
On Concise Set of Relative Candidate Keys

Shaoxu Song† Lei Chen‡ Hong Cheng§
†KLiss, MoE; TNList; School of Software, Tsinghua University, China sxsong@tsinghua.edu.cn

‡The Hong Kong University of Science and Technology, China leichen@cse.ust.hk
§The Chinese University of Hong Kong, China hcheng@se.cuhk.edu.hk

ABSTRACT
Matching keys, specifying what attributes to compare and
how to compare them for identifying the same real-world
entities, are found to be useful in applications like record
matching, blocking and windowing [7]. Owing to the com-
plex redundant semantics among matching keys, capturing
a proper set of matching keys is highly non-trivial. Anal-
ogous to minimal/candidate keys w.r.t. functional depen-
dencies, relative candidate keys (rcks [7], with a minimal
number of compared attributes, see a more formal definition
in Section 2) can clear up redundant semantics w.r.t. “what
attributes to compare”. However, we note that redundancy
issues may still exist among rcks on the same attributes
about “how to compare them”. In this paper, we propose
to find a concise set of matching keys, which has less redun-
dancy and can still meet the requirements on coverage and
validity. Specifically, we study approximation algorithms to
efficiently discover a near optimal set. To ensure the quality
of matching keys, the returned results are guaranteed to be
rcks (minimal on compared attributes), and most impor-
tantly, minimal w.r.t. distance restrictions (i.e., redundancy
free w.r.t. “how to compare the attributes”). The exper-
imental evaluation demonstrates that our concise rck set
is more effective than the existing rck choosing method.
Moreover, the proposed pruning methods show up to 2 or-
ders of magnitude improvement w.r.t. time costs on concise
rck set discovery.

1. INTRODUCTION
For matching records that denote the same real-world en-

tities, a variety of approaches have been proposed, such
as probabilistic matching [18], learning-based [2], distance-
based [4], rule-based [11] (see [5] for a survey). As indicated
by Fan et al. [7], no matter what approaches to use, it is es-
sential to decide “what attributes to compare” and “how to
compare them”, known as matching keys. While matching
keys can typically assure high matching accuracy, the deter-
mination and tuning of such matching rules is highly non-
trivial, often requires extremely high manual effort from the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Table 1: An example instance of staff

ssn name address department

234*** Jason Smith Mark Road Social Science t1
2****3 J Smith Mark Rd Social Science t2
862*** W J Smith Park St Social Science t3
862*** Will J Smith Park Street Social Science t4
0****5 C Green Mark Road Computing t5
0****5 C Green Mark Rd Computing t6

human experts [5]. Recently, great efforts have been made
on enriching matching rules by reasoning over a given set of
matching keys [7, 6]. Owing to the existence of possibly re-
dundant semantics (as illustrated in the following Example
1), analogous to conventional keys, a special group of match-
ing keys are concerned where the number of compared at-
tributes is minimized, namely relative candidate keys (rcks)
[7]. However, redundancy issues exist not only w.r.t. “what
attributes to compare”, but also in “how to compare them”.
We note that the distance comparisons could be redundant
in different rcks on the same attributes as shown in the
following example.

Example 1. Consider a relation for collecting staff infor-
mation in Table 1. Since different digits of ssn are hidden
(denoted by *) for privacy issues from various data sources,
we need to determine whether 234*** and 2****3 denote the
same ssn of a staff. Let

ψ1 : (name, address ‖ [0, 4], [0, 2])

be a matching key relative to ssn declared on attributes name
and address, where [0, 4] and [0, 2] denote the restrictions of
edit distances1 on attributes name and address, respectively.
It states that for any tuples ti, tj in a relation instance of
staff, if their distance on attribute name is in the range of
[0, 4], i.e., ≥ 0 and ≤ 4, and the distance on address is in
[0, 2], their ssn must be identified.

Consequently, the identification of 234*** in t1 and 2****3
in t2 in Table 1 can be implied, since they have name dis-
tance equal to 4 and address distance equal to 2, in the range
of [0, 4] and [0, 2], respectively.

Similar to the demand of minimal keys, redundancy exists
among matching keys. A matching key ψ is said redundant
w.r.t. a relation if all the tuple pairs that can be identified by

1Our proposed techniques below are independent to the se-
lection of similarity/distance metrics (refer to [19] for selec-
tion of best similarity functions). Without loss of generality,
we use edit distance by default in the following examples.

1179

the matching key ψ can also be identified by another match-
ing key ψ′. For example, given ψ1, the following ψ2 with
additional restrictions on department is unnecessary.

ψ2 : (name, address, department ‖ [0, 4], [0, 2], [0, 0])

For ψ1, since the number of compared attributes is mini-
mized, i.e., not able to remove an attribute such that the
remaining ones can still identify ssn, this ψ1 is an rck.

Owing to the presence of various distance restrictions,
matching keys on the same attributes could be redundant as
well. For example, the following ψ3 with [0, 0] on name over-
laps with ψ1 having [0, 4].

ψ3 : (name, address ‖ [0, 0], [0, 2])

Although ψ3 is an rck as well (i.e., minimal w.r.t. the num-
ber of compared attributes), any tuple pair agreeing on ψ3

with name distance in [0, 0] (say t5, t6 in Table 1 for in-
stance) will always satisfy [0, 4] of ψ1, i.e., redundancy
among matching keys on the same attributes.

Such redundancy obviously increases the overhead of record
matching. It is not necessary to consider the redundant
ψ2, ψ3 to detect (t5, t6) again, since they have already been
identified by ψ1.

In this study, rather than proposing a new record match-
ing technique or another notation of matching rules, we em-
ploy the existing matching keys [7] and focus on choosing
concise sets of matching keys with high quality and less re-
dundancy. By providing a proper set of matching rules, it
complements the existing record matching methods.

To evaluate the quality of matching keys, following the
same line of discovering data dependencies and keys from
data [14], we consider a data instance where the same real-
world entities in attribute Y are pre-identified, e.g., the
matching tuple pairs (t1, t2), (t3, t4), (t5, t6) on ssn in Ta-
ble 1. The support measure [3] evaluates the number of
tuple pairs that can be covered by matching keys relative to
Y , and confidence indicates the proportion of covered tuple
pairs that correspond to true identifications on Y (see more
explanations in Example 4).

The concise set discovery problem is to find the optimal
set of matching keys relative to a given Y , which has the
minimum set size (less redundancy) and can still meet the
quality requirements on support and confidence (refer to Ex-
ample 5 for more details).

Contributions. While [7] focuses on deducing a set of rcks
from a given set of matching keys, this paper is dedicated
to discover a concise set of matching keys from data. Our
main contributions are summarized as follows.

(1) Recognizing the NP-hardness of discovering the optimal
matching key set, we devise approximation algorithms to ef-
ficiently find near optimal solutions in Section 3. A bound
of approximation ratio on the set size introduced by the ap-
proximation is discussed (Proposition 1). Most importantly,
we show that the matching keys discovered by the algorithm
must be relative candidate keys (rcks) [7] (Proposition 5)
and minimal w.r.t. distance restrictions (Proposition 3).

(2) We develop advanced pruning strategies to further im-
prove the efficiency in Section 4. Unqualified candidates of
matching keys are filtered out during the set discovery com-
putation (Propositions 6 and 8).

Table 2: Notations

Symbol Description

ψ matching key

Ψ matching key set

(t1, t2) � ψ Two tuples agree on a key

C1[A] l C2[A] Subsumption of distance restrictions

ψ1 ≺ ψ2 Dominating between keys

agree(ψ) Set of tuple pairs in r agreeing on a ψ

ηc Minimum requirement of confidence

ηs Minimum requirement of support

fds Functional dependencies [12]

rcks Relative candidate keys [7]

(3) We report an extensive experimental evaluation in Sec-
tion 5. The experiments demonstrate the effectiveness of
choosing concise rck sets for record matching, and the effi-
ciency of the proposed discovery algorithms.

2. PRELIMINARIES
In this section, we introduce the formal syntax of match-

ing keys [7], and the corresponding statistical measures [3]
over a given relation instance. Table 2 lists the frequently
used notations in this paper.

2.1 Syntax
Let A be an attribute in a relation scheme R and dom(A)

denote a finite domain of A. We consider one distance met-
ric dA for each attribute A, denoted by dA : dom(A) ×
dom(A) → D, where D = {d1, . . . , d|D|} is a finite set of
distance values. It satisfies non-negativity, dA(a, b) ≥ 0;
identity of indiscernibles, dA(a, b) = 0 iff a = b; and symme-
try, dA(a, b) = dA(b, a), where a, b ∈ dom(A). For example,
we can use edit distance [15] or cosine similarity [4]. It is
worth noting that the selection of best distance metrics is
not the focus of this study, please refer to [19] for a discus-
sion. Our proposed techniques are fully compatible with any
other distance metrics having the aforesaid properties.

Matching Keys. A distance restriction is a range of met-
ric distances in the form of [dv, du], where dv, du ∈ D and
dv ≤ du. It specifies the restriction on distance between two
values from A. We say two values a, b ∈ dom(A) satisfy the
restriction [dv, du] if dv ≤ dA(a, b) ≤ du.

