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ABSTRACT
Similarity assessment is one of the core tasks in hyperlink
analysis. Recently, with the proliferation of applications,
e.g., web search and collaborative filtering, SimRank has
been a well-studied measure of similarity between two nodes
in a graph. It recursively follows the philosophy that “two
nodes are similar if they are referenced (have incoming edges)
from similar nodes”, which can be viewed as an aggregation
of similarities based on incoming paths. Despite its pop-
ularity, SimRank has an undesirable property, i.e., “zero-
similarity”: It only accommodates paths with equal length
from a common “center” node. Thus, a large portion of
other paths are fully ignored. This paper attempts to rem-
edy this issue. (1) We propose and rigorously justify Sim-
Rank*, a revised version of SimRank, which resolves such
counter-intuitive “zero-similarity” issues while inheriting mer-
its of the basic SimRank philosophy. (2) We show that
the series form of SimRank* can be reduced to a fairly
succinct and elegant closed form, which looks even sim-
pler than SimRank, yet enriches semantics without suffering
from increased computational cost. This leads to a fixed-
point iterative paradigm of SimRank* in O(Knm) time on
a graph of n nodes and m edges for K iterations, which is
comparable to SimRank. (3) To further optimize SimRank*
computation, we leverage a novel clustering strategy via
edge concentration. Due to its NP-hardness, we devise an ef-
ficient and effective heuristic to speed up SimRank* compu-
tation to O(Knm̃) time, where m̃ is generally much smaller
than m. (4) Using real and synthetic data, we empirically
verify the rich semantics of SimRank*, and demonstrate its
high computation efficiency.

1. INTRODUCTION
The task of assessing similarity between two nodes based

on hyperlinks is a long-standing problem in information search.
This type of similarity, also known as link-based similarity, is
one of the fundamental primitives for hyperlink analysis in a
graph, with a broad range of applications, e.g., collaborative
filtering [1], web page ranking [10], and graph clustering [24].
Intuitively, link-based similarity assessment aims to assign
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Node-Pairs SR PR SR* RWR

(h, d) 0 .049 .010 0

(a, f) 0 .075 .032 .032

(a, c) 0 0 .025 .024

(g, a) 0 0 .025 0

(g, b) 0 0 .075 0

(i, a) 0 0 .015 0

(i, h) .044 .041 .031 0

Figure 1: Similarities on Citation Graph

a relevance score to each node-pair based purely on the
structure of a network, in contrast to text-based similarity
that relies on the content of the Web. However, it is a
complex challenge to find an appropriate link-based scor-
ing function since a satisfactory general-purpose similarity
measure should better simulate human judgement behavior,
with simple and elegant formulations [17].

Recently, SimRank [9] has received growing interest as
a widely-accepted measure of similarity between two nodes.
The triumph of SimRank is largely attributed to its succinct
yet elegant philosophy: Two nodes are similar if they are
referenced by similar nodes. The base case for this recursion
is that each node is maximally similar to itself. SimRank was
proposed by Jeh and Widom [9], and has gained tremendous
popularity in many vibrant communities, e.g., recommender
systems [1], citation analysis [8], and k-nearest neighbor
search [12]. Due to its self-referentiality, conventional meth-
ods for computing SimRank are iterative in nature. The
state-of-the-art algorithm [17] needs O(Knm) time on a
graph of n nodes and m edges for K iterations.

While significant efforts have been devoted to optimizing
SimRank computation (e.g., [7,8,14,17]), the semantic issues
of SimRank have attracted little attention. We observe
that SimRank has an undesirable property, namely, “zero-
similarity”: SimRank score s(i, j) only accommodates the
paths with equal length from a common “source” node to
both i and j. Thus, other paths for node-pair (i, j) are fully
ignored by SimRank. as shown in Example 1.

Example 1. Consider a citation network G in Figure 1,
where each node represents a paper, and an edge a citation.
Using the damping factor C = 0.8 1, we compute SimRank
similarity of node-pairs in G. It can be noticed that many
node-pairs in G have zero SimRank when they have no in-
coming paths of equal length from a common “source” node,
as partly depicted in Column ‘SR’ of the table. For instance,
s(h, d) = 0 as the in-link “source” a is not in the center of

1As suggested in [9], C is empirically set around 0.6–0.8,
which gives the rate of decay as similarity flows across edges.
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the paths: h ← e ← a → d 2, h ← e ← a → b → f → d,
meaning that when we recursively compute the similarity of
the in-neighbors prior to computing the similarity of the two
nodes themselves, there is no likelihood for this recursion to
reach the base case (a common in-link “source”) that a node
is maximally similar to itself. Similarly, s(a, g) = 0 as a
has no in-neighbors, not to mention the fact that there is no
such in-link “source” with equal distance to both a and g. In
contrast, s(g, i) > 0 as there is an in-link “source” b (resp. d)

in the center of g ← b → i (resp. g ← d → i).

The “zero-SimRank” phenomenon in Example 1 is rather
counter-intuitive. An evident example is s(h, d) = 0. We
note in Figure 1 that h and d do have a common in-link
“source” a, just except for the equal-length distance from a
to both h and d. Hence, h and d should have some relevance.
Another example is a path graph of length 2n as follows:
a−n ← · · · ← a−1 ← a0 → a1 → · · · → an, where each

ai (i = 0,±1, · · · ,±n) denotes a node. We notice that the
SimRank s(ai, aj) = 0, for all |i| ̸= |j|, which is quite against
intuition since a0 is the common root of all nodes ai (i =
±1, · · · ,±n). As will be shown in Section 3, SimRank does
neglect all contributions of in-link paths without a “source”
node in the center, and the “zero-similarity” issue refers not
only to the problem that SimRank may produce “completely
zero scores” (i.e., “completely dissimilar” issue), but also to
the problem that SimRank may miss the contributions of
a large class of in-link paths (even though their scores are
not zero) due to the “zero contributions” of such paths to
SimRank scores (i.e., “partially missing” issue). Indeed, as
demonstrated by our experiments in Fig.6(d), both scenarios
of “zero-similarity” commonly exist in real graphs, e.g., on
CitHepTh, 95+% node-pairs have “zero-SimRank” issues,
among which 40+% are assessed as “completely dissimilar”,
and 55+% (though SimRank ̸=0) “partially miss” contribu-
tions of many paths, adversely affecting assessment quality.
These motivate us to revise the existing SimRank model.
A pioneering piece of work by Zhao et al. [23] proposes

rudiments of a novel approach to refining the SimRank model.
Observing that SimRank may incur some unwanted “zero-
similarities”, they suggested P-Rank, an extension of Sim-
Rank, by taking both in- and out-links into consideration for
similarity assessment, as opposed to SimRank that merely
considers in-links. Although P-Rank, to some degree, might
reduce “zero-similarity” occurrences in practice, we argue
that such a “zero-similarity” issue arises, not because of a
biased overlook of SimRank against out-links, but because of
the blemish in SimRank philosophy that may miss the con-
tribution of a certain kind of paths (whose in-link “source”
is not in the center). In other words, P-Rank can not, in
essence, resolve the “zero-similarity” issue of SimRank. For
instance, nodes h and d are similar in the context of P-Rank,
as depicted in Col. ‘PR’ of Fig. 1, since there is an out-link

“source” i in the center of the outgoing path h → i ← d.
However, if the edge h → i is replaced by h → l → i with l
being an inserted node, then the P-Rank of (h, d) is still zero,
since in this case neither in- nor out-link “source” exists in
the center of any incoming or outgoing paths of (h, d).
Our goal in this work is to propose an alternative model

that can remedy SimRank “zero-similarity” issues in nature,
while inheriting merits of the basic SimRank philosophy.

2We abuse the notation h ← e ← a → d to denote the
path of length 3, starting from h, taking 2 steps against the
edge direction and 1 step along it, and finally arriving at d.

Keeping with an elegant form and to support fast cluster-
ing strategies, our model is intended to be a refinement of
SimRank for semantic richness, and takes into account con-
tributions of many incoming paths (whose common “source”
is not strictly in the center) that are neglected by Sim-
Rank. The major challenge with establishing this model
is that it is notoriously difficult to effectively assess s(a, b)
by finding out all the possible incoming paths between a
and b, regardless of whether there exists a common “source”
with equal distance to both a and b. This problem is hard
because such a task often requires traversing far more pos-
sible incoming paths to fetch the similarity information,
which might not only destroy the simplicity of the original
SimRank formulation, but also increase the computational
difficulty of the model. Fortunately, we observe that our
model can be “purified” as a fairly elegant closed form,
and there are opportunities for the new model to assess
similarities without suffering from high computational costs.
Contributions. Our main contributions are as follows.

• We propose SimRank*, a revision of SimRank, and justify
its semantic richness. Our model provides a natural way
of traversing more incoming paths that are largely ignored
by SimRank for each node-pair, and thus enables counter-
intuitive “zero-SimRank” nodes to be similar while inher-
iting the beauty of the SimRank philosophy. (Section 3)
• We show that the series form of SimRank* can be simpli-

fied into an elegant closed form, which looks more succinct
yet has richer semantics than SimRank, without suffering
from increased computational cost. This provides an it-
erative paradigm for computing SimRank* in O(Knm)
time on a graph of n nodes and m edges for K iterations,
which is comparable to SimRank. (Subsects. 4.1–4.2)
• To further speed up SimRank* computation, as the exist-

ing technique [17] of partial sums memoization for Sim-
Rank optimization no longer applies, we leverage a novel
clustering approach for SimRank* via edge concentration.
Due to its NP-hardness, an efficient algorithm is devised
to improve SimRank* computation toO(Knm̃) time, where
m̃ is generally much smaller than m. (Subsect. 4.3)

We evaluate the performance of SimRank* on real and
synthetic data. The results show that (i) SimRank* achieves
higher quality of similarity assessment, as compared with the
state-of-the-art SimRank [17], P-Rank [23] and RWR [19];
(ii) Regarding computational efficiency, our algorithms are
consistently faster than the baselines by several times.

