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ABSTRACT

A query Q is said to be effectively bounded if for all datasets
D, there exists a subset DQ of D such that Q(D) = Q(DQ),
and the size of DQ and time for fetching DQ are indepen-
dent of the size of D. The need for studying such queries is
evident, since it allows us to compute Q(D) by accessing a
bounded dataset DQ, regardless of how big D is. This paper
investigates effectively bounded conjunctive queries (SPC)
under an access schema A, which specifies indices and car-
dinality constraints commonly used. We provide characteri-
zations (sufficient and necessary conditions) for determining
whether an SPC query Q is effectively bounded under A. We
study several problems for deciding whether Q is bounded,
and if not, for identifying a minimum set of parameters of
Q to instantiate and make Q bounded. We show that these
problems range from quadratic-time to NP-complete, and
develop efficient (heuristic) algorithms for them. We also
provide an algorithm that, given an effectively bounded SPC

query Q and an access schema A, generates a query plan for
evaluating Q by accessing a bounded amount of data in any
(possibly big) dataset. We experimentally verify that our al-
gorithms substantially reduce the cost of query evaluation.

1. INTRODUCTION
Query answering is expensive. Consider the problem to

decide, given a query Q, a dataset D and a tuple t, whether
t ∈ Q(D), i.e., whether t is an answer to Q in D. This
problem is NP-complete for conjunctive queries (i.e., SPC,
defined with selection, projection and Cartesian product op-
erators); and it is PSPACE complete for queries in relational
algebra (RA, cf. [6]). When D is big, computing Q(D) is
cost-prohibitive. Indeed, even a linear-time query process-
ing algorithm may take days on a dataset D of PB size (1015

bytes), and years when D is of EB size (1018 bytes) [21].

This motivates us to ask the following question: is it pos-
sible to compute Q(D) by only accessing (visiting and fetch-
ing) a small subset DQ of D? More specifically, we want to
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know whether a query Q has the following properties. For
all datasets D, there exists a subset DQ ⊂ D such that

(a) Q(DQ) = Q(D),

(b) DQ consists of no more than M tuples, and

(c) DQ can be effectively identified by using access infor-
mation, with a cost independent of |D|.

Here access information includes indices and cardinality con-
straints, specified as an access schema A; and M is a bound
determined by A and Q only. We say that Q is effectively
bounded under A if it satisfies all the three conditions above,
and bounded if it satisfies conditions (a) and (b) only.

If Q is effectively bounded, then we can find a bounded
dataset DQ and compute Q(D) by using DQ, independent
of the size of possibly big D. Moreover, when D grows,
the performance does not degrade. In other words, we can
reduce big D to a “small” DQ of a manageable size.

Many real-life queries are actually (effectively) bounded.

Example 1: Social networks, e.g., Facebook, allow us to
tag a photo and show who is in it. Such a tag is a link to
the person “tagged”. Consider the following.

(1) A query Q0 is to find all photos from an album a0 in
which a person u0 is tagged by one of her friends. The
relations needed for answering Q0 include the following:

◦ in album(photo id, album id) for photo albums,

◦ friends(user id, friend id) for friends, and

◦ tagging(photo id, tagger id, taggee id), indicating that
taggee id is tagged by tagger id in photo id.

We abbreviate these as in album(pid1, aid), friends(uid, fid)
and tagging(pid2, tid1, tid2), respectively.

Given these, Q0 can be written as an SPC query as follows:

Q0(pid1) = πpid1σC

(

in album(pid1, aid) × friends(uid, fid)
× tagging(pid2, tid1, tid2)

)

,
where the selection condition C is given as
aid = a0 ∧ uid = u0 ∧ pid1 = pid2 ∧ tid1 = fid ∧ tid2 = uid.

Observe the following. (a) A dataset D0 consisting of
these relations is possibly big; for instance, Facebook has
more than 1 billion users with 140 billion friend links [18]. (b)
Query Q0 is not bounded: we can add new photos to album
a0, new friends of u0 to friend, or new tuples to tagging, and
Q0 has to check these tuples when D0 grows.

However, social networks often impose limits (cardinality
constraints) on D0, e.g., (a) each album includes at most
1000 photos, (b) each person may claim up to 5000 friends,
and (c) each person in a photo can only be tagged once [19].
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Moreover, indices can be built on in album(aid), friends(uid),
and tagging(pid1, tid2). As will be seen later, these indices
and constraints make an access schema A0.

Under access schema A0, Q0 is effectively bounded: we can
compute Q0(D0) by accessing at most 7000 tuples no matter
how large D0 is, as follows: (a) select a set T1 of at most
1000 pid’s from in album with aid = a0, by using the index
on in album(aid); (b) get a set T2 of at most 5000 fid’s from
friends with user id = u0, using the index on friends(uid);
(c) using tid2 = u0 and pid2’s from T1, fetch a set T3 of
at most 1000 (pid2, tid1) tuples from tagging via the index
on tagging(pid2, tid2); and (d) compute a join T4 of T2 and
T3. Then Q0(D0) = πphoto id(T4). This query plan visits at
most 7000 tuples in total. Moreover, these tuples can be
efficiently identified and retrieved by using the indices.

(2) Queries like Q0 are routinely posed on social networks.
Thus we want a query Q1, which is the same as Q0 except
that uid and aid are not constants, i.e., values u0 and a0 are
not given. Query Q1 is not bounded even under A0.

However, Q1 can be taken as a parameterized query, a tem-
plate with parameters (uid, aid, fid, pid2, tid1, tid2) such that
some of them can be substituted with constants when Q1 is
executed. We identify a minimum subset XP of parameters
of Q1, referred to as dominating parameters, such that when
values of XP are given, Q1 is effectively bounded under A0.
For instance, uid and aid make a set of dominating parame-
ters: as shown above, when they are instantiated, the query
on D0 can be answered by accessing at most 7000 tuples.
We can find XP and suggest it to users for instantiation.

(3) As another example, consider an arbitrary Boolean SPC

query Q2 that, given an instance D of a relational schema
R, returns true if and only if Q2(D) is nonempty. It is
known that Q2 is bounded even in the absence of access
schema [20]. More specifically, Q2(D) can be computed by
accessing at most |Q2| amount of data no matter how big
D is. Indeed, no matter Q2(D) is true or false, it needs a
witness DQ of size |Q| such that Q2(DQ) = Q2(D). ✷

The idea of answering queries with a bounded dataset was
first explored in [9–11], and was formalized in [20] (referred
to as scale independence there). To make practical use of
the idea, several questions have to be settled. Given a query
Q and an access schema A, can we determine whether Q
is (effectively) bounded under A? What is the complexity?
If Q is not bounded, can we find a dominating-parameter
set XP of Q such that Q becomes effectively bounded under
A when XP is instantiated? Given a dataset D, how can
we compute Q(D) by efficiently fetching a bounded DQ, by
using access information in A? These questions are non-
trivial. It is known that it is undecidable to decide whether
Q is bounded for BooleanRA queries [20]. The questions are
open for SPC queries, which are considered “the most fun-
damental and the most widely used queries” in practice [23].

Contributions. This paper answers these questions for
SPC queries. The main results are as follows.

(1) We formulate bounded SPC queries (Section 2). Follow-
ing [20], we use an access schema A to specify indices and
cardinality constraints for databases of a relational schema
R. We revise the notions of scale independence studied
in [20]. We say that an SPC query Q is bounded if for
all instances D of R, there exists a DQ ⊂ D such that

Q(D) = Q(DQ), and the size of DQ is independent of the
size of D. If in addition, DQ can be efficiently fetched by
using A, then Q is effectively bounded. We show that some
queries are bounded but are not effectively bounded.

(2) We study the problems of determining boundedness and
effective boundedness (Section 3). We provide a set of de-
duction rules to decide whether an SPC query Q is bounded
under an access schema A, and show that the rules provide
a sufficient and necessary condition for the boundedness.
We also provide a characterization of effectively bounded
Q under A. In contrast to RA queries [20], these results
tell us that there are systematic methods to decide whether
SPC queries are bounded or effectively bounded under A.

(3) We study several problems in connection with the (effec-
tive) boundedness of SPC queries, establish their complex-
ity, and develop algorithms for them (Section 4). Given an
SPC query Q and an access schema A, we study problems
to decide (a) whether Q is bounded under A, (b) whether
Q is effectively bounded under A, (c) if Q is not effectively
bounded, whether there exists a set XP of dominating pa-
rameters of Q to make Q effectively bounded under A, and
(d) if so, how to find a minimum setXP ? We show that these
problems are in O(|Q|(|A| + |Q|))-time, O(|Q|(|A| + |Q|))-
time, NP-complete and NPO-complete, respectively. We de-
velop efficient (heuristic) algorithms for these problems.

(4) We give a PTIME (polynomial time) algorithm to gen-
erate query plans for answering effectively bounded SPC

queries Q under A (Section 5). The query plans allow us
to answer Q in any (possibly big) dataset D by accessing a
subset DQ of D. The evaluation scales with the size of D:
the size |DQ| of DQ is decided by A and Q only, and DQ

can be fetched by using indices in A in time independent of
|D|. We also study the problem for identifying a minimum
DQ, and show that its decision problem is NP-complete.