A matching key ψ relative to Y is in the form of (X ‖ C),
where X,Y are attribute sets in R, and C is a pattern of
distance restrictions on X. Each C [A] denotes the distance
restriction on an attribute A ∈ X . It states that if the X
values of two tuples satisfy the distance restrictions C on X,
their Y values should be identified, i.e., (X ‖ C)→ (Y
).

Let t1, t2 be two tuples from a relation instance r ofR. We
say that t1, t2 agree on the matching key ψ : (X ‖ C), de-
noted by (t1, t2) � ψ, if their distances on attributes X sat-
isfy the distance restrictions C. That is, for each attribute
A ∈ X, the distance between t1[A] and t2[A] satisfies the
corresponding distance restriction C[A] = [dv, du], having
dv ≤ dA(t1[A], t2[A]) ≤ du or simply dv ≤ dA(t1, t2) ≤ du.

A dependency ψ → (Y
) requires that (t1, t2) � ψ im-
plies t1[Y]
 t2[Y]. If they agree on ψ, their Y values should
be identified, i.e., denoting the same real-world entity.

1180

Example 2 (Example 1 continued). Consider the matching
key ψ1 : (name, address ‖ [0, 4], [0, 2]) relative to ssn, denoted
by ψ1 → (ssn
). According to ψ1, t1 and t2 in Table
1 should have ssn values identified, referring to their name
distance 0 ≤ dname(t1, t2) = 4 ≤ 4, i.e., in the range of
[0, 4], and address distance in the range of [0, 2] having 0 ≤
daddress(t1, t2) = 2 ≤ 2.

Relative Candidate Keys. Key ψ : (X ‖ C) is a relative
candidate key (rck) if there is no other key ψ′ : (X ′ ‖ C′)
relative to Y such that (1) X ′ ⊂ X, and (2) for each A ∈ X ′,
C′[A] of ψ′ is exactly C[A] of ψ. That is, no proper subset
of distance restrictions can still form a valid matching key.

Let d|D| = dmax be the maximum value of distances in
D and d1 = 0 be the minimum distance value. We call
[d1, d|D|] = [0, dmax] an unlimited distance restriction, since
any distance values will always be in the range from 0 to
dmax. For the attributes not specified in an rck, it impli-
cates unlimited distance restrictions. By appending unlim-
ited restrictions, we can represent matching keys declared on
different attributes equivalently by a unified standard form
with the same attributes X = R \ Y .

Example 3 (Example 1 continued). We say that ψ1 is in
a non-standard form, with X ⊂ R \ Y . There is no re-
striction on attribute department specified by ψ1, i.e., un-
limited on department. By appending the unlimited [0, dmax]
on department, ψ1 is equivalent to

ψ∗1 : (name, address, department ‖ [0, 4], [0, 2], [0, dmax]).

This ψ∗1 :(X ‖ C) with X = R \ Y is a standard form of ψ1.

In the following of this paper, matching keys are consid-
ered in the standard form with X = R \ Y by default.

2.2 Measures
Suppose that the same real-world entities are pre-identified

in a given data instance, e.g., Table 1 with all matching pairs
(t1, t2), (t3, t4), (t5, t6) identified on ssn. To discover reason-
able matching keys from the data instance, we first need to
evaluate the quality of a key, i.e., how the matching key can
identify Y (ssn) values in the given data instance.

Evaluating a Single Matching Key. In light of coverage
and validity in record matching, we study the following sup-
port and confidence measures defined on tuple pairs [3].

supp(ψ) =
|{t1, t2 ∈ r | (t1, t2) � ψ}|

|{t1, t2 ∈ r}| (1)

conf(ψ) =
|{t1, t2 ∈ r | (t1, t2) � ψ, t1[Y]
 t2[Y]}|

|{t1, t2 ∈ r | (t1, t2) � ψ}| (2)

Intuitively, given a relation instance r of R, the support
of a ψ is the proportion of tuple pairs in r whose values
agree on ψ. It denotes the “coverage” of the matching key.
The confidence is the ratio of tuple pairs whose values agree
on ψ also having identified Y values, i.e., the “validity” of
identifying Y by the matching key ψ. Matching keys with
higher support and confidence are preferred.

Evaluating a Set of Matching Keys. Let Ψ denote a set
of matching keys relative to the same Y . As discussed in
the introduction, a tuple pair may agree on (be covered by)
several keys ψ ∈ Ψ, i.e., redundancy in Ψ. If we simply add

supp(ψ) of all ψ ∈ Ψ as the support of the set Ψ, a tuple
pair may be counted more than once due to the redundancy.
To avoid duplicate counting, we should consider the distinct
tuple pairs that are covered by a set of matching keys.

We say that t1, t2 agree on a set Ψ of matching keys,
denoted by (t1, t2) � Ψ, if there exists at least one ψ ∈ Ψ
such that (t1, t2) � ψ. The set support of a set Ψ is defined
as the proportion of distinct tuple pairs that agree on at
least one of the matching keys in the set Ψ, i.e.,

supps(Ψ) =
|{t1, t2 ∈ r | (t1, t2) � Ψ}|

|{t1, t2 ∈ r}| . (3)

Moreover, to evaluate the validity of a set Ψ, we need
to justify the confidence of each individual key in Ψ. Intu-
itively, in order to approach high accuracy in entity match-
ing, it is expected that each applied matching key in the set
should have high confidence. The minimum confidence of
all the keys thus reflects the confidence of the set Ψ,

confs(Ψ) = min
ψ∈Ψ

conf(ψ). (4)

Example 4 (Example 2 continued). Given the data in-
stance in Table 1 with truth matching (t1, t2), (t3, t4), (t5, t6),
we consider ψ5 : (name, address ‖ [0, 4], [0, 4]) relative to ssn.
There are four pairs of tuples (t1, t2), (t2, t3), (t3, t4), (t5, t6)
agreeing on ψ2 and three pairs of tuples (t1, t2), (t3, t4), (t5, t6)
with identified ssn. Considering all the 15 tuple pairs in Ta-
ble 1, we have supp(ψ2) = 4/15 and conf(ψ2) = 3/4.

There are only two tuple pairs (t1, t2), (t5, t6) that can be
covered by ψ1 : (name, address ‖ [0, 4], [0, 2]). Indeed, it is
already the key with the highest support, i.e., supp(ψ1) =
2/15, when the confidence is required to be at least 1. We
cannot achieve a larger support by any individual key.

For a set Ψ1 = {ψ1, ψ4} relative to ssn, where (t3, t4) agree
on ψ4 : (name, address ‖ [0, 4], [4, 4]). We have supps(Ψ1) =
3/15. Given conf(ψ1) = conf(ψ4) = 1, it follows confs(Ψ1) =
1. That is, Ψ1 can correctly (with confidence 1) address all
(a support of 3/15) the tuple pairs with identified Y .

2.3 Problem Statement
Intuitively, we want to discover matching keys with high

quality (high confidence) and address identifications as many
as possible (high support). While a high confidence is always
preferred, maximizing the support is not necessary during
the discovery, since it may “overfit” the data [10]. Following
the same line, we propose to find a set Ψ of matching keys
relative to Y with the minimum requirements of support ηs
and confidence ηc.

The selection of ηc for confidence is analogous to the re-
quirement of matching accuracy. The support requirement
ηs could be chosen based on the user’s knowledge about how
many duplicates exit. If ηs and ηc are set too high, it may
not be able to find a feasible solution even when we consider
all the possible matching keys as the answer set. Therefore,
the first question is whether there exists a set Ψ such that
the minimum requirements of support and confidence could
be achieved. If yes, we find the minimum set Ψ∗o which has
less redundancy and can still satisfy ηs and ηc.

Problem 1. The matching key set determination problem
is: given a relation instance r of R, a Y over R, a constant
k, and the minimum requirements of support ηs and confi-
dence ηc, to decide whether there exists a set Ψ of matching
keys such that supps(Ψ) ≥ ηs, confs(Ψ) ≥ ηc, and the size of
the set is |Ψ| ≤ k.

1181

This problem of deciding whether a feasible matching key
set exists is found to be NP-complete [1].

Considering possible redundant semantics among match-
ing keys, it naturally leads us to discover the most concise
set of matching keys with less redundancy that can still meet
the measure requirements of support ηs and confidence ηc.

The corresponding optimization problem is to find the
optimal set Ψ∗o of matching keys such that the set size of Ψ∗o
is minimized, and the set still satisfies supps(Ψ

∗
o) ≥ ηs and

confs(Ψ
∗
o) ≥ ηc, if exists.

Example 5 (Example 4 continued). Given ηc = 1, ηs =
3/15, a set Ψ2 = {ψ1, ψ3, ψ4} with conf(Ψ2) = 1, supp(Ψ2) =
3/15 is feasible but not optimal, since Ψ1 = {ψ1, ψ4} is also
a feasible solution that meets the ηc, ηs requirements but with
a smaller size. Ψ1 is more concise without the redundant ψ3.

3. APPROXIMATION METHOD
In this section, we present a greedy algorithm for effi-

ciently approximating the desired set. In particular, we show
that the discovered set of matching keys are always rcks,
and most importantly, minimal w.r.t. distance restrictions.