Related Work. We categorize related work as follows.
Link-based Similarity. One of the most renowned link-based
similarity metrics is SimRank, invented by Jeh and Widom
[9]. It iteratively captures the notion that “two nodes are
similar if they have similar in-neighbors”, which weakens the
philosophy of the rudimentary measures (e.g., Coupling [11],
Co-citation [18]) that “two nodes are similar if they have
the same neighbors in common”. The recursive nature of
SimRank allows two nodes to be similar without common
in-neighbors, which resembles PageRank [2] assigning a rel-
evance score for each node. SimRank implies an unsatis-
factory trait: The similarity of two nodes decreases as the
number of their common in-neighbors increases. To address
this issue, Fogaras and Rácz [7] introduce P-SimRank. They
(1) incorporate Jaccard coefficients, and (2) interpret s(a, b)
as the probability that two random surfers, starting from
a and b, will meet at a node. Antonellis et al. [1] propose
SimRank++, by adding an evidence weight to compensate
for the cardinality of in-neighbor matching. MatchSim [16]
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refines SimRank with maximum neighborhood matching.
RoleSim [10] deploys generalized Jaccard coefficients to en-
sure automorphic equivalence for SimRank. However, none
of them resolves the “zero-SimRank” issue. This issue sur-
faces in part in the motivating Example 1.2 of Zhao et al. [23]
who propose P-Rank taking both in- and out-links into ac-
count. Our work differs from [23] in that (1) we show that
the “zero-SimRank” issue is not caused by the ignorance
of out-links in SimRank, and (2) we circumvent the “zero-
similarity” issue by traversing more incoming paths of node-
pairs that are neglected by the original SimRank.
There has also been work on link-based similarity (e.g., [3,

13,19–21]). LinkClus [21] uses a hierarchical structure, called
SimTree, for clustering multi-type objects. Blondel et al. [3]
propose an appealing measure to quantify graph similarities.
SimFusion [20] utilizes a reinforcement assumption for as-
sessing similarities of multi-type objects in a heterogenous
domain, as opposed to SimRank focusing solely on intra-
type objects in a homogenous domain. Tong et al. [19] sug-
gest Random Walk with Restart (RWR) for assessing node
proximities, which is an excellent extension of Personalized
PageRank (PPR). Leicht et al. [13] extend RWR by incorpo-
rating independent and sensible coefficients. However, RWR
and its variants (PPR and [13]) also imply SimRank-like
“zero-similarity” issues, as discussed in Subsect. 3.1.
Similarity Computation. The computational overheads of
link-based similarity often arise from its recursive nature. To
meet this challenge, Lizorkin et al. [17] propose three excel-
lent optimization methods to SimRank (i.e., essential node-
pair selection, partial sums memoization, and threshold-
sieved similarities). These substantially speed up SimRank
computation from O(Kd2n2) to O(Knm) time, with d being
the average in-degree of a graph. In contrast, our model
performs even faster than SimRank, yet can enumerate more
incoming paths missed by SimRank to enrich semantics since
(1) our model can be simplified into a much simpler form
than SimRank, and (2) the computation can be further
accelerated via fine-grained memoization. Li et al. [14] use
graph low-rank structure to compute SimRank via singular
value decomposition (SVD), yielding O(r4n2) time, with
r (≤ n) being the rank of an adjacency matrix. However, it
does not always reduce the complexity when r is large. In
contrast, SimRank* needs O(Knm̃) worst-case time, with
m̃ ≤ m. He et al. [8] study the incremental SimRank with
the focus on node updates for parallel computing on GPU.

2. PRELIMINARY
Below we briefly revisit two representations of SimRank:

(1) the iterative form [9,17], and (2) the matrix form [8,14].
(1) Iterative Form. For a digraph G = (V, E) with nodes
in V and edges in E , let I(a) be the in-neighbor set of a, and
|I(a)| the cardinality of I(a), then the SimRank similarity
between nodes a and b, denoted as s(a, b), is defined by (i)
s(a, b) = 0, if I(a) = ∅ or I(b) = ∅; (ii) otherwise,

s(a, b) =

{
1, a = b;

C
|I(a)||I(b)|

∑
j∈I(b)

∑
i∈I(a) s(i, j), a ̸= b.

(1)

where C ∈ (0, 1) is a damping factor.
To solve s(a, b), one can carry out the following iterations.

(1) Start with s0(a, a) = 1 and s0(a, b) = 0 if a ̸= b. (2) For
k = 0, 1, 2, · · · , iterate as indicated below: (i) sk+1(a, b) = 0,
if I (a) = ∅ or I (b) = ∅; (ii) otherwise,

sk+1(a, b) =

{
1, a = b;

C
|I(a)||I(b)|

∑
j∈I(b)

∑
i∈I(a) sk(i, j), a ̸= b.

(2)

The resulting sequence {sk(a, b)}∞k=0 converges to s(a, b).
(2) Matrix Form. SimRank can be rewritten as

S = C · (Q · S ·QT ) + (1− C) · In, (3)

where S is the similarity matrix whose entry [S]i,j denotes
SimRank score s(i, j), Q is the backward transition matrix
whose entry [Q]i,j = 1/|I(i)| if there is an edge from j to i,
and 0 otherwise, QT denotes the transpose of matrix Q.

Here, In is an n×n identity matrix. The term (1−C) ·In
in Eq.(3) allows all diagonal entries of S being maximal,
guaranteeing that each node is maximally similar to itself,
which corresponds to the base case for a = b in Eq.(1).

3. SIMRANK*: A REVISION OF SIMRANK
We first show that the “zero-similarity” issue (Example 1)

is rooted in both SimRank and non-SimRank based metrics.
We then propose our treatment, SimRank*, for this issue.

3.1 “Zero­SimRank” Issue
We shall abuse the following notions. (i) An in-link path ρ

of node-pair (a, b) in G is a walk of length (l1 + l2), denoted
as a = v0 ← v1 ← · · · ← vl1 → vl1+1 → · · · → vl1+l2 = b,3

starting from a, taking l1 steps against the directions of the
edges vi−1 ← vi for every i ∈ [1, l1], and l2 steps along the
directions of vi−1 → vi for every i ∈ [l1 + 1, l1 + l2], and
finally arriving at b. (ii) The node vl1 is called the in-link
“source” of ρ. (iii) The length of in-link path ρ, denoted by
len(ρ), is (l1 + l2), i.e., the number of edges in ρ.

Definition 1. An in-link path ρ is symmetric if l1 = l2.

For example in Figure 1, ρ : h← e← a → d is an in-link
path of node-pair (h, d), with a being its in-link “source”.
len(ρ) = 2+1 = 3. ρ is not symmetric since l1 = 2 ̸= 1 = l2.

Clearly, in-link path ρ is symmetric if and only if there is
an in-link “source” in the center of ρ. Any in-link path of
odd length (i.e., l1 + l2 is odd) is dissymmetric.
“Zero-SimRank” Issue. Based on the notion of in-link
paths, we next show the “zero-SimRank” issue as follows:

Theorem 1. For any two distinct nodes a and b in G, the
SimRank score s(a, b) = 0 if there does not exist any sym-
metric in-link path of node-pair (a, b). More importantly,
even if s(a, b) ̸= 0, SimRank s(a, b) may still “partially miss”
all the contributions of dissymmetric in-link paths for (a, b).

As a proof of the theorem, we first extend the power prop-
erty of an adjacency matrix. We then reinterpret SimRank
based on its power series representation.
Extension of Al. Let A be the adjacency matrix of G.
There is an interesting property of Al [4]: The entry [Al]i,j

4

counts the number of paths of length l from node i to j. Such
a property can be readily generalized as follows:

Lemma 1. Let ρ be a “specific path” of length l, consisting
of a sequence of nodes i = v0, v1, · · · , vl = j with each edge
being directed (1) from vk−1 to vk, or (2) from vk to vk−1.

Let Ā =
∏l

k=1Ak with (1) Ak = A if ∃ vk−1 → vk in ρ, or

(2) Ak = AT if ∃ vk−1 ← vk in ρ, for each k ∈ [1, l]. Then,
the entry [Ā]i,j counts the number of specific paths ρ in G.

Lemma 1 can be proved by induction on l, which is similar
to the proof of the power property of the adjacency matrix
[4, pp.51]. We omit it here due to space limits.

3We allow a path from the “source” node to one end with
repeated nodes to suit the existence of cycles in a graph.
4In the sequel, [X]i,j denotes the (i, j)-entry of matrix X.

15



Lemma 1 allows counting the number of “specific paths”
whose edges are not all necessarily in the same direction.
For instance, for the path ρ : i→ ◦ ← ◦ → ◦ → ◦ ← j with
◦ denoting any node in G, we can build Ā = AATAAAT ,
in which A (resp. AT ) is at the positions 1,3,4 (resp. 2,5),
corresponding to the positions of → (resp. ←) in ρ. Then,
[Ā]i,j tallies the number of paths ρ in G. If no such paths,

[Ā]i,j = 0. As another example, [(AT )
l1 ·Al2 ]i,j tallies the

number of in-link paths of length (l1+l2) for node-pair (i, j).
When all Ak (∀k ∈ [1, l]) are set to A, Lemma 1 reduces

to the conventional power property of an adjacency matrix.
One immediate consequence of Lemma 1 is as follows:

Corollary 1.
∑∞

k=1 [(A
T )

k ·Ak]i,j counts the total num-

ber of all symmetric in-link paths of node-pair (i, j) in G.
Corollary 1 implies that if there are no nodes with equal

distance to both i and j (i.e., if no symmetric in-link paths

for node-pair (i, j)), then [(AT )
k ·Ak]i,j = 0, ∀k ∈ [1,∞).

