

such that,

1. T EC
i ∩ T EC

j = ∅, i 6= j;

2.

n⋃

i=1

T EC
i = Tu(e);

3. t1 ⊜ t2,∀t1, t2 ∈ T EC
i ;

4. t1 6⊜ t2,∀t1 ∈ T EC
i , ∀t2 ∈ T EC

j and i 6= j.

Example 13 (example 9 continued). Consider the transitions t5, t6
in Figure 3 (b). Let σ1 =< t1t2 > and σ2 =< t1t3t4 > be the

minimum prefix firing sequences of t5 and t6, respectively, i.e., the

minimum fills from empty firing sequence ε to t5 and t6. As π(t5) =
π(t6) = G and π((σ1t5)•) = π({p3}) = {b3} = π({p4}) =
π((σ2t6)•), we say t5, t6 in the same branching equivalence class

having t5 ⊜ t6.

For each branching equivalence class T EC
i , we find a t ∈ T EC

i

which has a minimum fill τmin for the gap between σu and t com-
pared with those of other t′ in T EC

i . Below, we will show that this
local minimal recovery σuτmint can always lead to a minimum re-
covery with respect to all the branches on transitions in T EC

i , i.e.,
the local optimality.

Proof of local optimality. First, we can show that, for any σu, the
post-sets of firing sequences generated by filling the gaps between
σu and the transitions in a branching equivalent class must map to
the same set of places in specification.

Lemma 3. Given a firing sequence σu, for any t1, t2 ∈ T EC
i , let

τ1 = GAP(σu•, •t1) and τ2 = GAP(σu•, •t2) be the fills from σu

to t1 and t2, respectively. Then, it always has π((σuτ1t1)•) =
π((σuτ2t2)•).

Figure 6: Local optimality

For example, in Figure 6, let τ1 be a fill of GAP(σu•, •t1), i.e.,
a firing sequence with post-set (σuτ1t1)• = {p4, p5}, and sim-
ilarly (σuτ2t2)• = {p6, p7} for another t2. Suppose that t1 ⊜

t2 with π(t1) = π(t2) = e. It always has π((σuτ1t1)•) =
π((σuτ2t2)•) = {b1, b2}.

Next, we can prove that the branches on all t ∈ T EC
i must be

the same, e.g., σ1 yielded by t1 is equivalent to σ2 yielded by t2,
in Figure 6. Consequently, only the branching corresponding to
the local optimal t∗ in T EC

i needs to be considered. That is, if
|τ1| < |τ2|, σ1 can always produce the minimal recovery on the
branches yielded by σu, and the other σ2 can be safely pruned.

Theorem 2. For a firing sequence σu, the branching on

t
∗ = arg min

t∈T EC
i

|GAP(σu•, •t)|

can always generate the minimum recovery with respect to all the

branches on transitions in T EC
i .

The beauty of branching equivalence classes is that they are de-
fined independent of any firing sequences σu. That is, we can pre-
identify them off-line, and apply the local optimality directly.

Local algorithm. Finally, we introduce the LOCAL algorithm by
adapting the aforesaid BRANCH in Algorithm 3. As shown in Line
8, the program considers each branching equivalence class T EC

i

over Tu(e). A transition t ∈ T EC
i with the minimum fill between

σu and t is found and recorded as τmin. As illustrated in Line 15,
for each T EC

i , only this σuτmin keeps on branching.

Algorithm 4 LOCAL(σu, σ[k])

Input: A firing sequence σu and k-th event σ[k] in σ
Output: A minimum recovered sequence after σu

1: σmin := an infinite sequence
2: if σ[k] is null then

3: for each sink place p ∈ Pu, π(p) = bend do

4: τ := GAP(σu•, {p})
5: if |σmin| > |τ | then

6: σmin := τ
7: else

8: for each T EC
i over Tu(e) do

9: τmin := an infinite sequence
10: for each t ∈ T EC

i do

11: τ := GAP(σu•, •t)
12: if τ exists and |τmin| > |τ t| then

13: τmin := τ t
14: if |τmin| is not infinite then

15: σ∗ := LOCAL(σuτmin, σ[k + 1])
16: if |σmin| > |τminσ

∗| then

17: σmin := τminσ
∗

18: return σmin

The proposed pruning techniques are complementary to local op-
timality. We can still apply the branch and bound at the beginning
of Algorithm 4, and employ the reachability pruning in Line 11.