(5) We experimentally verify the efficiency and effectiveness
of our algorithms, using real-life and synthetic data (Sec-
tion 6). We find that our algorithms are efficient: they
take at most 2.1 seconds to decide whether Q is effectively
bounded under A, and to generate a query plan for Q, when
Q is defined on a relational schema with 19 tables and 113
attributes, and A consists of 84 constraints. Moreover, our
bounded query evaluation approach is effective: on a real-
life dataset D of 21.4GB, our query plan only accesses 3800
tuples and gets answers in 9.3 seconds on average, while
MySQL takes longer than 14 hours. That is, our approach
is 3 orders of magnitude faster than MySQL. The improve-
ment is more substantial when D grows, since our approach
accesses a bounded subset of D no matter how large D is!

These results suggest an approach to answering queries in
big data D. Given an SPC query Q and an access schema
A, we first check in O(|Q|(|A| + |Q|))-time whether Q is
effectively bounded under A. If so, we compute Q(D) by
accessing a bounded DQ ⊂ D, independent of |D|. If not, we
may either identify a minimum set of dominating parameters
and invite users to supply their values, or suggest users to
extend their access schema, such that Q becomes effectively
bounded. Only when none of these is possible, we pay the
price of computing Q(D) directly in big D.

We find that many real-life queries are effectively bounded
under a simple access schema, such as (a) parameterized
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queries supported by e-commerce systems, where users issue
queries via Web forms by instantiating parameters; and (b)
social searches, e.g., the one given in Example 1. Moreover,
access schema can be deduced from our familiar functional
dependencies (FDs), domain constraints and bounds on real-
life data such as those imposed by Facebook (Example 1).
Detailed proofs of the results of the paper are given in [5].

Related work. We characterize related work as follows.

Scale independence. The notion of boundedness is a revision
of scale independence proposed in [10], which aims to exe-
cute a bounded amount of work in an application regardless
of the size of the underlying data. An extension to SQL was
proposed in [9] to enforce scale independence, which allows
users to specify bounds on the amount of data accessed and
the size of intermediate results; when the data required ex-
ceeds the bounds, only top-k tuples are retrieved to meet
the bounds. Scale independence was also studied in the
presence of materialized views [11]. The study differs from
our work as follows. (1) Its system [9] is based on key/value
store with its own compiler, while we aim to directly im-
prove traditional DBMS. (2) It does not consider effective
boundedness and its characterizations. (3) It settles with
approximate answers while we focus on exact answers.
The notion of scale independence was recently formalized

in [20]. The notion of access schema was also proposed there.
For a given bound M , [20] defines a scale independent query
Q to be one that for all datasets D, there exists DQ ⊆ D
such that Q(D) = Q(DQ) and |DQ| ≤ M . It studies several
decision problems for scale independence. In particular, it
shows that it is undecidable to check whether a Boolean RA
query is scale independent. It also develops a set of rules as
a sufficient condition for deciding whether an RA query is
scale independent under an access schema.

This works extends [20] as follows. (1) We do not require
the size of DQ to be bounded by a predefined M . Indeed,
if |DQ| is determined by A and Q only, its evaluation scales
well with D. Hence, we define (effectively) bounded queries
instead. (2) We provide characterizations for (effectively)
bounded SPC queries Q under A, which was not studied
in [20]. As opposed to RA queries of [20], these give us
sufficient and necessary conditions for deciding whether Q
is (effectively) bounded. (3) We show that the (effective)
boundedness of SPC queries can be decided in PTIME when
M is not part of the input, but is NP-complete in the set-
ting of [20] (when M is predefined), in contrast to the un-
decidability of the problem for RA queries. (4) None of the
problems for dominating parameters was studied in [20]. (5)
We give efficient (heuristic) algorithms for checking whether
Q is (effectively) bounded, identifying dominating parame-
ters, and for generating a query plan when Q is effectively
bounded. No algorithms were provided in [20].

There has also been work on size bounds for join [12] and
conjunctive queries [23]. Given a query Q and a dataset D,
it is to decide bounds for |Q(D)| in terms of |Q| and |D|,
possibly in the presence of keys and FDs [23]. Characteri-
zations for deriving worst-case size bounds for these queries
are presented there. That line of work differs from ours in
both the problems studied and the approaches adopted (e.g.,
coloring scheme of [23] vs. rule-based inference of ours).

Making big data small. There have been several data reduc-
tion schemes that, given a dataset D, find a small dataset

D′ such that one can evaluate queries posed on D by using
D′ instead. These include compression, summarization and
data synopses such as histograms, wavelets, quantile sum-
maries, clustering and sampling [7, 14, 17, 22, 24, 25, 27, 29].
Recently BlinkDB [8] has revised the idea to evaluate queries
on big data. It adaptively samples data to find approximate
query answers within a probabilistic error-bound and time
constraints. Similar ideas were also explored in [9].

This work differs from the prior work as follows. (1) We
aim to compute exact answers by using a bounded dataset
whenever possible, rather than approximate query an-
swers [8,9]. (2) The prior reduction schemes [7,14,17,22,24,
25,27,29] use the same datasetD′ to answer all queries posed
on D. In contrast, we adopt a dynamic reduction scheme
that finds a small DQ for each query Q. Here DQ contains
only the information needed for answering Q and hence,
allows us to compute Q(D) by using a small dataset DQ.

Access schema. Cardinality constraints have been studied
for relational data (e.g., [26]). Following [20], this paper
aims to identify a bounded dataset DQ to answer a query by
making use of available indices and cardinality constraints.

As remarked in [20], access schema is quite different from
access patterns [15, 16, 28]. Access patterns require that a
relation can only be accessed by providing certain combina-
tions of attribute values. In contrast, access schemas com-
bine indexing and cardinality constraints, and guide us to
find a bounded dataset DQ for query answering.

2. BOUNDED QUERIES UNDER AN AC

CESS SCHEMA
Below we first review SPC queries, and then present access

schemas. Based on these, we define bounded and effectively
bounded SPC queries under an access schema.

SPC. Consider a relational schema R = (R1, . . . , Rl) in
which each Ri is a relation schema. Recall that an SPC

query over R has the following form (see, e.g., [6]):

Q(Z) = πZσC(S1 × . . .× Sn).

Here Sj is a (renaming of a) relation schema in R, Z is a
set of attributes of R, and C is the selection condition of Q,
defined as a conjunction of equality atoms x = y or x = c.
where x, y are attributes and c is a constant. We refer to
attributes that appear in Z or C as the parameters of Q.

To simplify the discussion, we consider Q defined over a
single schema R(A1, . . . , Am). This does not lose generality
due to the lemma below, in which we denote by inst(R) the
set of all database instances of relational schema R.

Lemma 1: For any relational schema R, there exist a single
relation schema R, a linear-time function gD from inst(R) to
inst(R), and a linear-time query-rewriting function gQ from
SPC to SPC such that for any instance D of R and any SPC

query Q over R, Q(D) = gQ(Q)(gD(D)). ✷

Access schema. An access schema A over relation schema
R is a set of access constraints of the following form:

X → (Y,N),

whereX and Y are sets of attributes of R, andN is a natural
number. A database D of R satisfies the constraint if

◦ for any X-value ā, |DY (X = ā)| ≤ N , where DY (X =
ā) = {t[Y ] | t ∈ D, t[X] = ā}; that is, for each X value,
there exist at most N distinct corresponding Y values;
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◦ there exists an index on X for Y such that given a
X-value ā, it finds D′ ⊆ D such that |D′| ≤ N and
D′

Y (X = ā) = DY (X = ā) with a cost measured in N .

Here D′ is one of (possibly many) subsets of D with N
tuples, one for each distinct value of Y , andN is independent
of |D|. We say that D satisfies access schema A, denoted
by D |= A, if D satisfies all the constraints in A.

An access constraint is a combination of a cardinality con-
straint and an index. It tells us that for any given X-value.
there exist a bounded number of corresponding Y values,
and the Y values can be efficiently retrieved with the index.

Example 2: Recall from Example 1 the limit of 1000 photos
per album. This can be expressed as an access constraint
over schema in album with an index on album id for photo id:

album id → (photo id, 1000).

Another constraint over tagging enforces that each person
is tagged at most once in a photo: (photo id, taggee id) →
(tager id, 1). Similarly, the limit of 5000 friends per person
is expressed as user id → (friend id, 5000) over friends. ✷

Observe the following. (a) Functional dependencies (FDs)
X → Y (see [6]) are a special case of access constraints of
the form X → (Y, 1) if an index is defined on X for Y . (b)
Keys are a special form of access constraints X → (R, 1),
where R denotes all the attributes of relation schema R.
In general, given an access constraint X → (R,N), we can
efficiently fetch the entire tuples when an X value is given.
In practice, access constraints can be deduced from the

following: (1) FDs; mature techniques are already in place
to automatically discover FDs, a special case of access con-
straints; moreover, the techniques can be extended to dis-
cover general access constraints; (2) attributes with bounded
domains: if the domain of an attribute B is bounded by N
(e.g., each year has 12 months and at most 336 days), then
X → (B,N) is an access constraint for any set X of at-
tributes; and (3) the semantics of real-life data, e.g., the
number of vehicles involved in a road accident is at most
192 from 1979–2005 in the UK (see Section 6 for details).

