
An Experimental Comparison of Pregel-like
Graph Processing Systems∗

Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu,
Xingfang Wang, Tianqi Jin

David R. Cheriton School of Computer Science, University of Waterloo
{m25han, kdaudjee, kammar, tozsu, x36wang, t6jin}@uwaterloo.ca

ABSTRACT
The introduction of Google’s Pregel generated much inter-
est in the field of large-scale graph data processing, inspir-
ing the development of Pregel-like systems such as Apache
Giraph, GPS, Mizan, and GraphLab, all of which have ap-
peared in the past two years. To gain an understanding of
how Pregel-like systems perform, we conduct a study to ex-
perimentally compare Giraph, GPS, Mizan, and GraphLab
on equal ground by considering graph and algorithm agnos-
tic optimizations and by using several metrics. The sys-
tems are compared with four different algorithms (PageR-
ank, single source shortest path, weakly connected compo-
nents, and distributed minimum spanning tree) on up to
128 Amazon EC2 machines. We find that the system opti-
mizations present in Giraph and GraphLab allow them to
perform well. Our evaluation also shows Giraph 1.0.0’s con-
siderable improvement since Giraph 0.1 and identifies areas
of improvement for all systems.

1. INTRODUCTION
With the advancement and popularity of social network-

ing and scientific computation technologies, graph data has
become ubiquitous. More and more interesting problems
require processing graph data for real-world applications,
including business intelligence, analytics, data mining, and
online machine learning. For example, Google’s PageRank
algorithm must determine influential vertices for more than
1 trillion indexed webpages [4]. In the case of social graphs,
Facebook needs to calculate popularity or personalized rank-
ing, determine shared connections, find communities, and
perform advertisement propagation for over 900 million ac-
tive users [6]. In communication and road networks, de-
termining the maximum flow and routing transportation,
respectively, both require processing large graphs [26]. Re-
cently, scientists have also been leveraging biology graphs

∗This work was supported by an education research grant
from Amazon Web Services.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

to understand protein interactions and pathology graphs to
identify anomalies [30].

Traditionally, processing graph data is considered compu-
tationally hard because of the irregular nature of natural
graphs. The Bulk Synchronous Parallel (BSP) model [37]
provides a means to design parallel processing algorithms
that scale with more workers. Google’s Pregel [29] is a BSP
implementation that provides a native API specifically for
writing algorithms that process graph data. Pregel is still
a simple model with many opportunities for improvement,
leading to the emergence of several different graph process-
ing frameworks. Some prominent ones include Apache Hama
[2], Apache Giraph [1], Catch the Wind (CatchW) [34], GPS
[32], GraphLab [28] (which now incorporates PowerGraph
[18]), and Mizan [23].

The relative performance characteristics of such systems
are unclear. Although each one reports performance results,
they are not easily comparable. In this paper we address
this issue by focusing on exposing the behaviour of different
systems that are attributable to both built-in and optional
system optimizations, optimizations intrinsic to the system
and agnostic to the graph or algorithm used. Thus, this
study exposes the intrinsic capabilities of different systems.

Since these systems vary in infrastructure, we narrow our
study to open source Pregel-like systems: systems that use
Pregel’s vertex-centric approach. Hence, this excludes Hama,
which is a generalized BSP framework that is neither opti-
mized nor specialized for graphs, and CatchW, as it is not
open source and its code was not available upon request.
Additionally, we exclude graph database systems, as their
goal is to persistently manage graph data, while graph pro-
cessing frameworks address in-memory batch processing of
large graphs [12].

We therefore compare Giraph, GPS, GraphLab, and Mizan.
The first three are all popular systems that the research
and industrial community are currently using and building
upon. For example, Giraph has incorporated several opti-
mizations from GPS, has a rapidly growing user base, and
has been scaled by Facebook to graphs with a trillion edges
[10]. Mizan has emerged as a competitor to these systems.
Given its recency and similar graph processing objectives,
it is valuable to also understand how Mizan performs in the
same setting as Giraph, GPS, and GraphLab.

Our primary goals and contributions are (i) a systematic
and fair comparison of four open-source Pregel-like systems
(Giraph, GPS, Mizan, and GraphLab) to study how their
built-in and optional system optimizations impact perfor-
mance, (ii) the use of running time, memory usage, and

1047

network traffic as metrics, together with real-world datasets
and diverse algorithms, to explain the performance of each
system, and (iii) a discussion of the advantages and disad-
vantages of each system with respect to graph data process-
ing to provide system designers and users with information
that can promote the use and development of such systems.

We are aware of two existing experimental studies of Pregel-
like systems [16, 19] but both are lacking in scale, in terms
of dataset sizes and number of machines used. Furthermore,
[16] has poor algorithm diversity and only considers one ex-
perimental metric, while [19] lacks comprehensive experi-
mental results for all combinations of algorithms, datasets,
and machines. Finally, neither study consider some of the
systems that we include, such as GPS and Mizan.

This paper is organized as follows. In Section 2, we give
some background on BSP and Pregel. In Section 3, we de-
scribe the systems that we test and, in Section 4, the four
algorithms that we use as workloads. We detail our evalua-
tion methodology, including datasets and metrics, in Section
5, and analyze our results in Section 6. We highlight our ex-
periences with each system in Section 7 before concluding
in Section 8.

2. BACKGROUND ON BSP AND PREGEL
Bulk Synchronous Parallel (BSP) is a parallel program-

ming model with a message passing interface (MPI), devel-
oped to address the problem of parallelizing jobs across mul-
tiple workers for scalability [37]. In contrast to distributed
shared memory, using MPI allows message batching, which
ensures no remote reads with high latency, and avoids heavy
locking, as MPI is inherently free of deadlocks and race con-
ditions. BSP is essentially a vertex state machine where each
vertex can be active or inactive at each state. The computa-
tion consists of a sequence of supersteps, with synchroniza-
tion between workers occurring at superstep barriers (Fig-
ure 1). An inherent limitation of this synchronous approach
is that workers can encounter the straggler problem, where
fast workers must wait for the slow ones. However, BSP pro-
vides nearly full coverage over matrix computation, machine
learning, and graph processing problems.

Pregel [29] is one of the first BSP implementations that
provides a native API specifically for programming graph
algorithms, while also abstracting away the underlying com-
munication details. The fundamental computing paradigm
Pregel employs can be characterized as “think like a ver-
tex”. Graph computations are specified in terms of what
each vertex has to compute; edges are communication chan-
nels for transmitting computation results from one vertex
to another, and do not participate in the computation. The
computation is split into supersteps. At each superstep, a
vertex can execute a user-defined function, send or receive
messages to its neighbours (or any other vertex with a known
ID), and change its state from active to inactive. Supersteps
end with a synchronization barrier (Figure 1), ensuring that
messages sent from one superstep are delivered at the be-
ginning of the following superstep. A vertex may vote to
halt at any superstep and is woken up when it receives a
message. Pregel terminates when all vertices are inactive
and no more messages are in transit.

To avoid communication overheads, Pregel preserves data
locality by ensuring computation is performed on locally
stored data. The input graph is loaded once at the start

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

BSP Barrier BSP Barrier

Superstep 1 Superstep 2 Superstep 3

Figure 1: Basic computation model of Pregel, illus-
trated with three supersteps and three workers [23].

of a program and all computations are executed in-memory.
As a result, Pregel supports only graphs that fit in memory.

Pregel uses a master/workers model. One machine acts
as the master, while the others become workers. The mas-
ter partitions the input graph into subgraphs and assigns
each partition to a worker. The master is responsible for
coordinating synchronization at the superstep barriers and
for instructing workers to perform checkpointing (a means
of fault-tolerance). Each worker independently invokes a
compute() function on the vertices in its portion of the
graph. Workers also maintain a message queue to receive
messages from the vertices of other workers. Additionally,
user-defined combiners can be used to combine messages (at
the sender or receiver) to improve performance. For global
coordination, aggregators can be used. Each vertex can con-
tribute a value to an aggregator in one superstep and obtain
a globally reduced value in the next superstep [29].

3. SYSTEMS TESTED
In this section, we detail the four systems tested, our rea-

sons for selecting them, and our configuration choices. Spe-
cific technical details of our setup are given in Section 5.1.