3.1 Candidates of Matching Keys
We consider all the potential matching keys relative to

Y in standard form which specify distance restrictions on
X = R \ Y . Recall that a finite set of all distance values D
is defined based on the dom(A) of an attribute A. With this
D, we can enumerate intervals of distance restrictions.

For each attribute A, we define CA to be the set of all
distance restrictions [dv, du] over A, i.e.,

CA ={[dv, du] | d1 ≤ dv ≤ du ≤ d|D|}
={[d1, d1], . . . , [d1, d|D|−1], [d1, d|D|],

[d2, d2], . . . , [d2, d|D|],

. . . , [d|D|, d|D|]}

where d1, . . . , d|D| denote all the distance values inD (see the

following Figure 1 for instance). The size of CA is O(|D|2).
Consider m attributes in X = R\Y = {A1, . . . , Am}. Let

Ψc be the set of all the potential matching keys,

Ψc = {(X ‖ C) | C ∈ CA1 × · · · × CAm}. (5)

The size of Ψc is O(|D|2m). In the worst case, the number
of distinct distance values can be |D| = |dom(A)|2. Let c
be the size of dom(X), having c = |dom(A)|m. It follows
|Ψc| = O(c4).

For any potential matching key ψ, let agree(ψ) denote the
set of all the tuple pairs ti, tj ∈ r that agree on ψ, i.e.,

agree(ψ) = {(ti, tj) | (ti, tj) � ψ, ti, tj ∈ r}, (6)

which is utilized to compute

supp(ψ) =
|agree(ψ)|
|{ti, tj ∈ r}| ,

conf(ψ) =
|{(ti, tj) ∈ agree(ψ) | ti[Y]
 tj [Y]}|

|agree(ψ)| .

According to the set confidence in formula (4), the re-
quirement of confs(Ψ) ≥ ηc for any set Ψ is equivalent to
conf(ψ) ≥ ηc, ∀ψ ∈ Ψ. In other words, only those matching
keys with confidence ≥ ηc can be considered as candidates.

Algorithm 1 presents the discovery of a set Ψ of potential
matching keys from a relation instance r , whose confidences

are no less than ηc. Since the support and confidence mea-
sures are defined on the pairs of tuples in a relation instance,
the algorithm considers all the tuple pairs in r . Specifically,
according to formula (5), Line 3 goes through the candidates
Ψc for each tuple pair ti, tj ∈ r . Line 8/5 creates/maintains
agree(ψ) in formula (6), which is utilized to compute the
support and confidence measures. Finally, those candidates
with confidence satisfying the minimum requirement ηc are
returned in Ψ.

Algorithm 1 Candidate set generation CS(r , ηc)

Input: data instance r , minimum confidence requirement
ηc

Output: A set Ψ of matching keys whose confidences are
no less than ηc

1: Ψ := ∅
2: for each tuple pair ti, tj ∈ r do
3: for each candidate ψ ∈ Ψc s.t. (ti, tj) � ψ do
4: if ψ ∈ Ψ then
5: insert (ti, tj) to agree(ψ)
6: update conf and supp of ψ to Ψ
7: else
8: agree(ψ) := {(ti, tj)}
9: compute conf and supp of ψ, insert ψ to Ψ

10: return {ψ ∈ Ψ | conf(ψ) ≥ ηc}

Note that the for statement in Line 2 of Algorithm 1 adds
a specific pair (ti, tj) to a certain agree(ψ) exactly once. Let
n be the number of tuples in r . According to |Ψc| = O(c4),
the generation algorithm runs in O(n2c4) time.

3.2 Greedy Algorithm
Now, we study the greedy algorithm for approximating a

near optimal matching key set in polynomial time.
Let Ψ be a candidate set of matching keys (obtained in

the above candidate generation), and let Ψo denote the near
optimal set to discover. Intuitively, the greedy algorithm
removes a candidate ψ with the maximum support from Ψ
in each iteration, adds it into Ψo, and does not stop until
the minimum support requirement ηs is satisfied or all the
valid candidates in Ψ are added to Ψo.

Note that during the generation of candidates, a distinct
tuple pair (ti, tj) may be included in agree(ψ) of several ψ
in Ψ. However, according to formula (3), when we compute
the support of a set Ψo, each tuple pair should be counted
towards supps(Ψo) only once. To follow this principle, in
each iteration of processing the current ψ, we need to remove
the tuple pairs that agree on ψ (covered by ψ) from agree(ψ′)
for all the remaining candidates ψ′ in Ψ. That is, we conduct
the deduction operation,

agree(ψ′) = agree(ψ′) \ agree(ψ),

to avoid counting a tuple pair more than once.
Algorithm 2 presents the discovery of a near optimal set

Ψo of matching keys from the candidate set Ψ. Line 7
adds a ψ to Ψo in each iteration. The deduction opera-
tion agree(ψ′) = agree(ψ′) \ agree(ψ) in Line 10 deducts all
the tuple pairs in agree(ψ) from agree(ψ′) of the remaining
ψ′ ∈ Ψ. Line 11 re-calculates the supp(ψ′) of ψ′ by using the
updated agree(ψ′). By ensuring that tuple pairs in agree(ψ)
have not been counted towards supps(Ψo) in previous steps,
we can directly add supp(ψ) to supps(Ψo) in Line 8.

1182

Algorithm 2 Greedy algorithm GA(Ψ, ηs)

Input: candidate set Ψ, minimum support requirement ηs
Output: a near optimal set Ψo

1: Ψo := ∅
2: supps(Ψo) := 0
3: while Ψ 6= ∅ and supps(Ψo) < ηs do
4: ψ := arg maxψ∈Ψ supp(ψ)
5: if supp(ψ) = 0 then
6: break
7: move ψ from Ψ to Ψo

8: supps(Ψo) += supp(ψ)
9: for each ψ′ ∈ Ψ do

10: agree(ψ′) := agree(ψ′) \ agree(ψ)
11: update supp of ψ′ to Ψ
12: if supps(Ψo) < ηs then
13: return ∅
14: else
15: return Ψo

Proposition 1. The greedy algorithm is 1+2 ln |r | approxi-
mation, having |Ψo|/|Ψ∗o| ≤ 1+2 ln |r |, where |Ψo| is the size
of the returned result set and |Ψ∗o| is the optimal set size.

Proof. We employ the k-partial set cover problem: given a
set of N elements E = {E1, E2, . . . , EN}, a collection S of
subsets of E, S = {S1, S2, . . . , SM}, a cost function of S, and
a k, to find a minimum cost sub-collection of S that covers at
least k elements of E. Our discovery problem can be mod-
eled as the k-partial set cover problem as follows. Each Ei
denotes a tuple pair and each Sj denotes a ψ in our prob-
lem. The k corresponds to the minimum support ηs, and
the cost function counts the number of subsets, i.e., analo-
gous to |Ψo|. Consequently, to find a set with the minimum
size, it is equivalent to find a minimum sub-collection of S.
According to [8], the greedy algorithm is a lnN +1 approxi-
mation for the partial covering problem, which equivalently
holds for our discovery problem, where N = |r |2 is the total
number of tuple pairs.

Note that the for statement in Line 2 of Algorithm 1
adds a specific tuple pair to a certain agree(ψ) exactly once
(in Line 5 or 8), i.e., O(n2c4). Subsequently, the while
statement in Line 3 of Algorithm 2 removes a specific tuple
pair from a certain agree(ψ′) at most once (in Line 10).
Therefore, the ga complexity is also O(n2c4), where n is
the number of tuples in r .

3.3 Redundancy Free Results
In the following, we show that the matching keys returned

by Algorithm 2 are redundancy free, i.e., rcks and minimal
w.r.t. distance restrictions.

Definition 1. For any two distance restrictions [dv, du] and
[dg, dh], if dv ≤ dg and dh ≤ du, we say that [dv, du] sub-
sumes [dg, dh], denoted by [dv, du] l [dg, dh].

Consider two matching keys ψ1 and ψ2.

Definition 2. If Cψ1 [A]lCψ2 [A] for all attributes ∀A ∈ X,
we say ψ1 dominates ψ2, denoted by ψ1 ≺ ψ2.
If there exists one attribute ∃A ∈ X having Cψ1 [A]lCψ2 [A],
we say ψ1 partially dominates ψ2, denoted by ψ1 ≺p ψ2.

Referring to the support definition, we derive the following
dominating relationships between matching keys.

Lemma 2. For any ψ1 dominating ψ2, i.e., ψ1 ≺ ψ2, we
have agree(ψ1) ⊇ agree(ψ2) and supp(ψ1) ≥ supp(ψ2).
When agree(ψ1) = agree(ψ2), we say that ψ1 and ψ2 are
equivalent, having supp(ψ1) = supp(ψ2).

Proof. For each attribute A ∈ X, let Cψ2 [A] = [dg, dh] and
Cψ1 [A] = [dv, du]. Consider a tuple pair (ti, tj) in agree(ψ2),
i.e., having dg ≤ dA(ti, tj) ≤ dh for any attribute A ∈ X.
According to ψ1 ≺ ψ2, we have dv ≤ dg ≤ dA(ti, tj) ≤ dh ≤
du, that is, dA(t1, t2) satisfies Cψ1 [A] for each attribute A as
well. In other words, all the tuple pairs in agree(ψ2) are also
contained in agree(ψ1), i.e., agree(ψ2) ⊆ agree(ψ1). Refer-
ring to the support definition, we have supp(ψ1) ≥ supp(ψ2).

