
Large Scale Cohesive Subgraphs Discovery for Social
Network Visual Analysis

Feng Zhao
School of Computing

National University of Singapore

zhaofeng@comp.nus.edu.sg

Anthony K. H. Tung
School of Computing

National University of Singapore

atung@comp.nus.edu.sg

ABSTRACT

Graphs are widely used in large scale social network analy-
sis nowadays. Not only analysts need to focus on cohesive
subgraphs to study patterns among social actors, but also
normal users are interested in discovering what happening in
their neighborhood. However, effectively storing large scale
social network and efficiently identifying cohesive subgraphs
is challenging. In this work we introduce a novel subgraph
concept to capture the cohesion in social interactions, and
propose an I/O efficient approach to discover cohesive sub-
graphs.

Besides, we propose an analytic system which allows users
to perform intuitive, visual browsing on large scale social
networks. Our system stores the network as a social graph
in the graph database, retrieves a local cohesive subgraph
based on the input keywords, and then hierarchically visu-
alizes the subgraph out on orbital layout, in which more
important social actors are located in the center. By sum-
marizing textual interactions between social actors as tag
cloud, we provide a way to quickly locate active social com-
munities and their interactions in a unified view.

1. INTRODUCTION
Graphs play a seminal role in social network analysis nowa-

days. A large and rapidly growing social network companies
store social data as graph structures, such as Facebook1 and
Twitter2. In a social graph, vertices represent social ac-
tors, while edges represent relationships or interactions be-
tween actors. One fundamental operation on social graph
is to identify groups of social actors that are highly con-
nected with each other, represented by a cohesive subgraph,
in which analysts may discover interesting structural pat-
terns among social actors, and normal users can know what
happening in their neighborhood.

1https://www.facebook.com
2https://www.twitter.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 2

Copyright 2012 VLDB Endowment 2150­8097/12/12... $ 10.00.

Cohesive subgraph discovery is an intriguing problem and
has been widely studied for decades. One fundamental struc-
ture is the clique in which every pair of vertices is connected.
Finding cliques is NP-Hard [9] and many work try to re-
lax the clique problem to improve efficiency [15, 1, 19, 18,
24, 22]. However, these methods do not directly take the
characteristics of social network into consideration. For ex-
ample, in Figure 1a, we emphasize the 3-core in solid edges
and connected vertices, in which every vertex v inside it
satisfies d(v) ≥ 3. However, g is not cohesive enough as a
whole. Considering cliques inside g, we can find a 5-clique
(a, b, c, d, f) and a 4-clique (c, d, e, f) on the left, as well as
two 4-cliques {(m, n, p, q), (p, q, t, u)} on the right. But ver-
tex a and p are not tightly coupled since they only share one
common neighbor j, so the subgraph g is better viewed as
two separated cohesive groups.

This phenomenon, denoted as the tie strength concept, is
well studied in the sociological area. Note that tie is same as
edge in social graph. Mark Granovetter in his landmark pa-
per [14] indicates that two actors A and B are likely to have
many friends in common if they have a strong tie. In another
state-of-the-art sociological paper, White et al. [25] observe
that a group is cohesive to the extent that pairs of its mem-
bers have multiple social connections, direct or indirect, but
within the group, that pull it together. One intuitive real life
example is that you and your intimate friends in Facebook
may have high possibility to share lots of mutual friends.
However, this observation has been missing from many of
the cohesive subgraph definitions, which drives us to define
a “mutual-friend” structure to capture the tie strength in
a quantitative manner for social network analysis. Assume
we consider a tie in Figure 1 valid if and only if it is sup-
ported by at least two mutual friends. With only supported
by one mutual friend j, the tie (a, p) should be disconnected
according to the mutual-friend concept, and we successfully
separate subgraph g to two groups. We will formally define
the problem and compare it to other definitions in details in
the subsequent sections.

How to improve the scalability is one potential challenge
of cohesive subgraph discovery for social network analysis.
Most of the existing approaches [23, 24, 26] mainly focus
on the dense region recognition for moderate size graphs.
However, many practical social network applications need to
store the large scale graph in disks or databases. Like Face-
book, over 800 million active actors use its service per month
all over the world [3], which is impossible to fit in memory.
Therefore, besides providing memory based solutions, we fo-
cus on developing a solution to handling large scale social

85

(a) Before Layout

(b) After Layout

Figure 1: Cohesive Graph Example

graphs stored in a graph database, which is more scalable
for graph operations than a relational database. Like Twit-
ter, recently it migrated its social graph to FlockDB [10],
a distributed, fault-tolerant graph database for managing
data at webscale. By leveraging graph databases, we extend
memory based algorithms to I/O efficient solutions for large
scale social networks.

Additionally, exploring and analyzing social network can
be time consuming and not user-friendly. Visual represen-
tation of social networks is important for understanding the
network data and conveying the result of the analysis. How-
ever, it is a challenge to summarize the structural patterns
as well as the content information to help users analyze the
social network. One previous work [23] proposes a novel
linear plot for graph structure, which sketches out the dis-
tribution of dense regions and is suitable for static dense
pattern discovery. Unlike this work, our system insulates
users from the complexities of social analysis by visualiz-
ing cohesive subgraphs and the contents in an interactive
fashion. For graph structure, we propose an orbital layout
to decompose the graph into hierarchy with respect to the
cohesive value, in which more important social actors are
located in the center. Figure 1b shows an orbital layout for
the graph in Figure 1a. Briefly speaking, this layout consists
of four orbits with four different colors, in which the more
cohesive vertices are located closer to the center. Like the
5-clique (a, b, c, d, f), all five vertices are in the innermost or-
bit. As for vertices size setting, ordering and edge filtering,
we will explain them in details later in this paper. For the
contents, we make use of tag cloud technique to summarize
the major semantics for a group of social actors. Gener-
ally speaking, our visualization is flexible and can be easily
applied to other cohesive graph concepts.

In this paper, we develop a novel social network visual
analytic framework for large scale cohesive subgraphs dis-
covery. Our contributions are summarized as follows:

• We have introduced a novel cohesive subgraph con-
cept to capture the intrinsic feature of social network
analysis nicely.

• By leveraging graph databases, we have devised an of-
fline algorithm to compute global cohesive subgraphs
efficiently. Moreover, we have developed an online
algorithm to further refine local cohesive subgraphs
based on the results of offline computations.

• We have developed an orbital layout to decompose the
cohesive subgraph into a set of orbits, and coupled
with tag cloud summarization, which allows users to
locate important actors and their interactions inside
subgraphs clearly.

• We have conducted extensive experiments, and the re-
sults show that our approach is both effective and ef-
ficient.

The rest of the paper is organized as follows. Section 2
reviews the related literature on cohesive subgraph finding
and social network analysis. Section 3 defines the cohe-
sive subgraph discovery problem handled throughout this
paper. Section 4 presents the offline computations in the
graph database, and the online visual analytic system is de-
scribed in Section 5. Our extensive experimental study is
reported in Section 6. Section 7 concludes the paper.