Example 14 (example 13 continued). Given a sequence <AG>, let

σu =< t1 > be the current firing sequence and G be the next

event. As introduced, t5, t6 in Figure 3 are in the same branching
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equivalence class. Since the fill < t3t4 > of σu and t6 is larger

than that of t4, we have τmin =< t2 > in Line 14 in Algorithm 4.

Thereby, the branching on σut2t5 is considered for the next event.

5. EXTENSIONS ON LOOPS
Finally, we move to the general specifications with loops. In

practice, there are a number of realistic process specifications in-
volving loop semantics such as “redo”. Branching nets could be
infinitely generated on loops. To terminate the branching, we intro-
duce the following portal and shadow places.

Definition 14 (Portal/shadow place). In a process branching (Nu, π),
for two places p, p′, we call p′ a shadow place of portal place p if

1. π(p) = π(p′);
2. p ∈ AN(p′) i.e., p is an ancestor of p′.

Each portal places may have multiple shadows, denoted by a
shadow set Pshadow(p). According to the requirement of occur-
rence net, there should be only one transition in the pre-set of a
shadow place, say •p′ = {t′}. The process branching is extended
for loops as follows.

Definition 15 (Process branching for loops). A process branch-

ing (Nu, π) for a process specification Ns with loops is a process

branching such that for each p′ ∈ Pu, |p
′ • | = 0, π(p′) 6= bend,

1. ∃p ∈ AN(p′), π(p) = π(p′),
2. ∀t ∈ AN(p′) \ {t′}, π(t) 6= π(t′),

where t′ is the only transition in •p′.

The first condition in Definition 15 indicates that the branching
after shadow place p′ can be ignored. The second condition en-
sures that no events appear twice in a branch, in order to keep the
branching minimal.

Example 15. Figure 7 shows a process specification with two loops

and its branching. p6 is a shadow place of the portal place p1 hav-

ing π(p1) = π(p6) = b1. We use a dashed line to denote the por-

tal/shadow connection between p1 and p6. According to Definition

15, the duplicate branching on shadow place p6 is cut off. Conse-

quently, only the shadow and sink places can have empty post-sets,

e.g., p6, p7 and p5 : bend. Moreover, no duplicate event in each

branch is still guaranteed. It is exactly the reason why we stop

branching on event B after p6 : b1 which already appears in the

ancestor t2 : B.

Figure 7: Example of branching net on loops

Algorithm extension. We adapt the GAP function to support fill-
ing gaps with loops, namely GAP+ in Algorithm 5. Owing to the
presence of portal/shadow places, there may exist recovered se-
quences with various lengths instead of topological sorting with
unique size. According to the minimum fill principle, it is to find a
recovered sequence with the minimum length between σu and t.

Lemma 4. For a minimum fill τmin of a gap between σu and t,

there does not exist any t1 and t2 in τmin such that t1 • ∩t2• 6= ∅.

The lemma states that during the generation of a minimum fill
of a gap, any place can only appear at most once. Obviously, if a
same place appears twice, there must exist a complete loop in the

fill. According to the minimum requirement, such loop should be
eliminated. We use a counter lc to record the the times of portal
places pi being looped, initially lc(pi) = 0.