Moreover, since we always have agree(ψ2) ⊆ agree(ψ1),
it follows supp(ψ1) = supp(ψ2) if and only if agree(ψ2) =
agree(ψ1). That is, ψ1 and ψ2 cover exactly the same tuple
pairs. Referring to the greedy algorithm, there is no differ-
ence between the candidates ψ1 and ψ2, i.e., equivalent.

When both matching keys are valid (with confidences ≥
ηc), we say that ψ2 is redundant w.r.t. ψ1, since any tuples
with Y values identified by ψ2 are identified by ψ1 as well
according to ψ1 ≺ ψ2.

A matching key ψ is minimal, if there does not exist any
ψ′ such that ψ′ ≺ ψ and conf(ψ) ≥ ηc. That is, ψ is not
redundant w.r.t. any other possible matching keys.

Proposition 3. The matching keys in Ψo discovered by GA
algorithm are always minimal, i.e., ∀ψ ∈ Ψo, there does not
exist any ψ′ ∈ Ψc such that ψ′ ≺ ψ and conf(ψ) ≥ ηc.

Proof. According to Lemma 2, Algorithm 2 always selects
ψ with higher support in Line 4. For the remaining ψ′, by
conducting agree(ψ′) := agree(ψ′) \ agree(ψ) in Line 10, we
have agree(ψ′) = ∅ as agree(ψ) ⊇ agree(ψ′). Since there is
no remaining support on ψ′, ψ′ will not contribute and thus
cannot be selected into Ψo.

It is worth noting that the “minimal” definition is more
strict than the rck definition. While rcks require not exist-
ing any other key with a subset of same distance restriction,
the minimal matching keys ensure no other key with dis-
tance restrictions dominating the minimal matching key.

Lemma 4. Minimal matching keys are always rcks.

Proof. Let ψ be a minimal matching key but not relative
candidate key. That is, there exists a ψ′ : (X ′ ‖ C′) relative
to Y such that X ′ ⊂ X, and for each A ∈ X ′, C′[A] of ψ′

is exactly C[A] of ψ. By representing both keys in standard
form, we have C′[B] : [0, dmax] l C[B],∀B ∈ X \ X ′. It
follows ψ′ ≺ ψ, according to the definition of dominating,
i.e., ψ is not minimal.

Consequently, following the same line of Proposition 3, we
can show that the results are always rcks.

Proposition 5. The matching keys in Ψo discovered by GA
algorithm are always relative candidate keys (rcks).

Since equality is considered as a special case of distance
restriction, i.e., [0, 0], the relationship between traditional
super key and candidate key can also be interpreted by the
dominating relationship (see examples below).

Example 6 (Example 5 continued). Consider ψ1 : (name,
address ‖ [0, 4], [0, 2]) and ψ3 : (name, address ‖ [0, 0], [0, 2]),
having [0, 4]l [0, 0] on name and consequently ψ1 ≺ ψ3. For
the tuples in Table 1, we have agree(ψ1) = {(t1, t2), (t5, t6)},
while ψ3 can only cover one of them, i.e., (t5, t6).

1183

Since both ψ1 and ψ3 can identify ssn of (t5, t6), ψ3 is re-
dundant w.r.t. ψ1. GA algorithm first selects ψ1 with higher
support supp(ψ1) = 2/15. The deduction operation in Line
10, i.e., agree(ψ3) = agree(ψ3)\agree(ψ1), eliminates (t5, t6)
that has been addressed by ψ1 from agree(ψ3) and makes it
empty. That is, there is no remaining tuples supporting ψ3.
In other words, ψ3 cannot further contribute and will never
be returned as results. By further processing ψ4, the returned
matching keys {ψ1, ψ4} are minimal.

A super key {name, address, department} w.r.t. fds repre-
sented by ψs : (name, address, department ‖ [0, 0], [0, 0], [0, 0])
is not minimal, since there is a candidate key {name, address}
with a subset of attributes, denoted by ψc : (name, address,
department ‖ [0, 0], [0, 0], [0, dmax]). We have ψc ≺ ψs.

4. PRUNING APPROACH
The greedy discovery of a near optimal set is still very

costly. This is because the greedy step requires scanning all
the possible candidates of matching keys in Ψ. Remarkably,
as introduced below, not all the possible matching keys are
necessary to be considered in candidate generation as Algo-
rithm 1 does. Moreover, in the greedy step, after moving a
key to Ψo, it is not necessary either to update the agree in-
formation for all the remaining candidates in Ψ. In the rest
of this section, we propose several pruning strategies for the
candidate set generation and the greedy step, respectively.

4.1 Pruning in Candidate Set
Based on the aforesaid subsumption/dominating relation-

ships among distance restrictions, we are already able to dis-
cern some redundant matching keys in the candidate set
Ψ, without further evaluation on agree sets of tuple pairs.

To understand the relationships more clearly, we represent
the matching keys as follows. Based on the subsumption
relationship, all the distance restrictions on an attribute can
be represented by a directed acyclic graph. For example,
as shown in Figure 1(a), each dot node denotes a possible
distance restriction. An arrow from node a to b denotes alb.
The transitivity relationship is naturally implied, in other
words, alb and blc indicate alc as well. In the figure, we
only plot the most tight subsumption relationships, i.e., for
each al b there does not exist another c such that al cl b,
and omit the subsumption that can be inferred.

Consequently, there is a triangle structure that specifies
all the possible distance restrictions corresponding to an at-
tribute A, e.g., Figure 1(b) for attribute A2, Figure 1(c)
for attribute A3, etc. The root node in the triangle struc-
ture, [d1, d|D|], is the unlimited restriction. Recall that we
have X = R \ Y in the standard form. Thereby, each ψ (in
the standard form) consists of exactly one node (a distance
restriction) from each triangle (each attribute in X).

Identify Unqualified Candidates
Now, we study the pruning techniques for reducing the num-
ber of candidates, before the greedy step is conducted. Re-
call that distance values D of an attribute A are defined with
respect to the domain of A, dom(A). Therefore, some of the
distance values (say dv) in D of an attribute A may not ap-
pear in a given relation instance r . However, according to
the candidate set generation algorithm, these distance values
dv ∈ D are still considered as bounds in intervals of distance
restrictions in candidate matching keys. We study the prun-
ing strategies based on these non-appearing distance values.

Figure 1: Relationship among distance restrictions

Intuitively, since the distance value dv does not appear
in attribute A in the relation instance r , all the candidates
ψ containing the distance restriction Cψ[A] = [dv, dv] on
A should have an empty agree(ψ) set and can be ignored.
Moreover, let us consider some other ψ with distance re-
strictions like ψ[A] = [dv, dv+1] on A. We prove that there
always exists another ψ′ (such as ψ′[A] = [dv+1, dv+1] on A)
having agree(ψ) = agree(ψ′). According to Lemma 2, ψ is
equivalent to ψ′ and can be pruned. We define these prun-
able candidates with certain distance restrictions below.

Proposition 6. Consider a distance value dv ∈ D of an
attribute A ∈ X, which does not appear in the attribute A
of any tuple pairs in the relation instance r. Then all the
candidates ψ ∈ Ψ that contain the following distance restric-
tions on attribute A, i.e., Cψ[A] ∈ (I1 ∪ I2), can be pruned
from the candidate set Ψ.

I1 = {[dv, dv+u] | u = 0, 1, 2, . . . }
I2 = {[dv−u, dv] | u = 0, 1, 2, . . . }

Proof sketch. For each candidate ψ having Cψ[A] ∈ I1, we
can always find a ψ2 with Cψ2 [A] = [dv+1, dv+u], which is
equivalent to ψ, i.e., agree(ψ) = agree(ψ2). Thus, candidate
ψ can be pruned as redundancy. Similarly, for any ψ with
Cψ[A] ∈ I2, we can find a ψ1 with Cψ1 [A] = [dv−u, dv−1], as
redundancy of ψ.

Example 7. Suppose that the distance value dv does not ap-
pear in any tuple pair of r on attribute A1. Then, the sets of
distance restrictions, I1 = {[dv, dv], [dv, dv+1], . . . , [dv, d|D|]}
and I2 = {[d1, dv], [d2, dv], . . . , [dv, dv]} marked by shade ar-
eas in Figure 1(a), can be ignored in attribute A1 during
the candidate generation. That is, the candidate set prun-
ing (csp) method removes all the candidates from Ψ whose
distance restrictions come from I1 or I2 on attribute A1.

4.2 Pruning in Greedy Step
The major cost of each greedy step originates from the

update of tuple pairs in agree(ψ′) after moving a ψ with the
highest support to Ψo. We propose pruning rules to reduce
the number of updates, and remove redundant candidates.

Let ψ be the currently selected candidate in a greedy step.
Let [dv, du] denote the distance restriction of ψ on attribute
A, i.e., Cψ[A] = [dv, du]. For each attribute A, we divide
all the distance restrictions into 6 blocks according to the

1184

subsumption relationship on [dv, du] as follows.