2. RELATED WORK
Modeling a cohesive subgraph mathematically has been

extensively studied for decades. One of the earliest graph
models was the clique model [16], in which there exists an
edge between any two vertices. However, the clique model
idealizes cohesive properties so that it seldom exists and
hard to compute. Alternative approaches are suggested that
essentially relaxes the clique definition in different aspects.
Luce [15] introduces a distance based model called k-clique
and Alba [1] introduces a diameter based model called k-
club. Generally speaking, these models relax the reacha-
bility among vertices from 1 to k. Another line of work
focuses on a degree based model, like k-plex [19] and k-
core [18]. The k-plex is still NP-Complete since it restricts
the subgraph size, while k-core further relaxes it to achieve
the linear time complexity with respect to the number of
edges. A new direction based on the edge triangle model,
like DN-Graph [24] and truss decomposition [22], is more
suitable for social network analysis since it captures the tie
strength between actors inside the subgroup. Our proposed
mutual friend concept belongs to this model and we will
compare it with the above two concepts in Section 3 in de-
tails. Recently, database researchers try to scale up the disk
based cohesive subgraph discovery. Cheng et al. [6] pro-
pose a partition based solution for massive k-core mining.
They also develop a disk based triangulation method [7] as a
fundamental operation for cohesive subgraph discovery. Dif-
ferently, we store the social graph in graph database that is
more scalable for graph traversal based algorithms.

Besides, social network characteristics has been well in-
vestigated in sociology communities. The most related one
is the tie strength theory, which is introduced by Mark Gra-
novetter in his landmark paper [14]. Recently, many so-
cial network researchers investigate this important theory

86

in online social network, such as the user behaviors in Face-
book [12, 3] and Twitter [13]. Their conclusions show that
the strength of tie is still a tenable theory in social media,
which are the bases of the mutual-friend subgraph definition
in this paper.

Social network visualization and analysis has received a
great deal of attention recently. Wang et al. [23] proposes
a linear plot based on graph traversal to capture the dense
subgraph distribution in the whole graph. Zhang et al. [26]
extends it to compare the pattern changing between two
graph snapshots. Place vertices in concentric circles with
different levels is a popular way to visualize graph struc-
tures, such as k shell decomposition [2], centralities visu-
alization [8] and so on. We leverage the circular idea and
devise the orbital layout to visualize k-mutual-friend sub-
graphs in an interactive manner. Note that the orbital lay-
out is perpendicular to linear plot. We could seamlessly in-
tegrate the linear plot for global subgraph distribution and
the orbital layout for local subgraph representation. Besides,
Arnetminer [21] provides comprehensive search and mining
services for academic social networks. It is a full fledged
framework with nice visual exploring function like the rela-
tionship graph between two researchers. However, the focus
of this visualization is to show the connections between two
researchers instead of the importance of individuals in the
cohesive subgraphs as in our solution.

3. PROBLEM DEFINITION
In this section, we first introduce the preliminary knowl-

edge, then define the maximal k-mutual-friend finding prob-
lem, and show several important properties about this con-
cept. Furthermore, we compare it with clique, k-core, DN-
Graph as well as truss decomposition in depth.

3.1 Preliminaries
As stated in Section 1, we model a social network as an

undirected, simple social graph G(V, E) in which vertices
represent social actors and edges represent interactions be-
tween actors. The k-mutual-friend subgraph proposed in
this paper is derived from clique and k -core [18]. Clique is a
fully connected subgraph, in which every pair of vertices is
connected by an edge. If the size of a clique is c, we call the
clique a c-clique. k -core is one successful degree relaxation
of clique concept defined as follows.

Definition 3.1. (k-core Subgraph)
A k-core is a connected subgraph g such that each vertex v
has degree d(v) ≥ k within the subgraph g.

The k-core is motivated by the property that every vertex
has degree d(v) = c − 1 in a c-clique. k-core also needs to
satisfy the degree condition, but the restriction on subgraph
size is not required. As such, k-core can be efficiently com-
puted in O(|E|) time complexity [18]. Differently, based on
the observation in Section 1, we propose the k-mutual-friend
subgraph to emphasize on tie strength. One important prop-
erty about edges in clique is that every edge is supported by
Tr(e) = k − 2 triangles in a k-clique. Analogous to the k-
core definition, the k -mutual-friend sets a lower bound for
every edge’s triangle count. Next we will formally define the
k -mutual-friend and show its relationships to other cohesive
structures.

3.2 The k ­mutual­friend Subgraph

Definition 3.2. (k-mutual-friend Subgraph)
A k-mutual-friend is a connected subgraph g ∈ G such that
each edge is supported by at least k pairs of edges forming a
triangle with that edge within g. The k-mutual-friend num-
ber of this subgraph, denoted as M(g), equals k.

Note that we need to exclude the trivial situation to con-
sider a single vertex as a mutual-friend. Given the parameter
k, we may discovery many k-mutual-friend subgraphs that
overlap with each other. In the worst case, the number of
k-mutual-friend subgraphs can be exponential to the graph
size. Therefore, we further define the maximal k -mutual-
friend subgraph to avoid redundancy.

Definition 3.3. (Maximal k-mutual-friend Subgraph)
A maximal k-mutual-friend subgraph is a k-mutual-friend
subgraph that is not a proper subgraph of any other k-mutual-
friend subgraph.

To compare with clique and core, we present two interest-
ing properties about the k -mutual-friend subgraph.

Property 3.1. Every (k + 2)-clique of G is contained in a
k-mutual-friend of G.

Proof. Since a (k + 2)-clique is a fully connected sub-
graph with order k+2, each edge is supported by k triangles.
Therefore, it is contained in a k-mutual-friend subgraph by
Definition 3.2.

Property 3.2. Every k-mutual-friend of G is a subgraph
of a (k + 1)-core of G.

Proof. For each vertex v in gk, it connects to at least
k triangles. Every triangle adds one neighbor vertex to v
except the first adding two neighbors, so that v has (k + 1)
neighbors, i.e. d(v) ≥ (k + 1). Therefore, gk qualifies as a
(k + 1)-core of G.

The above two properties suggest one important observa-
tion: (k + 2)-clique ⊆ k-mutual-friend ⊆ (k + 1)-core, show-
ing that the mutual-friend is a kind of cohesive subgraph
between the clique and the core. Note that the reverse
of the above two properties are not true. Again in Fig-
ure 1, the 4-clique (m,n, p, q) is a subgraph of the 2-mutual-
friend (m,n, p, q, t, u), while 2-mutual-friend (a, b, c, d, e, f)
and (m,n, p, q, t, u), both of them are contained in the 3-core
(a, b, c, d, e, f, m, n, p, q, t, u). Finally, we define the main
problem we investigate in this paper as follows.

Problem 1. (Maximal k-mutual-friend Subgraph Finding)
Given a social graph G(V, E) and the parameter k, find all
the maximal k-mutual-friend subgraphs.

3.2.1 Comparison to DN­Graph

Before we illustrate the solution to Problem 1, we further
state an interesting connection between the mutual-friend
concept and the DN-Graph concept proposed by Wang et
al. [24] recently. A DN-Graph, denoted by G′(V ′, E′, λ),
is a connected subgraph G′(V ′, E′) of graph G(V, E) that
satisfies the following two conditions: (1) Every connected
pair of vertices in G′ shares at least λ common neighbors.
(2) For any v ∈ V \V ′, λ(V ′

⋃
{v}) < λ; and for any v ∈ V ′,

λ(V ′ − {v}) ≤ λ.