The backtracking with loops should not only consider the places
pi ∈ •t, but also the possible shadow places of pi. Similar to the
original GAP, Line 3 consider all places pi 6∈ σu•. If pi is a por-
tal places and has loop counter lc(pi) < k, all the corresponding
shadow places should be considered during backtracking, denoted
as Pi := {pi}∪Pshadow(pi). Here, k denotes the maximum times
that a portal place could be looped (k=1 when finding the minimum
fill, i.e., at most once). Let Λ denote all the combinations on pos-
sible shadow places of each portal place. Each X ′ ∈ Λ leads to a
possible fill τ between σu and t. Following the same line of GAP

function, the fill can be recursively computed by considering all the
prerequisites of t with respect to the places in X ′ in Line 12. Fi-
nally, among all possible combinations of pre-sets, a minimum fill
τmin is return.

Algorithm 5 GAP+(σu•, •t, lc)

Input: A current firing sequence σu, a transition t and a counter lc record-
ing the times each portal place being looped

Output: A fill of the gap between σu and t

1: τmin := an infinite sequence
2: for each place pi ∈ •t do

3: if pi 6∈ σu• or pi is a portal place with lc(pi) + 1 < k then

4: Pi
p:={pi}

5: if pi is a portal place with lc(pi) < k then

6: Pi
p:=Pi

p ∪ Pshadow(pi)

7: lc(pi) := lc(pi) + 1
8: Λ := Λ× Pi

p

9: for each X′ ∈ Λ do

10: τ := ε
11: for each transition ti ∈ •X′ do

12: τ ′ := GAP+((σuτ)•, •ti, lc)
13: τ := ττ ′ti
14: if |τ | < |τmin| then

15: τmin := τ
16: return τmin

Once the minimum fill is computed, we can seamlessly apply the
BRANCH algorithm to compute the minimum recovery, by calling
τ := GAP+(σu•, {p}, lc) in Line 4 and τ := GAP+(σu•, •t, lc)
in Line 9 of Algorithm 3. During backtracking, we need to extend
from portal places to shadow places, which may obstacle the prun-
ing techniques performing. The reachability checking can only be
effective on those transitions t, whose ancestors AN(t) are not por-
tal places. The branch and bound approach is directly applicable,
as shadow places always lead to the execution of some transitions
more than once and will not affect the lower bound by counting
transitions (at most once) in the branching net.

For the minimum fill, GAP+ function visits a place or transi-
tion of the specification at most once with complexity O(|Ts| +

|Ps|). For each event, there are O(d|Ps|−1) branches to consider,
where d is the maximum out degree of a place in Ns. Considering
branches over all events in the input sequence σ, the complexity of
the branching recovery with loops is O(|σ|·(|Ts|+|Ps|)·d

|Ps|−1).

Example 16 (example 15 continued). Consider a sequence <ABCB>.

A gap will be detected when processing the last event σ[4] : B. Let

σu =< t1t2t3 > be the current sequence. It is to fill the gap be-

tween σu and t2 with π(t2) = B. By calling GAP+(σu•, •t2, lc),
a portal place p1 ∈ •t2 is considered. Since this portal place

is not visited according to lc(p1) = 0 in the initialization, the

program backtracks both the portal place p1 and the correspond-

ing shadow place p6. For the first case, by recursively calling

GAP+(σu•, •t1, lc), no valid fill could be generated. In the sec-

ond case, considering t6 ∈ •p6, GAP+(σu•, •t6, lc) returns a fill
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of empty sequence, i.e., σut6 is a firing sequence with no gap. Con-

sequently, < t6 > is a fill returned in the second case and is also

the minimum fill among all backtracking alternatives. The current

firing sequence becomes σu =< t1t2t3t6t2 >. The BRANCH al-

gorithm finally generates a σmin =< t1t2t3t6t2t3t4t5 >, which

maps to a minimum recovery π(σmin) = <ABCFBCDE>.

6. ON TOPK RECOVERIES
It is notable that we cannot always automatically make correct

recovery of missing events by only using specification constraints.
The rationale is that multiple valid alternatives exist due to the
choice structure of process specifications. For example, consider
the specification in Figure 7 (a) with loops. A sequence σ<ABCDE>
contains the semantics of a blank action between event C and D.
More precisely, it may be the case that some events FBC do occur
and are missed between C and D, i.e., <ABCFBCDE>. Or it is also
possible that the log data is correct that such events FBC do not oc-
cur. The automatic recovery approach cannot tell which case is the
real occurred one. Further knowledge is necessary for recovering
such cases. A method concerned is to return a list of k candidate
recoveries instead of one. For instance, the recovery candidates
for the above example σ can be <ABCDE>, <ABCFBCDE>,. . . ,
ranked by sizes.