Table 1 summarizes the basic properties of Pregel and
the tested systems. For each system, items in bold are op-
tional optimizations that we experiment with and without.
Graph storage is the data structure used to hold the in-
put graph in memory. In particular, CSR and CSC are
the compressed sparse row and column formats respectively
[25]. master.compute() allows sequential computations at
the master. GraphLab effectively provides this functional-
ity through its blocking and non-blocking aggregators, which
can collect vertex or edge data to a central location. Finally,
all systems feature combiners, aggregators, and, except for
Pregel, use the Hadoop Distributed File System (HDFS).

An important issue for all systems is that of graph par-
titioning. To perform efficient distributed computation, the
input graph must be partitioned across workers in a time-
efficient manner that (1) minimizes inter-worker communi-
cation and (2) ensures a balanced workload at each worker
(to minimize stragglers). This is the balanced graph par-
titioning problem, which is known to be NP-complete [5].
While there are approximation algorithms, such as those in
METIS [21], they can take several hours to find a good parti-
tioning for large graphs and are not time-efficient. Hence, for
all systems, we use random hash partitioning. Despite being
naive, it is the fastest graph partitioning method. GraphLab
has other partitioning methods, but the number of machines
we use do not always satisfy their required constraints.

1048

Table 1: Properties and features of Pregel and tested systems.

System Language Computation Comm. Graph Storage master. Other Optimizations
Model Library compute()

Pregel C++ BSP N/A N/A No none
Giraph Java BSP Netty Byte array, hash map Yes none
GPS Java BSP MINA Arrays Yes LALP, dynamic migration
Mizan C++ BSP MPICH C++ vectors No dynamic migration
GraphLab C++ GAS MPICH CSR/CSC [25] Yes* async computation

3.1 Giraph
Apache Giraph [1] is an open-source alternative to the pro-

prietary Pregel. Giraph runs workers as map-only jobs on
Hadoop and uses HDFS for data input and output. Giraph
also uses Apache ZooKeeper for coordination, checkpoint-
ing, and failure recovery schemes.

We pick Giraph 1.0.0 due to its large developer and user
base, which includes Facebook [10]. Giraph 1.0.0 has also
undergone multiple optimizations since Giraph 0.1. These
include sharded aggregators, which avoid bottlenecks at the
master, and serialization of vertices, edges, and messages
into byte arrays to yield substantial memory savings and
reduced Java garbage collection overheads [10].

Giraph supports different data structures for vertex ad-
jacency lists. By default, byte array is used as it is space
efficient and, as our results will show, leads to faster in-
put loading times. However, byte array edges are inefficient
for graph mutations—the addition or removal of vertices or
edges—because all edges are deserialized whenever an edge
is removed. Hash map edges, on the other hand, are less
efficient for memory but very efficient for mutations.

As distributed minimum spanning tree (DMST), one of
our workloads, performs graph mutations, we test Giraph
with both byte array and hash map edges. Finally, check-
pointing is disabled as other systems do not perform it.

3.2 GPS
GPS is another open-source Pregel implementation from

Stanford InfoLab [32]. GPS was reported to be 12× faster
than Giraph 0.1 but, as our results will show, this gap has
since narrowed due in part to Giraph 1.0.0’s adoption of
some of GPS’s optimizations [32].

We include GPS because it is a relatively full-featured
experimental system. There are many graph algorithms im-
plemented, providing confidence in the system’s correctness.
GPS also features many built-in system optimizations, such
as single canonical vertex and message objects to reduce the
cost of allocating multiple Java objects [32]. Other optimiza-
tions like using per-worker rather than per-vertex message
buffers (which improves network usage) and reducing thread
synchronization all help improve performance [31].

GPS offers Large Adjacency List Partitioning (LALP),
an optional performance optimization for algorithms that
send to all of its neighbours the same message [32]. LALP
works by partitioning the adjacency lists of high-degree ver-
tices across different workers. It is beneficial for algorithms
like PageRank, weakly connected components (WCC), and
single source shortest path (SSSP) with unit edge weights
(Section 4) but does not work for algorithms like DMST
or when aggregators are involved. LALP also requires a
threshold parameter whose optimal value depends on both

the input graph and the number of workers [32]. As it is
impractical to tune this parameter for every combination of
graph, algorithm, and workers, we choose a value of 100 that
we determined experimentally to work well overall.

GPS also features an optional dynamic migration scheme.
In most systems, graph partitioning is done before, but never
during, a computation. Dynamic migration repartitions the
graph during computation by migrating vertices between
workers, to improve workload balance and network usage.
In particular, the scheme in GPS exchanges vertices between
workers based on the amount of data sent by each vertex.
The scheme locates migrated vertices by relabelling their
vertex IDs and updating the adjacency lists in which they
appear, meaning it does not work for algorithms such as
DMST that send messages directly to specified vertex IDs.
The scheme decreases network I/O but does not always im-
prove computation time [32]. We experiment with dynamic
migration to independently verify these findings.

Finally, GPS provides several algorithm-specific optimiza-
tions, many of which use tunable parameters that are depen-
dent on the input graph. Not only are such optimizations
dependent on the particular graph and algorithm, but they
can also reduce the performance gap between systems, mak-
ing it more difficult to observe differences due to built-in
system optimizations. Hence, we do not use any algorithm-
specific optimizations.

We run GPS with no optional optimizations, with only
LALP, and with only dynamic migration.

3.3 Mizan
Mizan is an open-source project developed by KAUST,

in collaboration with IBM Research [23]. Similar to GPS,
Mizan was reported to be 2× faster than Giraph 0.1 when
running in its static mode, where no dynamic migration is
used [23]. Our study considers a more up-to-date version of
both Mizan and Giraph in this same mode.

We include Mizan because it has the same graph data pro-
cessing objectives as Giraph, GPS, and GraphLab. There
are few algorithms implemented for Mizan, providing a good
opportunity to test both the system’s performance and cor-
rectness. In fact, we were able to identify and correct several
bugs in the system through the course of implementing our
algorithms, such as incorrect aggregator values and halted
workers not waking up upon receiving a message.

Mizan also offers an optional dynamic migration scheme
that is more complex than that of GPS, but Mizan does not
function correctly with this scheme enabled [22]. Hence, we
run Mizan with its default configuration in its static mode.
Unlike the other systems, Mizan partitions the graph sep-
arately from the algorithm execution, which is an issue we
discuss in Section 6.4.

1049

3.4 GraphLab
GraphLab is an open-source project started at CMU [28]

and now supported by GraphLab Inc. We use the latest ver-
sion of GraphLab 2.2 [3], which supports distributed com-
putation and incorporates the features and improvements
of PowerGraph [18]. We include GraphLab because of its
popularity and maturity for graph analytic tasks.

Unlike the previous systems, GraphLab uses the GAS de-
composition (Gather, Apply, Scatter), which is similar to,
but fundamentally different from, the BSP model. In the
GAS model, a vertex accumulates information about its
neighbourhood in the Gather phase, applies the accumu-
lated value in the Apply phase, and updates its adjacent
vertices and edges and activates its neighbouring vertices in
the Scatter phase. In particular, vertices can directly pull
their neighbours’ data (via Gather), without having to ex-
plicitly receive messages from those neighbours. In contrast,
a vertex under the BSP model can learn its neighbours’ val-
ues only via the messages that its neighbours push to it. The
GAS model also enables completely asynchronous execution
without the need for communication barriers.

Another key difference is that GraphLab partitions graphs
using vertex cuts rather than edge cuts. Consequently, each
edge is assigned to a unique machine, while vertices are repli-
cated in the caches of remote machines. This is a feature
incorporated from PowerGraph, as vertex cuts allow high
degree vertices to be partitioned across multiple machines,
yielding better balanced workloads for graphs with skewed
degree distributions [18]. In contrast, Giraph, GPS, and
Mizan all perform edge cuts and do not replicate vertices.

Lastly, unlike Giraph, GPS, and Mizan, GraphLab does
not fully support graph mutations. It supports adding edges,
but not removal of vertices or edges.