87

At the first glance, DN-graph is similar to the maximal
k-mutual-friend subgraph. However, these two concepts are
distinct due to the second condition in DN-Graph defini-
tion. Intuitively, the DN-graph defines a strict condition
that the maximal subgraphs need to reach the local maxi-
mum even for adding or deleting only one vertex. On the
other hand, the maximal k-mutual-friend defines the local
maximal subgraph that is not a proper subgraph of any other
k -mutual-friend subgraph. As demonstrated in Figure 1a,
(m, n, p, q), (p, q, t, u) and (m, n, p, q, t, u) are all DN-Graphs
with λ = 2, since the λ value can only decrease if adding or
removing any vertices. However, only (m, n, p, q, t, u) is the
maximal 2-mutual-friend since other two are its subgraphs.
This example shows that the DN-Graph finding may gen-
erate many redundant subgraphs. Furthermore, due to the
hardness of satisfying the second condition, solving the DN-
Graph problem is NP-Complete as proven by the authors.
To solve it they iteratively refine the upper bound for each
edge to approach the real value, but it still has high com-
plexity and isn’t suitable for large scale graph. Actually, the
mutual friend finding is inspired by the DN-Graph concept
and we improve it by providing efficient solution in polyno-
mial time subsequently.

3.2.2 Comparison to Truss Decomposition

Truss decomposition is a process to compute the k-truss of
a graph G for all 2 ≤ k ≤ kmax, in which k-truss is a cohesive
subgraph ensures that all the edges in it are supported by at
least (k− 2) triangles [22]. The truss definition is similar to
but proposed independently with the mutual friend defined
in this paper except the meaning for k. Besides, the authors
for truss decomposition realize that memory solution can
not handle large scale social networks. They develop two
I/O efficient algorithms. One is a bottom-up approach that
employs an effective pruning strategy by removing a large
portion of edges before the computation of each k-truss. The
second one takes a top down approach, which is tailor for
applications that prefer the k-trusses of larger values of k.
Differently, we store the social graph in graph database that
is scalable for graph traversal based algorithms.

4. OFFLINE COMPUTATIONS
In this section, we first propose memory based solutions to

solve Problem 1 in polynomial time, and then leverage the
graph database to extend the solution for large scale social
network analysis.

4.1 Memory based Solution
Given a social graph G and the parameter k, the intuitive

idea of discovering the maximal k-mutual-friend is to remove
all the unsatisfied vertices and edges from G. Based on
the Definition 3.2, we iteratively remove edges that are not
contained in k triangles until all of them satisfy the condition
Tr(e) ≥ k. The procedure is illustrated in Example 1.

Example 1. Considering a maximal k-mutual-friend find-
ing with k = 2 over the graph in Figure 2a, the left part of
Figure 1a. First, edges {(e, i), (e, h), (e, g), (f, h)} are re-
moved since their triangle counts are less than 2. Next,
{(d, g), (f, g), (g, h)} are further removed since their trian-
gle counts become less than 2, while e(d, e) is still part of the
2-mutual-friend due to Tr(e(d, e)) = 2. In the third loop,

Tr(e(d, f)) reduces to 3 but still satisfies the condition. Be-
cause all the remaining edges with triangle counts larger than
or equal to 2, the graph remains unchanged and the loop ter-
minates. Lastly, we delete all the isolated vertices and obtain
2-mutual-friend (a, b, c, d, e, f) as in Figure 2b.

(a) Step one (b) Step two

Figure 2: Example of in Memory Algorithm

Although this is a straight forward solution, the compu-
tational complexity is relatively high because it has lots of
unnecessary triangle computations. In the worst case it re-
moves one edge at a time and needs |E| times loops to re-
move all the edges from G. As such, the total complex-
ity is |E| ×

∑
e(u,v)∈G

(d(u) + d(v)), in which d(u) + d(v) is

the complexity to compute the triangle count for one edge.
This expression can be further simplified to the order of
|E| ×

∑
v∈G

d(v)2, because we need to get the v’s neigh-
bors d(v) times in one loop. For practical case, we seldom
encounter this extreme situation, but a large number of it-
erations is still a bottleneck of this solution.

As such, we propose an improved algorithm based on the
following observation. When an edge is deleted, it only de-
creases the triangle counts of the edges which are forming
triangles with that edge. Thus we can obtain edges affected
by the deleted edge and only decrease triangle counts for
them. This intuition is reflected in Algorithm 1, which can
be divided into three steps. First, one necessary condition
for Tr(e(u, v)) ≥ k is d(u) ≥ k + 1 and d(v) ≥ k + 1 as
in the proof of Property 3.2. This is a lightweight method
of deleting many vertices and their adjacent edges before
removing unsatisfied edges with insufficient triangles. The
remaining graph is then processed by the second step, which
costs most of the workload to remove edges not supported
by at least k triangles. From line 6 to 9, we first check all
the edges’ triangle counts. The Q is implemented as a hash
set to record non-redundant removed edge elements. Next,
instead of computing the triangle on all the edges to check
the stability of the graph, we iteratively retrieve the affected
edges from Q until Q is empty. This is the indicator that
the graph becomes unchanged. Finally, the removal of in-
adequate edges likely results in isolated vertices, which are
removed in the end. We show the procedure in the running
example as follows.

Example 2. We consider a maximal 2-mutual-friend find-
ing in Figure 2a again based on Algorithm 1. According to
the degree condition, we first remove vertex i and the edge
(e, i) since the degree of i is less than 3. We then check
the edge’s triangle counts and delete {(e, g), (e, h), (f, h)}.
Moreover, we record these edges in Q for affected edges.
Edges {(d, g), (f, g), (g, h)} are further removed until Q is
empty. Finally, we delete all the isolated vertices and gen-
erate the same result as in Example 1.

88

We next prove the correctness of Algorithm 1 in two as-
pects. On one hand, the remaining vertices and edges are
part of the maximal-k-mutual-friend subgraphs. This aspect
is true according to the definition of k-mutual-friend sub-
graph. On the other hand, the removed vertices and edges
are not part of the maximal-k-mutual-friend subgraphs. Be-
cause the only modification on G is the removal of edges,
bringing about the decrease of triangle counts, the edges
supported by less than k triangles can be safely deleted since
they cannot be part of a k-mutual-friend subgraph any more.

Algorithm 1: Improved k-mutual-friend

Input: Social graph G(V, E) and parameter k
Output: k-mutual-friend subgraphs
// filter by degree of vertices

foreach v ∈ V do1

if d(v) < k + 1 then2

remove v and related e from G3

// delete edges with insufficient triangles

initialize a queue Q to record removed edges4

initialize a hash table Tr to record triangle counts5

foreach e = (u, v) ∈ E do6

compute Tr(e) based on N(u), N(v)7

if Tr(e) < k then8

enqueue e to Q9

while H 6= ∅ do10

dequeue e from Q11

find out edges E′ forming triangles with e12

remove e from G13

foreach e′ ∈ E′ do14

Tr(e′)−−15

if Tr(e′) < k then16

enqueue e′ to Q17

// delete isolated vertices

foreach v ∈ G do18

if d(v) == 0 then remove v from G19

return G20

As for complexity analysis, the improved algorithm out-
performs the naive one remarkably because it avoids a great
deal of unnecessary triangle computations. The first step
takes O(|V |) complexity to check vertices’ degree. The sec-
ond step dominates the whole procedure. The initial triangle
counting has time complexity

∑
v∈G

d(v)2. From line 10 to
17, finding all the edges forming triangles with the current
edge e(u, v) takes d(u)+d(v) work. In the worst case, all the
edges are removed from Q. Since Q only stores each edge
one time, the total cost is

∑
e(u,v)∈G(d(u) + d(v)), equal to

∑
v∈G

d(v)2. The last step also takes O(|V |) complexity to
delete isolated vertices. As a whole, the total time complex-
ity is O(

∑
v∈G

d(v)2). It not only avoids the unnecessary it-
erations, but also reduces the graph size with relative small
effort in the first step. Although the above algorithm is ef-
ficient, but is not suitable for large scale graph processing
stored in disk. Retrospect the algorithm, it needs O(|E|)
space complexity, which is too large to store in memory.
So we extend it to the disk based solution in the following
section.