B1[A] = {C [A] | C [A] l [dv−1, du+1]}
B2[A] = {C [A] | [d1, du] l C [A] l [dv−1, dv]}
B3[A] = {C [A] | [dv, d|D|] l C [A] l [du, du+1]}
B4[A] = {C [A] | [dv, du] l C [A]}
B5[A] = {C [A] | [d1, dv−1] l C [A]}
B6[A] = {C [A] | [du+1, d|D|] l C [A]}

Among the above 6 blocks, B1[A] represents the distance
restrictions on A that subsume Cψ[A]; B4[A] denotes all the
restrictions on A that are subsumed by Cψ[A]; B5[A] and
B6[A] are the restrictions that have no overlap with Cψ[A];
B2[A] and B3[A] are the restrictions that have overlap with
Cψ[A]. For example, in Figure 1(b), we illustrate the 6
blocks of all the distance restrictions in attribute A2 based
on Cψ[A2] of the current ψ.

Identify Qualified Candidates
We first identify the set of candidates ψ′ whose agree set is
not updated by the deduction operation agree(ψ′) = agree(ψ′)\
agree(ψ) even in the original greedy algorithm (Algorithm
2). Intuitively, the deduction operation has no effect on
those distance restrictions, which do not subsume any other
restrictions that are subsumed by Cψ[A], i.e., distance re-
strictions in B5[A] and B6[A] having no overlap with Cψ[A].

Lemma 7. After inserting a ψ with the maximum support
into Ψo, the following sets of candidates ψ′ are not updated.

K5 = {ψ′ | ∃A ∈ X,Cψ′ [A] ∈ B5[A]}
K6 = {ψ′ | ∃A ∈ X,Cψ′ [A] ∈ B6[A]}

Proof sketch. For any ψ′ ∈ K5 or K6, we can prove that the
intersection of agree sets of ψ and ψ′ is agree(ψ′)∩agree(ψ) =
∅. The operation agree(ψ′) = agree(ψ′) \ agree(ψ) takes no
effect on candidate ψ′. Thus ψ′ is not updated.

According to Lemma 7, all the candidates with distance
restrictions from B5 or B6 on any attribute will not be up-
dated in the current iteration. In other words, only those
candidates will be updated, which have distance restrictions
from B1, B2, B3, B4 on all the attributes, i.e., Ψ\ (K5∪K6).

Identify Unqualified Candidates
Now, we study the pruning in Ψ \ (K5 ∪ K6) to avoid the
updates on unqualified candidates. Based on the subsump-
tion and dominating relationships, we propose to filter out
the following two types of candidates:

(1) Those candidates ψ′ having agree(ψ′) = ∅ after the
agree(ψ′) = agree(ψ′)\agree(ψ) operation. Candidates with
empty agree set will have no contribution to the result, and
thus can be pruned without conducting the updating opera-
tion. Intuitively, those candidates with distance restrictions
in B4, i.e., subsumed by Cψ[A], may fall into this category.

(2) Those candidates ψ′ that always have another ψ1 in K5

or K6 having agree(ψ′) = agree(ψ1), i.e., equivalent, after
the agree(ψ′) = agree(ψ′) \ agree(ψ) operation. For exam-
ple, a candidate ψ′ with distance restrictions in B2 may be
considered to find an equivalent ψ1 with distance restriction
in B5, such that Cψ′ [A] subsumes Cψ1 [A]. Since this ψ1 is
reserved in Ψ without updating in the current iteration, the
equivalent one ψ′ can be pruned as redundancy.

Formally, we define the candidates that can be directly
pruned from the candidate set Ψ as follows.

Proposition 8. After inserting the current ψ with the max-
imum support into Ψo, the following set of candidates Kp can
be pruned from Ψ.

Kp = {ψ′ | ∀A ∈ X,Cψ′ [A] ∈ (B2[A] ∪B3[A] ∪B4[A])}

Proof sketch. For a candidate ψ′ ∈ Kp, the distance restric-
tion Cψ′ [A] of any attribute A comes from either B2[A],
B3[A] or B4[A]. Let

K2 = {ψ′ | ∃A ∈ X,Cψ′ [A] ∈ B2[A], ψ′ ∈ Kp}
K3 = {ψ′ | ∃A ∈ X,Cψ′ [A] ∈ B3[A], ψ′ ∈ Kp}
K4 = {ψ′ | ∀A ∈ X,Cψ′ [A] ∈ B4[A], ψ′ ∈ Kp}

having Kp = K2 ∪K3 ∪K4.
For any ψ′ ∈ K2 or K3, we prove that there always exists

a candidate in the remaining candidate sets (say ψ1 ∈ K5 or
ψ2 ∈ K6) which is equivalent to ψ′ after the current deduc-
tion step. Thus, candidate ψ′ can be pruned as duplicates.

For any candidate ψ′ ∈ K4, by proving that agree(ψ′) = ∅
after the current deduction step, ψ′ can be pruned.

According to the definition of Kp, ψ
′ ∈ Kp contains only

distance restrictions from B2, B3, B4 on all the attributes
A ∈ X. In other words, ψ′ ∈ Kp does not contain distance
restrictions from B1, B5, B6 on all the attributes. Let

K1 = {ψ′ | ∃A ∈ X,Cψ′ [A] ∈ B1[A]}.

Then, we can also represent Kp by Kp = Ψ\ (K1∪K5∪K6).

Definition 3. Let ψp1 , ψ
p
5 , ψ

p
6 be three pivot candidates such

that, ∀A ∈ X, Cψp
1
[A] = [dv−1, du+1], Cψp

5
[A] = [d1, dv−1]

and Cψp
6
[A] = [du+1, d|D|], where Cψ[A] = [dv, du].

For instance, Cψp
1
[A2], Cψp

5
[A2] and Cψp

6
[A2] on attribute

A2 are illustrated in Figure 1(b) w.r.t. the current Cψ[A2].
According to the partial dominating ≺p in Definition 2, we
rewrite K1 = {ψ′ | ψ′ ≺p ψp1}, K5 = {ψ′ | ψp5 ≺p ψ′} and
K6 = {ψ′ | ψp6 ≺p ψ′} by ψp1 , ψ

p
5 , ψ

p
6 .

According to Proposition 8, we only need to update the
candidates ψ′ in K1 ∪ K5 ∪ K6, i.e., ψ′ ≺p ψp1 or ψp5 ≺p
ψ′ or ψp6 ≺p ψ′, while the remaining candidates Kp = Ψ \
(K1 ∪K5 ∪K6) can be safely pruned.

Greedy Algorithm with Pruning
Finally, we present the greedy algorithm with pruning (namely
gap). Rather than removing each tuple pair from possible
agree(ψ) exactly once in the original greedy algorithm, we
prune the candidates that belong to the aforesaid Kp.

Algorithm 3 presents the pruning steps in the greedy com-
putation. As illustrated in Line 4, we greedily select a can-
didate ψ in each step. Line 9 computes the pruning pivots
ψp1 , ψ

p
5 , ψ

p
6 in Definition 3. According to Proposition 8, those

candidates in Kp can be safely pruned, which are identified
by using the pivots ψp1 , ψ

p
5 , ψ

p
6 . That is, we only conduct

the deduction operation (in Line 12) on those candidates ψ′

such that ψ′ ≺p ψp1 or ψp5 ≺p ψ′ or ψp6 ≺p ψ′, while the
other candidates (belonging to Kp) are directly removed in
Line 15. Finally, the greedy iteration terminates if either the
requirement ηs of support is reached or all the candidates
have been evaluated (i.e., Ψ = ∅ in Line 3).

Example 8 (Example 6 continued). Suppose that ψ∗1 : (name,
address, department ‖ [0, 4], [0, 2], [0, dmax]) is the currently
selected candidate in Line 4 in Algorithm 3. We show that
ψ∗3 : (name, address, department ‖ [0, 0], [0, 2], [0, dmax]) can

1185

Algorithm 3 Greedy algorithm with pruning GAP(Ψ, ηs)

Input: candidate set Ψ, minimum support requirement ηs
Output: a near optimal set Ψo

1: Ψo := ∅
2: supps(Ψo) := 0
3: while Ψ 6= ∅ and supps(Ψo) < ηs do
4: ψ := arg maxψ∈Ψ supp(ψ)
5: if supp(ψ) = 0 then
6: break
7: move ψ from Ψ to Ψo

8: supps(Ψo) += supp(ψ)
9: calculate ψp1 , ψ

p
5 , ψ

p
6 from ψ

10: for each candidate ψ′ ∈ Ψ do
11: if ψ′ ≺p ψp1 or ψp5 ≺p ψ′or ψp6 ≺p ψ′ then
12: agree(ψ′) := agree(ψ′) \ agree(ψ)
13: update conf and supp of ψ′ to Ψ
14: else
15: remove ψ′ from Ψ
16: if supps(Ψo) < ηs then
17: return ∅
18: else
19: return Ψo

be safely pruned without further evaluation on its agree set
(as it does in Example 6).

First, for the attribute name, we have Cψ∗1 [name] = [dv, du] =
[0, 4]. Since dv = 0 is already the minimum distance value in
D, blocks B1[name] and B5[name] are empty according to the
definition. Referring to Definition 3, we have Cψp

6
[name] =

[5, dmax]. That is, Cψ∗3 [name] does not belong to B6[name]
either, and thus must be in blocks B2, B3 or B4.