GraphLab offers two execution modes: synchronous and
asynchronous. Like BSP, the synchronous mode uses com-
munication barriers. However, because it follows the GAS
model, synchronous mode is also adaptive: a vertex that has
converged no longer needs to participate in the computa-
tion since its neighbours can pull its last value via Gather.
This avoids wasting CPU and network resources. In con-
trast, a converged vertex must stay active in BSP to send
its neighbours messages containing its last value. The asyn-
chronous mode, or distributed locking engine in [28], is fully
asynchronous and has no notion of communication barriers
or supersteps. It uses distributed locking to avoid conflicts
and to maintain serializability (equivalence to some sequen-
tial execution). We use the asynchronous mode as an ad-
ditional comparison point. Hence, we test GraphLab with
both synchronous and asynchronous modes1.

4. ALGORITHMS
We consider four categories of graph algorithms: random

walk, sequential traversal, parallel traversal, and graph mu-
tation (Table 2) [35].

Random walk algorithms perform computations on all ver-
tices based on the random walk model. Sequential traversal
algorithms find one or more paths in a graph according to
some optimization criteria without updating or mutating
the graph structure. Such algorithms typically start at one
source vertex and, at superstep i, process vertices that are

1The chromatic engine is no longer part of GraphLab 2.2
[27].

distance i from the source. Unlike sequential traversal, par-
allel traversal algorithms start by considering all vertices at
once. Multiple vertices participate in each superstep until
they acquire some common information. Finally, graph mu-
tation encompasses algorithms that change the graph struc-
ture during computation.

For our experiments, we select one representative algo-
rithm from each category: PageRank for random walk, SSSP
for sequential traversal, WCC for parallel traversal, and
DMST for graph mutation. Table 2 summarizes how heav-
ily these algorithms utilize CPU, memory, and network re-
sources. We describe each algorithm next. Additional tech-
nical details can be found in Section 5.3.

4.1 PageRank
PageRank is an algorithm used by Google to rank web-

pages, based on the idea that more important websites likely
receive more links from other websites. We use PageRank
with a 0.85 damping factor, the same value used in [29].
This factor means that given a webpage (a vertex) the user is
browsing, there is an 85% likelihood of jumping to a random
webpage from the outgoing links (out-edges) of the current
page and a 15% likelihood of jumping to a random webpage
chosen from the entire web (the input graph).

Specifically, all vertices start with a value of 1.0. At each
superstep, a vertex u updates its value to p = 0.15 + 0.85x,
where x is the sum of values received from its in-edges, and
sends p/ deg+(u) along its out-edges, where deg+(u) is u’s
outdegree. This gives the expectation value. Dividing it by
the number of vertices gives the probability value.

We include PageRank as it is a popular algorithm pro-
vided in many systems. PageRank’s simplicity provides a
straightforward test of core system components and perfor-
mance. As all vertices remain active throughout the com-
putation, communication is also stable across supersteps.

4.2 SSSP
Single-source shortest path (SSSP) finds the shortest path

between a given source vertex and all other vertices in its
connected component. A path in an undirected graph is a
sequence of adjacent vertices and is shortest if the sum of
the constituent edge weights is minimized.

We use a parallel variant of the Bellman-Ford algorithm
[13], which starts by setting the distance of the source vertex
to 0 and all other vertices to ∞. Only the source vertex is
active in the first superstep. Each active vertex u sends all
neighbours v its current minimum distance plus the weight
of the edge (u, v). In the next superstep, vertices that receive
a message become active, and each active vertex takes the
minimum of its received distances. If a smaller distance is
found, the vertex propagates the finding to its neighbours.
The number of supersteps taken by SSSP is limited by the
graph’s longest shortest path.

Being a traversal algorithm, SSSP’s network usage is vari-
able: the amount of communication increases, peaks, then
decreases with increasing supersteps. Hence, SSSP is the
simplest algorithm that tests how well a system handles dy-
namically changing communication. In particular, unlike
PageRank, vertices always vote to halt and are woken only
by received messages. System bottlenecks are also easier to
identify because communication is small in the initial super-
steps and gradually increases.

1050

Table 2: Properties of tested algorithms.

Algorithm Category Similar Algorithms CPU Memory Network

PageRank Random walk HITS [24] Medium Medium High
SSSP Sequential traversal BFS, DFS, reachability Low Low Low
WCC Parallel traversal label propagation, graph clustering Low Medium Medium
DMST Graph mutation graph coarsening, graph aggregation [36] High High Medium

4.3 WCC
Weakly connected components (WCC) is an algorithm

that finds the maximal weakly connected components of a
graph. A component is weakly connected if every pair of ver-
tices is mutually reachable when ignoring edge directions.

WCC is implemented using the HCC algorithm [20]. All
vertices are initially active. Each vertex starts as its own
component by setting its component ID to its vertex ID.
When a vertex receives a smaller component ID, it updates
its vertex value with the received ID and propagates that ID
to its neighbours. Like SSSP, WCC takes at most a number
of supersteps equal to a graph’s longest shortest path.

As a parallel traversal algorithm, WCC helps corroborate
results from SSSP under a heavier network load, without
changing the input graph. Furthermore, unlike SSSP, all
vertices are initially active and, unlike PageRank, vertices
can halt before others. This results in network communi-
cation that decreases monotonically with increasing super-
steps, allowing us to observe system performance under an-
other distinct communication pattern.

4.4 DMST
Distributed minimum spanning tree (DMST) finds the

minimum spanning tree (MST) of an undirected, weighted
graph. This tree is unique if all edge weights are distinct.
We use the parallel Boruvka algorithm [11, 33]. The input
graph must be undirected but need not be connected. For an
unconnected graph, DMST outputs the minimum spanning
forest, a union of MSTs.

This algorithm is interesting because of its complexity.
For example, the implementation in Giraph is about 1300
lines of code, compared to 100 lines for SSSP. The algorithm
requires custom vertex, edge, and message data types and
sends three different types of messages.

The algorithm proceeds in four phases. In the first phase,
each vertex finds a minimum weight out-edge. In the second
phase, vertices perform the pointer-jumping algorithm [11],
by using question and answer messages to determine their
supervertex, which represents a connected component of the
graph to which its children belong. This phase can repeat for
an indeterminate number of supersteps so it is synchronized
using summation aggregators. In the third phase, vertices
perform edge cleaning. A vertex first removes out-edges to
neighbours with the same supervertex. It then modifies each
remaining out-edge to point to the supervertex of the edge’s
destination vertex. Finally, in the fourth phase, vertices
send their adjacency lists to their supervertex, which merges
them according to minimum weight. Non-supervertices vote
to halt, while supervertices return to the first phase as reg-
ular vertices. The graph gets smaller and smaller, with the
algorithm terminating when only unconnected vertices re-
main.

DMST is CPU intensive and exercises a far less predictable
message pattern. Communication peaks during the third
and fourth phases, but remains small in the first and sec-
ond phases. This peak also decreases over time as fewer
vertices remain active. Since the second phase is repeated
multiple times, it is also difficult to predict when such peaks
will occur. Additionally, sending edges to the supervertex is
many-to-one communication, which can turn supervertices
into a bottleneck. DMST is also a good system stress test
because it makes extensive use of aggregators and graph
mutations. Both are important components of a Pregel-like
system that are not tested by the other algorithms.

5. EVALUATION METHODOLOGY
In this section, we describe our system and algorithm con-

figurations, datasets, and metrics.

5.1 System Setup
We run experiments on setups of 16, 32, 64, and 128 ma-

chines, with a separate master for each setup. All machines
are m1.xlarge Amazon EC2 spot instances, located in us-
west-2c. Each instance has four virtual CPUs, equivalent to
eight 1.7 GHz Xeon processors, and 15GB of memory. We
choose m1.xlarge because it strikes a good balance between
supplying sufficient memory for nearly all systems to exe-
cute all datasets, while allowing performance differences to
remain discernible for the smaller datasets. All machines
run Ubuntu 12.04.1 with Linux kernel 3.2.0-36-virtual.