4.2 Solution in Graph Database
In this section, we first introduce the concept of graph

database, and then present a streaming solution in graph
database and improve it by means of partitioning.

4.2.1 The graph database

A graph database [17] represents vertices and edges as a
graph structure instead of storing data in separated tables.
It is designed specifically for graph operations. To this end,
a graph database provides index-free adjacency that every
vertex and edge has a direct reference to its adjacent vertices
or edges. More explicitly, there are two fundamental storage
primitives: vertex store and edge store, which layouts are
shown in figure 3. Both of them are fixed size records so
that we could use offset as a “mini” index to locate the
adjacency in the file. Vertex store represents each vertex
with one integer that is the offset of the first relationship
this node participates in. Edge store represents each edge
with six integers. The first two integers are the offset of the
first vertex and the offset of the second vertex. The next four
integers are in order: The offset of the previous edge of the
first vertex, the offset of the next edge of the first vertex, the
offset of the previous edge of the second vertex and finally
the offset of the next edge of the second vertex. As such,
edges form a doubly linked list on disk, so that this model
possesses a significant advantage: there is a near constant

1stEdge

1stNode 2ndNode 1stPrevEdge 1stNextEdge 2ndPrevEdge 2ndNextEdge

Vertex store Edge store

Figure 3: Graph Database Storage Layout

time cost for visiting adjacent elements in a graph in some
algorithmic fashion. This is actually a primitive operation
in graph-like queries or algorithms, naturally suitable for
shortest path finding, maximal connected subgraph problem
and graph’s diameter computations and so on. Furthermore,
it can scale more naturally to large data sets as they do not
typically require expensive join operations.

Instead, the typical way to store graph data in relational
database is to create edge table with index on vertices:

CREATE TABLE Edge (
1stNode int NOT NULL,
2ndNode int NOT NULL

)
CREATE INDEX IndexOne ON Edge (1stNode)
CREATE INDEX IndexTwo ON Edge (2ndNode)

Based on the above schema, we need to use index to support
graph traversal since we cannot directly obtain the adjacent
elements from the table. Example 3 shows a comparison
between graph database and relational database.

Example 3. Consider the process of the triangle counting.
Given e(u, v), we need to fetch N(u) and N(v). In relational
database, we can utilize vertices to query the edge table in-
dex with O(log |V |) I/O cost, and then compute the shared
neighbors as the triangle count. This procedure can be largely
improved in graph database. According to the edge store, we
can retrieve N(u) and N(v) as the traversal in the double

89

linked list. prevEdge and nextEdge in Figure 3 provide ref-
erence to all the neighbors of vertices u and v, so that we
can finish this step with O(d(v)) I/O cost, which is invariant
to the graph size.

Later in this section, we make use of the traversal op-
erator extending the in memory algorithm to I/O-efficient
algorithms in a graph database. We define the traversal
operator as traverse(elem,step) for better demonstration,
which means that the length of shortest paths from graph
element elem to the satisfied results cannot be larger than
step. For example, traverse(u, 1) retrieves all the vertices
that are directly connected to u and the edges among them.
For implementation, we utilize the Neo4j3 graph database.
Note that we could easily migrate our algorithms to other
popular graph databases as long as they are optimized for
graph traversal, such as DEX4, OrientDB5 and so forth.

4.2.2 Streaming based solution

The streaming based solution is modified from Algorithm 1
and implemented in the graph database. The major changes
are two-fold. On one hand, we use graph traversal to access
vertices and edges (line 1 and 3), as well as compute triangle
counts (line 5 and 6). On the other hand, we build index
on edge attributes to mark edges as deleted (line 7, 9 and
15) and record edges’ triangle counts (line 8, 13 and 14).
Note that the edge attributes are in the order of O(|E|),
so they still need to be maintained out of core for large
graph datasets. In this way, we make full use of the graph
database, and keep all the advantages in the improved mem-
ory algorithm.

Algorithm 2: Streaming based Algorithm

Input: Social graph G(V, E) and parameter k
Output: k-mutual-friend subgraphs
// filter by degree of vertices

traverse the vertices of G1

remove v and related edges if d(v) < k + 12

// delete edges with insufficient triangles

traverse the edges E of G3

foreach e = (u, v) ∈ E do4

N(u)←− traverse(u, 1);N(v)←− traverse(v,1)5

compute tr(e) according to N(u), N(v)6

if Tr(e) < k then mark e as deleted7

else set e’s mutual number attribute as Tr(e)8

while exist edges e(u, v) marked as deleted do9

E′ ←− edges form triangles with e in traverse(e,1)10

remove e from G11

foreach e′ ∈ E′ do12

Tr(e′)−−13

if Tr(e′) < k then14

mark e′ as deleted15

delete isolated vertices from G16

return G17

We next analyze the I/O cost in this algorithm. Filter-
ing by degree and deleting isolated vertices need O(|E|)

3http://neo4j.org
4http://www.sparsity-technologies.com/dex
5http://www.orientechnologies.com

I/O. The most costly part is removing edges with insuffi-
cient triangles. For edge (u, v), finding triangle count takes
O(d(u)+d(v)) I/O work. Similar to the analysis for memory
based algorithm, each edge can only be marked as deleted
once. We conclude that this step needs O(

∑
v∈G

d(v)2) I/O
cost, which is also the total order of I/O consumptions. Be-
sides, the traversal on vertices and edges is dominated by
sequential I/O, which further reduces the I/O cost.

4.2.3 Partition based solution

Since all the triangle computations are directly operated
in graph database, the streaming algorithm fails to make full
use of the memory. Therefore, we proposed an improved ap-
proach based on the graph partitioning, and load partitions
into memory to perform in memory triangle computations to
save I/O cost and improve efficiency. To begin with, we de-
rive a greedy based partitioning method in Algorithm 3 from
the heuristics in paper [20]. The basic idea is to streamingly
process the graph and then assign every vertex to the parti-
tion where it has the largest number of edges connecting to.
As in line 11 in Algorithm 3, localPartitionNum records
the number of edges in each partition, (1−|gi|×p/|G|) sug-
gests that partitions with larger size have smaller weight,
and the product of the above two factors decides which par-
tition the current vertex belongs to. This algorithm, requir-
ing one breadth first graph traversal, is efficient with linear
I/O complexity. However, the resulting partitions cannot be
directly used because this algorithm is a vertex partitioning.
Typically, it only extends partitions by including all the ver-
tices connecting to the vertices inside the partition, which
may result in the loss of triangles. As in Figure 4a, the
running example is partitioned into three parts {g1, g2, g3}.
In this case, the triangle (a, j, p) is missing since its vertices
are separated into three partitions. In order to keep all the
triangles, we define an induced subgraph as in Definition 4.1.

