
Optimal Security-Aware Query Processing

Marco Guarnieri
Institute of Information Security

Department of Computer Science
ETH Zürich, Switzerland

marco.guarnieri@inf.ethz.ch

David Basin
Institute of Information Security

Department of Computer Science
ETH Zürich, Switzerland

david.basin@inf.ethz.ch

ABSTRACT
Security-Aware Query Processing is the problem of com-
puting answers to queries in the presence of access control
policies. We present general impossibility results for the
existence of optimal algorithms for Security-Aware Query
Processing and classify query languages for which such al-
gorithms exist. In particular, we show that for the relational
calculus there are no optimal algorithms, whereas optimal
algorithms exist for some of its fragments, such as the exis-
tential fragment.

We also establish relationships between two different mod-
els of Fine-Grained Access Control, called Truman and Non-
Truman models, which have been previously presented in
the literature as distinct. For optimal Security-Aware Query
Processing, we show that the Non-Truman model is a special
case of the Truman model for boolean queries in the rela-
tional calculus, moreover the two models coincide for more
powerful languages, such as the relational calculus with ag-
gregation operators. In contrast, these two models are dis-
tinct for non-boolean queries.

1. INTRODUCTION
Databases often manage sensitive data where security is

a concern. There is, however, no common terminology to
refer to the problem of computing answers to queries in
the presence of access control policies. For example, “se-
cure querying” [9], “enforcing data confidentiality” [15], and
“Fine-Grained Access Control” [5,16,19] have all been used
in this context. In the following, we refer to this prob-
lem as Security-Aware Query Processing (SAQP). This dif-
fers from Secure Query Processing since the latter usually
refers to querying encrypted data. Security-Aware Query
Processing algorithms are implemented in commercial data-
bases [1, 7, 18], and solutions have been proposed for other
settings like XML files [9] or RDF graphs [15].

Rizvi et al. [16] identified two distinct models, called Tru-
man and Non-Truman models [16], that capture different
approaches to the SAQP problem. The term Truman model

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

comes from the protagonist of the movie The Truman Show
who is unaware that he lives in an artificial environment
where everything he experiences is externally controlled. Al-
gorithms in the Truman model transparently modify all user
queries to restrict the user’s access to only the data autho-
rized by the security policy. The query’s result may differ
from the unrestricted one to preserve confidentiality. For
example, suppose we issue a query q asking for the names
of all employees, but we are authorized only to read some
of their records. If the company has 1000 employees and
we have access to just 800, the original query is modified,
and we get just the names of the 800 employees we are au-
thorized to read. However, such modifications may cause
inconsistencies between user’s expectations and the query’s
result. For instance, if we know that there are actually 1000
employees, then the modified result is inconsistent with our
knowledge.

In contrast to the above, the Non-Truman model solves
the problem of inconsistencies. Algorithms in this model
execute a query iff it can be answered using only informa-
tion the user is authorized to read under the given policy
(these queries are called conditionally valid) and otherwise
the query is rejected. In our example, in the Non-Truman
model the query q is rejected because it cannot be answered
using only authorized information. In contrast, a query q′

asking the names of the 800 employees we are authorized
to read is executed. The two models target different needs.
The Truman model ensures higher data availability at the
price of partial results and inconsistencies, whereas the Non-
Truman model ensures consistency at the expense of lower
data availability.

Wang et al. [19] analyzed query processing algorithms in
the Truman model and proposed three correctness criteria:
security, soundness, and maximality. Security requires that
a query’s result does not depend on sensitive information,
soundness requires that an algorithm returns only correct
information, and maximality requires that an algorithm re-
turns as much information as possible without violating the
given policy. In the Truman model, we say that an algorithm
is optimal iff it satisfies all three of these criteria, whereas
in the Non-Truman model, an algorithm is optimal iff it ex-
ecutes exactly the conditionally valid queries. In both mod-
els, optimal algorithms are what we ideally want as they are
the only algorithms that guarantee security, correctness, and
data availability. For instance, in the Non-Truman model,
an algorithm that rejects all queries is secure but useless,
whereas an algorithm that executes all queries is useful but
insecure. Similarly, in the Truman model, an algorithm that

1307

always returns ∅ as a query’s result is secure and sound, an
algorithm that always returns the original query’s result is
sound and maximal, and an algorithm that systematically
introduces noise in the result can be secure and maximal.

Unfortunately, a thorough analysis of optimal Security-
Aware Query Processing has been missing until now. For
the Non-Truman model, Rizvi et al. [16] left open the decid-
ability of the conditional validity problem. Although Zhang
et al. [20] proved that it is decidable for conjunctive queries
and Koutris et al. [11] extended this result to unions of con-
junctive queries, there is no general characterization of the
problem. For the Truman model, Wang et al. [19] claimed
that “while the maximality property is desirable, it is diffi-
cult to achieve” for algorithms that are secure and sound.
They presented an informal example supporting this claim
but they did not give a proof.

In this paper, we study the decidability of optimal Security-
Aware Query Processing for boolean and non-boolean queries
in both models and we provide answers to all the above open
problems. We prove possibility and impossibility results for
the relational calculus (RC) and for the existential fragment
of RC (ERC). RC is a query language that can express all
first order queries, whereas the ERC fragment is an exten-
sion of conjunctive queries. We also establish connections
between Truman and Non-Truman models.

Contributions First, we present a detailed analysis of the
optimal Security-Aware Query Processing problem in the
Truman model. We prove that, in general, there is no opti-
mal SAQP algorithm in the Truman model for the relational
calculus. Hence, for the query languages used in practice,
such as SQL, there is no way to securely process queries
without either losing some information, violating the secu-
rity policy, or returning incorrect information. We classify
fragments of the relational calculus for which optimal al-
gorithms exist, and we present sufficient conditions for the
decidability of the optimal Security-Aware Query Process-
ing problem. We use these sufficient conditions to give an
optimal SAQP algorithm for the existential fragment of RC .
We also prove the claim of Wang et al. stated in [19].

Second, we establish connections between the Truman
and Non-Truman models for the optimal SAQP problem.
These two models have different, and seemingly contradic-
tory, goals, and their relationship was previously unclear. In
the past, they were sometimes considered as distinct [16,19].
We show that, for boolean RC-queries, the Non-Truman
model is a special case of the Truman model. Moreover,
the two models coincide for sufficiently powerful query lan-
guages, such as the relational calculus with aggregation op-
erators. In contrast, for non-boolean queries, we prove that
the two models actually are distinct.

Finally, we adapt the correctness criteria defined in [19] to
the Non-Truman model. By using the resulting criteria and
by exploiting the connections between optimal algorithms in
the two models, we extend our decidability results to optimal
algorithms in the Non-Truman model and to the conditional
validity problem. Note that we consider a security model
that is more expressive than the one used in previous work
on the Non-Truman model [11, 16, 20]. We thereby improve
upon the results in [11,20].

Table 1 summarizes our main results, and the associated
theorems. The symbol ⊃ denotes that the Non-Truman
model is a special case of the Truman model, whereas the
symbol 6= denotes that the two models are distinct.