Bounded and effectively bounded SPC queries. We
say that an SPC query Q over relation schema R is bounded
under an access schema A if for all instances D of R that
satisfy A, there exists a subset DQ ⊆ D such that

(a) Q(DQ) = Q(D); and

(b) the size |DQ| is independent of the size |D| of D.

Here |D| is measured as the total number of tuples in D.

We say that Q is effectively bounded under A if Q is
bounded under A and there exists an algorithm that iden-
tifies DQ in time determined by Q and A, not by |D|.

Intuitively, Q is bounded under A if it can be answered
in a bounded DQ. It is effectively bounded if moreover, DQ

can be efficiently identified (assuming that given an X-value
ā, it takes O(N) time to identify DY (X = ā) in D via an
access constraint X → (Y,N) in A). For instance, as shown
in Example 1, all Boolean SPC queries are bounded even
in the absence of access schema, and query Q0 is effectively
bounded under the access schema A0 of Example 2.

The result below separates the class SPCb of bounded
queries from the class SPCeb of effectively bounded queries
under the same access schema, i.e., SPCeb ⊂ SPCb.

Proposition 2: There exists a query that is bounded but is
not effectively bounded under the same access schema. ✷

3. CHARACTERIZING EFFECTIVE

BOUNDEDNESS
We now provide sufficient and necessary conditions for

determining the (effective) boundedness of SPC queries Q
under an access schema A. The main result of the section is
as follows. (1) There exists a set IB of deduction rules such
that Q is bounded if and only if it can be proven from Q
and A using IB . (2) Similarly, there exists a set IE of such
rules for effectively boundedness. These yield characteriza-
tions of (effective) boundedness via symbolic computation.
Moreover, they reveal insight into the boundedness analysis,
which helps us develop checking algorithms in Section 4.

We give IB and IE in Sections 3.1 and 3.2, respectively.

3.1 Deduction Rules for Boundedness
Consider an SPC query Q(Z) = πZσC(S1 × . . . × Sn),

where Si is a renaming of relation schema R. We use ΣQ

to denote the set of all equality atoms S[A] = S′[A′] or
S[A] = c derived from the selection condition C of Q by the
transitivity of equality. We use X and X ′ to denote sets of
attributes of Q. We write ΣQ ⊢ X = X ′ if X = X ′ can be
derived from equality atoms in ΣQ, which can be checked in
O(max(|X|, |X ′|)) time by leveraging a list of attributes in
Q that can be precomputed in O(|Q|2) time.

To simplify the discussion we assume w.l.o.g. that at-
tributes in Si’s have distinct names via renaming; see, e.g.,
query Q0 of Example 1. We also assume w.l.o.g. that Q is
satisfiable, i.e., ΣQ does not includes S[A] = c and S[A] = d
when c and d are distinct constants.

Rules. We present a set IB of four deduction rules in Fig. 1.
Given an SPC query Q and an access schema A, we write

X 7→IB
(Y,N)

if X → (Y,N) can be deduced from A and ΣQ by using the
rules in IB . Here X 7→IB

(Y,N) extends access constraints
of Section 2 by allowing X and Y to be sets of attributes of
Q from possibly multiple renamed relations of R in Q.

One can draw an analogy of IB to our familiar Arm-
strong’s Axioms for FD implication (see, e.g., [6]).

(1) Reflexivity, Augmentation and Transitivity are immedi-
ate extensions of Armstrong’s Axioms to access constraints.
In particular, Transitivity allows us to propagate bounded-
ness from one relation to another in a Cartesian product
S1(X,Y1) × S2(Y2,W ): if for any X-value ā, there exist
at most N1 distinct Y1 values, then so do S2[Y2] by ΣQ ⊢
S1[Y1] = S2[Y2]. Then from Y2 → (W,N2), it follows that
given ā, there exist at most N1 ∗N2 distinct S2[W ] values.

(2) Actualization is an application of some access constraint
of A to a renaming Si of R that appears in Q.

Example 3: Recall relation schemas in album(pid1, aid),
friends(uid, fid) and tagging(pid2, tid1, tid2) given in Exam-
ple 1. Let X0 be (aid, uid, tid2, fid, tid1).

We show below how X0 7→IB
(y, Ny) is proven from query

Q0 of Example 1 and access schema A0 of Example 2 by
using IB , for each parameter y in Q0 (i.e., σC or Z) and for
some positive integer Ny determined by Q0 and A0.

(1) aid 7→IB
(pid1, 1000) Actualization

(2) pid2 7→IB
(pid2, 1) Reflexivity
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(Reflexivity) If X ′ ⊆ X, then X 7→IB
(X ′, 1).

(Actualization) If X → (Y,N) is in A, then
Si[X] 7→IB

(Si[Y ], N) for each i in [1, n].
(Augmentation) If X 7→IB

(Y,N), then
X ∪W 7→IB

(Y ∪W,N).
(Transitivity) If X 7→IB

(Y1, N1), Y2 7→IB
(W,N2),

and ΣQ ⊢ Y1 = Y2, then X 7→IB
(W,N1 ∗N2).

Figure 1: Deduction rules IB for boundedness

(3) ΣQ0
⊢ pid1 = pid2 selection condition in Q0

(3) aid 7→IB
(pid2, 1000) by (1), (2), (3) and Transitivity

(4) X0 7→IB
(aid, 1) Reflexivity

(5) X0 7→IB
(pid2, 1000) (3)(2) and Transitivity

Similarly, X0 7→IB
(tid1, 1), X0 7→IB

(tid2, 1), X0 7→IB
(uid,

1) and X0 7→IB
(fid, 1) by Reflexivity. ✷

Characterization. We next show that IB provides a suf-
ficient and necessary condition for determining whether an
SPC query Q(Z) is bounded under an access schema A.
We use the following notations: (a) XB is the set of all

parameters of Q that appear in the selection condition σC

such that for any S[A] ∈ XB and any z ∈ Z, ΣQ 6⊢ S[A] = z,
i.e., attributes that involve in Boolean condition checking
but are not part of the output; and (b) XC is the set of all
attributes such that for all S[A] ∈ XC , ΣQ ⊢ S[A] = c for
some constant c, i.e., already instantiated with constants.

Theorem 3: An SPC query Q(Z) is bounded under an ac-
cess schema A if and only if for each parameter y in XB∪Z,
XB ∪XC 7→IB

(y,Nz), where Nz is a positive integer. ✷

That is, Q is bounded under A iff for each “free vari-
able” z ∈ Z of Q, its boundedness can be deduced using IB

from (a) those parameters already instantiated in Q, and (b)
those that only participate in condition checking and hence
only need a witness for the truth value of the condition.

Proof: To verify this, we define a notion of access closures.
Let X be a set of attributes in Q. The access closure X∗

of X under A for Q is the set of all attributes y in Q such
that for all D |= A, there exists D′ ⊆ D such that (a) Q(D)
= Q(D′), and (b) for all X values ā, |πyσX=ā(D)| ≤ Ny for
some positive integer Ny independent of |D|. Here σX=ā(D)
is short for σX1=ā1∧···∧Xn=ān(S1 × · · · × Sn)(D), where for
each i ∈ [1, n], (i) Xi is the set of attributes in X that are
from Si; and (ii) āi is the set of values in ā for Xi.
It suffices to show the following lemmas: under A,

◦ Q(Z) is bounded if and only if XB ∪Z ⊆ (XB ∪XC)
∗;

◦ X 7→IB
(Y,N) for some bound N if and only if Y ⊆

X∗, for any sets X and Y of attributes in Q.

For if these hold, Q(Z) is bounded iff XB ∪ Z ⊆ (XB ∪
XC)

∗ iffXB∪XC 7→IB
(XB∪Z,N) iffXB∪XC 7→IB

(y,Ny)
for each y ∈ XB ∪ Z. Hence Theorem 3 follows. ✷

Example 4: For query Q0(Z) given in Example 1, Z =
{pid1}, XB = {tid1, fid}, and XC = {uid, aid, tid2}. By
the deduction of IB given in Example 3, XB ∪ XC 7→IB

(pid1, 1000), XB ∪ XC 7→IB
(tid1, 1000), XB ∪ XC 7→IB

(fid, 1). Hence Q0 is bounded under A0 by Theorem 3.

Now consider an arbitrary Boolean SPC queryQ(Z) under
access schema A∅ = ∅. The set Z of parameters for projec-
tion is ∅, and XB 7→IB

(x, 1) for any x ∈ XB by Reflexivity.
Thus Q is bounded under A∅ by Theorem 3. ✷

(Reflexivity) If X ′ ⊆ X, then X 7→IE
(X ′, 1).

(Actualization) If X → (Y,N) is in A, then
Si[X] 7→IE

(Si[Y ], N) for each i in [1, n].
(Transitivity) If X 7→IE

(Y,N) and Y 7→IE
(W,N ′),

then X 7→IE
(W,N ∗N ′).