Definition 4.1. (Induced Subgraph)
Denote gi+ = (Vi+, Ei+) as an induced subgraph of a par-
tition gi(Vi, Ei) of G. The extended vertex set is defined as
Vi+ = Vi

⋃
{v : u ∈ Vi, v ∈ V \Vi, (u, v) ∈ E}. The ex-

tended edge set is defined as Ei+ = {(u, v) : (u, v) ∈ E,u ∈
Vi}

⋃
∆Ei. where ∆Ei are edges satisfying {(v, w) : u ∈ Vi,

(u, v), (u, w) ∈ E, v.partition 6= w.partition, u.id < v.id,
u.id < w.id}.

Based on the induced subgraph, the triangle (a, j, p) in
Figure 4a is allocated in g1 as shown in Figure 4b, because id
a is smaller than j, p in this triangle. Next we formally prove
the correctness of the partitioning method in Lemma 4.1.

Lemma 4.1. Induced subgraphs {g1, . . . , gp} derived from p
partitions of G have the same set of triangles as G.

Proof. The lemma is equivalent to the statement that ev-
ery triangle (u, v, w) in G appears once and only once in all
partitions. The proof can be divided into three cases. If three
vertices belong to Vi of partition i, the triangle can only be
inside the same partition. If any two of three vertices belong
to Vi of partition i, without loss of generality, we assume
that u, v ∈ Vi and w ∈ Vj. The triangle is in partition i but
not in partition j, since (u, v) can only be assigned to par-
tition i. If three vertices are located in different partitions,
we assign the triangle to the vertex with smallest id as de-
fined in ∆Ei, so this triangle only appears once in induced
subgraphs.

90

(a) Partition into {g1, g2, g3}

(b) Computation on g1

Figure 4: Example of Partition based Algorithm

Algorithm 3: Graph Partitioning

Input: Social graph G(V, E), partition number p
Output: {g1, . . . , gp} partitions
foreach v ∈ G in BFS order do1

if d(v) < k + 1 then2

remove v and related edges; continue3

initialize the array localPartitionNum with size p4

N(v)←− traverse(u, 1); foreach u ∈ N(v) do5

ind←− u’s partition index6

if ind > 0 then localPartitionNum[ind]++7

maxWeight←− 0; curWeight←− 08

pIndex←− −19

for i from 1 to p do10

curWeight←−11

localPartitionNum[i] × (1− |gi| × p/|G|)
if curWeight > maxWeight then12

maxWeight←− curWeight13

pIndex←− i14

set v’s partition index as pIndex15

return G16

Finally, we provide a partition based solution in Algo-
rithm 4. First we partition the graph into p partitions, and
for each partition, we do the in memory edge removal. Note
that we only consider inside edges, which only affect trian-
gles satisfying {(u, v, w), u, v, w ∈ Vi}. As such, we make
use of the memory to reduce the graph size as well as keep-
ing the correctness of the solution. After this, we write
the induced subgraphs back to graph database and use Al-
gorithm 2 to do post processing. We take the induced sub-
graph g1 in figure 4b to find 2-mutual-friend subgraph. Note
that edges {(a, j), (a, p), (j, p)} are outside edges, while oth-
ers are inside edges. For inside edges, we directly apply in
memory algorithm and remove edges in dotted lines with tri-
angle counts less than 2. But for outside edges, we cannot
delete them since they may affect triangle counts in other
partitions. After we deal with all the partitions, we post
process the refined graph using Algorithm 2 to obtain the

final result. In the worst case, this algorithm has the same
I/O complexity as Algorithm 2. But in practice, it loads
and processes the induced subgraphs to memory and avoids
many disk triangle computations. The detailed comparison
between this two disk-based solutions will be presented in
the experimental section.

Algorithm 4: Partition based Algorithm

Input: Social graph G(V, E), parameter k, and
partition number p

Output: k-mutual-friend subgraphs
partition the graph based on Algorithm 31

for i from 1 to p do2

load induced subgraph gi+ into memory from the3

partition i
// Do in memory edge removal

queue Q←− ∅4

hash table Tr ←− ∅5

foreach e = (u, v) ∈ Ei+
∧

e is inside do6

compute Tr(e) based on N(u), N(v)7

if Tr(e) < k then8

enqueue e to Q9

repeatly remove inside edges until Q is empty10

write gi+ back to the graph database11

use Algorithm 2 to do post processing12

return G13

5. ONLINE VISUAL ANALYSIS
Based on the algorithms proposed in the previous section,

we develop a client-server architecture to support online in-
teractive social visual analysis. As in Figure 5, the offline
computations are the base for the online visual analysis. For
online analysis, we retrieve a local subgraph g close to the
user selected vertex on top of offline computing result, on-
line compute the exact M values for graph elements inside
g, and generate the orbital layout for visualization. More-
over, we select representative tags to summarize the textual
information in the local graph. In the client side, user can
search and browse the visualized subgraph.

To support online visual analysis, we implement a visual
interactive system accessible on the Web6, and provide a use
case on Twitter dataset in Figure 8 to illustrate our idea.

5.1 Online Algorithm
Based on the offline computations, we retrieve a local

subgraph associated with the input keywords from graph
database and compute exact M values for every edge and
vertex inside the subgraph. This is a fundamental step to
support graph layout later in this section. User can select a
focused vertex v from a list of vertices containing the key-
words, and our system will return a local subgraph including
all the vertices within the distance τ from v and the edges
among these vertices, i.e. traverse(v, τ). For efficient online
computation, we show one important stability property of
the k-mutual-friend subgraph as follows.

Property 5.1. The k-mutual-friend is stable with respect
to the parameter k, i.e. gk+1 ⊆ gk.

6http://db128gb-b.ddns.comp.nus.edu.sg:8080/vis/demo

91

Tag Cloud Selector

Online Algorithm
Orbital Layout

Generator

k-mutual-friend Finder

Offline Computations

Online Visual Analysis

K
e
y
w
o
rd
 Q

u
e
ry

Visual Analytic Browsing Interface

Local subgraph

Graph Database

Figure 5: Social Network Visual Analytic System

For every edge e in subgraph gk+1, Tr(e) ≥ k + 1 > k
suggests that this subgraph is also a gk. Therefore, based
on the stability property, if one wants to compute the exact
M values for graph elements, we can make use of the offline
result as input, with much less work than computing from
scratch. Furthermore, the offline computations provide a
useful upper bound for online computations.

Lemma 5.1. Given G(V, E) after offline computation, the
edges from the online local subgraph g j G satisfy {Mg(e) ≤
Trg(e) ≤ TrG(e), e ∈ g}.

Proof. Since g is a subset of G, for every edge e ∈ g, its
local triangle count should be smaller or equal to the global
triangle count, i.e. Trg(e) ≤ TrG(e). Based on the defi-
nition of k-mutual-friend subgraph, the local triangle count
bounds the Mg value. All in all, we obtain the relationship
Mg(e) ≤ Trg(e) ≤ TrG(e).