Organization In Section 2 we review relevant background.
In Section 3 we introduce our security model, and in Sec-
tion 4 we introduce Security-Aware Query Processing. We
present our results in Section 5 for boolean queries and in
Section 6 for non-boolean queries. In Section 7 we compare
with related work, and in Section 8 we draw conclusions.

2. BACKGROUND
In this section, we provide background on the relational

model, the relational calculus, and associated decidability
results. Further details can be found in [3, 6].

2.1 Relational Model
We use the definition of the relational model taken from

[3]. Let att, dom, and relname be three countably infinite
disjoint sets. The set att contains attribute identifiers, rel-
name contains relation identifiers, and dom represents the
underlying domain. We assume that there is a total order
≤att on att. Constants are elements of dom, and we assume
given a mapping Dom : att → P(dom) assigning to each
attribute at ∈ att a set of elements from dom. Without
loss of generality, we assume that N ⊆ dom. We associate a
finite set of attributes to each relation name using the func-
tion sort : relname → Pfin(att), where Pfin(A) is the set
of all finite subsets of the set A.

A relation schema is a relation name R ∈ relname with
a set of attributes sort(R). A tuple t := 〈t1, . . . , tn〉 is an
n-tuple, where t1, . . . , tn ∈ dom and n ∈ N. We say that t is
of sort {at1, . . . , atn} (ordered by ≤att) iff ti ∈ Dom(ati) for
1 ≤ i ≤ n. We denote by |t| the number of values in t, and

by t
i

the i-th value in t, where i ∈ {1, . . . , |t|}. A relation
instance of a relation schema R is a (possibly empty) finite
set of tuples of sort sort(R).

A database schema D is a non-empty finite set of relation
schemas, and a state of D is a mapping s that assigns to each
relation schema R ∈ D a relation instance of the schema R.
Let D be a database schema. We denote by ΩD the set of
all possible states of D. For a relation schema R in D, we
denote by s(R) the instance of R in the state s.

2.2 Domain Relational Calculus
The Domain Relational Calculus, or simply the Relational

Calculus (RC), is a query language defined by Codd [8] built
on top of function-free First-Order Logic (FOL). Let var
be a countably infinite set of variables.

Definition 2.1. Relational Calculus: Let D be a data-
base schema. A RC-formula over D is inductively defined
as follows.

1. R(x1, . . . , xn) is a RC-formula over D, where R is a
relation schema in D and x1, . . . , xn ∈ var.

2. x op k is a RC-formula over D, where x ∈ var, k ∈
dom, and op ∈ {=, 6=}.

3. x1 op x2 is a RC-formula over D, where x1, x2 ∈ var
and op ∈ {=, 6=}.

4. Q x. φ is a RC-formula over D, where φ is a RC-
formula over D, x ∈ var, and Q ∈ {∃,∀}.

5. ¬φ is a RC-formula over D, where φ is a RC-formula
over D.

6. φ op ψ is a RC-formula over D, where φ, ψ are RC-
formulae over D and op ∈ {∧,∨,⇒}.

Given a tuple t = 〈t1, . . . , tn〉, and a RC-formula φ(x, y)
with free variables x and y, where x = 〈x1, . . . , xn〉, we

1308

Query

Boolean

Truman Model ⊃ (Theorem 5.4) Non-Truman Model

¬∃optimal
undecidable fragments of RC

(Theorem 5.2)

∃optimal
sufficient conditions (Lemma 5.1)

ERC (Theorem 5.3)

Non-Boolean

Truman Model 6= (Corollary 6.1) Non-Truman Model

¬∃optimal
undecidable fragments of RC ¬∃optimal

undecidable fragments of RC
(Theorem 6.2) (Theorem 6.5)

∃optimal
sufficient conditions (Lemma 6.1) ∃optimal

sufficient conditions (Lemma 6.2)
ERC (Theorem 6.3) ERC (Theorem 6.6)

Table 1: Summary of Results

denote by φ[x 7→ t] the formula obtained by replacing all the
free occurrences of xi with ti for each i ∈ {1, . . . , n}. We use
a similar notation for variable substitution. We also denote
by |x| the number of variables in the tuple x, and by xi the
i-th element in x, where i ∈ {1, . . . , n}. Moreover, given
a tuple of variables x without repetitions and a variable y
in x, we denote by pos(x, y) the position of y in x, i.e.,
pos(x, y) = j iff xj = y. Given a formula φ, free(φ) denotes
the set of free variables in φ. A sentence is a formula φ when
free(φ) = ∅.

We now introduce the existential fragment ERC of the
relational calculus. Note that the ERC fragment strictly
contains conjunctive queries (CRC).

Definition 2.2. ERC: Let D be a database schema. The
formula φ(y) := ∃x. ψ(x, y) is a ERC-formula over D iff ψ
is a quantifier-free RC-formula over D.

For technical reasons, we also consider the Bernays Schön-
finkel Ramsey fragment BSRRC.

Definition 2.3. BSRRC: Let D be a database schema.
The formula φ(z) := ∃x.∀y. ψ(x, y, z) is a BSRRC -formula
over D iff ψ is a quantifier-free RC-formula over D.

We now define boolean and non-boolean queries.

Definition 2.4. Let F be a query language and D be a
database schema. A boolean query over D in F is an F -
sentence over D. A non-boolean query in F is of the form
{x |φ}, where φ is an F -formula over D, x is a tuple of
variables, |x| ≥ 1, and free(φ) = x.

Without loss of generality, we will only consider non-
boolean queries {x |φ} where the tuple x does not contain
repeated variables. The semantics of RC is the same as
first-order logic semantics, where quantified variables range
over elements of the underlying domain dom.

We can now define the result of a query over a state.

Definition 2.5. Let D be a database schema, s ∈ ΩD be
a state, and q be a query over D. We denote the evaluation
of q on the state s by [q]s. For a boolean query q, [q]s = >
if q is satisfied on the state s, and otherwise [q]s = ⊥. For
a non-boolean query q := {x |φ(x)}, [q]s is the largest set

T ⊆ dom|x| such that [φ[x 7→ t]]s = > for all t ∈ T .

In this paper, we consider only domain independent queries,
which are queries that yield the same result on all possible

Language FINSATF FINVALF

RC Undecidable Undecidable
BSRRC Decidable Undecidable

ERC Decidable Decidable

Table 2: Decidability of FINSATF and FINVALF

underlying domains [3]. Domain independent relational cal-
culus is as expressive as relational algebra. Although check-
ing whether a query is domain independent is undecidable,
there are various ways to obtain domain independent queries
through syntactic restrictions, such as safe-range queries
and range-restricted queries. Note that these syntactic ap-
proaches necessarily characterize proper subsets of the do-
main independent queries.

In the following, we use the term query language to refer
to the relational calculus and its fragments, such as ERC .
We assume that there is a unique encoding of formulae as
natural numbers, and in our proofs we switch freely between
formulae and their encodings.

2.2.1 Decision Problems
Here we define the finite satisfiability and finite validity

decision problems for (fragments of) the relational calculus.

Problem 2.1. Let F be a query language. FINSATF de-
notes the following decision problem:

Input: A database schema D and a sentence φ ∈ F .
Question: Is there a state s ∈ ΩD such that [φ]s = >?

Problem 2.2. Let F be a query language. FINVALF de-
notes the following decision problem:

Input: A database schema D and a sentence φ ∈ F .
Question: For all states s ∈ ΩD, is [φ]s = >?