Moreover, a recovery with events, which appear more frequently
in the event log, may have a larger chance of being the correct re-
covery. For each event e ∈ Ts, let f(e) denote the frequency of
event e occurring in the event log. We define the frequency score
of a recovered result σ′ as s(σ′) =

∑n

k=1 f(σ
′[k]), where n =

|σ′| denotes the length of the recovered firing sequence. Conse-
quently, for any recoveries σ1, σ2 with the same recovery distances
∆(σ1, σ),∆(σ2, σ) to the original input σ, i.e., having |σ1| = |σ2|,
we can further rank the results according to their frequency scores
s(σ1), s(σ2).

Finally, instead of only one answer, the results consist of a list
of k candidate recoveries σ1, . . . , σk, such that 1) for any σi, σi+1,
having |σi| ≤ |σi+1|; and 2) if|σi| = |σi+1|, then s(σi) ≥ s(σi+1).
That is, a recovery with smaller distance is preferred, and if some
candidate recoveries share the same distances, the one with high
frequency events is favored in ranking. In Algorithm 3, let σmin

denote the k-th minimum recoveries that have been found. The
BRANCH algorithm directly returns top-k answers.

7. EXPERIMENT
In this section, we report the experimental evaluation by com-

paring our proposed branching approaches with the state-of-the-art
technique Alignment [9]. The programs are implemented in Java
and all the experiments were performed on a computer with In-
tel(R) Core(TM) i7-2600 3.40GHz CPU and 8 GB memory.

Data set. We employ a real data set collected from a train man-
ufacturer2. There are 149 process specifications considered with
sizes up to 63 transitions and 79 places. The average in/out degree
of transitions (parallel) is 2.61 (maximum 17). The average in/out
degree of places (choice) is 2.41 (maximum 11). As illustrated
in Table 2, 25 specifications are causal nets without any choice
of flows; 57 specifications contain choices but no loops; and the
remaining 67 specifications involve loops. The event logs are ex-
tracted from the company’s ERP systems. A total of 4470 event
sequences were collected from execution logs of the specifications.
Among them, 3513 sequences have at least one event missed. The

2www.tangche.com

Table 2: Statistics on process specifications
Type # %
causal net 25 16.78
with choices (no loop) 57 38.25
with loops 67 44.97
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Figure 8: Statistics on branching nets

minimum recovery gives the indication that at least 47.66% events
are missing in these sequences.

To build branching index, we need to materialize the branching
nets of process specifications. Figure 8 reports both the transition
and place sizes of branching nets. As illustrated, the size of branch-
ing net is about 3 times larger than the original specification net.
The sizes of transitions and places are quite similar. Below, we use
the size of transitions to distinguish process specifications.

In order to evaluate scalability of our algorithms and perfor-
mance over different process patterns (i.e., typical structures such
as sequential, choice and parallel in specifications), we generate
four larger synthetic data sets, including sequential, parallel, choice
and complex. Sequential testbed contains specifications that only
have sequential structure, i.e., the in/out degree of each place/transition
is at most 1. Parallel testbed consists of specifications contain-
ing only parallel flows, while specifications in Choice testbed only
have structures of flow choices. Finally, Complex testbed contains
specifications each of which consists of the same amount of paral-
lel, choice and sequential structures. We generate event sequences
on four synthetic testbeds by using a log generator BeehiveZ [16].
Each generated sequence have 20% random missing events. In or-
der to obtain event sequences with larger sizes, we employ a loop
structure from the end to the beginning of each specification.