We implement Algorithm 5 based on the above observa-
tions. The first step is to retrieve the local subgraph within
the distance τ to v. Then, we iteratively compute the exact
gm from m = Mmin to m = Mmax. Finally, we merge all
the gm to obtain the local subgraphs with exact M values.
To illustrate, we retrieve a local subgraph by traverse(a,2)
from the graph in Figure 1, and the result local graph is
shown in Figure 6a. The number shows the triangle counts
computed by the offline algorithm, which are the upper
bound for the exact M values. Vertices {k, l, j} and edges
in dotted lines are immediately removed since their trian-
gle counts are smaller than 2. In the first loop, we remove
vertex g and edges e(d, g), e(f, g) because their M values
become one in the local graph. The rest of the graph is the
2-mutual-friend. In Figure 6b, we use the similar procedure
to find 3-mutual-friend from the 2-mutual-friend, which in-
cludes vertices {a, b, c, d, f} and edges connecting them. The
algorithm terminates since theMmax is updated to the cur-
rent largest triangle count equal to three.

5.2 Visualizing k ­mutual­friend Subgraph
Based on the online algorithm results, we next visualize

the local subgraph reflecting the characteristics of the k-
mutual-friend in social network. To begin with, we propose
an orbital layout to decompose the network into hierarchy.
Subsequently, we describe the implementation details of this
layout in our visual system.

Algorithm 5: Online Algorithm

Input: G(V, E), k, vertex v, and distance threshold τ
Output: Local subgraphs with exact M values
g ←− traverse(v, τ)1

Mmax ←− max{TrG(e) : e ∈ g}2

Mmin ←− k3

for m from Mmin to Mmax do4

compute m-mutual-friend and update g by5

Algorithm 1
gm ←− {e : e ∈ g, T r(e) = m}6

Mmax ←− max{Trg(e) : e ∈ g}7

return gMmin

⋃
. . .

⋃
gMmax

8

(a) traverse(a,2) to 2-mutual-friend

(b) 2-mutual-friend to 3-mutual-friend

Figure 6: Example of Online Computation

5.2.1 Orbital layout

As claimed in the introduction, the k-mutual-friend def-
inition is proposed to capture the tie strength property in
social network. Intuitively, vertices with larger M values
are more important since they are closely connected with
each other in the social network with many mutual friends.
Therefore, a good layout for k-mutual-friend needs to em-
phasize elements with larger M values since they compose
more cohesive subgraphs. With this observation we propose
a layout with a set of concentric orbits. Vertices with larger
M values are located close to the center, while vertices with
smallerM values are placed on orbits further away from the
center. Since the layout is analogous to the planetary orbits,
it is called orbital layout as depicted in Figure 1b. The most
connected part of the network is also the most central, such
as the 5-clique (a, b, c, d, f) in the innermost orbit.

Furthermore, since organizes vertices with different M
values into separated circles, the orbital layout forms a hi-
erarchical structure. As such, users can filter out outer or-
bits and focus on the most central vertices, especially use-
ful when the graph size is too large to clearly view. More
importantly, the orbital layout is stable in the sense that

92

the central part has the similar topological properties as
the original graph. Figure 7 shows the cumulative degree
distribution for the Epinions social network introduced in
Table 2. Yet interestingly, the shape of the distributions is
not affected by the parameter k. Note that the degree is
normalized by the corresponding average degree in each k-
mutual-friend, since it tends to have higher average degree
for larger k. The y-axis shows P>(d), i.e. the probability
that the vertex degree in this k-mutual-friend subgraph is
larger than d. Based on this nice property, the filtering op-
eration on the hierarchy is reasonable without losing much
structural information.

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
2

P
>
(d

)

d/davg

k=5
k=10
k=15
k=20
k=25

Figure 7: Stability Test on Epinions Social Network

Note that users can perceive more insights using orbital
layout comparing with other popular layout algorithms, such
as the radial layout [4] and the force directed layout [11]. Al-
though radial layout is a hierarchical structure, it is sensitive
to the focused vertex in the center and the layout may totally
change with a different center. Force directed layout repre-
sents the topology well but is not a hierarchical structure to
highlight social actors with many mutual friends. Also, it
is not scalable due to O(|V |3) complexity. The qualitative
comparison among these layouts is summarized in Table 1.

Table 1: Layout Comparison
Hierarchy Stability Cost

Orbital layout Yes Yes Median
Radial layout Yes No Low

Force directed layout No Yes High

5.2.2 Implementations

To improve the visual effect, we need to overcome the vi-
sual complexity of orbital layout, because it is a challenge
to clearly present the cohesive subgraph with a large num-
ber of vertices. First, we set different colors to distinguish
vertices in different orbits. Retrospect the motivating exam-
ple in Figure 1b, it consists of four orbits in different colors
representing vertices with four M values from 3 inside to 0
outside. In order to distinguish vertices within one orbit, the
size of vertices is proportional to vertex degree to reflect the
importance. For instance, vertex p has the largest degree so
that it has the biggest size.

Next, we consider how to visualize edges to further re-
duce the visual complexity. Since vertices within one orbit
may form several connected k-mutual-friend subgraphs, so
we carefully order vertices such that vertices belongs to one
subgraph are located successively on the orbit. As such, we
can hide edges within one orbit without losing much con-
nection information. As the Figure 1b shows, vertices g and
h are near in the orbit and vertices j, k and l are near in
the orbit. Furthermore, inspired by the radial layout, we
put a vertex close to connected vertices in the inner orbit
to minimize crossing edges. For example, vertices g and h

are located in the top left since they are close to the inner
neighbor vertex e.

5.3 Representative Tag Cloud Selection
Besides structure visualization, another dimension of so-

cial network analysis is to understand the interactions among
social actors, which come from, for instance, the newfeeds
from Facebook or tweets from Twitter. Since users may se-
lect a group of social actors with a great number of textual
contents, we incorporate the tag cloud approach to summa-
rizing various topics inside it. A potential challenge is how
to select the most important tags to capture the major in-
terests of these actors. Moreover, for distinct topics, the
challenge might be how to discover a set of tags so that they
could be comprehensive enough to cover different interests
inside the same group.

To tackle these challenges, we compute a score for each
tag by multiplying two factors, the significance and diver-
sity. On the one hand the significance measure guarantees
the truly popular tags can be selected, and on other hand the
diversity measure captures various rather than only similar
topics. In our implementation, we adopt the TF-IDF ap-
proach for significance and the semantic distance in Word-
Net [5] for diversity. In representative tag selection, we first
generate top N frequent words to form a candidate set, and
filter out infrequent words to improve the efficiency. Then,
we utilize a greedy strategy that iteratively moves tags with
the largest score from the candidate set to the representative
set until the number of selected tags reaches n, n < N , a user
adjustable parameter. As such, we discover representative
tags summarizing the interactions inside the local subgraph.
Users can quickly select and browse preferred subgroup of
actors to explore what activities they are involved in, or
what topics they are taking about, etc.

5.4 Case Study
Based on the real use case on Twitter social graph, we

illustrate the functionalities and the advantages of our vi-
sual analytic browsing interface in Figure 8, which consists
of three parts, i.e. search input area on the top, information
summarization in the left column, and subgraph visualiza-
tion in the main frame. After users input keywords in search
box and select a focused vertex matching the keywords, our
system visualizes the local subgraph in the main frame, so
that users can select vertices they are interested in with the
summarization in the left column. Without loss of gener-
ality, this example shows the 3-mutual-friend graph for the
keyword “white house”, in which vertices represent twit-
ter actors and edges represent the “following” relationships.
The depth, equivalent to the distance threshold, is set to 2.