SimRank Reinterpretation. Leveraging Corollary 1, we
show why SimRank has “zero-similarity” issue: s(i, j) = 0
if there are no nodes with equal distance to both i and j.
We first rewrite SimRank matrix S as a power series.

Lemma 2. The SimRank S in Eq.(3) can be rewritten as

S = (1− C) ·
∑∞

l=0
Cl ·Ql · (QT )

l
. (4)

Proof. According to [14, Eq.(4)], S has the closed form:

vec(S) = (1− C) · (In − C(Q⊗Q))−1vec(In),

where vec(⋆) is a vectorization operator, ⊗ a tensor product.

Since ∥Q⊗Q∥∞ ≤ 1, the identity (In −X)−1 =
∑∞

k=0 X
k

implies that vec(S) = (1−C) ·
∑∞

k=0 C
k(Q⊗Q)k · vec(In).

Then, using tensor product properties (Q⊗Q)k = Qk⊗Qk

and (Y⊗Z) · vec(In) = vec(Z · In ·YT ) with Y = Z = Qk,
plus the linearity of vec(⋆), we can derive Eq.(4).

The term (1−C) in Eq.(4) aims to normalize similarities

in [0, 1] as ∥
∑∞

l=0 C
l ·Ql · (QT )

l∥
max
≤

∑∞
l=0 C

l = 1
1−C

. 5

Lemma 2 reformulates SimRank in the form of weight sum
of all symmetric in-link paths of length 2l for node-pair (i, j).
To clarify this, as Q is the weighted (i.e., row-normalized)

matrix of AT , Lemma 2 implies that [Ql · (QT )
l
]i,j can tally

the weight sum (instead of the number) of in-link paths of
length 2l for node-pair (i, j). Formally, we state this below:

Corollary 2. [Ql · (QT )
l
]i,j = 0⇔ [(AT )

l ·Al]i,j = 0.

This, together with the component form of Eq.(4), i.e.,

[S]i,j = (1− C) ·
∑∞

l=0
Cl · [Ql · (QT )

l
]i,j , (∀i, j ∈ [1, n]) (5)

implies that [S]i,j considers only contributions of symmetric

in-link paths for (i, j), neglecting all dissymmetric ones.
Consequently, [S]i,j = 0 if (i, j) has no symmetric paths.
This proves the “zero-similarity” problem for SimRank.

Non-SimRank Based Metrics. Other measures, e.g., Ran-
dom Walk with Restart (RWR) and Personalized PageRank
(PPR), also imply a SimRank-like “zero-similarity” issue.
As PPR is just a special vector form of RWR, our following

discussion will mainly focus on RWR, which also suites PPR.

5The matrix norm ∥X∥max = maxi,j |[X]i,j | is the maximum
absolute entry of X.

The “zero-similarity” issue for RWR, similar to SimRank,
is that “nodes i and j are assessed as dissimilar srwr(i, j) =
0 if there are no paths with one direction from i to j”.
For example in Figure 1, h and d are still dissimilar for
RWR, as both h ← e ← a → d and h ← e ← a →
b → f → d have two directions. However, srwr(a, f) ̸= 0
as there exists a path a → b → f with one direction
(→) from a to f . Thus, both RWR and SimRank may
encounter “zero-similarity” issues. Indeed, in the language
of in-link paths, while SimRank considers only symmetric
in-link paths (whose “source” node is in the center), RWR
merely tallies unidirectional in-link paths (whose “source”
node is at one end), both of which are in a biased way to
assess similarity.

To further clarify the “zero-similarity” issue for RWR, we
can convert its closed form S = (1−C) ·(In − C ·W)−1 [19]
into the power series form

[S]i,j = (1− C) ·
∑∞

k=0
Ck · [Wk]i,j . (6)

As W is a weighted (i.e., row-normalized) matrix of A, we
have [Wk]i,j = 0 ⇔ [Ak]i,j = 0. Thus, by Lemma 1, the

drawback of RWR is clear: [S]i,j only tallies the weight sum
of paths with one direction from i to j, yet totally ignores
in-link paths whose “source” node is not at node i.

In a nutshell, RWR may not resolve “zero-similarity” is-
sues for SimRank, and vice versa. As will be seen in Figure 3,
all nodes in the family tree G should have some relevances.
Although RWR considers “Father and Me being similar”
that is neglected by SimRank, it ignores “Me and Cousin
being similar” that is accommodated by SimRank. Besides,
both RWR and SimRank neglect “Me and Uncle being simi-
lar”. Worse still, RWR fails to produce symmetric similarity
(s(i, j) ̸= s(j, i)). Since there is no path directed from Me
to Father, RWR alleges “Me and Father being dissimilar”.
These call for a unified measure for similarity assessment.

3.2 SimRank*: A Remedy for SimRank
The reinterpretation of SimRank provides a new possible

remedy to its “zero-similarity” problem.

SimRank* (Geometric Series Form). Since SimRank
(resp. RWR) loses all dissymmetric (resp. non-unidirectional)
in-link paths for node-pair (i, j), our treatment aims to com-
pensate s(i, j) for such a loss, by accommodating all dissym-
metric (resp. non-unidirectional) in-link paths. Precisely, by

adding the terms [Ql1 · (QT )
l2 ]i,j , ∀l1 ̸= l2 (resp. ∀l1 ̸= 0),

with appropriate weights, into the series form of SimRank
(resp. RWR), we can derive a new treatment as follows:

Ŝ = (1− C) ·
∞∑
l=0

Cl

2l
·

l∑
α=0

( l
α

)
·Qα · (QT )

l−α
. (7)

Here,
(
l
α

)
is the binomial coefficient defined as

(
l
α

)
= l!

α!(l−α)!
.

We call Eq.(7) the geometric 6 series form of SimRank*.
To see how the geometric form of SimRank* Eq.(7) is

derived and why it can perfectly resolve the “zero-similarity”
problem for SimRank and RWR, we rewrite Eq.(7) as

[Ŝ]i,j = (1− C) ·
∑∞

l=0
Cl · [T̂l]i,j with (8)

[T̂l]i,j =
1

2l
·

l∑
α=0

( l
α

)
· [Qα · (QT )

l−α
]i,j . (∀i, j ∈ [1, n])

6Since {Cl} in Eq.(7) is a geometric sequence, we abuse the
term “geometric” for this series form, to distinguish Eq.(11).
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Length SimRank RWR / PPR α SimRank*

1 N/A i → j
0 i → j

1 i← j

2 i← • → j i → ◦ → j

0 i → ◦ → j
1 i← • → j

2 i← ◦ ← j

3 N/A i → ◦ → ◦ → j

0 i → ◦ → ◦ → j
1 i← • → ◦ → j
2 i← ◦ ← • → j

3 i← ◦ ← ◦ ← j

4 i← ◦ ← • → ◦ → j i → ◦ → ◦ → ◦ → j

0 i → ◦ → ◦ → ◦ → j
1 i← • → ◦ → ◦ → j
2 i← ◦ ← • → ◦ → j
3 i← ◦ ← ◦ ← • → j

4 i← ◦ ← ◦ ← ◦ ← j

◦ – any node in G i , • , j – in-link “source”

Figure 2: In-link Paths of (i, j) for Length l ∈ [1, 4]
Counted by SimRank, RWR/PPR, and SimRank*

Below, to avoid ambiguity, we use Ŝ to denote the exact
SimRank* in Eq.(7), and S the exact SimRank in Eq.(4).
Comparing Eq.(8) with Eq.(5), we see that for a fixed l,

SimRank* ŝ(i, j) uses
∑l

α=0

(
l
α

)
· [Qα · (QT )

l−α
]i,j in [T̂l]i,j

to consider all in-link paths of length l for node-pair (i, j) in
a comprehensive way, as opposed to SimRank s(i, j) using

[Ql · (QT )
l
]i,j in Eq.(5) to accommodate only symmetric in-

link paths of length 2l for node-pair (i, j) in a biased manner.
As a result, SimRank* may find all (dissymmetric) in-link
paths of two kinds, both of which are ignored by SimRank:
(1) in-link paths of odd length; (2) in-link paths of even
length whose in-link “source” is not in the center.
Though RWR via Eq.(6) using [Wl]i,j may consider part

of in-link paths of odd length that are missed by SimRank,
they ignore (non-unidirectional) in-link paths of two kinds:
(1) all symmetric ones that are accommodated by SimRank;
(2) dissymmetric ones whose in-link “source” is not at an
end, both of which can be found by SimRank*.
For instance, given a node-pair (i, j), Figure 2 compares

all in-link paths of length l ∈ [1, 4] considered by SimRank,
RWR, and SimRank*. It can be seen from ‘SimRank* Col-
umn’ that only a small number of in-link paths can be
accommodated by SimRank (in dark gray cells) and RWR
(in light gray cells), relative to those of SimRank*.

Weighted Factors of Two Types. We next elaborate on
two kinds of weighted factors adopted by SimRank* Eq.(8):

(1) length weights {Cl}∞l=0, (2) symmetry weights {
(
l
α

)
}lα=0.

Intuitively, the length weight Cl (0 < C < 1) measures
the importance of in-link paths of different lengths. Similar
to the original SimRank (Eq.(5)), the outer summation over
l in SimRank* (Eq.(8)) is to add up the contributions of
in-paths of different length l. The length weight Cl aims
at reducing the contributions of in-paths of long lengths
relative to short ones, as {Cl}l∈[0,∞) is a deceasing sequence
w.r.t. length l.
The symmetry weight uses binomial

(
l
α

)
(0 ≤ α ≤ l)

to assess the importance of in-link paths of a fixed length l,
with α edges in one direction (from the “source” node to one
end of the path) and l − α edges in the opposite direction.
Here, α reflects the symmetry of in-link paths of length l.
As depicted in Figure 2, when α = 0 or l, in-link paths are
totally dissymmetric, reducing to one single direction; when
α is close to ⌊l/2⌋, the “source” node is near the center of
in-link paths, being almost symmetric. To show the use of
binomial

(
l
α

)
is reasonable, we consider the following issues.