Criteria. Besides time performance, we also verify the effective-
ness of minimum recovery. Specifically, we randomly remove events
from the complete sequences in the data set, and apply the recovery
methods to recover the removed events. Let removed be the set of
all sequences that are removed between two events, and recovered

be the set of recovered sequences between two events. We use the
F-measure of precision and recall to evaluate the accuracy, given

by precision = |removed∩recovered|
|recovered|

, recall = |removed∩recovered|
|removed|

, and

F-measure= 2 · precision·recall
precision+recall

. A larger F-measure denotes a
higher recovery accuracy.

Exp. on specifications of causal nets. We first study the compari-
son on specifications of causal nets. Since our indexing and pruning
techniques work on different branches and have no effect on causal
net (as one branch), the comparison focuses on Alignment and our
Branch with the backtracking technique. We report accuracy and
time performance on various missing rates of events in Figures 9 (a)
and (b). The accuracy results of two approaches are similar, while
our Branch shows about 5 orders of magnitudes improvement in
time costs. According to our analysis in Section 4, the complex-
ity of branching recovery relates to the size of branching net (i.e.,
equivalent to specification of causal net). We also observe the per-
formance under various specification sizes in Figures 9 (c) and (d).
As illustrated, time costs of our branching approach increase slowly
as the size of specifications, while time costs of Alignment are high
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Figure 9: Performance on causal net specifications
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Figure 10: Performance on specifications with choices

and unstable (affected by the structure of specifications).

Exp. on specifications with choices. The second experiment in
Figures 10 (a) and (b) reports the average accuracies and time costs
on all 57 specifications with choices by varying missing rates of
events. We also observe the results on different specification sizes
in Figures 10 (c) and (d). The results of specifications with sizes 20-
24 in Figures 10 (c) and (d) are interesting. We find that these spec-
ifications contain a large number of parallel flows (i.e., the degree
of transitions is large). Thereby, our Branch approach can show
significant lower time cost (as the case of causal net) than Align-
ment. The corresponding accuracies are lower partially because of
the criteria, which reports a success only when the recovered se-
quence exactly matches with the randomly removed one between
two events. As discussed, a swapping of two parallel events may
still be correct but identified as a fault in the evaluation criteria.

For the remaining specifications in Figures 10 (c) and (d), the
improvement of branching is not significant, since these specifica-
tions contain much less parallel events. Nevertheless, our Branch
approach is at least no worse than Alignment in all tests, and show
significant improvement in average as presented in Figures 10 (a)
and (b). Moreover, our advanced approach Local+Reach+Bound
can further improve the time performance (indeed the best one) in
Figure 10 (d).

Exp. on specifications with loops. For the general case of spec-
ifications with loops, the performance relies on not only the spec-
ifications but also the sizes of sequences. Figure 11 presents the
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Figure 11: Performance on general specifications with loops

comparison on accuracies and times costs by varying missing rates,
specification sizes and sequence sizes.

Reachability checking does not function as good as it in Fig-
ure 10 (specifications without loops), since it works only when
there is no portal place between two nodes. The branch and bound
technique can show improvement together with both the original
Branch and the revised Local approach. Local+Reach+Bound can
always achieve the lowest time cost and show several orders of
magnitudes improvement compared with Alignment.

Again the results on different specifications may be unstable in
Figures 11 (c) and (d), as the sizes of branching depends on the
structure of specifications (e.g., degree of places). The longer a
sequence is, more loops it may contain. Therefore, time costs in-
crease as sequence sizes in Figure 11 (f). It is also interesting that
the time costs drop as the increase of missing rates in Figure 11
(b). The rationale is that each backtracking may search possible
sequences that cannot lead to any valid fill. When most events
are missing, the number of backtracking operations decreases and
consequently the searching on invalid sequences reduces. As men-
tioned, reachability checking, which is employed to avoid search-
ing on invalid sequences, does not function well in loops. Thereby,
the time cost decreasing trends are more significant in Figure 11 (b)
than that of Figure 10 (b) without loops.