With the help of online algorithm and layout generation,
we dramatically reduce the visual complexity in the main
frame. The visible subgraph only contains 89 vertices and
527 edges, which is much smaller the initial local subgraph
with 2006 vertices and 2838 edges. As a result, we could
quickly perceive that the networking of “The White House”
is dominated by various US departments and government
officials, which is unlikely to obtain from thousands of ver-
tices with messy information. Furthermore, users can high-
light several vertices and their neighbors while other vertices
and edges become transparent. Considering in some cases
subgraphs are quite large, users can use frontend search to
locate preferred vertices within the current subgraph, or ad-

93

Figure 8: Visual Analysis Interface

just theM value lower bound to filter out unsatisfied graph
elements using the slide bar at the top left corner. More-
over, we support zoom in/out function to focus on part of
the graph and users can view the sketch of the whole sub-
graph with a thumbnail at the bottom right corner.

The left column displays theM values of the highlighted
vertices, the corresponding tag cloud as well as the link in-
formation for the vertex representing officials of “Veterans
Affairs”. The tag cloud is a helpful tool that summarizes
the most significant and diverse topics in their tweets. In
this example, we select 30 representative tags out of 100
candidates, where “Veterans Affairs” may show great con-
cern about the PTSD (Post Traumatic Stress Disorder) and
discrimination problems while “womenshealthgov” mainly
focuses on topics like health, breast cancer and baby. In or-
der to know the source of these tags, hovering over specific
tag in the tag cloud will trigger the source vertices being
highlighted. If we point to the “insurance” tag, the Twitter
actor “Barack Obama” will be highlighted indicating that
he pays close attention to the insurance issue.

6. EXPERIMENTS
We present experimental studies to evaluate our social

network visual analysis system in this section. For simpli-
fication, we refer to the intuitive algorithm in Section 4.1
as mNaive, Algorithm 1 as mImproved, while refer to Algo-
rithm 2 as dStream, Algorithm 4 as dPartition. The mOn-
line is short for the online algorithm. We implement these
algorithm in Java language and evaluate on the Windows
operating system with Quad-Core AMD Opteron(tm) pro-
cessor 8356 and 128GB RAM.

We compare our solutions on a great deal of real so-
cial network datasets described in Table 2, most of which
are collected from the Stanford Network Analysis Project’s

website7. The datasets are sorted in increasing order of
edge number. We utilize moderate size datasets (the first
three) to compare in memory algorithms, while use large
size datasets (the last three) to compare algorithms in graph
database. Moreover, Twitter and DBLP datasets are se-
lected for online visual analysis since they contain rich tex-
tual information.

Table 2: Dataset Statistics

Dataset Vertex Edges Description

Epinions 75k 405k Who-trusts-whom graph
Twitter 452k 813k Who-follows-whom graph
DBLP 916k 3, 063k Who-cites-whom graph
Flickr 1, 715k 22, 613k Flickr contact graph
FriendFeed 653k 27, 811k Friendship graph
Facebook 72, 661k 160, 975k Friendship graph

6.1 Offline Computations Evaluation

6.1.1 Memory based Algorithms

We compare mNaive and mImproved algorithms on three
datasets and results are summarized in Figure 9. This fig-
ure depicts the effect of k on the response time of three
datasets. For Epinions and DBLP datasets, mImproved
outperforms mNaive evidently, while their performances on
Twitter dataset are in the same level. This is because Twit-
ter dataset having average degree less than 2 is much more
sparse than the other two datasets. Therefore, even the
naive algorithm can reach the stable state very fast without
incurring a great deal of unnecessary triangle computations.
For other two datasets, mImproved is about one order faster
than mNaive averagely.

One interesting observation is that the response time is
not quite related to k, but mainly determined by the triangle

7http://snap.stanford.edu/

94

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5

R
e

s
p

o
n

s
e

 T
im

e
(s

)

k

mNaive
mImproved

(a) Epinions

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5

R
e

s
p

o
n

s
e

 T
im

e
(s

)

k

mNaive
mImproved

(b) Twitter

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5

R
e

s
p

o
n

s
e

 T
im

e
(s

)

k

mNaive
mImproved

(c) DBLP

Figure 9: Comparison of Memory Algorithms

computing times in each algorithm, i.e. how many times the
algorithm calls the triangle counting operator. As in the first
two rows in Table 3, the triangle computing times for Epin-
ions dataset in mNaive is about ten times of that in mIm-
proved, which is close to the ratio of response time. Thus,
the result again justifies our conclusion in Section 4.1 that
mImproved outperforms mNaive mainly because it largely
reduces the amount of triangle computations. More specifi-
cally, when k = 1, because we only remove edges not in any
triangles without affecting other edges, mNaive can finish
in two iterations (make sure that the graph is unchanged
in the second iteration), and mImproved only needs one it-
eration. The response time for mNaive decreases when k
equals to 5 since the number of triangle computations drops
to 2, 439k, smaller than the number when k equals to 3 and
4. The triangle computing times for DBLP dataset in the
last two rows in Table 3 have the similar pattern. For Twit-
ter dataset, both algorithms need the number of triangle
computations in the same level, which determines that their
response time also close to each other. To sum up, mIm-
proved is much faster than mNaive mainly because it re-
duces the number of triangle computations, especially when
the graph is dense.

Table 3: Triangle Computing Times
1 2 3 4 5

mNaive 717k 2,219k 2,840k 3,088k 2,439k
mImproved 130k 202k 249k 284k 311k

mNaive 1,097k 1,261k 1,324k 1,364k 1,391k
mImproved 873k 867k 836k 819k 817k

mNaive 5,950k 24,767k 22,950k 25,166k 21,085k
mImproved 288k 1,028k 1,921k 2,671k 3,240k

6.1.2 Disk based Algorithms

Next we evaluate the disk based algorithms with three
large scale datasets. For partition based algorithm, we con-
trol the usage of memory by only allowing to store a sub-
graph with at most 1GB size. As such, we can estimate
the number of partitions p for each dataset according to
the graph size in graph database as in Table 4. Since the re-
sponse time is not determined by k, we set k as 3 to compare
the performance of two disk based algorithms. The results
in Figure 10 depicts the response time for the three datasets
with two parts: I/O time and CPU time. All in all, the
partition based algorithm is about five times faster than the

streaming based algorithm, and the response times for both
of them are increasing with respect to the increase of graph
size. In particular, dStream algorithm is dominated by the
I/O time, while dPartition is dominated by the CPU time,
in accord with our analysis in Section 4.

In essence, the major difference between dStream and
dPartition is the cost for triangle computations. As shown in
Table 5, the average cost for triangle computations in dPar-
tition is only one tenth of that in dStream, because most
of the triangle computations in the former approach are in
memory while all the triangle computations in the later one
are in graph database. Comparing three datasets, the aver-
age triangle computing time for Facebook is the fastest for
both algorithms due to the smallest average degree of Face-
book. As a result, although the number of edges in Facebook
is much larger than that in FriendFeed, the response time of
Facebook is slightly larger than that of FriendFeed. More-
over, Table 6 summarizes the percentages of the partitioning
part and the computing part for dPartition algorithm. Be-
cause the partitioning algorithm reads the input graph only
once and writes the partitions back to graph database, the
partitioning part costs small amount of time comparing to
the computing part.