We use Giraph 1.0.0, GPS rev 110, Mizan 0.1bu1, and
GraphLab 2.2 (2a063b3829). We apply patches to Mizan
that fix the bugs mentioned in Section 3.3, as well as a bug
fix to GPS to correctly enable more than 128 workers. The
systems run with Hadoop 1.0.4, jdk1.6.0 30, MPICH 3.0.2,
and read input and write output to HDFS. Giraph and GPS
use a maximum per-machine JVM heap size of 14.5GB.

To best utilize the available CPU cores of each instance,
it is necessary to consider multithreading. First, we distin-
guish between a worker and a machine: a machine is a single
EC2 instance, on which multiple workers may run. Giraph
and GraphLab both support multiple compute threads per
worker, so additional performance can be gained while main-
taining one worker per machine. This is desirable as adding
workers consumes more memory than adding threads due
to the duplication of core data structures. Workers also re-
quire their own communication threads, which can increase
contention. We found that 2 compute and 2 input/output
threads on Giraph gave the best performance. We leave
GraphLab in its default configuration of 2 compute threads.
GPS and Mizan do not support multiple compute threads,
so additional performance can be attained only by using
more workers. GPS has a sweet spot at 2 workers per ma-
chine: adding more workers degrades performance due to
contention. Mizan suffers a substantial memory blow up

1051

Table 3: Directed datasets. Values in parentheses are for the undirected versions used in DMST.

Graph |V | |E| Avg In/Outdegree Max In/Outdegree Largest SCC

soc-LiveJournal1 (LJ) 4.8M 68M (86M) 14 / 14 (18) 13.9K / 20K (20K) 3.8M (79%)
com-Orkut (OR) 3.0M 117M (234M) 38 / 38 (76) 3.4K / 33K (33K) 3.0M (100%)
arabic-2005 (AR) 22.7M 639M (1.11B) 28 / 28 (49) 575K / 9.9K (575K) 15.1M (66.7%)
twitter-2010 (TW) 41.6M 1.46B (2.40B) 35 / 35 (58) 770K / 2.9M (2.9M) 33.4M (80.3%)
uk-2007-05 (UK) 105M 3.73B (6.62B) 35 / 35 (63) 975K / 15K (975K) 68.5M (64.7%)

(more than 2×) with 4 workers, so we use 2 workers both as
a suitable trade-off between time and memory usage and to
match the parallelism present in the other systems.

5.2 Datasets
Table 3 shows the datasets we obtained from SNAP2 (Stan-

ford Network Analysis Project) and LAW3 (Laboratory for
Web Algorithmics) [9, 8, 7]. All graphs are real-world datasets
with millions to billions of edges. We use |V | and |E| to
denote the number of vertices and directed edges (arcs) re-
spectively. LJ, OR, and TW are social network graphs, while
AR and UK are both webgraphs. All datasets are stored on
HDFS as uncompressed ASCII text files. In addition, for
GraphLab, we manually split each file into contiguous parts
equal to the number of machines. This ensures that, like the
other systems, GraphLab performs parallel input loading.

The datasets can be characterized by several properties.
The simplest is density: a graph is dense if |E| = O(|V |2),
so all of our datasets are sparse. Similarly, the average inde-
grees and outdegrees of the graph give a sense of how large
|E| is relative to |V |. As real-world datasets tend to follow
a power law degree distribution, the maximum indegree and
outdegree give a good sense of how skewed the degree dis-
tribution is. The three largest graphs contain vertices with
very high degrees, which may cause communication or com-
putation bottlenecks due to workload imbalances. In par-
ticular, TW’s maximum degree is nearly three times that of
UK. Lastly, the largest strongly connected component (SCC)
gives a sense of how tightly clustered or connected a graph
is. The social network graphs exhibit the phenomenon of
a unique giant component [14], while the size of the web-
graphs’ largest SCC indicates a fairly sizable core [15].

For DMST, we require undirected graphs with weights.
As all graphs are directed, we add the missing edges to pro-
duce an undirected graph. Unique weights are then assigned
to every undirected edge (i.e., both the in-edge and out-
edge) randomly using a 34-bit maximal-length linear feed-
back shift register (LFSR) [38].

On all systems, we use LJ, OR, AR, and TW for 16 and 32 ma-
chines and all five datasets for 64 and 128 machines. Since
DMST requires undirected weighted graphs, whose file sizes
are three times that of their directed counterparts, we are
able to run only LJ, OR, and AR for 16 and 32 machines. For
64 and 128 machines, we extend this to TW and UK.

5.3 Algorithms
For Giraph, we use the existing PageRank, SSSP, and

WCC implementations and our own DMST as it was not
previously implemented. Like GPS, our DMST uses Gi-
raph’s master.compute() to track the computation phases.

2http://snap.stanford.edu/data/
3http://law.di.unimi.it/datasets.php

For GPS, all necessary algorithms are provided. GPS has
three variations of DMST. We use the basic unoptimized
variant that matches the implementations in Giraph and
Mizan. While PageRank, SSSP, and WCC can all run with
and without LALP and dynamic migration, DMST can only
run with the optional optimizations disabled (Section 3.2).

For Mizan, we use the existing PageRank algorithm and
our own SSSP, WCC, and DMST implementations. SSSP
and WCC were previously unimplemented, while the DMST
algorithm used in [23] is the GHS algorithm [17] rather than
parallel Boruvka. Furthermore, the GHS implementation
does not rely only on Mizan’s provided API: it is partly built
into Mizan itself. Unfortunately, our DMST implementation
unearthed a bug in the graph mutation component of Mizan.
At the time of writing, this is not yet fixed [22], so we are
unable to run DMST in Mizan.

For GraphLab, all algorithms are provided. PageRank
and SSSP both support asynchronous mode while WCC
does not. Additionally, DMST cannot be implemented ef-
ficiently because GraphLab does not fully support graph
mutations (Section 3.4).

On Giraph, GPS, and Mizan, PageRank is terminated af-
ter 30 supersteps. On GraphLab, PageRank is terminated
based on error threshold: vertices halt if their value changes
less than the error threshold. This is necessary as super-
step termination conditions are impossible for GraphLab’s
asynchronous mode and this also ensures that synchronous
mode computes PageRank to the same accuracy. Because
GraphLab’s synchronous engine is adaptive (Section 3.4),
vertices in PageRank can halt before others. In contrast,
vertices in the BSP model must stay active to send its neigh-
bours messages. Otherwise, neighbours will compute incor-
rect values, leading to errors that can prevent convergence.
The error threshold is determined in Giraph by computing
the maximum change in the PageRank value across all ver-
tices at superstep 30.

Lastly, for all systems, SSSP, WCC, and DMST execute
to completion. SSSP uses unit edge weights and starts at the
same source vertex for all systems. This ensures all systems
perform the same amount of work.

5.4 Evaluation Metrics
We measure performance through the following metrics:

total time, setup time, computation time, CPU utilization,
memory usage, and network usage (network I/O).

Total time is the total running time from start to finish.
It can be divided into setup time, the time taken to load and
partition the input graph (as well as write the output), and
computation time, which includes local vertex computation,
barrier synchronization, and communication. Computation
time, in combination with CPU utilization, can help identify
message processing overheads, especially when algorithms
have short per-vertex computations.

1052

http://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

For memory, we define per-machine memory usage as the
difference between the maximum and minimum memory used
by a single machine during an experiment. This excludes
the background usage of Hadoop and OS processes, which
is typically between 200 to 300MB. We focus on maximum
memory usage, the maximum per-machine usage across all
worker machines. This gives the minimum memory resources
all machines need to run an experiment without failure.

Similarly, per-machine network usage is the total number
of bytes sent or received by a single machine for an exper-
iment. We focus on total network usage, the sum of per-
machine usage across all worker machines, as it best enables
a high-level comparison of each system’s network I/O. Ad-
ditionally, we distinguish between total outgoing (sent) and
total incoming (received) network usage.

Lastly, using different datasets and number of machines
enables us to investigate the scalability of each system: how
performance scales with the same graph on more machines
or with larger graphs on the same number of machines.