For the other attributes with Cψ∗1 [address] = Cψ∗3 [address] =
[0, 2] and Cψ∗1 [department] = Cψ∗3 [department] = [0, dmax],
we directly conclude that Cψ∗3 [department] and Cψ∗3 [address]
belong to B4 of ψ∗1 on department and address, respectively.

Finally, since none of Cψ∗3 [A] belong to B1, B5, B6, we
have all ψ∗3 ≺p ψp1 , ψ

p
5 ≺p ψ∗3 , ψ

p
6 ≺p ψ∗3 equal to false.

Let δ (0 ≤ δ ≤ 1) be the pruning rate on average, i.e.,
δ percentage of candidates can be avoided to perform the
agree(ψ′) = agree(ψ′) \ agree(ψ) operation. Calculating the
pivot candidates ψp1 , ψ

p
5 , ψ

p
6 for Kp is in constant time. The

complexity of Algorithm 3 with pruning is O((1 − δ)n2c4),
where n is the number of tuples in r . As illustrated in the
experiments, gap can always improve time performance in
practice. According to the results in Figures 7(f), 8(f) and
9(f), the prune rate is greater than 0.8 (80%) in most tests.

Since the pruning methods do not affect the results, the
conclusions about rcks and minimal matching keys of greedy
algorithm are still valid.

5. EXPERIMENTAL EVALUATION
We report experiments on evaluating the proposed tech-

niques in two aspects. 1) Since this study is to complement
the existing record matching techniques by providing proper
matching keys, we implement a rule-based matching method
[11], and compare the matching effectiveness by using our
concise rck set and the rcks return by the existing findR-
CKs approach [7]. 2) We compare the efficiency of various
proposed techniques for finding the concise rck sets.

Benchmark datasets for evaluating record linkage are em-
ployed,2 including two real datasets Cora (with 864 tuples)
2http://www.cs.utexas.edu/users/ml/riddle/data.html

 90 95 100 105 110 0.6
 0.7

 0.8
 0.9

 1
 0
 1
 2
 3
 4
 5
 6

Set size

(a) Restaurant

ηs*372816
ηc

Set size

 490 530 570 610 650 0.6
 0.7

 0.8
 0.9

 1
 0

 2

 4

 6

 8

 10

Set size

(b) Cora

ηs*837865
ηc

Set size

 90 95 100 105 110
 0.6

 0.7
 0.8

 0.9
 1

 0
 100
 200
 300
 400
 500
 600

Time (ms)

(c) Restaurant

ηs*372816
ηc

Time (ms)

 490 530 570 610 650 0.6
 0.7

 0.8
 0.9

 1
 500

 1000
 1500
 2000
 2500
 3000
 3500

Time (ms)

(d) Cora

ηs*837865
ηc

Time (ms)

Figure 2: Concise RCK sets with various ηs and ηc

and Restaurant (with 1295 tuples) for evaluating the match-
ing accuracy and a synthetic UIS database generator (with
10,000 tuples generated) for efficiency evaluation. To study
the accuracy of record matching, we use the standard f-
measure of precision and recall [17].

Exp1: Evaluating Concise RCK Sets. The first experi-
ment, in Figure 2, observes the sizes of returned rck sets un-
der various ηs and ηc settings. With the increase of the mini-
mum support requirement ηs, we need to add more matching
keys into the set Ψo in order to increase the support, and
thus the Ψo size increases as well. On the other hand, if the
minimum confidence requirement ηc is large, as mentioned,
some candidates with high support but low confidence may
become invalid. We have to seek some other second-highest
support candidates to meet the ηs requirement, and the Ψo

set size increases consequently.
When both ηs and ηc are too high, there does not exist

any matching key set with support and confidence greater
than the requirements even by considering all the possible
candidates, denoted by size 0. It is the worst case of con-
sidering all the candidates, and thus the corresponding time
costs are extremely high (see more results in the following
experiments on efficiency).

Exp2: Comparing RCKs in Record Matching. To eval-
uate the quality of matching keys, we employ the existing
rule-based matching method [11]. In particular, the experi-
ments in Figure 3 compare the performance of using all the
matching keys under certain confidence guarantees ηc, the
top five rcks by findRCKs as evaluated in [7], and the concise
rck sets with various support commitment ηs (each line e.g.
90 in Figure 3 denotes a ηs = 90/(864∗863/2) = 90/372816).

As shown in Figures 3(c) and (d), the recall is high by us-
ing all the matching keys. However, many irrational match-
ing keys are probably included that overfit the data, and
thus the corresponding precision is relatively low as illus-
trated in Figures 3(a) and (b). Indeed, owing to the large
number of irrational matching keys, the time costs of using
all matching keys are extremely high in Figures 3(g) and
(h). By choosing high quality matching keys, our concise
rck sets (with various support guarantees) show compara-
ble recall and higher precision compared with all matching
keys. Generally, the higher the ηs is, the better the recall

1186

 0

 0.2

 0.4

 0.6

 0.8

 1

0.6 0.7 0.8 0.9 1.0

P
re

c
is

io
n

ηc

(a) Restaurant

90.0
95.0

100.0
105.0
110.0

findRCKs
All

 0

 0.2

 0.4

 0.6

 0.8

 1

0.6 0.7 0.8 0.9 1.0

P
re

c
is

io
n

ηc

(b) Cora

490.0
530.0
570.0
610.0
650.0

findRCKs
All

 0

 0.2

 0.4

 0.6

 0.8

 1

0.6 0.7 0.8 0.9 1.0

R
e
c
a
ll

ηc

(c) Restaurant

90.0
95.0

100.0
105.0
110.0

findRCKs
All

 0

 0.2

 0.4

 0.6

 0.8

 1

0.6 0.7 0.8 0.9 1.0

R
e
c
a
ll

ηc

(d) Cora

490.0
530.0
570.0
610.0
650.0

findRCKs
All

 0

 0.2

 0.4

 0.6

 0.8

 1

0.6 0.7 0.8 0.9 1.0

F
-m

e
a
s
u
re

ηc

(e) Restaurant

90.0
95.0

100.0
105.0
110.0

findRCKs
All

 0

 0.2

 0.4

 0.6

 0.8

 1

0.6 0.7 0.8 0.9 1.0

F
-m

e
a
s
u
re

ηc

(f) Cora

490.0
530.0
570.0
610.0
650.0

findRCKs
All

 0.1

 1

 10

 100

 1000

0.6 0.7 0.8 0.9 1.0

T
im

e
 c

o
s
t
(s

)

ηc

(g) Restaurant

90.0
95.0

100.0
105.0
110.0

findRCKs
All

 0.1

 1

 10

 100

 1000

0.6 0.7 0.8 0.9 1.0

T
im

e
 c

o
s
t
(s

)

ηc

(h) Cora

490.0
530.0
570.0
610.0
650.0

findRCKs
All

Figure 3: Record matching by various matching keys

will be. The corresponding time costs of concise rck sets
are significantly lower than that of all matching keys, with
3 orders of magnitude improvement.

The rcks returned by findRCKs [7] do not show stable
accuracy as illustrated in Figures 3(b), (d) and (f). The ra-
tionale behind is that findRCKs considers only the number
of attributes and the lengths of attribute values in choosing
matching keys, while our approach investigates the more
precise support evaluation. To demonstrate clearly the su-
periority, we conduct another experiment in Figure 4 to com-
pare the top-k rcks of findRCKs and the first k rcks of our
ga algorithm. Both approaches achieve high precision in
Figure 4(a), while the precision of our ga is higher in all the
k tests in Figure 4(b). Although the recall of findRCKs in-
creases (by finding matching keys similar to our concise set),
no better results are reported compared with ga. These re-
sults verify again the effectiveness of finding high quality
rcks by the proposed methods.

Exp3: Comparing Record Matching Methods. We re-
port another group of experiments on comparing the pro-
posed technique with other record matching approaches.

For machine learning approaches, we implement a logis-
tic regression (LR)-based approach that performs record
matching as classification [21] and a SVM-based approach
[2] that uses SVM to learn how to merge the matching re-
sults for individual fields of the records. For the constraint
optimization method [13], the rules should reflect absolute

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1 2 3 4 5

P
re

c
is

io
n

Size of RCK sets

(a) Restaurant

GA
findRCKs

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1 2 3 4 5

P
re

c
is

io
n

Size of RCK sets

(b) Cora

GA
findRCKs

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

R
e
c
a
ll

Size of RCK sets

(c) Restaurant

GA
findRCKs

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

R
e
c
a
ll

Size of RCK sets

(d) Cora

GA
findRCKs

Figure 4: Varying the number of RCKs in matching

truths and serve as functional dependencies (FD). We em-
ploy the widely used level-wise algorithm [12] to discover the
optimal/minimal FDs. For the distance-based approach, we
implement [4] that treats a record as a long field and uses
one distance metric to determine which records are similar.

Figure 5 illustrates the results given various sizes of train-
ing data. As shown, the recall accuracy of our GA approach
is significantly higher than SVM and Distance-based meth-
ods, especially when the training size for learning/discovering
is quite limited. The rationale behind is that our GA al-
gorithm can still discover a number of RCKs even over a
very limited size of training data. Although FD and LR
can also achieve a relatively high recall, their corresponding
precision accuracies are much lower owing to the weakness
in expressing precise matching criteria. Consequently, the
overall f-measure accuracy of our GA approach is higher.