Table 4: Number of Partitions in Algorithm 4

Flickr FriendFeed Facebook
Size(GB) 1.57 1.92 11.6

p 2 2 12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

dStream

dPartition

dStream

dPartition

dStream

dPartition

R
e

s
p

o
n

c
e

 T
im

e
(h

)

Flickr FriendFeed Facebook

I/O Time
CPU Time

Figure 10: Comparison of Disk Algorithms

In conclusion, dPartition trades off a lightweight graph
partitioning for fast triangle computing in memory. The
result verifies our claim in Section 4 that the partition based
algorithm is I/O-efficient in practice.

Table 5: 10k Times Triangle Computing Cost

Dataset dStream dPartition
Flickr 122.1s 11.3s

FriendFeed 349.6s 33.5s
Facebook 12.9s 1.3s

Table 6: Percentages of Response Time

Flickr FriendFeed Facebook
Partitioning part 9.1% 10.5% 13.2%
Computing part 90.9% 89.5% 86.8%

6.2 Online Analysis Evaluation
By randomly selecting 10 focused vertices on Twitter and

DBLP datasets respectively, we obtain the average perfor-
mance of online analysis with three components: mOnline
algorithm, orbital layout generation and tag cloud selection.
All the experiments are based on the 3-mutual-friend graph

95

calculated by the offline solution. For tag cloud selection,
we obtain 20 representative tags out of 100 candidates from
the text in focused vertices. The major objective is to test
whether our system can well support online analysis.

Table 7 shows the efficiency measures by varying the dis-
tance threshold τ from 1 to 3. It is clear that the total
response time has an ascending trend with the increase of τ
for both datasets. Taken separately, the costs of online algo-
rithm and the layout generation are largely increasing with
respect to τ . The major reason is that the response time
for the first two components is proportional to the number
of edges, which increases obviously with respect to τ , as in
the bottom row of Table 7. However, the speed of tag cloud
selection remains stable since it is only affected by the tex-
tual content in the focused vertex. Comparing the difference
between two datasets, the tag cloud selection for Twitter is
much slower because the number of words in tweets is large
than that in paper title.

Table 7: Average Response Time(in ms)

distance threshold τ

Twitter DBLP

Component 1 2 3 1 2 3
OnlineAlgo 1 32 563 2 16 498

Layout 2 6 138 2 5 108
TagCloud 1986 1726 1829 164 176 189

Avg edge num 2 368 9856 22 348 7727

Moreover, the average edge number suggests that distance
threshold τ = 2 is a practical setting for online analysis, gen-
erating local subgraph with reasonable size. Note that we
don’t consider network transmission time since it is unstable
and highly affected by the network condition, which is not
the focus of this evaluation. In summary, the whole analyti-
cal procedure can be finished less than three second so that
it is acceptable for online interactive applications.

7. CONCLUSIONS
In this paper, we have introduced a novel framework that

integrates the cohesive subgraphs discovery with the visual
social network analysis. Unlike previous works, we proposed
a new cohesive subgraph definition called k-mutual-friend to
take the tie strength into consideration. Moreover, a mem-
ory based solution is proposed and extended to the scal-
able solution in the graph database. To further consolidate
this interesting framework, we provided a visual analytic
browsing interface that helps navigate users in searching and
browsing the graph structure as well as semantics. The out-
comes from an experimental study demonstrated that our
solution is both efficient and effective. As for future re-
search, we expect to extend our framework for other graph
based analytic applications, such as protein-protein interac-
tion analysis, RDF graph analysis etc. Another challenging
direction is to maintain the cohesive subgraphs with fre-
quently updates. As such, we shall provide a real time ana-
lytic toolkit to monitor everyone’s evolving social network.

8. ACKNOWLEDGEMENT
The second author was supported in part by the NUS-ZJU

Sensor-Enhanced Social Media (SeSaMe) Centre sponsored
by NRF/IDMPO Singapore and also a FRC Grant Number
R-252-000-486-112.

9. REFERENCES
[1] R. D. Alba. A graph-theoretic definition of a sociometric

clique. Journal of Mathematical Sociology, pages 113–126,
1973.

[2] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and
A. Vespignani. K-core decomposition of internet graphs:
hierarchies, self-similarity and measurement biases.
Networks and Heterogeneous Media, page 371, 2008.

[3] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role
of social networks in information diffusion. In WWW, 2012.

[4] U. Brandes and C. Pich. More flexible radial layout. J.
Graph Algorithms Appl., pages 107–118, 2011.

[5] A. Budanitsky and G. Hirst. Semantic distance in wordnet:
An experimental, application-oriented evaluation of five
measures. In Workshop on WordNet and Other Lexical
Resources, 2001.

[6] J. Cheng, Y. Ke, S. Chu, and M. Ozsu. Efficient core
decomposition in massive networks. In ICDE, pages 51–62,
2011.

[7] S. Chu and J. Cheng. Triangle listing in massive networks
and its applications. In SIGKDD, pages 672–680, 2011.

[8] C. Correa, T. Crnovrsanin, and K. Ma. Visual reasoning
about social networks using centrality sensitivities. TVCG,
pages 1–15, 2010.

[9] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and
M. Szegedy. Approximating clique is almost np-complete.
In FOCS, pages 2–12, 1991.

[10] http://en.wikipedia.org/wiki/FlockDB.
[11] T. Fruchterman and E. Reingold. Graph drawing by

force-directed placement. Software: Practice and
experience, pages 1129–1164, 1991.

[12] E. Gilbert and K. Karahalios. Predicting tie strength with
social media. In CHI, pages 211–220, 2009.

[13] P. A. Grabowicz, J. J. Ramasco, E. Moro, J. M. Pujol, and
V. M. Eguluz. Social features of online networks: the
strength of weak ties in online social media. CoRR, 2011.

[14] M. Granovetter. The strength of weak ties. American
journal of sociology, pages 1360–1380, 1973.

[15] R. Luce. Connectivity and generalized cliques in sociometric
group structure. Psychometrika, pages 169–190, 1950.

[16] R. Luce and A. Perry. A method of matrix analysis of
group structure. Psychometrika, pages 95–116, 1949.

[17] M. Rodriguez and P. Neubauer. The graph traversal
pattern. In Graph Data Management, pages 29–46, 2011.

[18] S. Seidman. Network structure and minimum degree. Social
networks, pages 269–287, 1983.

[19] S. Seidman and B. Foster. A graph-theoretic generalization
of the clique concept. Journal of Mathematical sociology,
pages 139–154, 1978.

[20] I. Stanton and G. Kliot. Streaming graph partitioning for
large distributed graphs. In WWW, 2012.

[21] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: extraction and mining of academic social
networks. In SIGKDD, pages 990–998, 2008.

[22] J. Wang and J. Cheng. Truss decomposition in massive
networks. Proceedings of the VLDB Endowment,
5(9):812–823, 2012.

[23] N. Wang, S. Parthasarathy, K. Tan, and A. Tung. Csv:
visualizing and mining cohesive subgraphs. In SIGMOD,
pages 445–458, 2008.

[24] N. Wang, J. Zhang, K. Tan, and A. Tung. On
triangulation-based dense neighborhood graph discovery. In
VLDB, pages 58–68, 2010.

[25] D. White and F. Harary. The cohesiveness of blocks in
social networks: Node connectivity and conditional density.
Sociological Methodology, pages 305–359, 2001.

[26] Y. Zhang and S. Parthasarathy. Extracting analyzing and
visualizing triangle k-core motifs within networks. In ICDE,
2011.

96