To track these metrics, we use the total and setup times
reported by all systems. For network usage, some systems
have built-in message counters but they all differ. Message
count is also a poor measure of network traffic, as messages
can be of different sizes (such as in DMST) and header sizes
are ignored. Further, the notion of messages is ill-defined for
GraphLab’s asynchronous mode. For these reasons, we use
/proc/net/dev to track the total bytes sent and received at
each machine, before and after every experiment.

For more fine-grained statistics, and to compute memory
usage, we rely on one-second interval reports from sar and
free. These are started locally on both the master and
worker machines to record CPU, network, and memory uti-
lization in a decentralized manner. They are started before
and killed after each experiment to ensure a small but con-
stant overhead across all experiments. Finally, Giraph 1.0.0
has a bug that prevents proper clean up of Java processes
after a successful run. We solve this by killing the offending
processes after each run.

For each experiment, we perform five runs and report
both the mean and 95% confidence intervals for computa-
tion time, setup time, maximum memory usage, and total
incoming network usage. We show only incoming network
I/O as it is similar to total outgoing network I/O and ex-
hibits identical patterns.

6. EXPERIMENTAL RESULTS
In this section, we present and analyze our experimental

results. Due to space constraints and in the interests of
readability, we present only a subset of all our experimental
data. In particular, we do not show data for the master,
since its memory and network usage are smaller and less
revealing of system performance. All data and plots, along
with our code and EC2 images, are available online.4

For all plots, each bar represents a system tested. Bars are
grouped by dataset and number of machines. Time plots are
split into computation time (coloured) and setup time (light
gray), with Mizan’s separate graph partitioner in dark gray
(Figure 2). In the legend, GPS (none) denotes GPS with no
optional optimizations, while GPS (LALP) and GPS (dy-
namic) denote GPS with only LALP or only dynamic mi-
gration respectively. We summarize our observations next.

4http://cs.uwaterloo.ca/~kdaudjee/graph-processing

Table 4: Performance for AR, TW, UK.

Computation Setup Total Time Memory Network

No Mutations

Gi-BA

Gi-HM

GPS

Mizan

GL-S

GL-A

With Mutations (DMST)

Gi-BA

Gi-HM

GPS

6.1 Summary of Results
A relative ranking of system performance, for computa-

tion, setup, and total time, maximum memory usage, and
total network I/O, are presented for non-mutation and mu-
tation (DMST) algorithms in Table 4. System names are
abbreviated as Gi-BA and Gi-HM for Giraph byte array and
hash map respectively; GPS for GPS with no optional opti-
mizations; and GL-S and GL-A for GraphLab’s synchronous
and asynchronous modes. We exclude GPS’s other modes
as they provide little performance benefits. We focus on the
larger graphs (AR, TW, and UK) and summarize our findings
for LJ and OR in Section 6.6.

For each performance attribute, we provide a 4 star rela-
tive ranking, with 1 for poor performance, 2 for suboptimal,
3 for good, and 4 for excellent. The ranking of a system is
roughly an average of its performance across algorithms.

Overall, for the non-mutation algorithms tested, Giraph
and GraphLab are close: we recommend Giraph byte array
over GraphLab for very large graphs on a limited number of
machines, but GraphLab’s synchronous mode over Giraph
otherwise. In each case, the recommended system has the
best all-around performance. When mutations are required,
we recommend Giraph hash map over byte array if memory
is not a constraint. If memory is the primary constraint,
then GPS is the best option for both mutation and non-
mutation algorithms.

Next, we discuss results for each system, focusing on the
larger graphs, before highlighting our findings for the LJ and
OR graphs.

6.2 Giraph
Compared to GPS, Giraph’s computation times are longer

for PageRank and comparable or shorter for SSSP and WCC
(Figure 2). Since Giraph’s setup times are much shorter
than GPS’s, especially on 64 and 128 machines, Giraph
is faster overall: up to 3× shorter total time on PageR-
ank, 8× on SSSP, and 5.5× on WCC. This demonstrates
Giraph 1.0.0’s substantial improvements since version 0.1,
when GPS was reported to be 12× faster for PageRank [32].
Giraph has longer computation times than GraphLab’s syn-
chronous mode but comparable or shorter setup times. Con-
sequently, Giraph’s total time is comparable to GraphLab
for SSSP and WCC, but is up to 3.5× longer on PageRank
due to GraphLab’s much shorter computation times.

Giraph generally has the lowest network usage for SSSP
and WCC, but receives more data than GraphLab’s syn-

1053

http://cs.uwaterloo.ca/~kdaudjee/graph-processing

chronous mode for PageRank, since synchronous mode is
adaptive (Figure 4). Overall, Giraph byte array’s maxi-
mum memory usage is higher than GPS (Figure 3). Com-
pared to GraphLab, Giraph’s memory usage tends to scale
better for larger graphs on the same number of machines,
while GraphLab scales better for the same graph on more
machines. However, Giraph’s maximum memory usage is
much higher than the average usage across machines, in-
dicating suboptimal workload balance. Hence, there is an
opportunity to further improve partitioning via, for exam-
ple, GraphLab’s vertex cut approach.

For PageRank, SSSP, and WCC, Giraph byte array’s per-
formance is better than Giraph hash map in computation
time, setup time, and maximum memory usage. Computa-
tion time is up to 2.5× shorter for SSSP, while setup times
are 4× shorter on UK (Figure 2b). Byte array is more mem-
ory efficient, using up to half the maximum memory of hash
map (Figure 3). Finally, as edge types do not affect network
I/O, they both have identical network usage (Figure 4).

For DMST, Giraph byte array is considerably slower than
hash map: 31× slower on AR (Figure 2d). Furthermore, Gi-
raph byte array does not complete on TW even after 24 hours,
meaning that it is over 100× slower than hash map. Byte
array’s poor performance for DMST is due to its computa-
tional inefficiency for graph mutations (Section 3.1): 99% of
the computation time is spent performing mutations. Work-
load imbalance is also critically important, as machines han-
dling high-degree vertices are very CPU-bound and become
stragglers that hold back the entire computation. For ex-
ample, on UK, 98% of the time is spent in the first superstep
that performs mutations, as that is when all vertices are ac-
tive (Section 4.4). Although TW is smaller than UK in size, it
takes far longer because it has more high-degree vertices.

Giraph hash map and GPS are both faster because nei-
ther hash maps nor arrays suffer deserialization overheads.
Compared to GPS, Giraph hash map achieves better compu-
tation and setup times as well as lower network I/O (Figure
4d). However, it can consume up to twice the memory used
by GPS (Figure 3d). Indeed, this is why hash map fails for
UK on 128 machines. Therefore, there is a need for more
memory efficient adjacency list data structures to handle
graph mutations in Giraph.

6.3 GPS
We found that GPS’s setup time increases when using

more machines (Figure 2). For example, setup time on 128
machines is up to 3× slower than on 32 machines for AR.
This coincides with a large increase in total network I/O,
especially evident under SSSP due to its low network usage
during computation (Figure 4b). Both issues occur because
HDFS splits an input file into multiple data blocks, which
are then distributed and stored on different machines. Each
GPS worker loads a part of the input file by reading a con-
tiguous range of bytes rather than by favouring HDFS data
blocks local to its machine. This results in expensive remote
reads and the observed overheads. Hence, setup times in
GPS can be shortened by exploiting data locality to reduce
network overheads.