Table 2 presents decidability results from [6] for these two
problems for the query languages used in this paper.

3. SECURITY POLICY MODEL
Various Fine-Grained Access Control models for databases

have been proposed in the literature [1, 7, 12, 18]. Although
each has its own features, the models share common charac-
teristics: (1) they support access control constraints at the
row or column level, and (2) access control constraints are
given by formulae, e.g., expressed in SQL [12], referring to
the database’s current state or to the user’s credentials. We
now describe a security policy model that captures the main
features of existing fine-grained access control models.

1309

Let F be a query language. An F -constraint is a pair
〈{x|ψ}, φ〉 where {x|ψ} is a non-boolean F -query and φ is
an F -formula such that free(φ) ⊆ free(ψ). A row-level F -
constraint is just an F -constraint 〈{x|ψ}, φ〉 that specifies
the conditions φ under which we are authorized to read a
tuple in the result of {x|ψ}. A column-level F -constraint
is a triple 〈{x|ψ}, φ, i〉 that specifies the conditions φ under
which we are authorized to read the i-th value of a tuple in
the result of {x|ψ}, where 〈{x|ψ}, φ〉 is an F -constraint and
i ∈ {1, . . . , |x|}. Note that given an F -constraint 〈{x|ψ}, φ〉,
a free variable z in φ refers to the i-th value of the tuple
on which the constraint φ is evaluated, where i = pos(x, z).
In the following, we consider only domain independent F -
constraints, i.e., constraints 〈{x|ψ}, φ〉 such that {x|ψ∧φ} is
domain-independent. As a result, the access control decision
does not depend on the underlying domain.

The constraints are expressed using formulae that can re-
fer to the current state and to the values of the tuple being
accessed. Note that the constraints can be defined over arbi-
trary non-boolean queries. We can therefore restrict access
not only to the data in the relation schemas but also to
derived information, such as tuples in views.

A security policy in our model is defined as follows.

Definition 3.1. Security Policy: Let F be a query lan-
guage and D be a database schema. An F -security pol-
icy S over D is a pair 〈ROW ,COL〉, where ROW is a
set of row-level F -constraints and COL is a set of column-
level F -constraints, such that for any non-boolean query q:
(1) there is at most one constraint in ROW associated with
q, and (2) there is at most one constraint in COL associated
with the i-th value of the tuples in the result of q.

Let D be a database schema, S = 〈ROW ,COL〉 be a se-
curity policy over D, {x|ψ} be a non-boolean query, and
s ∈ ΩD be a state. We say that S discloses the tuple
t ∈ [{x|ψ}]s, denoted by DiscS(t, {x|ψ}, s), iff there is a con-
straint 〈{x|ψ}, φ〉 ∈ ROW such that [φ[x 7→ t]]s = >. Simi-
larly, we say that S discloses the i-th value of the tuple t ∈
[{x|ψ}]s, denoted by DiscS(t, {x|ψ}, s, i), iff DiscS(t, {x|ψ},
s) and there is a constraint 〈{x|ψ}, φ, i〉 ∈ COL such that
[φ[x 7→ t]]s = >, where i ∈ {1, . . . , |x|}. Note that the au-
thorization to read a tuple does not imply the authorization
to read any of its values. Given a constraint 〈q, φ〉 ∈ ROW ,
we denote by AuthS,q(s) the set of tuples in [q]s disclosed by
S in the state s, i.e., AuthS,q(s) := {t ∈ [q]s|DiscS(t, q, s)}.

Example 3.1. LetD be a database schema containing only
one relation schema Employee with sort(Employee)= {name,
age, job}, where name and job range over strings and age
ranges over N. We want to prevent the access to tuples rep-
resenting secret agents. Although name is not protected, we
want to disclose only the age of employees over 18, and only
the job of the Clerks. We also want to disclose the set of the
jobs in the database. Let q be the query {x, y, z|Employee(x,
y, z)}, and r be the query {z| ∃x, y.Employee(x, y, z)}. The
security policy S = 〈ROW ,COL〉 is as follows: ROW =
{〈q, z 6= SecretAgent〉, 〈r,>〉}, and COL = {〈q,>, 1〉, 〈q,∧
i∈{1,...,17} y 6= i, 2〉, 〈q, z = Clerk, 3〉, 〈r,>, 1〉}. �

Note that a policy specifies which tuples and values we are
authorized to read; it does not directly specify the result
of a given query. The semantics of Security-Aware Query
Processing will be introduced in the following sections.

s1
s2

Employee

name age job

John 25 Clerk

Frank 17 Admin

Jack 36 SecretAgent

Employee

name age job

John 25 Clerk

Frank 16 Admin

Jack 36 SecretAgent

Carl 26 SecretAgent

s3

Employee

name age job

John 25 Clerk

Frank 19 Admin

Jack 36 SecretAgent

Carl 26 SecretAgent

s4

Employee

name age job

John 25 Clerk

Frank 17 Admin

Figure 1: Some states

We now introduce the concept of masked tuple from [19].
A masked tuple is a tuple where some of its values are re-
placed by the distinguished value †. This value prevents the
disclosure of data that may be sensitive. A tuple v is sub-
sumed by another tuple t, written v v t, iff |v| = |t|, and for

all i ∈ {1, . . . , |t|}, vi = t
i

or vi = †.

Example 3.2. Let q be the query in Example 3.1. The
result of q in the state s1 in Figure 1 contains three tuples:
t = 〈John, 25, Clerk〉, v = 〈Frank, 17, Admin〉, and u =
〈Jack, 36, SecretAgent〉. The policy S discloses t and v but
not u because Jack is a secret agent. Moreover, the tuple
v is only partially disclosed. Indeed, we are authorized to
read the name, but not the age or the job. The policy S
also fully discloses the result of the query r, i.e., the set
{〈Clerk〉, 〈Admin〉, 〈SecretAgent〉}. Note that the tuple z =
〈Frank, †, †〉 is subsumed by the tuple v, i.e., z v v. �

Note that our security policy model uses a set semantics
derived from RC, whereas related approaches use a multi-
set semantics derived from SQL. The models in [1, 18] sup-
port only row-level constraints, those in [7,12] support only
column-level constraints, and the model in [5] supports both.
Our security policy model subsumes all these approaches as
well as approaches where the security policy is expressed us-
ing views. Note that our security policies can represent, by
combining column-level and row-level constraints, cell-level
disclosure policies [5, 12,19].

For simplicity, we ignore users and their credentials. This
neither restricts nor limits our theoretical results. Users’
credentials can be modeled as a mapping cred from the set
U of users to the set S of security policies that assigns to
each user u ∈ U a security policy S ∈ S where the users’
credentials are hard-coded in S using constant values.

4. SECURITY-AWARE QUERY PROCESS-
ING

In this section, we introduce security-aware query pro-
cessors, indistinguishable states, and correctness criteria for
boolean queries in the Truman model.

Definition 4.1. Let D be a database schema, F be a query
language, U be the set of all possible results, and S be the
set of F -policies. An F -Security-Aware Query Processor (F -
SAQP) is a function M : F × S × ΩD → U .