Exp. on synthetic data sets. To evaluate the impact of differ-
ent process patterns, we employ four synthetic testbeds, including
Sequential, Parallel, Choice and Complex. For each testbed, 10
specifications are generated with sizes ranging from 10 to 100 tran-
sitions.3 We study the performance of our most advanced approach
Local+Reach+Bound in Figure 12 (a). The time costs on Sequence

3Real process specifications, however, often have sizes bounded by
about 60, according to the recent survey [28]. Indeed, referring to
the process modeling guidelines [23], process specifications should
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Figure 13: Evaluation of top-k extension

and Parallel testbeds increase slowly with the rise of specification
sizes, which is similar to the results in Figure 9 (d). However, the
time cost of Choice testbed grows heavily, since the size of branch-
ing index could be very large with the growth of choice structures.
The time cost of Complex data set also grows significantly, but not
as fast as Choice because the Complex specifications contain less
choice structures with some other sequential and parallel cases.

We also evaluate the scalability over larger sizes of event se-
quences, up to 2000 events,4 using the specification with 40 tran-
sitions in each testbed. As shown in Figure 12 (b), the time costs
show a trend of increase similar to the results on real data, e.g., in
Figure 11 (d). Again, the Choice testbed has the highest time cost
owing to the large size of branching index. The Sequential and Par-
allel testbeds as well as the Complex case with some sequential and
parallel structures show lower time costs.

An interesting result is that Sequential and Parallel testbeds have
almost the same time costs in both Figures 12 (a) and (b). The ra-
tionale is that specifications with only sequential or parallel struc-
tures are exactly causal nets. The recovery approach in Section 3
is directly performed on both cases by backtracking causal nets.
Thereby, the time costs on Sequential and Parallel are quite similar.

Exp. on top-k recoveries. Finally, we report the results on top-k
recoveries. Figure 13 presents the highest F-measure of all the k
results. First, as illustrated, the frequency information can improve
the ranking of recoveries, i.e., top-1 recoveries (with frequency
consideration) show higher accuracy than that of top-1 results with-
out frequency. Moreover, the top-2 and top-3 recoveries can further

be decomposed if they have more than 50 elements, so that they are
easier to read and understand.
4According to our statistics on real data, the execution sequences
often have sizes within 1000. A recent study on detecting anomaly
in event logs [10] employs synthetic data with maximum sequence
size 78 (21.19 on average).

improve the accuracy compared with the top-1. However, by keep-
ing on enlarging k, e.g., top-10, it can hardly increase the accuracy
further. Therefore, it is sufficient to explore the top-3 recoveries
of missing events. The corresponding time costs of top-3 tests are
slightly higher than that of top-1.

8. RELATED WORK
In event data management, a series of interesting tasks have been

raised. For example, provenance queries [26] answer the sequence
of steps leading to a queried data. Complex event processing [11]
detects interesting event patterns from the event database. Nezhad
et al. study the correlation of events for mining process specifica-
tions [24]. All these applications rely on a source of accurate and
complete event data.

In incomplete data management, previous studies focus on con-
cise representation of possible recoveries. To capture incomplete-
ness and non-determinism in design, planning and scheduling spec-
ifications, data models such as AND/OR trees [15] are proposed
by facilitating factorized representations. Antova et al. [1] pro-
pose world-set decompositions for finite sets of worlds, as well as
relational algebra queries on world-sets [2]. However, these two
techniques, AND/OR trees [15] and world-set decompositions [1],
dedicated to representing finite sets of worlds are not directly appli-
cable to event data studied in this paper, where sequences could be
infinite due to the existence of loops. Thereby, we employ process
branching techniques [12] which can represent the case of loops.

The minimal recovery of missing events is also studied as op-
timal sequence alignment [17], where A∗ algorithm is employed
[9]. The basic idea [9] is to enumerate all the valid combinations of
events as possible sequences, and apply the A∗ algorithm to search
the one with the minimum cost. As mentioned in the introduction,
the alignment approach considers a search space involving redun-
dant sequences with respect to parallel events. Our proposed ap-
proaches can successfully avoid such inefficient scenario and show
significantly lower time cost in the experiments.