(a) Why
(
l
α

)
is assigned only to l+ 1 kinds of in-link paths,

for a fixed l? Say, for l = 4 in Fig. 2, why neglect paths

Grandpa
Father

Me

Son

Uncle

Cousin

Grandpa
Father

Me

Uncle

Cousin

Grandpa
Father

Me

Son

Uncle

Grandson

Grandpa
Father

Me

Son

GrandsonG ρA ρB ρC

Figure 3: The more symmetric the in-link paths are,
the larger contributions they will have to similarity

ρ1 : i→ ◦ ← ◦ → ◦ ← j and ρ2 : i← ⋆→ ◦ ← ⋄ → j ?
(b) Why use

(
l
α

)
, instead of others, to weigh in-link paths?

(c) Why symmetric in-link paths are considered to be more
important than less symmetric ones, for a fixed length?

For (a), as our SimRank* framework is in-link oriented,7

the impact of out-links on similarity is not accommodated.
Thus, for l = 4, the path ρ1 is not considered since there are
no in-links to nodes i and j in ρ1. Even if i or j has in-links
yet without one common in-link “source”, e.g., ρ2, this path
also has no contributions to similarity ŝ(i, j). This is because
in ρ2 there are no in-links to nodes ⋆ and ⋄, thus the sub-
path ⋆→ ◦ ← ⋄ of ρ2 has no contributions to ŝ(⋆, ⋄), which,
iteratively, has no contributions to ŝ(i, j). Hence, due to our
in-link oriented framework for similarity assessment, for a
fixed l, there are at most l+ 1 kinds of in-link paths (where

binomial weights
(
l
α

)
are assigned) having contributions to

ŝ(i, j), with α ∈ [0, l] edges in one direction and l− α edges
in the opposite one, as shown in Figure 2.

For (b), there are 2 reasons for using
(
l
α

)
instead of others:

(i) The binomial
(
l
α

)
can reduce the contributions of less

symmetric in-link paths, relative to symmetric ones. Indeed,
a larger (resp. smaller) weight is expected for an in-link path
whose “source” is closer to the center (resp. either of ends).(
l
α

)
happens to have this monotonicity: For a fixed l, when α

increases from 0 to l,
(
l
α

)
first increases from 1 to a maximum

value (α =
⌊

l
2

⌋
, “source” at the center), and then “symmet-

rically” decreases back to 1 (α = l, “source” at one end).

(ii) The binomial
(
l
α

)
is an easy-to-compute math function,

which enables the infinite series (Eq.(7)) to be simplified,
as will be seen shortly, into the very succinct and elegant
recurrence form (Eq.(13)). To our best knowledge, although

some functions, like e−(l−α
2
)2 , have the similar monotonicity

of
(
l
α

)
, they would adversely complicate the form of Eq.(7)

since it is even hard to compute
∑l

α=0 e
−(l−α

2
)2 to determine

the normalized weight factors, not to mention being able to
simplify Eq.(7) into the elegant recurrence form. In contrast,∑l

α=0

(
l
α

)
= 2l enjoys a neat form. Inspired by these, we use(

l
α

)
, instead of others, as the preferred symmetric weight.
For (c), the example below can explain, for a fixed length,

why larger weights are assigned to more symmetric paths.
Consider paths ρA, ρB and ρC of a family tree in Figure 3.
Most people might feel ρA (Me and Cousin being similar) is
more reliable than ρB (Uncle and Son being similar), which is
more reliable than ρC (Grandpa and Grandson being similar).
Thus, the more symmetric the in-link path is, the larger
contribution it has to similarity assessment. In Figure 3, ρA
should have the largest weight, ρB the second, ρC the third.

The efficacy of (1 − C) and 1
2l

in Eq.(8) is to normalize

[Ŝ]i,j and [T̂l]i,j , respectively, into [0, 1]. More specifically,

one can readily verify that ∥Ql1 · (QT )
l2∥max ≤ 1, for ∀l1, l2.

7In order to highlight the essence of “zero-SimRank” issue,
our SimRank* model, just like SimRank, PageRank, and
RWR, is based on incoming edges for assessing similarity.
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Thus, (i) ∥
∑l

α=0

(
l
α

)
·Qα · (QT )

l−α∥
max
≤

∑l
α=0

(
l
α

)
= 2l,

which implies ∥T̂l∥max ≤ 1. (ii) Since ∥
∑∞

l=0 C
l · T̂l∥max

≤∑∞
l=0 C

l = 1
1−C

, it follows that ∥S∥max ≤ 1.
Combining these two kinds of weights, the contribution of

any in-link path for a given node-pair can be easily assessed.
For example in Figure 1, h ← e ← a → d has a contribu-

tion rate of (1−0.8) ·0.83 1
23

(
3
2

)
= 0.0384 for node-pair (h, d),

Similarly, h← e← a → b→ f → d has a contribution rate

of (1 − 0.8) · 0.85 1
25

(
5
2

)
= 0.0205. As opposed to SimRank

only using length weight Cl, SimRank* considers both Cl

and symmetry weight
(
l
α

)
. Thus, our revision resolves “zero-

SimRank” issues, as well as inherits SimRank philosophy.

Convergence of SimRank*. As SimRank* in Eq.(7) is an
infinite series, it is unclear whether this series is convergent.
This motivates us to study its convergence issue.
Let us first define the k-th partial sum of Eq.(7) as

Ŝk = (1− C) ·
k∑

l=0

Cl

2l
·

l∑
α=0

( l
α

)
·Qα · (QT )

l−α
. (9)

Leveraging Ŝk, we next show the convergence of Eq.(7).

Lemma 3. Let Ŝ and Ŝk be defined by Eqs.(7) and (9),

respectively. Then, the gap between Ŝ and Ŝk is bounded by

∥Ŝ− Ŝk∥max ≤ Ck+1. (∀k = 0, 1, · · · ) (10)

Proof. For each k = 0, 1, · · · , we subtract Eq.(9) from
Eq.(7), and then take ∥ ⋆ ∥max norms on both sides to get

∥Ŝ − Ŝk∥max ≤ (1 − C)

∞∑
l=k+1

Cl

2l
·

l∑
α=0

( l

α

)
︸ ︷︷ ︸

=2l

· ∥Qα · (QT
)
l−α∥max︸ ︷︷ ︸

≤1

≤ (1 − C)

∞∑
l=k+1

C
l
= (1 − C) ·

Ck+1

(1 − C)
= C

k+1
.

The convergence of SimRank* (Eq.(7)) follows directly
from Lemma 3 and limk→∞ Ck+1 = 0 (0 < C < 1).

SimRank* (Exponential Series Form). In the geomet-
ric series form of SimRank* (Eq.(7)), Lemma 3 implies that,

to guarantee the accuracy ϵ, the K-th partial sum ŜK with
K = ⌈logC ϵ⌉ can be used to approximate the exact solution.
However, there is a variant of SimRank* that can use only
the K′-th partial sum with K′ ≤ K to ensure the same ϵ:

Ŝ′ = e−C ·
∞∑
l=0

Cl

l!
·
1

2l

l∑
α=0

( l
α

)
·Qα · (QT )

l−α
. (11)

We call Eq.(11) the exponential series form of SimRank*.

It differs from Eq.(7) in the length weight Cl

l!
(which is an

exponential sequence w.r.t. l) and its normalized factor e−C .
The exponential series form of SimRank* is introduced to

improve the rate of convergence for similarity computation.

To clarify this, we define Ŝ′
k as the k-th partial sum of Ŝ′ in

Eq.(11). Analogous to Lemma 3, one can readily prove

∥Ŝ′ − Ŝ′
k∥max ≤

Ck+1

(k+1)!
. (∀k = 0, 1, · · · ) (12)

Comparing Eq.(12) with Eq.(10), we see that for any fixed k,

as Ck+1

(k+1)!
≤ Ck+1, the convergence rate of Ŝ′

k is always faster

than that of Ŝk. Hence, to guarantee the same accuracy, the
exponential SimRank* only needs to compute a tiny fraction
of the partial sums of the geometric SimRank*.

The choice of length weight Cl

l!
for the exponential Sim-

Rank* (Eq.(11)) plays a key role in accelerating convergence.
As suggested by the proof of Lemma 3, the bound Ck+1 in

Eq.(10) (resp. Ck+1

(k+1)!
in Eq.(12)) is actually derived from

our choice of length weight Cl (resp. Cl

l!
) for the geomet-

ric (resp. exponential) SimRank*. Thus, there might exist
other length weights for speeding up the convergence of
SimRank*, as there is no sanctity of the earlier choices

of length weight. That is, apart from Cl and Cl

l!
, other

sequence, e.g., Cl

l
, that satisfies decreasing monotonicity

w.r.t. length l can be regarded as another possible candidate
for length weight, since the efficacy of the length weight is
to reduce the contributions of in-link paths of long lengths

relative to short ones. The reasons why we select Cl and Cl

l!
,

instead of others, are two-fold: (1) The normalized factor of

length weight should have a simple form, e.g.,
∑∞

l=0
Cl

l!
=

eC . (2) Once selected, the length weight should enable the
series form of SimRank* to be simplified into a very elegant

form, e.g., using Cl

l!
allows Eq.(11) being simplified, as will

be seen in Eq.(15), into a neat closed form. In contrast, Cl

l
is not a preferred length weight as its series version may not
be simplified into a neat recursive (or closed) form, though

the form
∑∞

l=0
Cl

l
= ln 1

(1−C)
is simple for normalized factor.