Additionally, a superstep in GPS has a fixed overhead of 2
seconds. In contrast, a superstep in Giraph can be as short
as 0.2 seconds. This overhead is because GPS’s communi-
cation threads poll for messages, with a default interval of 1
second. This can negatively impact performance when there

Giraph (byte array)

Giraph (hash map)

GPS (none)

GPS (LALP)

GPS (dynamic)

Mizan (static)

Graphlab (sync)

GraphLab (async)

0

5

10

15

20

25

30

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

AR (3
2)

AR (6
4)

AR (1
28)

0

5

10

15

20

25

S
e
tu

p
 (

m
in

s)

TW (3
2)

TW (6
4)

TW (1
28)

0

15

30

45

S
e
tu

p
 (

m
in

s)

F F

0

175

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

110

120

0

10

20

30

F FF F 0
5

10
15
20
25
30
35
40

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F F

UK (6
4)

UK (1
28)

0
4
8

12
16
20
24
28

S
e
tu

p
 (

m
in

s)

F F

(a) PageRank

0

5

10

15

20

25

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F F

AR (3
2)

AR (6
4)

AR (1
28)

0

5

10

15

20

25

S
e
tu

p
 (

m
in

s)

F F

0

5

10

15

20

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F F F F

TW (3
2)

TW (6
4)

TW (1
28)

0

3

6

9

12

15

S
e
tu

p
 (

m
in

s)

F F F F

0

2

4

6

8

10

12

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F FF F

UK (6
4)

UK (1
28)

0
4
8

12
16
20
24
28

S
e
tu

p
 (

m
in

s)

F FF F

(b) SSSP

0

5

10

15

20

25

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

AR (3
2)

AR (6
4)

AR (1
28)

0

5

10

15

20

25

S
e
tu

p
 (

m
in

s)

TW (3
2)

TW (6
4)

TW (1
28)

0

10

20

30

40

S
e
tu

p
 (

m
in

s)

F F

0

45

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)
85

95

0

2

4

6

8

F FF F 0

5

10

15

20

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F F

UK (6
4)

UK (1
28)

0

5

10

15

20

25

S
e
tu

p
 (

m
in

s)
F F

(c) WCC

0
20
40
60
80

100
120
140
160
180

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

AR (3
2)

AR (6
4)

AR (1
28)

0
2
4
6
8

10
12
14
16
18

S
e
tu

p
 (

m
in

s)

0
2
4
6
8

10
12
14

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F F

TW (6
4)

TW (1
28)

0
5

10
15
20
25
30

S
e
tu

p
 (

m
in

s)

F F

0

100

200

300

400

500

600

C
o
m

p
u
ta

ti
o
n
 (

m
in

s)

F

UK (1
28)

0
10
20
30
40
50
60

S
e
tu

p
 (

m
in

s)

F

(d) DMST

Figure 2: Setup and computation times. Missing
bars labelled with ‘F’ indicate unsuccessful runs.

1054

Giraph (byte array)

Giraph (hash map)

GPS (none)

GPS (LALP)

GPS (dynamic)

Mizan (static)

Graphlab (sync)

GraphLab (async)

AR (3
2)

AR (6
4)

AR (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

TW (3
2)

TW (6
4)

TW (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F

UK (6
4)

UK (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F

(a) PageRank

AR (3
2)

AR (6
4)

AR (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F

TW (3
2)

TW (6
4)

TW (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F F F

UK (6
4)

UK (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F FF F

(b) SSSP

AR (3
2)

AR (6
4)

AR (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

TW (3
2)

TW (6
4)

TW (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F

UK (6
4)

UK (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F

(c) WCC

AR (3
2)

AR (6
4)

AR (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

TW (6
4)

TW (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F F

UK (1
28)

0

2

4

6

8

10

12

14

M
a
x
im

u
m

 m
e
m

o
ry

 u
sa

g
e
 (

G
B

)

F

(d) DMST

Figure 3: Maximum memory usage. Missing bars
labelled with ‘F’ indicate unsuccessful runs.

Giraph (byte array)

Giraph (hash map)

GPS (none)

GPS (LALP)

GPS (dynamic)

Mizan (static)

Graphlab (sync)

GraphLab (async)

0

1000

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G

B
)

4400

4600

4800

AR (3
2)

AR (6
4)

AR (1
28)

0

400

800

1200

1600

TW (3
2)

TW (6
4)

TW (1
28)

0

500

1000

1500

2000

2500

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G

B
)

F F
0

10000

To
ta
l
in
co
m
in
g
 n
e
tw
o
rk
 I
/O
 (
G
B
)

12100

12200

12300

UK
 (6
4)

UK
 (1
28
)

0

1000

2000

3000

4000

5000

6000

F FF F

(a) PageRank

0

1000

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G
B
)

1700

2100

2500

AR (3
2)

AR (6
4)

AR (1
28

)
0

200

400

600

800

F FF F 0

1000

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G

B
)

3200

3350

3500

TW (3
2)

TW (6
4)

TW (1
28)

0

400

800

1200

1600

F F F FF F F F

UK
 (6
4)

UK
 (1
28
)

0

1000

2000

3000

4000

5000

To
ta
l
in
co
m
in
g
 n
e
tw
o
rk
 I
/O
 (
G
B
)

F FF F

(b) SSSP

AR
 (3
2)

AR
 (6
4)

AR
 (1
28
)

0

100

200

300

400

500

600

700

800

To
ta
l
in
co
m
in
g
 n
e
tw
o
rk
 I
/O
 (
G
B
)

TW (3
2)

TW (6
4)

TW (1
28)

0

500

1000

1500

2000

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G

B
)

F F

UK
 (6
4)

UK
 (1
28
)

0

1000

2000

3000

4000

5000

To
ta
l
in
co
m
in
g
 n
e
tw
o
rk
 I
/O
 (
G
B
)

F F

(c) WCC

AR (3
2)

AR (6
4)

AR (1
28)

0

500

1000

1500

2000

2500

3000

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G

B
)

TW
 (6
4)

TW
 (1
28
)

0

1000

2000

3000

4000

5000

6000

7000

To
ta
l
in
co
m
in
g
 n
e
tw
o
rk
 I
/O
 (
G
B
)

F F

UK (1
28)

0

5000

10000

15000

20000

To
ta

l
in

co
m

in
g
 n

e
tw

o
rk

 I
/O

 (
G

B
)

F

(d) DMST

Figure 4: Total incoming network I/O. Missing bars
labelled with ‘F’ indicate unsuccessful runs.

1055

are multiple short supersteps, such as in the second phase of
DMST. Hence, a more efficient means of obtaining messages
without polling is another optimization opportunity.

GPS with no optional optimizations has excellent memory
efficiency across all experiments (Figure 3). This is largely
due to system optimizations such as canonical objects (Sec-
tion 3.2), although the use of 32-bit vertex IDs does play a
minor role (all other systems use 64-bit IDs). While switch-
ing Giraph’s vertex IDs from longs to integers does improve
memory usage, it is not as low as GPS.

For its optional optimizations, LALP and dynamic mi-
gration provide limited benefits: when computation time is
reduced, it is largely offset by overheads in setup time (Fig-
ure 2a). Both optimizations incur higher memory usage and
provide only slightly reduced network I/O compared to no
optimizations (Figures 3 and 4). An exception is PageRank
on TW: due to TW’s greater number of high-degree vertices,
network I/O is reduced by 1.8× with LALP. In contrast,
dynamic migration increases computation time for highly
skewed graphs such as TW on PageRank (Figure 2a) due
to the overheads in relabelling adjacency lists. Our dy-
namic migration results agree with [32] regarding compu-
tation time, but do not show a 2× improvement for network
I/O. In particular, while UK has noticeably reduced network
I/O under dynamic migration, TW does not (Figure 4a).

6.4 Mizan
Mizan performs poorly across all experiments. Setup time

alone is longer than the total time of the other systems, ex-
cept for GraphLab’s asynchronous mode (Figure 2). Mizan’s
graph partitioning is done separately from computation and
is slow because it processes the graph to track both in-edges
and out-edges of every vertex and performs multiple large
reads and writes to HDFS. Neither Giraph nor GPS store
in-edges explicitly, while GraphLab does so efficiently using
CSC [25]. Loading the partitioned data is faster with more
machines but graph partitioning times scale poorly.

For computation time, Mizan is over 20× slower than Gi-
raph, GPS, and GraphLab’s synchronous mode for PageR-
ank on TW (Figure 2a). This agrees with [23], as Mizan’s
2× performance gain over Giraph 0.1 in PageRank suggests
that it should be 6× slower than GPS, and hence Giraph
1.0.0. Mizan’s poor performance is due to a lack of built-in
system optimizations and an inefficient implementation of
message processing with respect to details such as coarse-
ness of locking, data structure efficiency, synchronization
between threads, and so on (Section 3.2). For example, a
superstep in Mizan takes 2 minutes on PageRank with TW,
compared to 10 seconds in Giraph and GPS.