Note that the set U depends on the type of query, i.e.,
boolean or non-boolean. Although boolean queries can be
only true (>) or false (⊥) in a given state, a security-aware
query processor may also return the third value †, i.e., U =
{>,⊥, †}. This value is used to prevent the leakage of sensi-
tive information, which is in contrast to [19] where † is used
only to mask tuples in the query’s result.

1310

Mopt(φ, S, s) :=

 > if ∀s′ ∈ JsK∼=S . [φ]s
′

= >
⊥ if ∀s′ ∈ JsK∼=S . [φ]s

′
= ⊥

† otherwise

Figure 2: An optimal SAQP for boolean queries

We now define indistinguishability, adapted from [19] to
our setting.

Definition 4.2. Let D be a database schema, F be a query
language, and S = 〈ROW ,COL〉 be an F -policy over D.
We say that two states s1 and s2 in ΩD are indistinguish-
able according to S, written s1 ∼=S s2, iff for all 〈q, φ〉 ∈
ROW , there is a bijection f from AuthS,q(s1) to AuthS,q(s2)
such that for all t ∈ AuthS,q(s1) and all i ∈ {1, . . . , |t|},
(1) DiscS(t, q, s1, i) iff DiscS(f(t), q, s2, i), and (2) if DiscS(t,

q, s1, i), then t
i

= f(t)i.

Example 4.1. The states s1 and s2 in Figure 1 are indis-
tinguishable according to S. In contrast, s1 6∼=S s3 because
the value of the attribute age for Frank is protected in state
s1 but not in state s3, and s1 6∼=S s4 because the result of
the query r is different in the two states. �

Note that all the states are indistinguishable according to
the empty policy S = 〈∅, ∅〉. Given a database schema D
and a policy S, the indistinguishability relation ∼=S is an
equivalence relation over ΩD. Given a state s ∈ ΩD, the
equivalence class of s defined by ∼=S is denoted by JsK∼=S .

We now adapt the correctness criteria given in [19] to
boolean queries. A secure SAQP M is not influenced by
data protected by a given security policy, i.e., M’s result
does not depend on undisclosed data.

Definition 4.3. Let D be a database schema and F be a
query language. An F -security-aware query processor M is
secure iff for all F -policies S over D, all F -queries q, and all
s, s′ ∈ ΩD, if s ∼=S s

′, then M(q, S, s) =M(q, S, s′).

A sound SAQP M returns only correct information, i.e.,
information already returned by the original query. Note
that M(q, S, s) may return less information than [q]s, but
never more information. For boolean queries,M(q, S, s) can
return either [q]s or †.

Definition 4.4. Let D be a database schema and F be a
query language. An F -security-aware query processor M is
sound iff for all queries q ∈ F , all F -policies S over D, and
all s ∈ ΩD, M(q, S, s) = [q]s or M(q, S, s) = †.

Finally, maximality formalizes that M returns as much
information as possible. For boolean queries, a maximal
SAQP, given a query q, returns [q]s for all states s where it
is secure to return [q]s.

Definition 4.5. Let D be a database schema and F be a
query language. An F -security-aware query processor M
is maximal iff for all F -security policies S over D, all F -

queries q, and all s ∈ ΩD, if [q]s = [q]s
′

for all s′ ∈ JsK∼=S ,
then M(q, S, s) = [q]s.

We are now ready to define optimal algorithms for boolean
queries in the Truman model.

Definition 4.6. Let F be a query language. An F -SAQP
for boolean queries is optimal in the Truman model iff it
satisfies the Definitions 4.3–4.5.

Optimal algorithms are those algorithms that return as
much information as possible without returning incorrect
information or violating the security policy. Figure 2 de-
scribes an optimal SAQP for boolean queries. Depending
on the query language, Mopt may not be computable.

Optimal algorithms are important because satisfying only
two out of three correctness criteria is usually not enough.
Indeed, a functionM1(q, S, s) = † for all q, S, and s is secure
and sound but is completely useless. Similarly, a function
M2(q, S, s) = [q]s for all q, S, and s is sound and maximal
but leaks sensitive information. Finally, a functionM3 that
satisfies the security and maximality criteria can systemati-
cally return arbitrary results without violating security and
maximality. Indeed, let E be one of the partitions of ΩD
defined by ∼=S such that [q]s 6= [q]s

′
for some s, s′ ∈ E, then

M3 can return an arbitrary value for all states in E.

5. BOOLEAN QUERIES
In this section, we study the existence of optimal Security-

Aware Query Processing algorithms for boolean queries.

5.1 Preliminaries
We first define the query agreement decision problem. Af-

terwards, we show how this problem is related to optimal
Security-Aware Query Processing.

Problem 5.1. Let F be a query language. We denote by
AGREEF the following decision problem:

Input: A database schema D, an F -security policy S
over D, a boolean query q ∈ F , and a state s ∈ ΩD.

Question: For all states s′ ∈ JsK∼=S , is [q]s
′

= [q]s?

Theorem 5.1 establishes that the decidability of AGREEF

is related to the existence of optimal SAQP algorithms for
the query language F .

Theorem 5.1. Let F be a query language. There is a
computable optimal F -SAQP algorithmM for boolean queries
iff AGREEF is decidable.

Proof. (⇒) Let M be a computable optimal F -SAQP
algorithm for boolean queries. We useM as a subroutine in
a decision procedure for AGREEF . AGREEF takes as input
a database schema D, a policy S over D, a boolean F -query
q, and a state s. IfM(q, S, s) = †, then AGREEF (D,S, q, s)
= ⊥, otherwise AGREEF (D,S, q, s) = >.

(⇐) We use AGREEF to build an optimal F -SAQP M.
Let D be a database schema. M takes as input an F -policy
S over D, a boolean F -query q, and a state s ∈ ΩD. If
AGREEF (D,S, q, s) = >, then M(q, S, s) = [q]s, otherwise
M(q, S, s) = †. It easy to see that M is optimal and com-
putable.

We next study the decidability of AGREEF for RC and
ERC , and extend the results to the existence of optimal
algorithms for these query languages. In our theorem state-
ments and proofs, we will ignore subrecursive complexity
bounds and all reductions will be Turing reductions.

1311

5.2 Impossibility Results
We now show that there are no optimal SAQP algorithms

for boolean RC queries. Since all query languages used in
practice, such as SQL, are Codd-complete, i.e., they are at
least as expressive as RC, it follows from our impossibility
result that there are no optimal SAQP algorithms for the
boolean query languages currently in use.

Theorem 5.2. AGREERC is undecidable.

Proof Sketch. Let S be the empty policy 〈∅, ∅〉 and D be
a database schema. Then, ∼=S defines just one equivalence
class containing every state. An RC-sentence φ is finitely
satisfiable iff AGREERC(D,S, φ, s) = ⊥ or [φ]s = >, where
s is the empty state. The reduction can be implemented by
a total Turing machine. Since FINSATRC is undecidable,
so is AGREERC . �

From Theorem 5.2, it follows that there are no optimal
SAQP algorithms for boolean RC-queries. Similarly to The-
orem 5.2, we can prove an even stronger result: for any frag-
ment F of RC such that FINSATF (or FINVALF) is unde-
cidable, then AGREEF is also undecidable. Therefore, from
well-known undecidability results for fragments of RC, one
can identify fragments for which there are no optimal SAQP
algorithms. Note also that considering integrity constraints
or functional dependencies in a particular fragment of RC
might cause the undecidability of the AGREE problem, and
therefore the impossibility of optimal SAQP.