To further evaluate the performance on a limited size of
training data, we evaluate the above approaches in the active
learning framework [16]. The idea of active learning is to
interactively identify challenging training pairs for labeling
in each round, and thus the learned model is expected to be
gradually improved.

Figure 6 reports the results over various rounds of active
learning. The initial round 0 has 20 training pairs, and each
succeeding round has 10 challenging pairs labeled that are
identified by the uncertainty [16]. Again, the accuracy of
GA is high even in the initial round 0, and keeps higher ac-
curacy in succeeding rounds. Generally, the active learning
makes the training more efficient. For instance, for the GA
approach, round 4 (with total 20+10*4=60 labeled pairs) in
Figure 6(f) already achieves an accuracy as high as that of
200 training pairs in Figure 5(f).

Exp4: Efficiency of RCK Set Discovery. We study time
performance of proposed algorithms, including the original
candidate set generation (cs), the original greedy algorithm
(ga), the candidate set generation with pruning (csp), and
the greedy algorithm with pruning (gap). Figures 7, 8 and
9 show time performance over 2 real data sets Restaurant,
Cora, and another larger synthetic data UIS, respectively.
For each data set, e.g., Restaurant in Figures 7, we test 4
experiments (a), (b), (c) and (d) with different ηs and ηc
requirements: test (a) with a large ηc, test (c) with a large

1187

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100 120 140 160 180 200

P
re

c
is

io
n

Training size

(a) Restaurant

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100 120 140 160 180 200

P
re

c
is

io
n

Training size

(b) Cora

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100 120 140 160 180 200

R
e
c
a
ll

Training size

(c) Restaurant

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100 120 140 160 180 200

R
e
c
a
ll

Training size

(d) Cora

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100 120 140 160 180 200

F
-m

e
a
s
u
re

Training size

(e) Restaurant

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100 120 140 160 180 200

F
-m

e
a
s
u
re

Training size

(f) Cora

GA
FD
LR

SVM
Distance

Figure 5: Comparing record matching techniques

ηs, test (b) having both large ηs and ηc, and test (d) having
small ηs and ηc. The time costs of various tests are reported
in sub-figures (a), (b), (c) and (d).

First, as observed in Figure 2 as well, the time perfor-
mance of greedy algorithms heavily relies on the size of the
returned set Ψo. If the size of the result set Ψo is large, we
need to search more candidates in order to assemble such a
large set and thus higher time costs. Since the confidence
measure is not monotonic w.r.t. the size of data, the cor-
responding Ψo sizes (given certain confidence requirements)
may vary under different data sizes.

As mentioned, the returned set size is affected by the ηs
and ηc requirements, and thereby the time performance of
approaches is affected by different ηs and ηc. As shown in
Figures 7(e), 8(e) and 9(e), test (d) with smaller ns and
small nc yields smaller set sizes, compared with tests (a),
(b) and (c). Consequently, it is not surprising that the cor-
responding time costs are lower in test (d) in Figures 7(d),
8(d) and 9(d). When both the support and confidence re-
quirements are large, in tests (b), the algorithm needs to
seek a large number of candidates in order to satisfy the ηs
and ηc requirements. The corresponding Ψo sizes and times
costs of tests (b) are large. Recall that when both the ηs and
ηc requirements are set too large, there might not exist any
set that can achieve such high requirements, e.g., set size 0
under 10k tuples of test (b) in Figure 9(e). It is the worst
case to traverse all the candidates. Thereby, as presented in
Figure 9(b), the time cost on 10k is the highest.

Both the csp and gap techniques can improve the time
performance compared with the original cs and ga respec-
tively. In Figure 7, csp works well and keeps low time cost
even when cs requires about 5 times larger cost in the same
environment, e.g., 900 tuples in Figure 7(b). Note that the
pruning of csp relies on the distance values that do not ap-
pear in the given data. When most possible values appear,

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

Round

(a) Restaurant

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10

P
re

c
is

io
n

Round

(b) Cora

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10

R
e
c
a
ll

Round

(c) Restaurant

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10

R
e
c
a
ll

Round

(d) Cora

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10
F

-m
e
a
s
u
re

Round

(e) Restaurant

GA
FD
LR

SVM
Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10

F
-m

e
a
s
u
re

Round

(f) Cora

GA
FD
LR

SVM
Distance

Figure 6: Comparison under active learning

e.g., in Figures 8 and 9, csp does not work. Nevertheless, the
gap algorithm performs well (either with or without csp).
The csp+gap approach always achieves the best time per-
formance and shows up to 2 orders of magnitude improve-
ment (e.g., test of 1100 tuples in Figure 8).

To illustrate whether the ratio is practical, we design a
group of new experiments on calculating the upper bound
of approximation ratio in Figures 7(g), 8(g) and 9(g). In
particular, although computing the exact minimum set is
difficult (NP-hard as shown in [1]), it is possible to effi-
ciently identify a lower bound of the minimum set size. The
idea is to compute a set Ψu of matching keys with highest
supports, whose support summation is greater than ηs (that
is, exactly Algorithm 2 by ignoring Line 10 of reduction op-
eration). Since the reduction operation is not considered,
the set could be redundant and needs more matching keys
to meet the support requirement ηs. In other words, the
true minimum set Ψ∗o may be greater than the computed
set Ψu. Let Ψo be the set computed by the Greedy algo-
rithm. We have approximation ratio |Ψo|/|Ψ∗o| ≤ |Ψo|/|Ψu|,
where |Ψo|/|Ψu| serves as an upper bound of approximation
ratio. As shown in Figures 7(g), 8(g) and 9(g), the upper
bound of approximation ratio is no greater than 6 in all the
tests, where the actual approximation could be lower than
the upper bound. In particular, the bound of UIS with up
to 10k records is no greater than 3 in Figure 9(g). These re-
sults demonstrate that the approximation ratio is practical
and much lower than the theoretical bound.

6. RELATED WORK

Record Matching Technique. A variety of record match-
ing methods have been devised (see [5] for a survey). Al-
though matching keys [7] are not able to support more com-

1188

 0

 1

 2

 3

 4

 5

 6

 7

100 200 300 400 500 600 700 800 900

T
im

e
 c

o
s
t
(s

)

tuples

(a) ηs = 90/372816, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 5

 10

 15

 20

 25

 30

 35

100 200 300 400 500 600 700 800 900

T
im

e
 c

o
s
t
(s

)

tuples

(b) ηs = 105/372816, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 3

 6

 9

 12

 15

 18

100 200 300 400 500 600 700 800 900

T
im

e
 c

o
s
t
(s

)

tuples

(c) ηs = 105/372816, ηc = 0.8

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 0.5

 1

 1.5

 2

100 200 300 400 500 600 700 800 900

T
im

e
 c

o
s
t
(s

)

tuples

(d) ηs = 90/372816, ηc = 0.8

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 1

 2

 3

100 200 300 400 500 600 700 800 900

S
e
t
s
iz

e

tuples

(e) Set size

(a) ηs = 90/372816, ηc = 1.0
(b) ηs = 105/372816, ηc = 1.0
(c) ηs = 105/372816, ηc = 0.8
(d) ηs = 90/372816, ηc = 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500 600 700 800 900

P
ru

n
e
 r

a
te

tuples

(f) Prune rate

(a) ηs = 90/372816, ηc = 1.0
(b) ηs = 105/372816, ηc = 1.0
(c) ηs = 105/372816, ηc = 0.8
(d) ηs = 90/372816, ηc = 0.8

 0

 0.5

 1

 1.5

100 200 300 400 500 600 700 800 900

R
a
ti
o
 b

o
u
n
d

tuples

(g) Approximation ratio upper bound

(a) ηs = 90/372816, ηc = 1.0
(b) ηs = 105/372816, ηc = 1.0
(c) ηs = 105/372816, ηc = 0.8
(d) ηs = 90/372816, ηc = 0.8

Figure 7: Discovery performance on Restaurant

plex Boolean expressions like disjunctions or negations, it is
not the focus of this work to propose another matching algo-
rithm or invent another type of rules. Instead, following the
same line of [7], our study complements existing matching
algorithms by providing proper matching keys. Neverthe-
less, matching keys naturally support one distance function
for multiple attributes. Indeed, when combining all the at-
tributes together in a matching key with one single distance
function, it is equivalent to the distance-based approach [4].
We compare the Distance-based approach in Figures 5 and
6. As shown, the GA approach of matching keys (concern-
ing distances separately in different attributes) has higher
accuracy than the Distance one (with one distance function
for multiple attributes).