For PageRank and WCC, Mizan also spends a large por-
tion of its time in the first superstep: nearly 1 hour for TW.
This coincides with a large amount of prolonged network
traffic and a sudden sustained increase of memory usage
(up to double of what was previously used). A similar is-
sue occurs with SSSP when nearing its peak network usage.
We suspect this slowdown is related to the setup costs of
communication data structures and/or suboptimal use of
temporary data structures. For SSSP and WCC, Mizan’s
computation time also increases when more than 32 ma-
chines are used: SSSP with AR on 128 machines is 3× slower
than on 32 machines (Figure 2b). The scalability bottleneck
is because message processing times more than double when
using over 32 machines.

Mizan’s memory usage scales well when adding more ma-
chines but poorly when larger graphs are used. For example,
Mizan can only run PageRank on TW with 128 machines and
still consumes 12GB of maximum memory (Figure 3a). This
is again due to its lack of system and communication opti-
mizations. Lastly, Mizan achieves low network usage due to
the use of byte compression (Figure 4), but that does not
improve its computation times.

The fact that Giraph, GPS, and GraphLab (synchronous)
all outperform Mizan suggests that system designers should
first focus on improving built-in system optimizations be-
fore adding features like dynamic migration. The negative
results for GPS’s dynamic migration also support the idea
that optimizing message processing may be more fruitful.

6.5 GraphLab
GraphLab’s synchronous mode achieves the shortest com-

putation times due to a combination of better balanced
workloads and the ability to perform adaptive computation.
Relative to Giraph, computation time is up to 19× shorter
on PageRank, 4× on SSSP, and 1.8× on WCC. GraphLab’s
gains for SSSP and WCC are lower because adaptive com-
putation is less advantageous.

In contrast, GraphLab’s asynchronous mode is a mixed
bag. While async always has longer computation times than
synchronous mode, it can perform comparably to Giraph
and GPS in some cases. However, async does not scale well
and its performance rapidly deteriorates beyond a number
of machines that varies with the input graph (Figure 2b), as
async is highly graph dependent. In other words, a graph
can be too small for a given number of machines. This degra-
dation is accompanied by a significant increase in network
I/O: over 11× for 128 machines compared to 32 machines,
on PageRank with AR (Figure 4a). In some cases, async also
suffers a large increase in memory usage (>14GB), which
causes the failures in SSSP (Figure 2b).

Async’s poor performance is due to lock contention, the
lack of message batching, and communication overheads in
distributed locking. Specifically, some machines, having com-
pleted execution on their portion of the graph, will initiate a
termination detection algorithm only to find other machines
that are not done. After a while, they reinitiate the algo-
rithm, only to cancel again. This repeated cycling between
starting and cancelling termination is expensive and can re-
sult in substantial overheads. Async’s network I/O is also
highly variable due to its non-deterministic execution.

Given GraphLab’s excellent synchronous performance, there
is little reason to run PageRank or SSSP asynchronously for
the datasets we have tested: while async can provide faster
convergence on a single machine [28], the overheads, poor
scalability, and difficulty in tuning distributed locking pre-
vent a net performance gain. Despite its overheads, async
may perform better in specific cases where BSP is inefficient,
such as SSSP on graphs with very large diameters. Finally,
async’s poor network scalability indicates that it can achieve
better performance on a small number of powerful machines
rather than a large cluster of weaker machines.

6.6 Results for LJ and OR Datasets
The smaller LJ and OR graphs share similar trends with

the larger graphs. For GPS, its poor setup time performance
is more evident: 128 machines take 10× longer than 16 ma-
chines on LJ. Furthermore, GPS’s optional optimizations

1056

Table 5: Our experiences with each system.

Giraph GPS Mizan GraphLab

Dev. Support
Usability

still provide little benefit on LJ and OR, while for DMST,
GPS’s superstep overheads result in computation times that
are up to twice as long as Giraph hash map. Similarly,
Mizan’s scalability issues remain evident on SSSP and WCC.
Lastly, GraphLab’s asynchronous mode fails on 128 ma-
chines for both LJ and OR, on both PageRank and SSSP, due
to a substantial increase in memory usage. However, this is
easy to avoid as LJ and OR run fine on fewer machines.

7. EXPERIENCES
In this section we highlight our experiences with each

system, particularly from an end-user’s point of view. We
consider two aspects: development support (dev. support),
which is how user-friendly a system is to algorithm devel-
opers in terms of API, documentation, and so forth; and
usability, how easy it is to use and monitor the system and
its progress, and how effectively errors or crashes are dis-
played. A high-level ranking is provided in Table 5.

7.1 Giraph
Given its large developer base and rigorous coding style

requirements, Giraph is the easiest system to understand
and code for. In contrast, neither GPS nor Mizan are nearly
as well-documented, requiring us to contact the authors for
help in understanding certain system components. Giraph’s
well-documented API allowed us to identify potential pitfalls
without needing to understand the implementation details.
Depending on the use case, Giraph’s use of Java and its tight
integration with Hadoop, HIVE, and so on can be another
advantage.

Structurally, Giraph is designed in a modular manner, al-
lowing custom input, output, and data type formats. These
data types must be specified as command-line arguments,
which can initially be daunting. However, this setup pro-
vides unparallelled flexibility, especially compared to the
limited input and output options of GPS and Mizan. Chang-
ing the input format is also easy in GraphLab but, from our
limited experience, the implementation is less modular.

Finally, Giraph has excellent usability due to its use of
the Hadoop web monitoring interface. When an experiment
runs into trouble, it is evident in both the console output and
on the web interface. Additionally, Giraph outputs log files,
which are useful for debugging and monitoring progress.

7.2 GPS
GPS has a similar API to Giraph, making it easy to un-

derstand and to port code over. While we did not develop
as extensively in GPS or have the opportunity to work with
its global memory map (GPS’s version of aggregators), we
found its API documentation to be lacking compared to Gi-
raph and GraphLab. Finally, unlike Giraph, custom data
types in GPS are hard coded as a job configuration class for
each algorithm. While not as flexible as Giraph’s command-
line approach, it provides the same modularity.

For usability, GPS provides an excellent, albeit poorly
documented, web interface that tracks many detailed statis-
tics. However, GPS does have a few issues that make ex-
perimentation difficult. First, communication teardown is
not robust: GPS workers and master do not free their ports
immediately, forcing a minimum wait time of a minute be-
tween runs. Without this, connections will fail to establish
on the next run, as ports are hard-coded in a configuration
file. Second, failures or errors are not prominently displayed
on the web interface and do not appear at all in the console.
In particular, failed computations never timeout.

7.3 Mizan
Mizan5 is still very much an experimental system com-

pared to Giraph and GraphLab. It has many core features
implemented but still has a few bugs and is missing several
useful features. For example, it currently assumes that ver-
tex values and edge weights are of the same type. This makes
DMST consume more memory as every edge must store 5
fields rather than 3. The inability to read in edge weights
from an input graph is also a barrier to testing more com-
plex inputs, such as graphs with randomly generated unique
edge weights used for DMST. Finally, Mizan does not yet
support master.compute(), which is also useful for DMST.

As Mizan is written in C++, there is less run-time check-
ing than Java. In combination with Mizan’s API design,
algorithm implementations are more susceptible to mem-
ory errors than in Giraph, GPS, and GraphLab. Sparse
API documentation means identifying major pitfalls require
understanding the internal code. For example, deleting or
changing a vertex value immediately frees the previous un-
derlying object, despite the original allocation occurring in
the user’s algorithm code. In contrast, both Giraph and
GraphLab clearly document unsafe operations. Having such
warnings, or a more robust API, would make development
much easier. Lastly, differing coding styles in Mizan mean
strange bugs can arise due to subtle inconsistencies. These
bugs make it difficult to debug Mizan’s system on our own,
and are exacerbated by the fact that Mizan does not perform
logging.

For usability, Mizan provides only console output but it
contains sufficient information about where the computa-
tion is. However, the console output suffers from serializa-
tion issues, so text gets clobbered when using many workers.
Finally, unlike GPS, failures are immediate and do not hang.

7.4 GraphLab
While we did not develop algorithms in GraphLab, we

found that its source code and API are well-documented and
easy to understand. GraphLab makes good use of C++ fea-
tures and, unlike Mizan, there is less confusion about mem-
ory allocation and deallocation. Like Giraph, GraphLab also
has an active developer and user community.