5.3 Possibility Results
Although AGREERC is undecidable, there are fragments

of RC for which the problem is decidable. In this sec-
tion, we present sufficient conditions for the decidability
of AGREEF , and we use these conditions to prove the de-
cidability of AGREEERC. Note that we do not provide a
complete classification of the fragments of RC for which
AGREEF is decidable and there are fragments that meet
neither the conditions for undecidability stated above nor
the conditions of Lemma 5.1 below. Moreover, although we
prove decidability, we do not derive complexity bounds for
optimal SAQP algorithms.

We first introduce the notion of encoding the indistin-
guishability relation in a formula. Let D be a database
schema, S be a security policy over D, and s be a state in
ΩD. We say that a sentence φINDIST(S,s) encodes the indis-
tinguishability relation defined by the policy S on the state
s iff φINDIST(S,s) is domain independent and for all s′ ∈ ΩD,

[φINDIST(S,s)]
s′ = > iff s ∼=S s

′.
We now present sufficient conditions for the decidability

of the AGREEF decision problem.

Lemma 5.1. Let F be a query language. AGREEF is de-
cidable if there is a query language F ′ such that:

1. FINSATF
′

is decidable.
2. For any s ∈ ΩD and any F -policy S, we can compute a

sentence φINDIST(S,s) that encodes the indistinguisha-
bility relation.

3. We can compute sentences γ, γ′ ∈ F ′ equivalent to
φINDIST(S,s)∧ψ and φINDIST(S,s)∧¬ψ respectively, for
any s ∈ ΩD, any F -policy S, and any sentence ψ ∈ F .

Proof Sketch. Let D be a database schema, s ∈ ΩD
be a state, ψ be an F -sentence, and S be an F -policy. Let

γ>(S, s, ψ) and γ⊥(S, s, ψ) be the two F ′-sentences respec-
tively equivalent to φINDIST(S,s) ∧ ¬ψ and φINDIST(S,s) ∧ ψ.

The algorithm for AGREEF computes k = [ψ]s. Then,
AGREEF (D,S, ψ, s) = > iff FINSATF (γk(S, s, φ)) =⊥. �

There are fragments of RC that are not expressive enough
to encode the indistinguishability relation. For this reason,
in Lemma 5.1, we introduced another fragment F ′ that is
more expressive and allows such an encoding. For instance,
in the ERC fragment there is no encoding of the indistin-
guishability relation, but it can be encoded in the more ex-
pressive BSRRC fragment.

There is a similar set of preconditions for solving AGREEF

using FINVALF
′
; we just need to consider the formulae

φINDIST(S,s) ⇒ ψ and φINDIST(S,s) ⇒ ¬ψ instead of the
formulae φINDIST(S,s) ∧ ψ and φINDIST(S,s) ∧ ¬ψ.

Before proving the decidability of AGREEERC, we intro-
duce some notation. Given a policy S = 〈ROW ,COL〉,
a state s, a constraint 〈q, φ〉 ∈ ROW , and a tuple t ∈
AuthS,q(s), we denote by maskS,s,q(t) the masked tuple v
obtained from t by replacing all the undisclosed values with
†, i.e., |v| = |t| and for all i ∈ {1, . . . , |t|}, if DiscS(t, q, s, i),

then vi = t
i
, otherwise vi = †.

Let D be a database schema, S = 〈ROW ,COL〉 be a secu-
rity policy over D, 〈q, φ〉 be a constraint in ROW , and s be a
state in ΩD. The set IndS,q(s) contains all the masked tuples
t that can be obtained from tuples in AuthS,q(s) using the
function maskS,s,q(t), i.e., IndS,q(s) := {maskS,s,q(t) | t ∈
AuthS,q(s)}. Given a tuple t ∈ IndS,q(s), we denote by

cardS,s,q(t) the number of tuples t
′ ∈ AuthS,q(s) that can-

not be distinguished from t according to the security policy
S, i.e., cardS,s,q(t) := |{t′ ∈ AuthS,q(s) |maskS,s,q(t

′
) = t}|.

Let S = 〈ROW ,COL〉 be a security policy, i ∈ N, and
q := {x|φ} be a non-boolean query. We denote by ψSq the

condition in the constraint associated with q, i.e., 〈q, ψSq 〉 ∈
ROW . Similarly, we denote by ψSq,i the condition associated

with the i-th value of q, i.e., 〈q, ψSq,i, i〉 ∈ COL. If there is

no such a constraint, then ψSq =⊥ (respectively, ψSq,i =⊥).

We now use Lemma 5.1 to prove that AGREEERC is de-
cidable. Due to the limited expressiveness of the ERC frag-
ment, we cannot encode the indistinguishability relation in
it. However, we can prove the decidability of AGREEERC

using the more expressive BSRRC fragment.

Theorem 5.3. AGREEERC is decidable.

Proof Sketch. Let S = 〈ROW ,COL〉 be an ERC -policy,
s be a state, and q := {x|ψ} be a non-boolean ERC -query
such that there is a constraint for q in S. The formula
θq,S(y, t), where y is a tuple of variables and t is a possibly
masked tuple of values in dom such that |y| = |t|, is as
follows:

θ{x|ψ},S(y, t) :=
∧

i∈{1,...,|t|}
∧ti 6=†

(ψSq,i[x 7→ y] ∧ yi = t
i
)∧

∧
i∈{1,...,|t|}
∧ti=†

¬ψSq,i[x 7→ y].

The formula θ{x|ψ},S(y, t) forces the masked version of the
tuple associated with the values of the variables y to be t.

1312

In our encoding φ′INDIST(S,s), we use counting quantifiers.
A counting quantifier ∃op mx. φ(x), where op ∈ {=,≤,≥, <
,>} and m ∈ N, is a quantifier that specifies the number
of tuples that can be mapped to x and satisfy φ(x). For
instance, the formula ∃=2x1. φ(x1) is true iff there are ex-
actly two distinct elements x1 satisfying φ(x1). Note that
counting quantifiers do not add expressive power to RC.

Given a tuple of variables x, we denote by yx the tuple of
variables y1, . . . , y|x|. The encoding φ′INDIST(S,s) is:

ψS,{x|ψ},s := ∃=|AuthS,{x|ψ}(s)|yx. (ψ[x 7→ yx]∧

ψS{x|ψ}[x 7→ yx])

γ{x|ψ},S,s,t := ∃≥cardS,s,{x|ψ}(t)yx. (ψ[x 7→ yx]

∧ ψS{x|ψ}[x 7→ yx] ∧ θ{x|ψ},S(yx, t))

φ′INDIST(S,s) :=
∧

〈q,φ〉∈ROW

(ψS,q,s ∧
∧

t∈IndS,q(s)

γq,S,s,t).

The sentence ψS,{x|ψ},s states that, for any state s′ such

that [ψS,{x|ψ},s]
s′ = >, |AuthS,{x|ψ}(s

′)| = |AuthS,{x|ψ}(s)|.
The sentence γ{x|ψ},S,s,t states that, for any state s′ such

that [γ{x|ψ},S,s,t]
s′ = >, there are at least cardS,s,{x|ψ}(t)

tuples v in AuthS,{x|ψ}(s
′) such that maskS,s′,{x|ψ}(v) = t.