(Augmentation) If X 7→IE
(Y,N) and X ∪ Y is indexed,

then X 7→IE
(X ∪ Y,N).

(Combination) If X1 7→IE
(Y1, N1), . . . , Xk 7→IE

(Yk, Nk),
ΣQ ⊢ Y1 = Y ′

1 , . . . , ΣQ ⊢ Yk = Y ′
k , and

⋃k

i=1
(Xi ∪ Y ′

i ∪ Yi) is indexed in A, then
X1 ∪ · · · ∪Xk 7→IE

(Y ′
1 ∪ · · · ∪ Y ′

k , N1 ∗ · · · ∗Nk).

Figure 2: Rules IE for effective boundedness

3.2 Rules for Effective Boundedness
To decide whether an SPC query Q(Z) is effectively

bounded under A, more needs to be done. When we propa-
gate the boundedness from a set X of attributes to another
set Y , we have to ensure that the values of Y can be effi-
ciently retrieved via available indices inA. Below we develop
a set IE of deduction rules by incorporating this condition.

Rules. Consider an access schema A over schema R and a
set YR of attributes of R. We say that YR is indexed in A
if there exists XR ⊆ YR such that (1) XR → (W,N) is an
access constraint in A; and (2) YR ⊆ XR ∪W .

If YR is indexed, given a value b̄, we can check whether YR

= b̄ is in a dataset D |= A by using indices in A. Otherwise,
we cannot decide this without searching the entire D. Thus
the condition is necessary for effective boundedness.

Consider an SPC query Q(Z) = πZσC(S1 × . . .× Sn) and
a set Y = (Y1, . . . , Yn) of parameters in Q (i.e., in C or Z),
where Yi consists of attributes from Si. We say that Y is
indexed in A if each Yi is indexed in A.

Using these, we give a set IE of five rules for deducing the
effective boundedness of SPC queries, in Fig. 2. We define
X 7→IE

(Y,N) along the same lines as X 7→IB
(Y,N), using

IE . While Reflexivity, Actualization and Transitivity of IE

are the same as their counterparts in IB , the others are not.

(1) Augmentation in IE revises its counterpart in IB by
allowing Y to be extended with only indexed attributes.

(2) Combination also restricts Augmentation of IB by en-
forcing the indexing condition; i.e., for any Xi-value āi, if
āi is in πXi

(D) for a dataset D |= A, then the deduced Y -
value must be in πY (D) and can be retrieved via indices.
Note that Augmentation is a special case of Combination;
we opt to keep Augmentation in IE as it is easier to use.

Characterization. Based on IE , we give a sufficient
and necessary condition for effective boundedness. For an
SPC query Q(Z) = πZσC(S1 × . . . × Sn), we use the fol-
lowing notations: for all i ∈ [1, n], (a) Xi

C is the set of
all attributes of Si already instantiated in Q, i.e., Xi

C =
{Si[A] ∈ Si | ΣQ ⊢ Si[A] = c for a constant c}, where Si de-
notes the set of all attributes of Si; (b) XC = X1

C ∪· · ·∪Xn
C ;

(c) Xi
Q denotes the set of all parameters of Si that appear

in either C or Z of Q; and (d) XA is the set of subsets Si[X]
of attributes such that X → (Y,N) is in A, for all i ∈ [1, n].

Theorem 4: An SPC query Q(Z) is effectively bounded
under an access schema A if and only if for each i ∈ [1, n],

(1) Xi
C ⊆ W for some W ∈ XA; and
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(2) XC 7→IE
(Xi

Q, Ni) for some natural number Ni that is
determined by Q and A only. ✷

That is, the instantiated attributes Xi
C can be checked

using indices, as well as those attributes that participate in
output or Boolean conditions of Q. We will use this char-
acterization to generate query plans in Section 5. We show
the result by using a notion of effective access closures [5].

Example 5: We show that Q0(pid1) of Example 1 is effec-
tively bounded under access schema A0 of Example 2. First,

(1) aid 7→IE
(pid1, 1000) Actualization

(2) aid 7→IE
((aid, pid1), 1000) (1) and Augmentation

(3) (aid, uid) 7→IE
(aid, 1) Reflexivity

(4) (aid, uid) 7→IE
((aid, pid1), 1000) (3)(2) and Transitivity

(5) uid 7→IE
(fid, 5000) Actualization

(6) uid 7→IE
((uid, fid), 5000) Augmentation

(7) (aid, uid) 7→IE
(uid, 1) Reflexivity

(8) (aid, uid) 7→IE
((uid, fid), 5000) (7)(6) and Transitivity

(9) uid 7→IE
(uid, 1) Reflexivity

(10) (aid, uid) 7→IE
((pid2, tid2), 1000) (1)(9) and Combination

(11) (pid2, tid2) 7→IE
(tid1, 1) Actualization

(12) (pid2, tid2) 7→IE
((pid2, tid1, tid2), 1)Augmentation

(13) (aid, uid) 7→IE
((pid2, tid1, tid2), (10)(12) and Transitivity

1000)

Then (a) condition (1) of Theorem 4 is satisfied since aid, uid
and tid2 are in subsets {aid}, {udi} and {pid2, tid2} of XA0 ,
respectively. (b) Condition (2) is satisfied by deduction steps
(4), (8) and (13) above, and as (pid2, tid2) is indexed in A0.
Thus Q0 is effectively bounded under A0 by Theorem 4. ✷

Remark. Note that we do not need “full and complete”
access schema to achieve “boundedness”. Instead, as will
be shown in Section 6, in practice many (parameterized)
queries on real-life data are effectively bounded, under only
a small number of access constraints.

4. BOUNDEDNESS: COMPLEXITY AND

ALGORITHMS
We next study two issues in connection with the (effective)

boundedness of SPC queries. (1) We study the complexity
and algorithms for deciding whether an SPC query is (effec-
tively) bounded under an access schema A. (2) When Q is
not effectively bounded, we study whether Q can be made
effectively bounded under A by instantiating a set XP of
parameters of Q, and if so, how to compute a minimum XP .

The main results of this section are as follows. (1) The
boundedness of Q under A can be decided in quadratic time
(Section 4.1). (2) The same complexity holds for effective
boundedness (Section 4.2). (3) The decision problem for
dominating parameters is NP-complete, and its optimization
problem is NPO-complete. We provide an efficient heuristic
algorithm to compute dominating parameters (Section 4.3).

4.1 Checking Boundedness
We start with the boundedness problem Bnd(Q,A):

◦ Input: A relation schema R, an SPC query Q over R,
and an access schema A over R.

◦ Question: Is Q bounded under A?

This is to decide whether for all datasets D that satisfy A,
there exists at all a subset DQ such that Q(D) = Q(DQ)
and |DQ| is independent of the size |D| of the underlying D.

Algorithm BCheck

Input: An SPC query Q, and an access schema A.
Output: “yes” if Q is bounded under A and “no” otherwise.

1. Γ := Actualize(A, Q); /*Initialization*/
2. closure := XB ∪XC ; B := XB ∪XC ;
3. for each attribute A in A and Q and each φ in Γ do
4. if isIn(φ,A,Q) then /*suppose that φ is Xφ 7→IB

(Yφ, Nφ)*/
5. add φ to L[A]; nφ := |Xφ|;
6. while B is not empty do /*Computation*/
7. A := B.pop();
8. for each φ in L[A] do
9. decrease nφ with 1;
10. if nφ = 0 do /*suppose that φ is X0 7→IB

(Y0, N)*/
11. B := B ∪ (Y0\ closure);
12. for each attribute B0 in Y0 do
13. for all B′

0
such that ΣQ ⊢ B0 = B′

0
do

14. add B′
0
to closure;

15. if XB ∪ Z ⊆ closure then return “yes”; /*Checking*/
16. return “no”;

Figure 3: Algorithm BCheck

While this problem is undecidable for (Boolean) RA
queries [20], it is decidable in PTIME for SPC.

Theorem 5: For any SPC query Q and access schema A,
Bnd(Q,A) can be decided in O(|Q|(|A|+ |Q|)) time. ✷

Here |A| and |Q| are the size of A and Q, respectively,
and are typically small in practice, compared to datasets D.

As a constructive proof for Theorem 5, we next give such
an algorithm for checking the boundedness of Q under A.

Algorithm BCheck. The algorithm is denoted by BCheck

and shown in Fig. 3. It is based on the characterization
of IB (Section 3). It computes (XB ∪ XC)

∗, stored in a
variable closure, and concludes that Q is bounded under A
if and only if XB ∪Z ⊆ closure, i.e., when all parameters of
Q are covered by (XB∪XC)

∗ (see Theorem 3 and its proof).

More specifically, BCheck first actualizes access con-
straints of A in each renaming Si of schema R in Q: for each
X → (Y,N) in A and each Si in Q, it includes Si[X] 7→IB

(Si[Y ], N) in a set Γ (line 1). Using Γ, it then computes clo-
sure (lines 2-14) such that if XB ∪XC 7→IB

(y,N) for some
N and attribute y, then y is included in closure. After this,
it simply checks whether XB ∪ Z is contained in closure; it
returns “yes” if so and “no” otherwise (lines 15-16).