Winkler [20] has shown that computerized record linkage
procedures can significantly reduce the resources needed for
identifying duplicates in comparison with methods that are
primarily manual. As one of the computerized record linkage
approach (see [5] for a survey), we believe that our approach
also benefits from the effort reduction. To illustrate the
efficient manual effort reduction, we also add a new group of
experiments on comparing the approaches under the active
learning framework in Figure 6, where the manual labels
are dynamically fed round by round. Nevertheless, besides
the contribution of improving (recall/overall) accuracy in
record matching, it is always promising to reduce the time

 0

 20

 40

 60

 80

 100

100 300 500 700 900 1100 1300

T
im

e
 c

o
s
t
(s

)

tuples

(a) ηs = 500/837865, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 40

 80

 120

 160

100 300 500 700 900 1100 1300

T
im

e
 c

o
s
t
(s

)

tuples

(b) ηs = 600/837865, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 4

 8

 12

 16

100 300 500 700 900 1100 1300

T
im

e
 c

o
s
t
(s

)

tuples

(c) ηs = 600/837865, ηc = 0.8

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 1

 2

 3

 4

100 300 500 700 900 1100 1300

T
im

e
 c

o
s
t
(s

)

tuples

(d) ηs = 500/837865, ηc = 0.8

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 2

 4

 6

 8

 10

 12

100 300 500 700 900 1100 1300
S

e
t
s
iz

e

tuples

(e) Set size

(a) ηs = 500/837865, ηc = 1.0
(b) ηs = 600/837865, ηc = 1.0
(c) ηs = 600/837865, ηc = 0.8
(d) ηs = 500/837865, ηc = 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

100 300 500 700 900 1100 1300

P
ru

n
e
 r

a
te

tuples

(f) Prune rate

(a) ηs = 500/837865, ηc = 1.0
(b) ηs = 600/837865, ηc = 1.0
(c) ηs = 600/837865, ηc = 0.8
(d) ηs = 500/837865, ηc = 0.8

 0

 1

 2

 3

 4

 5

 6

100 300 500 700 900 1100 1300

R
a
ti
o
 b

o
u
n
d

tuples

(g) Approximation ratio upper bound

(a) ηs = 500/837865, ηc = 1.0
(b) ηs = 600/837865, ηc = 1.0
(c) ηs = 600/837865, ηc = 0.8
(d) ηs = 500/837865, ηc = 0.8

Figure 8: Discovery performance on Cora

costs of discovery/construction, without loss of quality of
the returned matching keys. Figures 7–9 demonstrate our
contribution in improving the time performance of discovery.

Constraint Optimization. In the constraint optimization-
based record matching [13], the rules should reflect absolute
truths and serve as functional dependencies (FD). As one of
the motivations of this study, the employed constraints are
expected to be optimal/minimal/concise. A variety of meth-
ods have been proposed for discovering the optimal integrity
constraints from a given data instance (see [14] for a survey).
To compare our proposed techniques with the constraint
optimization-based approach, we employ the widely used
level-wise algorithm [12] to discover the optimal/minimal
FDs. Owing to the strict equality-based relationships of
conventional integrity constraints, the expressiveness is lim-
ited compared with the matching keys [7] where more rich
metric distance restrictions are considered. Consequently,
as the experimental results reported in Figures 5 and 6, the
accuracy of our proposed GA (with matching keys) is higher
than that of constraint-based approach (FD).

7. CONCLUSIONS
Matching keys specify what attributes to compare and how

to compare them for record matching. Owing to the exis-

1189

 0

 2

 4

 6

 8

4k 5k 6k 7k 8k 9k 10k

T
im

e
 c

o
s
t
(s

)

tuples

(a) ηs = 1000/4.9*10
7
, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 20

 40

 60

 80

4k 5k 6k 7k 8k 9k 10k

T
im

e
 c

o
s
t
(s

)

tuples

(b) ηs = 1500/4.9*10
7
, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 1

 2

 3

 4

 5

4k 5k 6k 7k 8k 9k 10k

T
im

e
 c

o
s
t
(s

)

tuples

(c) ηs = 1500/4.9*10
7
, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 1

 2

 3

 4

 5

4k 5k 6k 7k 8k 9k 10k

T
im

e
 c

o
s
t
(s

)

tuples

(d) ηs = 1000/4.9*10
7
, ηc = 1.0

CS+GA
CSP+GA
CS+GAP

CSP+GAP

 0

 3

 6

 9

 12

 15

4k 5k 6k 7k 8k 9k 10k

S
e
t
s
iz

e

tuples

(e) Set size

(a) ηs = 1000/4.9*10
7
, ηc = 1.0

(b) ηs = 1500/4.9*10
7
, ηc = 1.0

(c) ηs = 1500/4.9*10
7
, ηc = 0.8

(d) ηs = 1000/4.9*10
7
, ηc = 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

4k 5k 6k 7k 8k 9k 10k

P
ru

n
e
 r

a
te

tuples

(f) Prune rate

(a) ηs = 1000/4.9*10
7
, ηc = 1.0

(b) ηs = 1500/4.9*10
7
, ηc = 1.0

(c) ηs = 1500/4.9*10
7
, ηc = 0.8

(d) ηs = 1000/4.9*10
7
, ηc = 0.8

 0

 0.5

 1

 1.5

 2

 2.5

 3

4k 5k 6k 7k 8k 9k 10k

R
a
ti
o
 b

o
u
n
d

tuples

(g) Approximation ratio upper bound

(a) ηs = 1000/4.9*10
7
, ηc = 1.0

(b) ηs = 1500/4.9*10
7
, ηc = 1.0

(c) ηs = 1500/4.9*10
7
, ηc = 0.8

(d) ηs = 1000/4.9*10
7
, ηc = 0.8

Figure 9: Discovery performance on UIS

tence of redundant semantics among matching keys, it is
highly demanded to explore the most concise set of match-
ing keys with less redundancy. While relative candidate keys
(rcks) can clear up redundant semantics w.r.t. “what at-
tributes to compare” (minimal on the number of compared
attributes), redundancy issues may still exist among rcks
on the same attributes about “how to compare them”. In
this paper, we introduce the greedy discovery algorithm with
a bound on approximation ratio. To ensure the quality of
matching keys, the return results are guaranteed to be rcks
(minimal w.r.t. attributes), and also minimal w.r.t. distance
restrictions (i.e., redundancy free w.r.t. “how to compare
the attributes”). Experiment results demonstrate that our
concise rck set is more effective in the evaluation over the
existing record matching methods. Moreover, the proposed
pruning techniques can significantly improve the efficiency
of concise rck set discovery.

We believe that the proposed pruning technique can be
applied in solving other similar problems. For example, a
sequential dependency [9] SD: (date →[20,40] price) identi-
fies stock prices that rapidly increase from day to day (by
at least 20 points but no greater than 40). The interval
[20,40] denotes a range of distance between two tuples on
attribute price, which has the same meaning as the distance
interval of matching keys studied in this paper. By adapting
the algorithm for dealing with the order relationships on at-

tribute date, the proposed pruning technique can be applied
in determining the proper interval on price for SDs.

Acknowledgment. This work is supported in part by China
NSFC Grant No. 61202008, 61232018, 61370055, Hong Kong
RGC/NSFC Project No. N HKUST637/13, National Grand
Fundamental Research 973 Program of China Grant No.
2012-CB316200, Microsoft Research Asia Gift Grant, Google
Faculty Award 2013, Hong Kong RGC GRF Project No.
CUHK 411211, 411310, CUHK Direct Grant No. 4055015.

8. REFERENCES
[1] Full version.

http://ise.thss.tsinghua.edu.cn/sxsong/doc/mkey.pdf.
[2] M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar,

and S. E. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18(5):16–23, 2003.

[3] T. Calders, R. T. Ng, and J. Wijsen. Searching for
dependencies at multiple abstraction levels. ACM Trans.
Database Syst., 27(3):229–260, 2002.

[4] W. W. Cohen. Integration of heterogeneous databases
without common domains using queries based on textual
similarity. In SIGMOD Conference, pages 201–212, 1998.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1–16, 2007.

[6] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic
constraints for record matching. VLDB J., 20(4):495–520,
2011.

[7] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. PVLDB, 2(1):407–418, 2009.

[8] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation
algorithms for partial covering problems. J. Algorithms,
53(1):55–84, 2004.

[9] L. Golab, H. J. Karloff, F. Korn, A. Saha, and
D. Srivastava. Sequential dependencies. PVLDB,
2(1):574–585, 2009.

[10] L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu.
On generating near-optimal tableaux for conditional
functional dependencies. PVLDB, 1(1):376–390, 2008.

[11] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In SIGMOD Conference,
pages 127–138, 1995.

[12] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
Efficient discovery of functional and approximate
dependencies using partitions. In ICDE, pages 392–401,
1998.

[13] E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson.
Entity identification in database integration. In ICDE,
pages 294–301, 1993.

[14] J. Liu, J. Li, C. Liu, and Y. Chen. Discover dependencies
from data - a review. IEEE Trans. Knowl. Data Eng.,
24(2):251–264, 2012.

[15] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, 2001.

[16] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, pages 269–278, 2002.

[17] C. J. van Rijsbergen. Information Retrieval. Butterworth,
1979.

[18] V. S. Verykios, G. V. Moustakides, and M. G. Elfeky. A
bayesian decision model for cost optimal record matching.
VLDB J., 12(1):28–40, 2003.

[19] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching:
How similar is similar. PVLDB, 4(10):622–633, 2011.

[20] W. E. Winkler. Matching and record linkage. In Business
Survey Methods, pages 355–384. Wiley, 1995.

[21] W. E. Winkler. Overview of record linkage and current
research directions. Technical report, BUREAU OF THE
CENSUS, 2006.

1190