The sentence φ′INDIST(S,s) encodes the indistinguishability
relation for the ERC -policy S and the state s.

Although φ′INDIST(S,s) is not in BSRRC , it can be rewrit-
ten as a BSRRC -sentence. Furthermore, there are BSRRC -
sentences equivalent to φ′INDIST(S,s)∧ψ and φ′INDIST(S,s)∧¬ψ
for any ERC -sentence ψ and any ERC -policy S. Therefore,
AGREERC is decidable by Lemma 5.1. �

From Theorem 5.3 and CRC ⊂ ERC, it follows that
AGREECRC is decidable. Therefore, there are optimal SAQP
algorithms for boolean conjunctive queries.

5.4 Truman and Non-Truman models
In this section, we study the connections between Tru-

man and Non-Truman models as defined in [16]. In the
Non-Truman model, the security policy is expressed using
a set of authorization views. Authorization views are stan-
dard database views extended with parameters referring to
users’ credentials. They can be used to specify the data
a user is authorized to read. Authorization views in [16]
are expressed in SQL, whereas in this paper we study au-
thorization views in the relational calculus. In the following,
we ignore users’ credentials, which does not limit our results.

Definition 5.1. Let D be a database schema and F be
a query language. An F-authorization view is defined by
assigning an identifier V ∈ relname \ D to a non-boolean
F -query {x|φ(x)}, i.e., V := {x|φ(x)}.

Let s ∈ ΩD be a state and V := {x|φ(x)} be a view.
The materialization of V in s, denoted by Vs, is [{x|φ(x)}]s.
Views can be used in RC-formulae in the same way as rela-
tion schemas, but in this case we consider the materialized
views instead of the relation instances.

We now introduce the notion of equivalence with respect
to a set of authorization views AV (AV -equivalence) de-
fined in [16]. Two states are AV -equivalent iff their views’
materializations are the same.

Definition 5.2. Let D be a database schema, AV be a set
of authorization views over D, and s, s′ ∈ ΩD be two states.
Then, s and s′ are AV -equivalent, written s ∼=AV s′, iff for
all V ∈ AV , Vs = Vs′ .

For any database schema D and any set of views AV , the
relation ∼=AV is an equivalence relation over ΩD.

We now introduce row-level policies. Intuitively, a row-
level policy does not disclose partial tuples.

Definition 5.3. Let D be a database schema and S =
〈ROW ,COL〉 be a security policy over D. S is a row-level
policy iff for all 〈q, φ〉 ∈ ROW , all s ∈ ΩD, and all t ∈ [q]s,
if DiscS(t, q, s), then DiscS(t, q, s, i) for all i ∈ {1, . . . , |t|}.

We say that a security policy S and a set of views AV
are equivalent iff ∼=AV = ∼=S . We prove below that RC -
authorization views are as expressive as row-level RC -policies.
It is easy to see that row-level RC -policies are strictly less ex-
pressive than RC -policies, and therefore RC -authorization
views are strictly less expressive than RC -policies.

Proposition 5.1. Let D be a database schema. For each
set of RC-authorization views over D, there is an equivalent
row-level RC-security policy over D and vice versa.

Proof Sketch. We can use the formulae defining the views
to define an equivalent row-level policy. Conversely, we can
use the constraints in a row-level policy to define an equiv-
alent set of views. �

Example 5.1. Let AV be the set of views {q1, q2}, where
q1 is the query {z | ∃x, y.Employee(x, y, z)} and q2 is the
query {y | ∃x, z.Employee(x, y, z)}. The equivalent row-level
policy is S := 〈{〈q1,>〉, 〈q2,>〉}, {〈q1,>, 1〉, 〈q2,>, 1〉}〉.

Let S be the row-level policy 〈{〈q1, φ〉, 〈q2, ψ〉}, {〈q1,>, 1〉,
〈q2,>, 1〉}〉, where φ and ψ are RC-formulae. The equivalent
set of views is {q′1, q′2}, where q′1 := {z | ∃x, y.Employee(x, y, z)
∧ φ} and q′2 := {y | ∃x, z.Employee(x, y, z) ∧ ψ}. �

In the relational calculus, authorization views are strictly
less expressive than security policies. This is no longer the
case for sufficiently powerful query languages. For instance,
in the relational calculus extended with the count aggrega-
tion operator, authorization views are as expressive as se-
curity policies, as shown in Example 5.2. This also implies
that, in contrast to the case of RC, for sufficiently power-
ful languages, row-level policies are as expressive as policies
that combine both row-level and column-level constraints.

Example 5.2. In this example, we use the aggregation op-
erator count [3]. Intuitively, count[x|ψ(x)] returns the
number of tuples in the result of the query {x|ψ(x)}.

Let q be the query {x, z|α}, where α is the RC-formula
∃y.Employee(x, y, z), and let S be the policy 〈{〈q, φ〉}, {〈q, ψ,
1〉, 〈q, γ, 2〉}〉, where φ, ψ, and γ are RC-formulae. The set
of authorization views AV that is equivalent to S is:

{x, z, s |α ∧ φ ∧ ψ ∧ γ ∧ s = 1},
{x, s | ∃z. (α ∧ φ ∧ ψ ∧ ¬γ) ∧ s = count[z|α ∧ φ ∧ ψ ∧ ¬γ]},
{z, s | ∃x. (α ∧ φ ∧ γ ∧ ¬ψ) ∧ s = count[x|α ∧ φ ∧ γ ∧ ¬ψ]},
{s | ∃x, z. (α ∧ φ ∧ ¬ψ ∧ ¬γ)∧

s = count[x, z|α ∧ φ ∧ ¬ψ ∧ ¬γ]}.

Let z be a state. The materialization of the views in AV in
the state z discloses, for each t ∈ IndS,q(z), the values in t

1313

different from † and the value of cardS,z,q(t), which is stored
in the variable s. Therefore, ∼=AV = ∼=S . �

From Proposition 5.1, it follows that, given a set of autho-
rization views AV , two states are AV -equivalent iff they are
indistinguishable according to the equivalent security policy
and vice versa.

We now introduce the concept of conditional validity [16],
which is different from validity in FOL. Afterwards, we
define optimal algorithms in the Non-Truman model.

Definition 5.4. Let D be a database schema, s ∈ ΩD be
a state, and AV be a set of authorization views over D. An
RC-query q is conditionally valid in s iff there is another
RC-query q′ written only in terms of the views in AV that
is equivalent to q on all the states s′ such that s ∼=AV s′.

Definition 5.5. Let F be a query language. An F -SAQP
M is optimal in the Non-Truman model iff it executes ex-
actly the conditionally valid queries.

Before reconciling Truman and Non-Truman models, we
state the following lemma.

Lemma 5.2. Let D be a database schema, F be a query
language, AV be a set of F -authorization views, s ∈ ΩD be a
state, and φ be a boolean F -query. Moreover, let S be the F -
security policy equivalent to AV . φ is conditionally valid in
the state s with respect to AV iff AGREEF (D,S, φ, s) = >.