We next show how BCheck computes closure, starting with
auxiliary structures used by BCheck.

Auxiliary structures. BCheck uses three auxiliary structures.

(1) BCheck maintains a set B of attributes in A and Q that
are in closure but it remains to be checked what other at-
tributes can be deduced from them via IB . Initially, B =
XB ∪XC (line 2). BCheck uses B to control the while loop
(lines 6–14): it terminates when B = ∅, i.e., when all neces-
sary deduction checking via IB has been completed.

(2) For each constraint φ: X 7→IB
(Y,N) in Γ, BCheck

maintains a counter nφ to keep track of those attributes of
X that are still in B. Initially, nφ is the number of attributes
in X. When nφ = 0, i.e., after all X attributes have been
processed, the Y attributes can be added to B (lines 10-11).

(3) For each attribute A in Q and Γ, BCheck uses a list L[A]
to store all constraints X 7→IB

(Y,N) in Γ such that either
A is in X or there exists A′ in X with ΣQ ⊢ A = A′. That
is, L[A] indexes constraints that are “applicable” to A.
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Computing closure. With these structures, BCheck com-
putes closure as follows. It first initializes the auxiliary
structures as described above (lines 2-5). Here function
isIn(φ,A,Q) checks whether constraint φ: Xφ 7→IB

(Yφ, Nφ)
is “applicable” to attribute A, i.e., whether there exists A′

such that ΣQ ⊢ A = A′ and A′ is in Xφ (line 5).

After this, BCheck processes attributes in B one by one
(lines 6-14). For each attribute A ∈ B and each constraint
φ : X0 7→IB

(Y0, N) in L[A], it decreases the counter nφ

by 1. When nφ = 0, i.e., all attributes in X0 have been
inspected, BCheck conducts deduction via IB (lines 11-14).
It adds to B attributes B0 in Y0 that are not yet in closure

(line 11), and add to closure all those attributes B′
0 such

that ΣQ ⊢ B0 = B′
0 (lines 12–14). When B becomes empty,

BCheck returns “yes” iff XB ∪ Z ⊆ closure (lines 15-16).

Correctness & Complexity. The correctness of BCheck fol-
lows from Theorem 3. To see that BCheck is in O(|Q|(|A|+
|Q|)) time, observe the following. (1) The initialization steps
take O(|Q||A|) time (lines 1-5). (2) The closure is computed
in O(|A| + |A||Q|) time (lines 6-14), since the counters are
updated at most O(|A||Q|) times in total, and each φ in Γ is
used at most once, in O(|φ|+ |Q|) time (thus O(|A|+ |A||Q|)
time in total). (3) The checking (line 15) can be done in
O(|Q|2) time, since the size of closure is bounded by O(|Q|).

Example 6: We show how algorithm BCheck finds that
query Q0 of Example 1 is bounded under the access schema
A0 of Example 2. Here XB ∪ XC = {aid, uid, tid2, fid,
tid1}. BCheck initializes Γ with aid 7→IB

(pid1, 1000) (φ1),
(pid2, tid2) 7→IB

(tid1, 1) (φ2), and uid 7→IB
(fid, 5000) (φ3).

It assigns XB ∪XC as the initial value of closure and B, and
sets counters nφ1

= nφ3
= 1, nφ2

= 2. After aid is popped
off from B, nφ1

is decreased to 0 and BCheck updates closure
and B with φ1 (lines 11-14). Since ΣQ ⊢ pid1 = pid2, both
pid1 and pid2 are added to closure, and pid1 is added to B.
After this iteration, closure remains unchanged and B will
be reduced to empty. Since XB ∪ Z = {pid1, pid2, tid1, fid}
is a subset of closure, BCheck returns “yes”. ✷

4.2 Checking Effective Boundedness
We next study the effective boundedness problem, denoted

by EBnd(Q,A) and stated as follows:

◦ Input: R, Q and A as in Bnd(Q,A).

◦ Question: Is Q effectively bounded under A?

It is to decide whether for any D that satisfies A, we can
fetch DQ ⊆ D via indices in A such that Q(D) = Q(DQ).

Problem EBnd is also decidable in quadratic-time.

Theorem 6: EBnd(Q,A) is in O(|Q|(|A|+ |Q|)) time. ✷

We prove Theorem 6 by providing an algorithm for check-
ing the effective boundedness of Q under A.

Algorithm EBCheck. The algorithm, denoted by EBCheck,
extends algorithm BCheck by leveraging Theorem 4 and the
following connection between IE and the access closure for
boundedness: for any sets X and Y of attributes in Q such
that X ⊆ Y , X 7→IE

Y if and only if Y ⊆ X∗ and Y is
indexed in A. Based on this, EBCheck works as follows.

Step 1 (computing closure): Compute X∗
C by adopting the

closure computation part of BCheck (lines 1-14, Fig. 3) ex-
cept that it initializes closure to be XC instead of XB ∪XC .

Step 2 (checking): Check (a) whether
⋃n

i=1
Xi

Q is a subset

of X∗
C and (b) whether

⋃n

i=1
Xi

Q is indexed in A. If so, Q
is effectively bounded under A. Note that the condition (1)
of Theorem 4 is implied by (b) here.

As both steps are in O(|Q|(|A|+ |Q|) time, so is EBCheck.

Example 7: Consider again query Q0 of Example 1 and
access schema A0 of Example 2. The deduction analysis
of Example 5 tells us that X∗

C of Q0 covers parameters of
in album, friends and tagging; moreover, X∗

C is indexed by
A0. That is, the conditions in Step 2 of EBCheck are satis-
fied. Hence, Q0 is effectively bounded under A0. ✷

4.3 Computing Dominating Parameters
As illustrated in Example 1, when an SPC query Q is not

effectively bounded under A, we want to identify a minimum
set XP of parameters of Q such that if XP is instantiated, Q
becomes effectively bounded. We want to find and suggest
such an XP to users if it exists. When the users provide a
value of XP , Q can be answered in a big dataset D by ac-
cessing a bounded amount of data. We consider parameters
of XP that are not in XC , i.e., not yet instantiated in Q,
and are not trivial, i.e.,not covering all attributes in Q.

More specifically, we use Q(XP = ā) to denote the query
obtained from Q when XP is given a value ā. We call XP

a set of dominating parameters of Q under A w.r.t.any fixed
fraction α ∈ (0, 1), if |XP |/|XB | ≤ α and Q(XP = ā)
is effectively bounded under A for all given XP values ā
(see Section 3.1 for XB). Intuitively, by instantiating XP ,
which contains at most α|XB | attributes of Q, we can make
Q(XP = ā) effectively bounded under A.

Problems and complexity. This suggests that we study
the following decision and optimization problems.

The dominating parameter problem DP(Q,A).
◦ Input: R, Q(Z), A as in EBnd(Q,A), any fixed α.

◦ Question: Does there exist a set of dominating param-
eters of Q under A w.r.t. α?

The minimum dominating parameter problem MDP(Q,A).
◦ Input: R, Q(Z), A as in EBnd(Q,A), any fixed α.

◦ Output: A set of dominating parameters XP of Q un-
der A w.r.t. α with minimum cardinality, if it exists.

Problem DP(Q,A) is to decide whether Q has a set of
dominating parameters at all. Problem MDP(Q,A) is to
compute a minimum set of dominating parameters of Q.

Example 8: An SPC query may not have a set of domi-
nating parameters under an access schema. As an example,
consider query Q0 of Example 1 and an access schema A1

that contains all access constraints in A0 of Example 2 ex-
cept (photo id, taggee id) → (tagger id, 1). Then Q0 is not
effectively bounded under A1, and worse still, no matter
what parameters of Q0 we instantiate, it is still not effec-
tively bounded. This is because no index is built on tagging

in A1, and hence we cannot verify, e.g., whether tid2 = u0

is in a tagging instance without searching the entire D. ✷

While DP and MDP are important, they are hard.

Theorem 7: For SPC query Q and access schema A,

(1) DP(Q,A) is NP-complete; and

(2) MDP(Q,A) is NPO-complete. ✷

NPO is the class of all NP optimization problems. NPO-
complete problems are the hardest optimization problems
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in NPO: they do not even allow PTIME approximation al-
gorithms with an exponential approximation ratio (cf. [13]).

Algorithm. In light of Theorem 7, we develop a heuristic
algorithm that for any fixed α ∈ (0, 1), given Q and A,
checks whether there exists a set of dominating parameters
for Q under A w.r.t. α; it finds and returns such a set XP

if so, and returns “no” otherwise. The algorithm, denoted
by findDPh, consists of three steps.

Step 1 (initial candidates): For each renaming Si of R in Q
and each parameter A of Q that is in Si but is not in XC ,
add A to a set XP if there exists a constraint X → (Y,N)
in A such that A is in Si[X] ∪ Si[Y ].

Step 2 (checking): Check (a) whether
⋃n

i=1
Xi

Q is indexed

in A and (b) whether for all Xi
Q, X

i
Q ⊆ XP (see Section 3.2

for the definition of Xi
Q). If not, return “no”.