9. UTILITY OF PETRI NETS
Petri net are directly employed in a number of real applications.

For example, YAWL, Yet Another Workflow Language based on
Petri nets, is used by the European Defence Agency (EDA) for
modelling and implementing personnel management processes.5 In
bioinformatics, Will and Heiner [29] report a comprehensive sur-
vey of Petri nets in biology, chemistry, and medicine. The research
group lead by Monika Heiner has conducted a series of studies on
applying Petri nets in bioinformatics, e.g., application of Petri net
for modelling and validation of the sucrose breakdown pathway in
potato tuber [18]. Their representative results include the Snoopy
system: a unifying Petri net framework to investigate biomolecular
networks [25], STEPP: a tool for Petri net-based path analysis in
biochemical networks [19], and so on. Moreover, Gambin et al.
[13] introduce Nested Relational Calculus (NRC) and Petri nets as
a formal model for expressing bioinformatics workows.

Moreover, Petri net is a general notation for modeling workflows
and has a well-developed mathematical theory for process analy-
sis. Due to such a generality, other notations of industry standards,
such as BPEL, BPMN and EPCs, are often translated to Petri nets,
in order to perform advanced analysis and application [21]. For ex-
ample, van der Aalst et al. [27] study the conformance checking
for Web services, which are specified by Business Process Exe-
cution Language (BPEL, another process specification language).

5http://www.yawlfoundation.org/pages/impact/uptake.html
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BPEL process definitions are translated into Petri nets and Petri net-
based conformance checking techniques are applied. The transla-
tion guarantees that the original BPEL definition and the translated
Petri net specification have exactly the same space of all possible
sequences. Moreover, a sequence of events conforms to the BPEL
definition, if and only if the sequence conforms to the correspond-
ing specification translated into Petri net. Following this princi-
ple, a minimum recovery of a sequence w.r.t. Petri net must be
a minimum recovery over the corresponding BPEL definition as
well. Therefore, our proposed techniques can be applied to pro-
cesses specified by BPEL. Similarly, our techniques may also be
applicable to BPMN and EPC.

Unfortunately, our proposed techniques are not directly applica-
ble to simpler workflow models defined by context-free grammars,
such as SEAM [4]. In particular, the branching approach relies on
the unfolding of Petri net, which is context-sensitive.

10. CONCLUSION AND DISCUSSION
In this paper, we study the problem of finding minimum recover-

ies for missing events. The problem is first proved to be NP-hard.
To efficiently find the optimal recovery, we propose a backtrack-
ing idea to reduce the redundant sequences with respect to paral-
lel events. A branching framework is then introduced, where each
branch can apply the backtracking directly. We construct a branch-
ing index, and develop reachability checking and lower bounds of
recovery distances to further accelerate the computation. More-
over, the local optimal method can identify groups of transitions
that always share the same branching and thus only one of them
needs to be computed. The proposed techniques are then adapted
to support processes with loops. Finally, we can naturally extend
the approach to answer top-k recoveries. The experiment results
demonstrate that the minimum recovery paradigm is able to effec-
tively and efficiently retrieve the missing events.

As with other automatic recovery techniques over relational data,
our automatic recovery techniques also cannot guarantee to always
return the true results without involving the executor of each indi-
vidual event. In order to improve the accuracy of recovery, learning
ranking functions for top-k recoveries is a possible future work.

Moreover, besides suggesting a top-k list of minimum recover-
ies as studied in this paper, it is also interesting to consider other
recovery scheme. For example, 1) relying on the knowledge of
constraint and data, it is to return a sub-sequence of “core” events
that always appear in all the possible recoveries, as known as the
consistent query answering problem [3] in data cleaning. Or 2) we
can rely on the knowledge of people. A user may ask why the two
occurrences of event F (conducted by the user) do not appear in
σ<ABCDE>. It is also studies as the why-not problem [8].
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