From Theorem 5.1, Proposition 5.1, and Lemma 5.2, it
follows:

Theorem 5.4. Let F be a query language. An optimal F -
SAQP for boolean queries in the Truman model is an optimal
F -SAQP for boolean queries in the Non-Truman model when
† is interpreted as rejecting the query.

In the past, Truman and Non-Truman models have been
presented as two distinct and alternative approaches: the
former concerned with returning as much information as
possible and the latter concerned with avoiding inconsis-
tencies. For boolean RC-queries, Theorem 5.4 shows that
an optimal SAQP in the Truman model can be used as an
optimal SAQP in the Non-Truman model. The reason is
that, for boolean queries, the only way to protect sensi-
tive information is to return † and there is no way to re-
turn partial results. Therefore, for boolean RC-queries, the
Non-Truman model is a special case of the Truman model.
Indeed, RC-authorization views are strictly less expressive
than RC-policies. For sufficiently powerful query languages,
such as the relational calculus extended with the count op-
erator, the two models coincide for boolean queries because
authorization views are as expressive as security policies.

The practical consequence of Theorem 5.4 is that we can
straightforwardly use an optimal algorithm in the Truman
model to compute the answer to a query in the Non-Truman
model. It also follows that the results in Sections 5.2 and
5.3 apply to the Non-Truman model and to the conditional
validity problem.

6. NON-BOOLEAN QUERIES
In this section, we study the existence of optimal SAQP

algorithms for non-boolean queries and the connections be-
tween optimal SAQP algorithms in the Truman and Non-
Truman models.

6.1 Correctness Criteria
The answer to a non-boolean query under a given security

policy is a multiset of masked tuples and not a set of tuples
as in standard database theory. Indeed, some values may be
set to † because we are not authorized to read them. How-
ever, not all multisets of tuples are valid results for SAQP
algorithms. We are interested only in those multisets that
can be obtained from a set of unmasked tuples by replacing
values with †. The set M is the set of all multisets of tuples
V such that there is a set of unmasked tuples T and a bi-
jection f from V to T such that t v f(t) for all t ∈ V . In
the following, we always refer just to multisets in M .

Following [19], we define a subsumption relation� on mul-
tisets, which is a partial order on M . A multiset K ∈ M is
subsumed by another multiset K′ ∈M , written K � K′, iff
there is an injective mapping f : K → K′ such that for all
t ∈ K, t v f(t).

Example 6.1. Let t and z be the tuples 〈John, 25, Clerk〉
and 〈Frank, †, †〉. The multiset {t, t, z} is not in M because
there are two occurrences of the unmasked tuple t. In con-
trast, the multiset J := {z, z, t} is in M . Let T be the set
{〈Frank, 46, Clerk〉, 〈Frank, 27, SecretAgent〉, 〈John, 25,
Clerk〉}. Then, J � T . �

We now introduce the correctness criteria for non-boolean
queries. Security is the same as in Definition 4.3 and we state
here only soundness and maximality. Wang et al. [19] stud-
ied only secure and sound algorithms and considered only
algorithms that return a unique multiset of masked tuples
as a query’s result. However, there are cases in which the
optimal answer is not unique, i.e., there are finitely many
different multisets of masked tuples that are all optimal and
incomparable. In the following, we consider algorithms that
might return as a query’s result a set of multisets. There-
fore, for non-boolean queries, the set U , which contains all
possible results of optimal SAQPs, is P(M). For this reason,
we must modify the criteria given in [19].

For non-boolean queries, a sound algorithm must return
a result subsumed by the original query’s result.

Definition 6.1. Let D be a database schema and F be a
query language. An F -security-aware query processor M is
sound iff for all non-boolean queries q ∈ F , all F -policies S
over D, all s ∈ ΩD, and all V ∈M(q, S, s), V � [q]s.

A maximal algorithm must return a result that subsumes
any multiset T ∈M that is subsumed by the original query’s
result in all indistinguishable states.

Definition 6.2. Let D be a database schema and F be a
query language. An F -security-aware query processor M
is maximal iff for all F -policies S over D, all non-boolean

queries q ∈ F , all s ∈ ΩD, and all T ∈M , if T � [q]s
′

for all
s′ ∈ JsK∼=S , then there is a V ∈M(q, S, s) such that T � V .

We now define optimal algorithms for non-boolean queries
in the Truman model.

Definition 6.3. Let F be a query language. An F -SAQP
for non-boolean queries is optimal in the Truman model iff
it satisfies the Definitions 4.3, 6.1, and 6.2.

Figure 3 describes an optimal SAQP for non-boolean queries.
Depending on the query language, this function may not be
computable.

1314

Mopt(q, S, s) := {V ∈ M | ∀s′ ∈ JsK∼=S . (V � [q]s
′
)}

Figure 3: An optimal SAQP for non-boolean queries

Example 6.2. Let D be a database schema with only one
relation schema R with two attributes a and b that range
over N. Moreover, let φ(n,m), where n,m ∈ N, be the
formula x = n ∧ y = m ∧ ¬∃y. (R(x, y) ∧ y 6= m). Let
q be the query {a, b |R(a, b)} and S be the security pol-
icy 〈{〈q,>〉}, {〈q, ψ, 1〉, 〈q, ψ, 2〉}〉, where ψ is the formula
¬φ(1, 3) ∧ ¬φ(1, 4) ∧ ¬φ(2, 3) ∧ ¬φ(2, 4). One of the equiva-
lence classes defined by S contains exactly the two states s
and s′ such that s(R) = {〈1, 3〉, 〈2, 4〉} and s′(R) = {〈1, 4〉, 〈2,
3〉}. In this case, Mopt(q, S, s) = Mopt(q, S, s

′) = K and
K = {V ∈ M |V � {〈1, †〉, 〈2, †〉} ∨ V � {〈†, 3〉, 〈†, 4〉}}.
Therefore, in s and s′, we are authorized to read the values
of the attributes a and b separately, but not together. �

In the Truman model, boolean queries are not a special
case of non-boolean queries. For fragments that are not
closed under negation, we cannot use an optimal SAQP M
for non-boolean queries to distinguish whether a sentence
returns ⊥ or † because M returns {∅} in both cases.

We now define a decision problem, denoted as SUBSUME,
that will be used in a way similar to AGREEF .

Problem 6.1. Let F be a query language. We denote by
SUBSUMEF the problem:

Input: A database schema D, an F -security policy S, a
non-boolean F -query q := {x|φ(x)}, a multiset T ∈ M such
that |t| = |x| for all t ∈ T , and a state s ∈ ΩD.

Question: For all states s′ ∈ JsK∼=S , is T � [q]s
′
?

The SUBSUMEF decision problem is related to the exis-
tence of optimal SAQP algorithms.

Theorem 6.1. Let F be a query language. There is a
computable optimal F -SAQP algorithm M for non-boolean
queries iff SUBSUMEF is decidable.

Proof. (⇒) Let M be a computable optimal F -SAQP
algorithm for non-boolean queries. We use M as a subrou-
tine in a decision procedure for SUBSUMEF . Let D, S, q,
T , and s be the inputs of the SUBSUMEF problem. Then,
SUBSUMEF (D,S, q, T, s) = > iff there is a V ∈ M(q, S, s)
such that T � V .