Step 3 (minimizing): We optimize XP iteratively as follows.
Each time we pick one attribute A of some Si from XP , and
check whether there is X → (Y,N) in A such that Si[X] ⊆
XP , A 6∈ Si[X] and A ∈ Si[Y ]. If so, let XP = XP \ extQ(A)
since XP can be recovered from XP \ {A} via deduction
of IE , where extQ(A) consists of all parameters x such that
ΣQ ⊢ A = x. We then process the next attribute. We return
XP when it cannot be further reduced and |XP |/|XB | ≤ α.

Correctness & Complexity. One can verify that if findDPh

returns XP , then XP is a set of dominating parameters for
Q under A. Indeed, if XP is instantiated, then for all Si

in Q, all parameters in Xi
Q can be deduced from XP via

IE and are also indexed. Hence Q(XP = ā) is effectively
bounded under A by Theorem 4, for any XP value ā.

Algorithm findDPh is in O(|Q|(|Q| + |A|)) time. Indeed,
its step 1 is in O(|A||Q|) time; step 2 takes O(|Q|2) time
since |XP | and |XQ| are both bounded by |Q|; and step 3
is in O(|Q|(|A| + |Q|)) time because |XP | ≤ |Q|; hence it
takes O(|A|) time to check whether an attribute A can be
removed from XP , and O(|Q|) time to remove extQ(A).

Example 9: Recall that query Q1 of Example 1 is not
effectively bounded under access schema A0 of Example 2.
Consider α = 3/7. We show how findDPh finds a set XP

of dominating parameters for Q1. In step 1, it sets XP

= {pid1, aid, uid, fid, pid2, tid1, tid2}. In step 2, findDPh

finds Xi
Q contained in XP for Xi

Q in in album, friends and
tagging; hence there exists a set of dominating parameters
for Q1. In step 3, it reduces XP . (a) It first finds that
album id → (photo id, 1000) inA0, and removes pid1 and pid2
from XP since ΣQ ⊢ pid1 = pid2. (b) It then finds user id →
(friend id, 5000) in A0, and removes fid and tid1 from XP by
ΣQ ⊢ fid = tid1. Finally, findDPh finds that it can remove no
more parameters from XP and |XP |/|XB | ≤ α, and thus
returns XP = {aid, uid, tid2}, which is exactly the set of
instantiated parameters for Q0 (by ΣQ0

⊢ tid2 = u0). ✷

5. ALGORITHM FOR EFFECTIVELY

BOUNDED QUERIES
Algorithm EBCheck of Section 4.2 is able to determine

the effective boundedness of SPC queries. However, it does
not tell us how to identify a bounded amount of data to
answer those queries. To bridge the gap, we next develop
an algorithm that, given an effectively bounded SPC query
Q(Z) = πZσC(S1×. . .×Sn) and an access schema A, finds a
query plan that, given a (big) dataset D, fetches a bounded

DQ ⊆ D using indices in A such that Q(D) = Q(DQ).

The main results of the section are as follows. (1) There
exists an O(|Q|2|A|3)-time algorithm that generates query
plans for effectively bounded SPC queries (Section 5.1). (2)
We also study the problem to find a minimum bounded DQ,
and show that the problem is NP-complete (Section 5.2).

5.1 Determining and Computing DQ

We find a query plan for Q by deducing a proof ρi for
XC 7→IE

(Xi
Q,Mi) for all i ∈ [1, n], following Theorem 4.

Below we show that the proofs yield a query plan that, for
any datasetD such thatD |= A, tells us how to findDQ such
that Q(D) = Q(DQ) and DQ has at most

∑n

i=1
Mi tuples.

Query plan from proofs. Suppose thatXC 7→IE
(Xi

Q,Mi)
is proven by ρi = ϕ1, · · · , ϕm, where ϕj denotes application
of a rule in IE . We show that given D, ρi tells us how to
find a list of subsets T1, . . . , Tm of D such that

◦ Di
Q =

⋃m

j=1
Tj and DQ =

⋃n

i=1
Di

Q, and

◦ for all j ∈ [1,m], Tj ⊆ D, Tj has at most Nj tuples
and can be fetched by using indices in A, where Nj is
a number deduced from the proof, independent of |D|.

We can then compute Q(D) by conducing joins and projec-
tions on these Tj ’s only, guided by conditions in σC of Q, as
illustrated by how we get Q0(D0) using T1–T4 in Example 1.

Below we show how to fetch Tj from D guided by rule ϕj ,
by giving two example rules (see [5] for other rules). Initially,
T1 =

⋃n

j=1
σXj=Cj

(D), and can be fetched by using indices

in A on the constants of XC (see Theorem 4 and its proof).

(a) When ϕj actualizes a constraint X → (Y,N) of A, we
fetch N tuples for Tj either from D by using index in A on
X for Y , or from a bounded subset Tj′ of D (j′ < j) deduced
from previous steps in proof ρi, on which ϕj is applied.

(b) When ϕj is Combination, we get Tj as follows. Denote
⋃j−1

s=1
Ts by T . As indicated by the rule (Fig. 2), for l ∈ [1, k],

(i) all Xl and Yl values are already fetched in T ; and (ii) we
can check whether these Xl and Yl values appear in tuples
of D, i.e., they are contained in the projection of D on
⋃k

l=1
Xl ∪ Y ′

l , by using the indices on the attributes. There
are at most N1 ∗ . . . ∗Nk such tuples from T to be inspected
in D, and Tj consists of these tuples.

Algorithm QPlan. We now present the algorithm, denoted
by QPlan and shown in Fig. 4. Based on the connection be-
tween IE proofs and query plans given above, QPlan focuses
on finding a proof ρi for each XC 7→IE

(Xi
Q,Mi), based on

the characterization of IE of Section 3. It represents ρi as
an object oi, which consists of three components:

◦ oi.X: parameters of Xi
Q deduced from the proof;

◦ oi.P: a proof for deducing oi.X from XC ; and

◦ oi.c: the number of tuples that need to be fetched and
inspected based on the query plan oi.P.

When oi is completed, oi.P = ρi and oi.c = Mi.

Given an SPC query Q(Z) = πZσC(S1 × . . . × Sn) that
is effectively bounded under A, QPlan returns a set Xmin+

C

of objects such that for i ∈ [1, n], there exists oi ∈ Xmin+
C

representing a proof for XC 7→IE
(Xi

Q,Mi).

More specifically, Xmin+
C is a set of objects such that thatQ

is effective bounded under A if and only if for each i ∈ [1, n],
(1) Xi

C ⊆ W for some W in XA; and (2) Xi
Q ⊆ o.X for

some object o in Xmin+
C . It has a coverage property: for all
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Algorithm QPlan

Input: An SPC query Q, and an access schema A.

Output: A set Xmin+
C

of objects representing a query plan.

1. Xmin+
C

:= {oC}; B := Xmin+
C

;
/*oc.X = XC , oC .P = ∅, oc.c = 0*/

2. Γ := Actualize(A, Q); T := nil; /*Initialization*/

3. while B is not empty do /*Computing set Xmin+
C

*/
4. o := B.pop();
5. for each φ : W 7→IE

(Y,N) in Γ and W ⊆ o.X do
6. instantiate oY for possibly deducing o.X ∪ Y from XC ;
7. add oY to sets T ; remove φ from Γ;
8. for each ΣQ ⊢ W = X′, X′ ⊆ o.X and W ′ 6⊆ o.X do

9. if o.X ∪W 6⊆ o′.X for any o′ in Xmin+
C

do

10. instantiate oW for possibly deducing o.X ∪W from XC ;
11. add oW to T for checking the indexing condition of γ5;

12. U := chkComb(T , Xmin+
C

); /*Deduce with Combination*/

13. B := B ∪ U ; Xmin+
C

:=Xmin+
C

∪ U ;

14. return Xmin+
C

;

Procedure chkComb

Input: Sets T and Xmin+
C

of objects.

Output: Set U of objects that are deducible from Xmin+
C

by γ5.

1. U := ∅; ui := ∅ for each Xi → (Yi, Ni) in A;
2. for each Xi → (Yi, Ni) in A do

3. for each o ∈ T ∪Xmin+
C

do

4. if o.X ⊆ Xi ∪ Yi then add o to ui;
5. if Xi ⊆

⋃
o∈ui

o.X do

6. instantiate oi for deducing
⋃

o∈ui
o.X from XC via γ5;

7. if oi.X 6⊆ o′.X for all o′ ∈ Xmin+
C

do

8. add oi to U ; Xmin+
C

:= Xmin+
C

\ ui;
9. return U ;

Figure 4: Algorithm QPlan

Y , if X 7→IE
(Y,N) and X ⊆ Y , then there exists some

o ∈ Xmin+
C such that Y ⊆ o.X. These suffice by Theorem 4.

We use the following notations. (a) A set S2 of objects can
be deduced from another set S1 if there exists a proof from
⋃

o∈S1
o.X to

⋃

o∈S2
o.X. (b) We use γ1–γ5 to denote the five

rules in IE (Fig. 2), respectively. For instance, γ5 denotes
Combination, and γ2(X → (Y,N)) indicates the application
of Actualization with access constraint X → (Y,N) in A.