Similar to Mizan, GraphLab outputs only to the console
and failures do not hang. While it does not log to files
like Giraph and GPS, it can output different levels of infor-
mation for debugging. Unlike Giraph and GPS, GraphLab
provides parallel input loading only when the input graph
file is manually split into disjoint parts. Supporting parallel
loading for a single input file would help improve usability.
Finally, like GPS and Mizan, GraphLab is not as tightly
integrated with Hadoop as Giraph.

5We thank Mizan’s authors for providing several bug fixes.

1057

8. CONCLUSION
Graph processing systems are increasingly important as

more and more problems require dealing with graphs. To
this end, we presented a thorough comparison of four re-
cent graph processing systems, Giraph, GPS, Mizan, and
GraphLab, on five datasets and four different algorithms:
PageRank, SSSP, WCC, and DMST. We used 16, 32, 64, and
128 Amazon EC2 instances with computation time, setup
time, memory usage, and network I/O as our metrics. We
found that Giraph and GraphLab’s synchronous mode have
good all-around performance, while GPS excels at memory
efficiency. We also found that Giraph, GPS, and GraphLab’s
synchronous mode outperform Mizan in all experiments.

We identified Giraph hash map as a better choice than Gi-
raph byte array for graph mutations. We found that GPS’s
LALP and dynamic migration optimizations provide little
performance benefit, and that GraphLab’s asynchronous mode
has poor scalability and performance due to communication
overheads. Finally, for each system, we identified poten-
tial areas of improvement: for Giraph, better workload bal-
ancing to reduce maximum memory usage, and a need for
adjacency list data structures that are both mutation and
memory efficient; for GPS, exploiting data locality to im-
prove the scalability of setup times, and avoiding message
polling to minimize superstep overheads; for Mizan, adding
system and message processing optimizations to improve
performance and scalability; and, for GraphLab, reducing
communication overheads for its asynchronous mode.

9. REFERENCES
[1] Apache Giraph. http://giraph.apache.org.

[2] Apache Hama. http://hama.apache.org.
[3] GraphLab. http://graphlab.org.

[4] J. Alpert and N. Hajaj. We knew the web was big...
http://googleblog.blogspot.ca/2008/07/
we-knew-web-was-big.html, 2008.

[5] K. Andreev and H. Räcke. Balanced graph partitioning. In
SPAA ’04, pages 120–124, 2004.

[6] S. Austin. Facebook Passes the 900 Million Monthly Users
Barrier. http:
//blogs.wsj.com/digits/2012/04/23/facebook-passes,
2012.

[7] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: A Scalable Fully Distributed Web Crawler.
Software: Practice & Experience, 34(8):711–726, 2004.

[8] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered Label
Propagation: A MultiResolution Coordinate-Free Ordering
for Compressing Social Networks. In WWW ’11, pages
587–596, 2011.

[9] P. Boldi and S. Vigna. The Webgraph Framework I:
Compression Techniques. In WWW ’04, pages 595–602,
2004.

[10] A. Ching. Scaling Apache Giraph to a trillion edges.
http://www.facebook.com/10151617006153920, 2013.

[11] S. Chung and A. Condon. Parallel Implementation of
Borvka’s Minimum Spanning Tree Algorithm. In IPPS ’96,
pages 302–308, 1996.

[12] M. Ciglan, A. Averbuch, and L. Hluchy. Benchmarking
Traversal Operations over Graph Databases. In ICDEW
2012, pages 186–189, 2012.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 3rd edition,
2009.

[14] E. David and K. Jon. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge
University Press, 2010.

[15] D. Donato, L. Laura, S. Leonardi, and S. Millozzi.
Simulating the Webgraph: A Comparative Analysis of
Models. Computing in Science and Engineering,
6(6):84–89, 2004.

[16] B. Elser and A. Montresor. An evaluation study of BigData
frameworks for graph processing. In IEEE Big Data 2013,
pages 60–67, 2013.

[17] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
Distributed Algorithm for Minimum-Weight Spanning
Trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI ’12, pages 17–30,
2012.

[19] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup,
C. Martella, and T. L. Willke. How Well do
Graph-Processing Platforms Perform? An Empirical
Performance Evaluation and Analysis. In IPDPS 2014,
2014.

[20] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS:
A Peta-Scale Graph Mining System Implementation and
Observations. In ICDM ’09, pages 229–238, 2009.

[21] Karypis Lab. METIS and ParMETIS.
http://glaros.dtc.umn.edu/gkhome/views/metis.

[22] Z. Khayyat. Personal correspondence, Apr 2014.
[23] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,

D. Williams, and P. Kalnis. Mizan: A system for dynamic
load balancing in large-scale graph processing. In EuroSys
’13, pages 169–182, 2013.

[24] J. M. Kleinberg. Authoritative Sources in a Hyperlinked
Environment. J. ACM, 46(5):604–632, 1999.

[25] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale Graph Computation on Just a PC. In OSDI
’12, pages 31–46, 2012.

[26] G. Laporte. The Vehicle Routing Problem: An overview of
exact and approximate algorithms. European Journal of
Operational Research, 59(3):345–358, 1992.

[27] Y. Low. Is Chromatic Engine still supported. http://
groups.google.com/d/topic/graphlab-kdd/2T0CjLodHFc/,
2013.

[28] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed GraphLab: A
Framework for Machine Learning and Data Mining in the
Cloud. Proc. VLDB Endow., 5(8):716–727, 2012.

[29] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD/PODS ’10, pages
135–146, 2010.

[30] N. Przulj. Protein-protein interactions: Making sense of
networks via graph-theoretic modeling. BioEssays,
33(2):115–123, 2011.

[31] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. Technical report, Stanford, 2012.

[32] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM ’13, pages 22:1–22:12, 2013.

[33] S. Salihoglu and J. Widom. Optimizing Graph Algorithms
on Pregel-like Systems. Technical report, Stanford, 2013.

[34] Z. Shang and J. X. Yu. Catch the Wind: Graph Workload
Balancing on Cloud. In ICDE ’13, pages 553–564, 2013.

[35] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From “Think Like a Vertex” to “Think Like
a Graph”. VLDB ’13, 7(3):193–204, 2013.

[36] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient
aggregation for graph summarization. In SIGMOD/PODS
’08, pages 567–580, 2008.

[37] L. G. Valiant. A Bridging Model for Parallel Computation.
Commun. ACM, 33(8):103–111, 1990.

[38] R. Ward and T. Molteno. Table of Linear Feedback Shift
Registers. http://www.eej.ulst.ac.uk/~ian/modules/
EEE515/files/old_files/lfsr/lfsr_table.pdf, 2007.

1058

http://giraph.apache.org
http://hama.apache.org
http://graphlab.org
http://googleblog.blogspot.ca/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.ca/2008/07/we-knew-web-was-big.html
http://blogs.wsj.com/digits/2012/04/23/facebook-passes
http://blogs.wsj.com/digits/2012/04/23/facebook-passes
http://www.facebook.com/10151617006153920
http://glaros.dtc.umn.edu/gkhome/views/metis
http://groups.google.com/d/topic/graphlab-kdd/2T0CjLodHFc/
http://groups.google.com/d/topic/graphlab-kdd/2T0CjLodHFc/
http://www.eej.ulst.ac.uk/~ian/modules/EEE515/files/old_files/lfsr/lfsr_table.pdf
http://www.eej.ulst.ac.uk/~ian/modules/EEE515/files/old_files/lfsr/lfsr_table.pdf

	Introduction
	Background on BSP and Pregel
	Systems Tested
	Giraph
	GPS
	Mizan
	GraphLab

	Algorithms
	PageRank
	SSSP
	WCC
	DMST

	Evaluation Methodology
	System Setup
	Datasets
	Algorithms
	Evaluation Metrics

	Experimental Results
	Summary of Results
	Giraph
	GPS
	Mizan
	GraphLab
	Results for LJ and OR Datasets

	Experiences
	Giraph
	GPS
	Mizan
	GraphLab

	Conclusion
	References