4. EFFICIENTLY COMPUTING SIMRANK*
At first glance, the series form of SimRank* (Eq.(7)) is

more complicated than that of SimRank (Eq.(4)). A brute-
force way of computing the first k-th partial sums of Eq.(7)
requires O(k·l2 ·n3) time, involving l2 matrix multiplications
in the inner summation for each fixed l in the outer summa-
tion, which seems much more expensive than SimRank.

In this section, we first reformulate the series forms of
SimRank* into elegant recursive and closed forms. We then
propose efficient techniques for computing SimRank*.

4.1 Recursive & Closed Forms of SimRank*
The series forms of SimRank* (Eqs.(7) and (11)) are te-

dious, and suffer from high complexity if calculated directly.
The main result of this subsection is to derive an elegant

recursive form for Eq.(7) and a closed form for Eq.(11),
which will be useful for efficient SimRank* computation.

Recursive Form of Geometric SimRank*. We first
show a recursive form for the geometric SimRank* of Eq.(7).

Theorem 2. The SimRank* geometric series Ŝ in Eq.(7)
takes the following elegant recursive form:

Ŝ = C
2
· (Q · Ŝ+ Ŝ ·QT ) + (1− C) · In. (13)

To prove Theorem 2, the following lemma is needed.

Lemma 4. For each k = 0, 1, · · · , the k-th partial sum Ŝk

defined by Eq.(9) satisfies the following iteration:{
Ŝ0 = (1− C) · In,
Ŝk+1 = C

2
· (Q · Ŝk + Ŝk ·QT ) + (1− C) · In.

(14)

Proof. For k = 0, it is obvious from Eq.(9) that Ŝ0 =
(1 − C) · In, which satisfies Eq.(14). For k = 1, 2, · · · ,
substituting Eq.(9) into the right-hand side of Eq.(14) yields

Ŝk+1 =
C

2
·
(
(1 − C)

k∑
l=0

Cl

2l

=
l+1∑
α=1

(
l

α−1

)
·Qα·(QT )

l−α+1

︷ ︸︸ ︷
l∑

α=0

( l

α

)
· Qα+1 · (QT

)
l−α

+
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+(1 − C)

k∑
l=0

Cl

2l

l∑
α=0

( l

α

)
· Qα · (QT

)
l−α+1

)
+ (1 − C) · In

=
C

2
(1 − C)

( k∑
l=0

Cl

2l

( l∑
α=1

(( l

α − 1

)
+
( l

α

))
Q

α
(Q

T
)
l−α+1

)
+

+Q
l+1

+ (Q
T
)
l+1
)
+ (1 − C) · In

=
C

2
· (1 − C)

( k∑
l=0

Cl

2l
·

l+1∑
α=0

(l + 1

α

)
· Qα

(Q
T
)
l−α+1

)
+ (1 − C)In

= (1 − C) ·
k+1∑
l=0

Cl

2l
·

l∑
α=0

( l

α

)
· Qα · (QT

)
l−α

.

Thus, Ŝk+1 in Eq.(14) also takes the form of Eq.(9).

One consequence of Lemma 4 is the proof of Theorem 2.

Proof of Theorem 2. Lemma 3 implies the convergence

of SimRank*, i.e., the existence of limk→∞ Ŝk. Thus, taking
limits on both sides of Eq.(14) as k →∞ yields Eq.(13).

Closed Form of Exponential SimRank*. We next present
a closed formula for the exponential SimRank* of Eq.(11).

Theorem 3. The exponential series form of SimRank*
in Eq.(11) neatly takes the following closed form:

Ŝ′ = e−C · e
C
2
Q · e

C
2
QT

. 8 (15)

Proof. We utilize the factorial formula
(
l
α

)
= l!

α!(l−α)!
to

simplify the series form of Eq.(11) into the closed form:

Ŝ
′
= e

−C ·
∞∑
l=0

l∑
α=0

1

2l
·
Cα

α!
Q

α ·
Cl−α

(l − α)!
(Q

T
)
l−α

= e
−C ·

∞∑
α=0

Cα

α!
Q

α ·
∞∑

l=α

1

2l
·

Cl−α

(l − α)!
(Q

T
)
l−α

︸ ︷︷ ︸
=

∞∑
l=0

1
2l+α

· tl
l!

(QT )l

= e
−C ·

( ∞∑
α=0

1

2α
·
Cα

α!
Q

α

)
·

( ∞∑
l=0

1

2l
·
Cl

l!
(Q

T
)
l

)

= e
−C · e

C
2 Q · e

C
2 QT

,

where the second equality is obtained by interchanging the

order of double summation
∞∑
l=0

l∑
α=0

f(l, α) =
∞∑

α=0

∞∑
l=α

f(l, α).

The utility of Theorem 3 will be appreciated in Subsect.
4.3 for optimizing the exponential SimRank* computation.

4.2 SimRank* Computation
Having formulated SimRank* into the very elegant forms,

we next develop efficient techniques to speed up the compu-
tation of SimRank*.
Due to high commonalities between the geometric Sim-

Rank* Ŝ (in Eq.(7)) and its exponential variant Ŝ′ (in Eq.(11)),
we shall mainly focus on geometric SimRank* computation,
which is readily applicable to its exponential variant as well.

Algorithm. To compute the SimRank* series Ŝ in Eq.(7),
the closed form Eq.(13) provides an easy yet effective way:

One can use the iterative paradigm Eq.(14) to compute Ŝk,
with accuracy guaranteed by Lemma 3.

Complexity. The computational time of performing Eq.(14)
is O(Knm) for K iterations on a graph of n nodes and m

8eX , I+X+ X2

2!
+ · · · =

∑∞
k=0

Xk

k!
, for a square matrix X.

edges, which is dominated by the cost of matrix multiplica-

tion Q · Ŝk per iteration. Due to Ŝk symmetry, the result of

Ŝk ·QT can be obtained from the transpose of the calculated

matrix Q · Ŝk. Thus, for each iteration, Eq.(14) requires
only one matrix multiplication (corresponding to perform-
ing only a single summation of Eq.(14)), as opposed to its
counterpart of computing SimRank via Eq.(3) that needs
two matrix multiplications for Q · Sk · QT (corresponding
to performing a double summation of Eq.(2) regardless of
whether memoization [17] is used). From this perspective,
despite the traversal of more in-link paths, SimRank* runs
even faster (up to a constant factor) than SimRank, which
is a substantial improvement achieved by Theorem 2.

4.3 Optimizations
To accelerate SimRank* iterations in Eq.(14), the conven-

tional optimization techniques [17] for SimRank cannot be
effectively applied to SimRank*. Indeed, Lizorkin et al. [17]
proposed three appealing approaches for optimizing Sim-
Rank computation, i.e., essential node-pair selection, partial
sums memoization, and threshold-sieved similarities, among
which only the threshold-sieved similarities method can be
ported to SimRank* that allows eliminating node-pairs of
small similarities in the computation. Essential node-pair
selection no longer applies because SimRank utilizes a “zero-
similarity” set as a pruning rule to speed up its computation,
whereas SimRank* regards the existence of such a set as
an issue of the SimRank philosophy and attempts to fix it.
Partial sums memoization plays a vital role in significantly
speeding up the computation of SimRank to O(Knm) time.
To see why it does not work in SimRank*, let us compare the
component forms of SimRank and SimRank*, respectively,
in Eqs.(16) and (17):

sk+1(a, b) =
C

|I(a)||I(b)|
∑

x∈I(a)

=Partial
sk
I(b)

(x)︷ ︸︸ ︷∑
y∈I(b)

sk(x, y) . (16)

ŝk+1(a, b) =
C

2|I(b)|
∑

y∈I(b)

ŝk(a, y)︸ ︷︷ ︸
=Partial

ŝk
I(b)

(a)

+ C
2|I(a)|

∑
x∈I(a)

ŝk(x, b). (17)

For SimRank, if I(a) and I(⋆) have some node, say i, in
common, then the partial sum Partial

sk
I(b)(i) in Eq.(16), once

memoized, can be reused in both ŝk+1(a, b) and ŝk+1(⋆, b)
computation. In contrast, for SimRank*, no matter whether

I(a) ∩ I(⋆) ̸= ∅, the partial sum Partial
ŝk
I(b)(a) in Eq.(17)

for computing ŝk+1(a, b), if memoized, has no chance to be
reused again in computing other similarities ŝk+1(⋆, b), with
⋆ denoting any node in G except a.

Fine-grained Memoization. Instead of memoizing the
results of

∑
y∈I(b) ŝk(a, y) over the whole set I(b) in Eq.(17),

we use fine-grained memoization for optimizing SimRank*
by caching a partial sum, in part, over a subset as follows:

Partial
ŝk
∆ (a) ,

∑
y∈∆ ŝk(a, y) with ∆ ⊆ I(⋆).

Our observation is that there may be duplicate additions
among

∑
y∈I(⋆) ŝk(a, y) over different in-neighbor sets I(⋆).

Thus, once memoized, the result of Partialŝk∆ (a) can be shared
among many sums

∑
y∈I(⋆) ŝk(a, y) for computing ŝk+1(a, ⋆).

As an example in Figure 1, I(h) and I(i) have three nodes
{e, j, k} in common, and thus, once memoized, the resulting

fine-grained partial sum Partial
ŝk
{e,j,k}(a) can be shared be-

tween
∑

y∈I(h) ŝk(a, y) and
∑

y∈I(i) ŝk(a, y) for computing
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G̃ = (T ∪ B, Ẽ) Ĝ = (T ∪ B ∪ V̂ , Ê)

Figure 4: Compression of Induced Bigraph G̃ into Ĝ
via Edge Concentration

both ŝk+1(a, h) and ŝk+1(a, i) via Eq.(17), for any fixed a.
However, it seems hard to find perfect fine-grained subsets
∆ ⊆ I(⋆) for maximal computation sharing, since there may
be many arbitrarily overlapped in-neighbor sets in a graph.
To overcome this difficulty, we shall deploy efficient tech-
niques of bipartite graph compression via edge concentration
for finding such fine-grained subsets.