Algorithm QPlan also uses the following structures: (a) a
set B of objects that are in Xmin+

C but remain to be checked
for other objects that can deduced from them, similar to
its counterpart used in BCheck (Fig. 3); and (b) a set T
of candidate objects deduced from equality atoms in ΣQ,
which is to be used when Combination rule is applied.

Using these structures, algorithm QPlan works as follows.
It first collects in Γ all actualized constraints of A in the
same way as BCheck (Fig. 3), and initializes both Xmin+

C and
B with the set consisting of only one object that represents
the proof for XC ; it sets T empty (lines 1-2).

After these, QPlan iteratively finds objects that can pos-
sibly be deduced from Xmin+

C , by processing objects in B one
by one (lines 3-13). For each object o in B, it finds all pos-
sible direct deductions with the actualized constraints, and
adds them to T (lines 5-7). More specifically, if there exists
an actualized constraint φ: W 7→IE

(Y,N) in Γ and if W
is a subset of o.X, then o.X ∪ Y can possibly be deduced
from XC by first deducing o.X using o.P, and then deducing
W by using Reflexivity (from o.X) followed by Transitivity
(from XC), with o.c = N , and possibly with Augmentation.

Algorithm QPlan stores these single-step deductions in an
object oY (line 6), and adds it to T for checking whether
o.X ∪ Y is indexed in A. It removes φ from Γ (line 7).

Intuitively, QPlan expands set T by including all new can-
didate objects that can possibly be deduced by γ5 (i.e., Com-
bination rule), subject to the indexing condition of γ5 to be
checked (lines 8-11). It invokes procedure chkComb to iden-
tify combinations of objects in T to which γ5 can be applied;
chkComb returns a set U of new objects that encode new pa-
rameters of Q deduced by γ5 (line 12; see details shortly).
The objects of U are added to Xmin+

C and B (line 17). The
algorithm then proceeds to process the next object in B in
the same way, until B becomes empty.

After the while loop, QPlan returns Xmin+
C that contains

proofs for each XC 7→IE
(Xi

Q, Ni) (line 14).

Procedure chkComb. Given T and Xmin+
C , chkComb finds all

maximum subsets of T ∪ Xmin+
C to which rule γ5 can be

applied, to deduce new parameters. More specifically, each
subset satisfies the following conditions: (1) the union of
their encoded attributes is indexed in A; (2) it is maximal,
i.e., it cannot be expanded; and (3) no objects in it are
already in Xmin+

C . Each of these subsets is encoded by a new
object, representing all attributes covered by the subset.

The procedure works as follows. Assume w.l.o.g. that for
each object o in T ∪ Xmin+

C , o.X contains attributes from
the same renaming Si only. It associates a set ui with each
constraint Xi → (Yi, A) in A, initially empty (line 1). It
collects in ui all objects of T ∪Xmin+

C that can be combined
using γ5 and are indexed by Xi ∪ Yi (lines 2-4). If Xi is
covered by attributes encoded in the objects of ui, then these
attributes can be deduced by γ5 and hence, a new object oi
is created to encode them (lines 5-6). If attributes in oi.X
are not covered by existing objects in Xmin+

C , then it adds

oi to U , and removes objects of ui from Xmin+
C (lines 7-8).

The process proceeds until all constraints in A are checked
(line 2). After the loop, it returns set U .

Correctness & Complexity. The correctness of QPlan follows

from Theorem 4 and the coverage property of Xmin+
C .

To see that QPlan is in O(|Q|2|A|3)-time, observe the fol-
lowing. (1) At most O(|Q||A|) objects are added to B. This
is because each actualized constraint in Γ and each equality
atom in σC of Q are processed only once; moreover, each
equality atom yields at most O(|A|) objects. (2) The loop
(lines 5-11) is executed at most O(|Q||A|) times in total. (3)
Procedure chkComb is in O(|Q||A|2) time; thus in the en-
tire process, chkComb takes O((|Q||A| + |A|) ∗ |Q||A|2) =
O(|Q|2|A|3) time in total. Indeed, (a) its initialization is
in O(|A|) time; (b) the total time taken by checking index-
ing (lines 3-4) is O(|A||T ∪ Xmin+

C |) = O(|Q||A|2); and (c)
checking the conditions of line 5 and line 7 takes O(|Q||A|2)
time each. We remark that |Q| and |A| are typically small
in real-life, compared to the size of dataset D.

Example 10: We show how QPlan generates a query plan
for Q0 of Example 1 under access schema A0 of Example 2.
Initially, both Xmin+

C and B contain an object oC encoding
XC such that oC .X = {aid, uid, tid2} and oC .P = nil. It
then updates Xmin+

C and B iteratively. At the beginning,
oC is popped off from B. It constructs o1 with o1.X =
oC .X ∪ {pid1} o1.P = [γ1, γ2(aid 7→IE

(pid1, 1000), γ4] and
o1.c = 1000; it puts o1 in T . Similarly, it adds o2 to T with
o2.X = oC .X ∪ {fid}, o2.P = [γ1, γ2(uid 7→IE

(fid, 5000),
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γ3] and o2.c = 5000. After these, it invokes chkComb and
finds U = {o1, o2} since o1.X and o2.X are indexed in A0.
It replaces oC in B and Xmin+

C with o1 and o2. After that, it
pops off o1 from B and finds that equality atom pid1 = pid2
in ΣQ is applicable to o1. Thus it adds o3 to T with o3.X
= o1.X ∪ {pid2}, o3.P = o1.P and o3.c = 1000. By calling
chkComb, o4 is deduced using rule γ5, with o4.X = o3.X,
o4.P = o3.P ⊕ γ5 (⊕ for appending), and o4.c = 1000.

Note that the parameters of in album, friends and tagging

are covered by o1.X, o2.X and o4.X, respectively. Hence
o1.P, o2.P and o4.P tell us how to fetch subsets T1, T2 and
T3 from any dataset D0 |= A0, 7000 tuples in total. One
can verify that T1, T2 and T3 are precisely those described
in Example 1. As shown there, we can fetch T1, T2 and T3

from D0 and compute Q0(D0) by using these sets only. ✷

5.2 Minimum DQ

One might be tempted to search for a minimum DQ ⊆ D
such that Q(D) = Q(DQ) under A. More formally, we say
that Q is M-bounded if for all databases D of schema R,
there exists a DQ ⊆ D such that |DQ| ≤ M and Q(D) =
Q(DQ). It is effectively M-bounded if in addition, DQ can be
identified in time independent of |D|. These notions were re-
ferred to (efficient) scale independence in [20]. The decision
problem for finding minimum DQ can be stated as follows:

◦ Input: R, Q and A, and a natural number M .

◦ Question: Is Q (effectively) M -bounded under A?

Unfortunately, when M is part of the input, the problem
for deciding (effective) boundedness becomes intractable, as
opposed to quadratic-time given in Theorems 5 and 6.

Theorem 8: It is NP-complete to decide whether an SPC

query is (a) M-bounded or (b) effectively M-bounded under
an access schema. ✷

We verify this by extending rules in IB and IE [5].

6. EXPERIMENTAL STUDY
Using real-life and synthetic data, we conducted two sets

of experiments to evaluate (1) the effectiveness of our query
evaluation approach based on boundedness, and (2) the effi-
ciency of algorithms BCheck, EBCheck, findDPh and QPlan.

Experimental setting. We used three datasets: two real-
life (TFACC and MOT) and one synthetic (TPCH).

(1) UK traffic accident (TFACC) was obtained by integrat-

ing the Road Safety Data [1], which records information
about road accidents that happened in the UK from 1979
to 2005, and the National Public Transport Access Nodes
data (NaPTAN) [2], with a fuzzy join on location attributes
(latitude, longitude). It has 19 tables with 113 attributes,
and over 89.7 million tuples in total. Its size is 21.4GB.

(2) The Ministry of Transport Test data (MOT [3]) records
all MOT tests, including the makes and models of vehicles,
odometer reading and reasons for failures, in year 2013. To
make the data larger, we joined its 5 tables together. It is of
16.2GB size with 36 attributes and over 55 million tuples.

Synthetic data (TPCH) was generated by using TPC-H
dbgen [4]. The dataset consisted of 8 relations. We var-
ied the scale factor from 0.25 to 32 (32 by default) with the
size of the data varying from 0.25GB to 32GB.
All of the three datasets were stored in MySQL.

Access schema. We manually extracted 84, 27 and 61 ac-
cess constraints for TFACC, MOT and TPCH, respectively,
by examining the size of their active domains and dependen-
cies of their attributes. For example, on TFACC we had (1)
date → (aid, 610) on relation Racc, indicating that at most
610 accidents happened in the UK in a single day from 1979
to 2005; and (2) aid → (vid, 192) on Rveh, i.e., at most 192
vehicles were involved in a single accident from 1979 to 2005.
For each X → (Y,N) extracted, we built index by (a) creat-
ing a table by projecting the data on attributes X ∪ Y , and
(b) building an index on X for the new table, using MySQL.
We found it easy to extract access constraints from real-life
data as above. There are many more such constraints for
our datasets, which we did not use in our tests.