Induced Bigraph. We first construct an induced bipartite
graph (bigraph) from G, which is defined as follows.

Definition 2. An induced bipartite graph (bigraph) from

a given graph G = (V, E) is a bipartite graph G̃ = (T ∪B, Ẽ),
such that its two disjoint node sets T = {x ∈ V | O(x) ̸= ∅},
B = {x ∈ V | I(x) ̸= ∅}, 9 and for each u ∈ T and v ∈ B,
(u, v) ∈ Ẽ if and only if there is an edge from u to v in G.

Intuitively, an induced bigraph G̃ = (T ∪ B, Ẽ) visualizes
the neighborhood structure of G from a different perspective.
For any x ∈ B, the nodes in T that are connected with x
correspond to the in-neighbors of x in G. Note that when
node x has both in- and out-neighbors in G, label x that
appears in both T and B will be regarded as two distinct
nodes despite the same label. To avoid ambiguity, we shall
use x ∈ T and x ∈ B to distinguish them. Each directed
edge in G is mapped to one edge in G̃, and thus, |E| = |Ẽ |.
For instance, the left part of Figure 4 shows the induced
bigraph G̃ from G of Figure 1. From G̃, we can clearly see
that b and d in B are both connected with a in T , meaning
that, in G, b and d both have an in-neighbor a.

Biclique Compression via Edge Concentration. Based
on the induced bigraph G̃, we next introduce the notion of
bipartite cliques (bicliques).

Definition 3. Given an induced bigraph G̃ = (T ∪B, Ẽ),
a pair of two disjoint subsets X ⊆ T and Y ⊆ B is called a
biclique if (x, y) ∈ Ẽ for all x ∈ X and y ∈ Y.

Intuitively, a biclique (X ,Y) is a complete bipartite sub-

graph of G̃, which has |X |+ |Y| nodes and |X | × |Y| edges.
Each biclique (X ,Y) in G̃ tells us that in G, all nodes y ∈ Y
have the common in-neighbor set X . For example, there are
two bicliques in Figure 4: ({b, d}, {c, g, i}) in dashed line,
and ({e, j, k}, {h, i}) in dotted line. Biclique ({b, d}, {c, g, i})
in G̃ implies that in G, three nodes c, g, i all have two in-
neighbors {b, d} in common.

Bicliques are introduced to compress bigraph G̃ for opti-
mizing SimRank* computation. It is important to notice
that for any fixed node a, the total cost 10 of performing
the sums

∑
y∈I(⋆) ŝk(a, y) over all in-neighbor sets I(⋆) (via

9The notation O(x) denotes the out-neighbor set of node x.
10Here, the total cost refers to the number of additions plus
assignment operations. For example, the cost of performing

Eq.(17)) is equal to the number |Ẽ | of edges of bigraph

G̃. Therefore, our goal of minimizing the cost of summa-
tions for SimRank* is equivalent to the problem of min-
imizing the number of edges in the compressed graph of
G̃. Unfortunately, this bigraph compression problem, also
known as edge concentration (EC), has been proved to be
NP-hard [15]. The main ingredient of EC is to group sets of

edges in G̃ together, so that the compressed graph contains
fewer edges which often implies less cost of summations for
SimRank*, while retaining the same information as G̃. To
compress G̃ = (T ∪ B, Ẽ), we first leverage Buehrer and
Chellapilla’s algorithm [5] for finding collections of bicliques

in G̃. Their algorithm is based on the heuristic of frequent
itemset mining, and requires O(|Ẽ | log(|T | + |B|)) time to
identify bicliques. We then replace edges of each biclique
(X ,Y) with a special node, called an edge concentration
node, whose “fan-in” is all nodes in X and whose “fan-out”
is all nodes in Y. Finally, the compressed graph, denoted as

Ĝ = (T ∪ B ∪ V̂, Ê), can be obtained from bigraph G̃, where
(i) T and B are the same as those of G̃, (ii) V̂ is the set of

edge concentration nodes, and (iii) Ê is the set of edges in

Ĝ. In practice, |Ê | is typically much smaller than |Ẽ |, since
|X |× |Y| edges of each biclique in G̃ are reduced to |X |+ |Y|
edges in Ĝ, which is a substantial improvement achieved by
edge concentration. For example, the right part of Figure 4

depicts the resultant graph Ĝ of applying this approach to G̃.
We can see that the number of edges in Ĝ is decreased by 2
via edge concentration, meaning that the cost of computing

SimRank* in Ĝ can be reduced by 2 operations, by adding
two edge concentration nodes v1 and v2.

Algorithm. Based on compressed graph Ĝ, we next present
an algorithm for computing SimRank*, by using fine-grained
memoization. The algorithm, referred to as memo-gSR*, is
shown in Algorithm 1. It takes as input a graph G = (V, E),
a damping factor C, and the number of iterations K, and
returns all-pairs of SimRank* similarities ŝ(⋆, ⋆).

To present the algorithm, we need the following notations.

For a compressed graph Ĝ = (T ∪ B ∪ V̂, Ê), we shall abuse

(i) ∆(v) (v ∈ V̂) to denote all the “fan-in” nodes of concen-

tration node v in T , i.e., ∆(v) = {x ∈ T | ∃(x, v) ∈ Ê}; and
(ii) N (x) (x ∈ B), to denote all the nodes in T ∪ V̂ that are

connected with x ∈ B, i.e., N (x) = {y ∈ T ∪V̂ | ∃(y, x) ∈ Ê}.
The algorithm memo-gSR* runs in two phases.

(1) Preprocessing (lines 1–2). The algorithm first constructs

an induced bigraph G̃ from G (line 1). Based on G, it then

compresses G̃ into Ĝ, by invoking the algorithm [5] to replace

bicliques of G̃ with “stars” via edge concentration (line 2).

(2) Updating (lines 3–19). The algorithm then iteratively

computes all ŝk(⋆, ⋆) based on Ĝ. For every iteration k,
(i) it first uses fine-grained memoization to add up ŝk(a, ⋆)
for each fixed a, with ⋆ being each node in the “fan-in”

set ∆(v) of an edge concentration node v in V̂ (lines 5–7).

(ii) Using the memoized Partial
ŝk
∆(⋆)(a), it then computes

the partial sums Partial
ŝk
I(⋆)(a) over different in-neighbor set

I(⋆) of G (lines 8–10). Due to fine-grained memoization,

the intermediate results Partial
ŝk
∆(⋆)(a), for any fixed node∑

y∈I(h) ŝk(a, y) = ŝk(a, e)+ŝk(a, j)+ŝk(a, k) is 3, including

2 additions and 1 assignment operation to store the result,
which is equal to the number of edges that are connected
with node h ∈ B in the left part of Figure 4.
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Algorithm 1: memo-gSR* (G, C,K)

Input : graph G = (V, E), damping factor C, iteration K.
Output: SimRank* scores ŝK(⋆, ⋆).

1 build an induced bigraph G̃ = (T ∪ B, Ẽ) from G = (V, E) ;

2 generate a compressed graph Ĝ = (T ∪ B ∪ V̂, Ê) from G̃ ;

3 initialize ŝ0(x, y)←
{

1, x=y
0, x ̸=y ∀x, y ∈ V ;

4 for k ← 0, 1, · · · ,K − 1 do

5 foreach node v ∈ V̂ in Ĝ do
6 foreach node a ∈ V in G do

7 Partial
ŝk
∆(v)(a)←

∑
y∈∆(v) ŝk(a, y) ;

8 foreach node x ∈ B̂ in Ĝ do
9 foreach node a ∈ V in G do

10 Partial
ŝk
I(x)(a)←

∑
y∈N(x)∩T ŝk(a, y)

+
∑

y∈N(x)∩V̂ Partial
ŝk
∆(y)(a) ;

11 free Partial
ŝk
∆(v)(a) ∀v ∈ V̂, a ∈ V ;

12 foreach node x ∈ V in G do
13 foreach node y ∈ V in G do
14 initialize t1 ← 0, t2 ← 0 ;

15 if I(x) ̸= ∅ then t1 ← C

2|I(x)|Partial
ŝk
I(x)(y) ;

16 if I(y) ̸= ∅ then t2 ← C

2|I(y)|Partial
ŝk
I(y)(x) ;

17 compute ŝk+1(x, y)← t1 + t2 +
{

1−C, x=y
0, x ̸=y ;

18 free Partial
ŝk
I(x)(y) ∀x ∈ V, y ∈ V ;

19 return ŝK(⋆, ⋆) ;

a, can be reused among many partial sums Partial
ŝk
I(⋆)(a)

computations. Hence, the cost of computing SimRank* is
reduced. (iii) By Eq.(17), these partial sums can be used
for computing ŝk(⋆, ⋆) (lines 12–17). Due to ŝk(⋆, ⋆) sym-
metry, the second summation in Eq.(17) can be computed

from Partial
ŝk
∆(a)(x) (line 16). Once processed, the memoized

results are freed (lines 11 and 18). After K iterations,
SimRank* scores ŝK(⋆, ⋆) of all-pairs are returned (line 19).
Correctness & Complexity. One can verify that the algo-
rithm correctly computes ŝK(⋆, ⋆), which satisfies Eq.(17).
Besides, memo-gSR* is in O(Knm̃) time, where m̃ is the

number of edges in the compressed graph Ĝ. Here, m̃ is
always smaller than m, and in practice, m̃≪ m, depending
on the number of bicliques, and biclique density in G̃. This
is because edge concentration compresses bicliques (dense

subgraphs) in G̃ such that for each biclique (Xi,Yi), the
number of its edges |Xi| · |Yi| can be reduced to |Xi|+ |Yi|.
Thus, m̃ ≤ m − N ·

∑N
i=1(|Xi| · |Yi| − (|Xi| + |Yi|)), where

N is the number of bicliques in G̃. Since |Xi|, |Yi| ≥ 2, it
holds that |Xi| + |Yi| ≤ |Xi| · |Yi|. Hence, m̃ is always less

thanm. Moreover, the construction of Ĝ is in O(|Ẽ | log(|T |+
|B|)) = O(m̃ log(2n)) time [5] (lines 1–2). For each iteration,

Partial
ŝk
I(⋆)(⋆) are in O(nm̃) time (lines 5–11), and ŝk(⋆, ⋆) in

O(n2) time (lines 12–18). Thus, the total time is O(Knm̃),
as opposed to O(Knm) of original iterations in Lemma 4.

Example 2. Recall the graph G of Fig. 1. memo-gSR*
computes SimRank* scores of all-pairs in G as follows:
First, using Definition 2 and the algorithm [5], it builds

bigraph G̃ and compressed graph Ĝ, as shown in Fig. 4.
Then, it iteratively computes SimRank* via fine-grained

memoization based on Ĝ. For example, to compute ŝk+1(a, i)
and ŝk+1(a, h), it first memoizes the fine-grained partial sums
over the “fan-in” sets of v1 and v2 (lines 5–7):

Partial
ŝk
∆(v1)

(a)← ŝ(b, a) + ŝ(d, a),

Partial
ŝk
∆(v2)

(a)← ŝ(e, a) + ŝ(j, a) + ŝ(k, a).

Using memoized Partial
ŝk
∆(v1)

(a) and Partial
ŝk
∆(v2)

(a), it

then computes Partial
ŝk
I(i)(a) and Partial

ŝk
I(h)(a) (lines 8–10)

Partial
ŝk
I(i)(a)← Partial

ŝk
∆(v1)

(a) + Partial
ŝk
∆(v2)

(a) + ŝ(h, a),

Partial
ŝk
I(h)(a)← Partialŝk∆(v2)

(a).

Finally, since I(a) = 0, ŝk+1(a, i) and ŝk+1(a, h) can be
obtained as follows (lines 12–17):

ŝk+1(a, x)← C
2|I(x)|Partial

ŝk
I(x)(a) (x ∈ {i, j})

The rest of the results are shown in Col. ‘SR*’ in Fig. 1.

Exponential SimRank* Optimization. The aforemen-
tioned optimization methods for (geometric) SimRank* com-
putation can be readily extended to exponential SimRank*.

To shed light on this, we recall the exponential SimRank*
series in Eq.(11) and its closed form Eq.(15) in Theorem 3.
Similar to the proof of Theorem 3, one can readily show that

the k-th partial sum of Ŝ′ defined by

Ŝ′
k , e−C ·

k∑
l=0

Cl

l!
·
1

2l

l∑
α=0

( l
α

)
·Qα · (QT )

l−α
(18)

can be represented as the product of the k-th partial sum of

matrix exponential (e
C
2
Q) and its transpose (e

C
2
Q)T , i.e.,

Ŝ′
k = e−C ·Tk ·Tk

T , with Tk ,
∑k

i=0 (
C
2
Q)

i
/i!.

Thus, computing Ŝ′
k amounts to solving Tk that can be

iteratively derived as follows:{
Rk+1 = Q ·Rk

Tk+1 = Tk + Ck

2k·k! ·Rk
with

{
R0 = In
T0 = 0n

, (19)

where Rk is an auxiliary matrix used for computing Tk.
It is worth noting that the matrix equation Rk+1 = Q·Rk

in Eq.(19) can be rewritten, in the component form, as

[Rk+1](a,b) = [Q ·Rk](a,b) =
∑n

y=1 [Q](a,y) · [Rk](y,b)

= 1
|I(a)|

∑
y∈I(a) [Rk](y,b),

which takes the similar form of the single summation in
Eq.(17) except for the coefficient C

2
. Thus, our previous

optimization approach of fine-grained partial sums sharing
used for Eq.(17) can be applied in a similar way to Eq.(19),
for improving the computational efficiency. For the interest
of space, we omit the detailed algorithm here.

5. EXPERIMENTAL EVALUATION
Our comprehensive empirical studies on real and synthetic

data evaluate (i) the semantic richness and relative order of
SimRank*; (ii) the computational efficiency of SimRank*.

Experimental Setting. We use the following datasets.

(1) Real data. For semantics and relative order evaluation,
we use two graphs: CitHepTh(directed), DBLP(undirected).
(a) CitHepTh11, a citation network, where nodes are pa-

pers labeled with titles, and an edge a citation. The data is
collected from the arXiv, with papers from 1993 to 2003.
(b) DBLP12, a collaboration graph, where nodes are au-

thors, and edges co-authorships. The graph is derived from
11http://snap.stanford.edu/data/index.html
12http://dblp.uni-trier.de/˜ley/db/
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Dataset |G| (|V|, |E|) Density (|E|/|V|)
CitHepTh 451K (33K, 418K) 12.6
DBLP 102K (15K, 87K) 5.8

D05 21K (4K, 17K) 4.3
D08 85K (13K, 72K) 5.5
D11 103K (14K, 89K) 6.3

Web-Google 5.8M (873K, 4.9M) 5.6
CitPatent 19.8M (3.6M, 16.2M) 4.5

Figure 5: Details of Real Datasets

6-year publications (2002–2007) in seven major conferences:
SIGMOD, PODS, VLDB, ICDE, SIGKDD, SIGIR, WWW.
For computational efficiency evaluation, we use five graphs:

(c) D05, D08, D11, three co-authorship graphs, which are

constructed from 9-year DBLP publications (2003–2011) in
7 major conferences (as remarked in the firstDBLP dataset).
Each graph is built by choosing every 3 years as a time step.
(d) Web-Google, a web graph, where nodes are pages, and

edges links. The data is from Google Programming Contest.
(e) CitPatent, a U.S. patent network, in which nodes are

patents, and edges are citations made by patents. This data
is maintained by the National Bureau of Economic Research.
The size |G|(|V|, |E|) of the graphs are shown in Figure 5.

(2) Synthetic data. To produce synthetic networks, we use
a generator GTgraph13 that is controlled by |V| and |E|.
(3) Baselines. We implement the following algorithms in
Visual C++ 9.0. (a) our geometric SimRank* algorithm
memo-gSR* and it exponential variant memo-eSR* via fine-
grained memoization (Section 4.3); (b) our conventional iter-
ative SimRank* algorithm iter-gSR* which, as a comparison
to memo-gSR*, computes similarities without memoization
(Section 4.2); (c) psum-SR [17] and psum-PR [23] algorithms
that compute SimRank and P-Rank similarities via partial
sums memoization, respectively; (d) mtx-SR algorithm [14]
that computes SimRank using singular value decomposition.
(e) RWR [19] measures the node proximity w.r.t. a query.

(4) Test Queries. To serve the ranking purpose, we select
500 query nodes from each graph, based on the following:
For each graph, we first sort all nodes in order of their in-
degree into 5 groups, and then randomly choose 100 nodes
from each group, aiming to guarantee that the selected nodes
can systematically cover a broad range of all possible queries.
Here, we mainly focus on single-node queries, since a multi-
node query can be fairly factorized into multiple single-node
queries via Linearity Theorem [6]. For every experiment, the
average performance is reported over all test queries.

(5) Parameters. We set the following default parameters:
(a) C = 0.6, which is the typical decay factor used in [9].
(b) K = 5, which is the total number of iterations, being
the time-accuracy trade-off. Besides, for all the methods, we
clip similarity values at 10−4, to discard far-apart nodes with
scores less than 10−4 for storage. It can greatly reduce space
cost with minimal impact on accuracy, as shown in [17].

(6) Effectiveness Metrics. To evaluate semantics and rela-
tive ordering, we consider both node and node-pair ranking.
We adopt three metrics [6, 14]: Kendall’s τ , Spearman’s ρ,
and Normalized Discounted Cumulative Gain (NDCG).
(a)Kendall’s τ is defined as τ = 2

N(N−1)

∑
{i,j}∈P K̄i,j(τ1, τ2),

with K̄i,j(τ1, τ2) = 1 if i and j are in the same order in τ1
and τ2, and otherwise 0. Here, τ1 and τ2 are the rankings of
elements in two lists, P is the set of unordered pairs in τ1
and τ2, and N is the number of elements in a ranking list.

(b) Spearman’s ρ is given by ρ = 1 − 6
∑N

i=1 d2i
N(N2−1)

, where di is

13http://www.cse.psu.edu/˜madduri/software/GTgraph/index.html

the ranking difference between the i-th elements in two lists.
(c)NDCG at position p w.r.t. query q is given by NDCGp(q) =

1
IDCGp(q)

∑p
i=1

2s(i,q)−1
log2 (1+i)

, where s(i, q) is the similarity score

between nodes i and q, and IDCGp(q) is a normalized factor
ensuring the “true” NDCG ordering to be 1.

(5) Ground Truth. (a) To validate similar authors onDBLP,
we invite 20+ experts from database and data mining areas
to assess the “true” relevance of each retrieved co-authorship.
They may also refer to Co-Author Path in Microsoft Aca-
demic Search14 to see “separations” between collaborators.
(b) To evaluate similar papers on CitHepTh, we hire 15+
researchers from the physical department for judging the
“true” relevance of the retrieved co-citations. Their assess-
ment may hinge on paper contents, H-index, and #-citations
in www.ScienceDirect.com. For all the ground truths, the
final results are rendered by a majority vote of feedbacks.