SPC queries. We manually designed 45 SPC queries Q on
these datasets, 15 for each. The queries vary in the number
#-sel of equality atoms in the selection condition σC of Q,
which is in the range of [4, 8], and the number #-prod of
Cartesian products in Q, in the range of [0, 4].

Algorithms. We implemented the following algorithms, all in
Python: (1) BCheck (Section 4.1) and EBCheck (Section 4.2)
for checking boundedness and effective boundedness, respec-
tively; (2) findDPh (Section 4.3) to find dominating param-
eters; (3) QPlan to generate query plans that identify DQ

(Section 5.1), (4) evalDQ, a simple algorithm that evaluates
effectively bounded SPC queries Q following the query plans
generated by QPlan, i.e., fetching DQ from D and evaluat-
ing Q on DQ, and (5) MySQL, which directly uses MySQL

for query evaluation, with all the indices specified in A.

The experiments were conducted on an Amazon EC2 high-
memory instance with 17GB memory and 6.5 EC2 compute
units. We used MySQL 5.5.35 and MyISAM engine. All the
experiments were run 3 times. The average is reported here.

Experimental Results. We next report our findings.

Exp-1: Effectiveness of bounded query evaluation.
The first set of experiments evaluated the effectiveness of the
bounded query evaluation approach. We first examined the
queries generated by using algorithm EBCheck. We found
that 35 out of 45 queries are effectively bounded under the
access schemas, over 77%. We then evaluated the effective-
ness of the query plans generated by QPlan, by comparing
the running time of evalDQ with its counterpart of MySQL.
The results are reported in Figures 5, on datasets TFACC,
MOT and TPCH, by varying |D|, Q and ||A|| (we use ||A||
to denote the number of access constraints in A). In each
of them, we report (a) the average evaluation time (the left
y-axis), and (b) the size |DQ| of datasets DQ accessed by
evalDQ (the right y-axis). Unless stated otherwise, the tests
were conducted on all effectively bounded queries, all access
constraints, and full-size datasets by default.

(1) Impact of |D|. To evaluate the impact of |D|, we varied

the size of TFACC and MOT by using scale factors from 2−5

to 1, and varied TPCH from 0.25GB to 32GB.

The results are shown in Figures 5(a), 5(e) and 5(i), which
tell us the following. (1) The evaluation time of evalDQ

is independent of the size of D. This verifies our analysis
in Section 5. (2) MySQL does not scale well with large D.
Indeed, evalDQ consistently took 9.3s, 6.2s, 14.7s on TFACC,
MOT and TPCH, respectively, no matter how large the parts
of the datasets were used. In contrast, MySQL took 2024s,
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Figure 5: Effectiveness of bounded query evaluation

2367s and 2045s on subsets of TFACC, MOT and TPCH of
sizes 2−5 × 21.4GB, 2−5 × 16.2GB and 0.5GB, respectively,
and could not finish its computation within 2500s for all
larger subsets. For example, MySQL took longer than 14
hours on the entire TFACC. That is why only a couple of
points are reported for MySQL in the figures. That is, even
on the smallest subsets we tested, MySQL was 102 times
slower than evalDQ, and at least 5.4 × 103 time slower on
full sized dataset. In fact, the larger the datasets are used,
the bigger the gap between MySQL and evalDQ are. (3) The
size |DQ| of data accessed evalDQ is also independent on |D|.
Indeed, evalDQ accessed 3800, 2320, 2610 tuples on average,
on TFACC, MOT and TPCH, respectively, on all subsets.

(2) Impact of ||A||. To evaluate the impact of access con-

straints, we varied ||A|| from 12 to 20 and tested the queries
that are effectively bounded. Accordingly we varied the
indices used by MySQL. The results are shown in Fig-
ures 5(b), 5(f) and 5(j). The results tell us the following. (1)
More access constraints help QPlan get better query plans.
For example, when 20 access constraints were used, evalDQ
took 9.6s, 6.4s and 14.4s for queries on TFACC, MOT and
TPCH, respectively, as opposed to 40.4s, 22.8s and 95s with
12 access constraints, although the queries are effectively
bounded in both cases. (2) The more constraints are used,
the smaller |DQ| is, as QPlan can find better proofs (query
plans) given more options. (3) MySQL did not produce re-
sults in any single test within 2500s, no matter whether we
used more or less indices embedded in access schemas.

(3) Impact of Q. To evaluate the impact of queries, we var-
ied #-sel of Q from 4 to 8, and #-prod of Q from 0 to 4.

Algorithm TFACC MOT TPCH

BCheck 0.8s 0.3s 0.5s
EBCheck 0.8s 0.3s 0.5s
findDPh 0.3s 0.1s 0.2s
QPlan 2.1s 0.9s 1.4s

Table 1: Elapsed Time

We report the average evaluation time of evalDQ and the
size |DQ| for all queries with the same #-sel or #-prod, in
Figures 5(c), 5(g) and 5(k), and Figures 5(d), 5(h) and 5(l),
respectively. They tell us the following. (1) The complexity
of Q has impacts on the quality of query plans generated by
QPlan. The larger #-sel or the smaller #-prod is, the bet-
ter the evaluation time of evalDQ and the size |DQ| of data
accessed by evalDQ are, as expected. (2) Algorithm evalDQ

scales well with #-sel and #-prod. It finds answers in all
cases within 90s, on the three full datasets. (3) MySQL is
indifferent to #-sel. But it is sensitive to #-prod: it is as fast
as evalDQ when #-prod = 0, i.e., when there is no Cartesian
product at all; but it cannot stop within 2500s for queries
even with 1 Cartesian product, except one case of TFACC.

To understand the gap in performance between MySQL
and ours, we examined the system logs and found the follow-
ing. Given an access constraint X → (Y,N) on a relation R,
evalDQ fetched only relevant (X,Y ) attribute values; in con-
trast, MySQL fetched entire tuples with irrelevant attributes
of R, even with the index on X; this led to duplicated (X,Y )
values, and the duplications got rapidly inflated by Carte-
sian product; hence the gap in performance.

Exp-2: Efficiency. The second set of experiments eval-
uated the efficiency of our algorithms BCheck, EBCheck,
findDPh and QPlan on queries and access schemas for each
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Problem M is not predefined M is part of input

Bnd(Q,A) O(|Q|(|A|+ |Q|)) (Th 5) NP-complete (Th 8)
EBnd(Q,A) O(|Q|(|A|+ |Q|)) (Th 6) NP-complete (Th 8)
DP(Q,A) NP-complete (Th 7) NP-complete [5]
MDP(Q,A) NPO-complete (Th 7) NPO-complete [5]

Table 2: Complexity bounds

of TFACC, MOT and TPCH. We used all access constraints,
and report in Table 1 the longest elapsed time of each algo-
rithm on all queries for each dataset. These results verify
that all of our algorithms are efficient: for all queries, all of
our algorithms took no more than 2.1 seconds, even QPlan,
the one with the highest complexity (see Section 5). These
confirm our complexity analyses of these algorithms.

Summary. From the experimental results we find the fol-
lowing. (1) The notion of effective boundedness is practical.
It is rather easy to find sufficiently many access constraints
in real-life data, and many practical queries are actually
effectively bounded. (2) The bounded query evaluation ap-
proach allows us to query big data. Its evaluation time and
amount of data accessed are independent of the size of the
underlying dataset. For example, on a real-life dataset of
21.4GB, evalDQ finds answers to queries in 9.3 seconds by
accessing no more than 3800 tuples on average. In con-
trast, MySQL is unable to get answers within 2500 seconds
in almost all of the cases except for extremely restricted
queries (without Cartesian products). Even on a dataset of
2−4×21.4GB (1.3GB), it took longer than 3 hours. The gap
between evalDQ and MySQL is more substantial on larger
datasets. (3) Our algorithms are efficient: they are able to
check (effective) boundedness, identify dominating param-
eters, and generate query plans in 2.1 seconds for queries
defined on large schemas and a variety of access constraints.

7. CONCLUSION
We have studied (effective) boundedness for SPC, a class

of queries that are widely used in practice (cf. [23]). We have
investigated fundamental problems to characterize what
SPC query Q can be evaluated under an access schema A,
and to make Q effectively bounded under A by identifying a
minimum set of parameters to instantiate. We have estab-
lished their complexity bounds, as summarized in Table 2.
We have also developed efficient (heuristic) algorithms to
make practical use of effective boundedness. Our experimen-
tal results have verified that effective boundedness yields a
promising approach to querying big data.

The study is still in its infancy. (1) It is undecidable to
decide whether an RA query is (effectively) bounded [20].
Nonetheless, we can still find efficient heuristic algorithms
to check the effective boundedness of RA. (2) Given a set
of parameterized queries, we want to study how to build an
optimal access schema under which the queries are effectively
bounded. (3) When a query is not effectively bounded, it
may be effectively bounded incrementally or using views. A
preliminary study of these issues has been reported in [11,
20]. However, effective algorithms remain to be developed.
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