All experiments are run on a machine powered by an Intel
Core(TM) 3.10GHz CPU with 8GB RAM, on Windows 7.

Experimental Results. We next present our findings.

Exp-1: Semantics & Relative Order. We first run the
algorithms on directed CitHepTh and undirected DBLP.
By randomly issuing 500+ queries, we evaluate the aver-
age semantic accuracy for each algorithm via three metrics
(Kendall, Spearman, NDCG). Fig.6(a) depicts the results.
(Due to space limits, many case studies are reported in [22]
to further exemplify the quantitative results in Fig.6(a).)
(1) On CitHepTh, memo-gSR* and memo-eSR* have higher
accuracy (e.g., Spearman’s ρ ≈ 0.91) than psum-SR (0.29),
RWR (0.12) and psum-PR (0.42) on average, i.e., the se-
mantics of SimRank* is effective. This is because SimRank*
considers all in-link paths for assessing similarity, whereas
SimRank and RWR, respectively, counts only limited sym-
metric and unidirectional paths. (2) On DBLP, the accu-
racy of RWR is the same asmemo-gSR* andmemo-eSR*, due
to the undirectedness of DBLP. This tells us that, regardless
of edge directions, both SimRank* and RWR count the path
of all lengths, as opposed to SimRank considering only the
even-length paths. Likewise, psum-PR and psum-SR produce
the same results on undirectedDBLP. (3) On both datasets,
memo-gSR* and memo-eSR* keep almost the same accuracy,
implying that the relative order of the geometric SimRank*
is well maintained by its exponential counterpart.

Fig.6(b) further validates that node-pairs with high Sim-
Rank* scores do have similar roles. On CitHepTh, we use
#-citation as a proximity measure for co-citation role; on
DBLP, we use H-index for coauthor role, since if a paper is
highly cited, it will increase the H-index of every co-author.
From the results, we see that on CitHepTh, for the top 2%
similar paper-pairs, the average difference in their #-citation
is 8 for memo-gSR* and memo-eSR*, which is lower than
psum-SR (21), psum-PR (24), RWR (43), and the random-
pair difference RAN (38). A lower average difference in #-
citation (resp. H-index) indicates that papers (resp. authors)
are reliably similar. As we increase the search to top 20%
similar paper-pairs onCitHepTh, SimRank* can constantly
find reliable similarity, whereas SimRank converges to ran-
dom scoring. Thus, node-pairs with higher SimRank* scores
will have similar roles. A similar result is shown on DBLP.

Fig.6(c) confirms that nodes with similar roles do have
high SimRank* scores. On CitHepTh (resp. DBLP), we
group the papers (resp. authors) into 10 roles based on the
#-citation (resp. H-index), from top 10% to bottom 10%.

14http://academic.research.microsoft.com/VisualExplorer
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Figure 6: Performance Evaluation on Real and Synthetic Datasets

For each node-pair, if two nodes are within the same role, we
average out their similarity score for this role. We also aver-
age out #-node-pairs not within the same role (across roles).
We see that e.g., onDBLP, the average SimRank* similarity
within the same role is stable around 0.4, in contrast with
SimRank fluctuating between 0.35 and 0.45, due to many
dissymmetric paths completely neglected by SimRank. For
the author-pairs across roles, the x-axis denotes the differ-
ence of role decile for two authors in a pair. The decreasing
line of memo-eSR* and RWR indicates that role similarity
correctly decreases as H-index gets less similar. For psum-
SR, the average across-role similarity is round 0.3, approach-
ing random scoring. This tells that SimRank* scores are
more reliable than others to reflect nodes with similar roles.
The result is more pronounced on CitHepTh.
Fig.6(d) shows the “zero-similarity” issues for SimRank

and RWR commonly exist in real graphs. The results on
e.g., CitHepTh show that more than 95% of node-pairs
have “zero-SimRank” issues, among which about 40% are
assessed as “completely dissimilar” (i.e., SimRank=0), and

about 55% have “partially missing” issue (SimRank ̸=0, but
miss the contributions of the dissymmetric in-links paths).
It shows the necessity for our revision of SimRank and RWR.

Exp-2: Time Efficiency. We next evaluate (1) the CPU
time of SimRank* on real data, and (2) the impact of graph
density on CPU time on synthetic data.

Fixing accuracy ϵ = .001 on DBLP, and varying K on
Web-Google and CitPatent, we compare the CPU time
of the five algorithms. The results are shown in Figure 6(e),
telling the following. (1) In all the cases, memo-gSR* and
memo-eSR* outperform iter-gSR*, psum-SR andmtx-SR, i.e.,
our fine-grained memoization approach is efficient. Indeed,
mtx-SR is the slowest on D05, D08, D11 due to its cost-
inhibitive SVD. OnWeb-Google, memo-gSR* (memo-eSR*)
is on average 1.6X and 2.6X faster than iter-gSR* and psum-
SR, respectively. On CitPatent, the speedup of memo-
gSR* (memo-eSR*) is on average 1.7X and 3.1X better than
iter-gSR* and psum-SR, respectively. When K ≥ 6, psum-
SR takes too long to finish computations in two days on
large CitPatent, which is practically unacceptable. In

23



contrast, memo-gSR* (memo-eSR*) just needs about 19.5
hours for K = 6. This is because SimRank* takes a simpler
form than SimRank, in which one just needs to compute
one single summation per iteration, in contrast to a double
summation of psum-SR. (2) Given ϵ = .001 on DBLP, the
speedup of memo-eSR* is more pronounced, 6.8X, 4.2X,
2.7X faster than psum-SR, iter-gSR*, memo-gSR* on average,
respectively. This is because the closed matrix form of
memo-eSR* accelerates the convergence of SimRank*, thus
yielding less iterations for attaining the same accuracy ϵ.
Figure 6(f) further shows the amortized time for each

phase of memo-eSR* and memo-gSR* on Web-Google and
CitPatent (given ϵ = .001), with x-axis being two phases.
From the results, (1) for memo-eSR* and memo-gSR*, the
time for “Compress Bigraph” is about one order of magni-
tude less than the time for “Share Sums” on Web-Google,
and 2.5 orders of magnitude less on CitPatent. This tells
that the preprocessing does not incur much extra time, con-
firming our complexity analysis in Subsect. 4.3. (2) “Com-
press Bigraph” takes up larger portions (13% onWeb-Google,
and 0.3% on CitPatent) in the total time of memo-eSR*,
than those (4% on Web-Google, and 0.1% on CitPatent)
in the total time of memo-gSR*. This is because memo-
eSR* andmemo-gSR* takes (almost) the same time for “Com-
press Bigraph”, whereas, for “Share Sums”, memo-eSR* needs
less time (3.8X onWeb-Google, 3.5X on CitPatent) than
memo-gSR*, due to the convergence speedup of memo-eSR*.
Fixing n = 350K, varying m from 3.5M to 14M on syn-

thetic data, Figure 6(g) shows the impact of graph density
d = m/n on CPU time. The results show that (1) given
ϵ = .001, memo-eSR* outperforms memo-gSR*, iter-gSR*,
and psum-SR by 3.5X, 6.1X, and 14X speedups, respectively,
as m increases. (2) The speedups of memo-eSR* and memo-
gSR* are sensitive to graph density. This is because when
graphs become denser, there is a higher likelihood that in-
neighbor sets will overlap one another for fine-grained partial
sums sharing. The biggest speedups are observed for higher
density — with nearly 1.5 orders of magnitude speedup at
d = 40, and its compression ratio is 52.7%. 15

Exp-3: Memory Space. Lastly, we evaluate the space re-
quirement of memo-eSR* and memo-gSR* against iter-gSR*,
psum-SR and mtx-SR on real data. We only use mtx-SR on
small DBLP since its memory space will explode on large
Web-Google, due to its SVD destroying graph sparsity.
The results are reported in Figure 6(h). We observe that

(1) in all the cases, memo-eSR* and memo-gSR* take almost
the same space, both of which fairly retain the same or-
ders of magnitude as iter-gSR* and psum-SR. Indeed, both
memo-eSR* and memo-gSR* only need 28.2%, 29.3%, and
19.2% more space on average on DBLP, Web-Google, and
CitPatent, respectively, as compared with iter-gSR* and
psum-SR. The extra space of memo-eSR* and memo-gSR* is
used for fine-grained SimRank* memoization. This tells that
memo-eSR* and memo-gSR* do not need to sacrifice much
space for achieving high time efficiency. (2) On DBLP,
memo-eSR* and memo-gSR* require far less space than mtx-
SR by at least one order of magnitude, since mtx-SR us-
ing SVD may produce very dense matrices. (3) On Web-
Google andCitPatent, the space of memo-eSR* andmemo-
gSR* is stable as K grows because the memoized partial
sums are immediately released after each iteration.

15Here, the compression ratio is defined by (1− m̃
m
)× 100%,

where m̃ is the number of edges in the compressed graph Ĝ.

6. CONCLUSION
We have proposed SimRank*, a refinement of SimRank,

for effectively assessing link-based similarities. In contrast
to SimRank only considering contributions of symmetric
in-link paths, SimRank* can tally contributions of all in-
link paths between two nodes, thus resolving the “zero-
SimRank” issue for semantic richness. We have also con-
verted the series form of SimRank* into two elegant forms:
the geometric SimRank* and its exponential variant, both
of which look even simpler than SimRank, yet without suf-
fering from increased computational cost. Finally, we have
developed a fine-grained memoization strategy via edge con-
centration, with an efficient algorithm speeding up Sim-
Rank* computation from O(Knm) to O(Knm̃) time, where
m̃ is generally much smaller than m. Our experimental
results on real and synthetic data show richer semantics and
higher computation efficiency of SimRank*.
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