(⇐) We use SUBSUMEF to build an optimal F -SAQP
M. Let D be a database schema, S be an F -security policy
over D, s ∈ ΩD be a state, and q be a non-boolean F -query.
M(q, S, s) is {T ∈M |T � [q]s ∧ SUBSUMEF (D,S, q, T, s)
= >}. It is easy to see thatM is optimal and computable.

The SUBSUMEF decision problem plays the same role
for optimal algorithms for non-boolean queries as AGREEF

does for boolean queries. We therefore now analyze the de-
cidability of SUBSUMEF .

6.2 Impossibility Results
In this section, we extend the impossibility results in Sec-

tion 5.2 from booleanRC-queries to non-booleanRC-queries.

Theorem 6.2. SUBSUMERC is undecidable.

Proof Sketch. Let D be a database schema. We define
a new schema D′ obtained from D by adding a new rela-
tion schema V with one attribute at. Let v be a value in
Dom(at), s be the state in ΩD′ such that s(V) = {〈v〉}
and s(R) = ∅ for all R ∈ D, and S be the RC-policy
〈{〈{x|V (x)},>〉}, {〈{x|V (x)},>, 1〉}〉. Then, a RC-sentence
φ over D is finitely valid iff SUBSUMERC(D′, S, {x|V (x) ∧
φ}, {〈v〉}, s) = >. This reduction can be implemented by a
total Turing machine. Therefore, since FINVALRC is unde-
cidable, so is SUBSUMERC . �

From Theorem 6.2, it follows that, for non-boolean queries,
there are no computable optimal SAQP algorithms in the
Truman model for the relational calculus. Therefore, it is
impossible to securely process queries without either violat-
ing the security policy, losing some information, or returning
incorrect results.

Note that, following the proof of Theorem 6.2, we can
prove an even stronger result: for any fragment F of RC
that is closed under conjunction such that FINVALF is un-
decidable, then SUBSUMEF is also undecidable. Therefore,
from well-known undecidability results for fragments of first-
order logic, we can identify fragments of RC for which there
are no optimal algorithms for non-boolean queries, such as
the BSRRC fragment.

6.3 Possibility Results
We now present a general criterion for identifying frag-

ments of RC where SUBSUMEF is decidable.
We first introduce the notion of encoding the subsump-

tion relation � in a formula. Let D be a database schema,
ψ(x) be a formula with free variables x, and T ∈ M be a
multiset such that |t| = |x| for all t ∈ T . We say that a
sentence φT,ψ(x) encodes the subsumption relation between
T and ψ(x) iff φT,ψ(x) is domain independent and for all
s ∈ ΩD, [φT,ψ(x)]

s = > iff T � [{x|ψ(x)}]s.
In the following lemma, we present sufficient conditions

for the decidability of the SUBSUMEF decision problem.

Lemma 6.1. Let F be a query language. SUBSUMEF is
decidable if there is a query language F ′ such that:

1. F ⊆ F ′,
2. AGREEF

′
is decidable for all F -policies, and

3. for any multiset T ∈ M and any F -formula ψ(x), we
can compute a sentence φT,ψ(x) ∈ F ′ that encodes the
subsumption relation between T and ψ(x).

Proof Sketch. Let D be a database schema, s ∈ ΩD be a
state, {x|ψ} be an F -query, S be an F -policy, and T ∈M be
a multiset of tuples. Let φT,ψ be the F ′-sentence encoding
the subsumption relation. Then, SUBSUMEF (D,S, {x|ψ},
T, s) = > iff [φT,ψ]s = > and AGREEF

′
(D,S, φT,ψ, s) = >.

�

We now use Theorem 5.3 and Lemma 6.1 to prove the
decidability of SUBSUMEERC. From Theorem 6.3, it follows
that there are optimal SAQP algorithms for the existential
fragment of the relational calculus.

Theorem 6.3. SUBSUMEERC is decidable.

Proof Sketch. Given a multiset of tuples T in M , and a
tuple t ∈ T , let Kt,T be the multiset {t′ | t′ ∈ T ∧ t v t′}.

1315

Ms-opt(q, S, s) :=

{
[q]s if ∀s′ ∈ JsK∼=S . [q]

s′ = [q]s

† otherwise

Figure 4: A strongly-optimal SAQP for non-boolean
queries

The encoding is given by:

φT,ψ(x) :=
∧
t∈T

∃≥|Kt,T |x. (ψ(x)∧
∧

i∈{1,...,|x|}∧ti 6=†

xi = t
i
).

φT,ψ(x) can be equivalently rewritten as an ERC-sentence.
�

Since ERC strictly contains conjunctive queries, it follows
that SUBSUMECRC is decidable.

6.4 Truman and Non-Truman models
We now study the connections between Truman and Non-

Truman models for non-boolean queries. We first introduce
the notion of strongly-optimal security-aware query proces-
sor. Using strongly-optimal SAQPs, we generalize the Non-
Truman model approach for non-boolean queries [16] to our
security policies, which are more expressive than authoriza-
tion views. Afterwards, we study the relationships between
strongly-optimal SAQPs and optimal SAQPs in the Non-
Truman model and extend our decidability results.

A strongly-optimal SAQP for non-boolean queries returns
the original query’s result whenever it is secure to do so,
and otherwise returns †. Let L be the set of all finite sets
of unmasked tuples. A security-aware query processor for
non-boolean queries is called strongly-optimal if it satisfies
the Definitions 4.3–4.5 and the set U , containing all the
possible results, is L ∪ {†}. Figure 4 describes a strongly
optimal SAQP for non-boolean queries. Depending on the
query language, this function may not be computable.

Optimal SAQPs and strongly-optimal SAQPs are distinct.
For instance, optimal SAQPs can return partial results while
strongly-optimal SAQPs cannot. This holds even if we con-
sider just row-level policies. Note too that, in the Non-
Truman model, boolean queries are a special case of non-
boolean queries.

We first define a new decision problem corresponding to
SUBSUMEF .

Problem 6.2. Let F be a query language. EQUALF de-
notes the problem:

Input: A database schema D, an F -security policy S,
a non-boolean F -query q := {x|φ(x)}, a set of tuples T ∈ L
such that |t| = |x| for all t ∈ T , and a state s ∈ ΩD.

Question: For all states s′ ∈ JsK∼=S , is T = [q]s
′
?

Similarly to Theorem 5.1 and Theorem 6.1, we can prove:

Theorem 6.4. Let F be a query language. There is a
computable strongly-optimal F -SAQP algorithmM for non-
boolean queries iff EQUALF is decidable.

We can easily adapt the proof in Section 6.2 to obtain the
following undecidability result:

Theorem 6.5. EQUALRC is undecidable.

Therefore, even strongly-optimal Security-Aware Query
Processing is impossible for the relational calculus. Further-
more, EQUALF is undecidable for any fragment F such that
either FINVALF , FINSATF , or AGREEF are undecidable.

We can also provide some decidability results. We first
define a new encoding. Let D be a database schema, ψ(x)
be a formula with free variables x, and T ∈ L be a finite
set of tuples such that |t| = |x| for all t ∈ T . We say that
a sentence φT,ψ(x) encodes the property ψ(x) satisfied by the
set T iff φT,ψ(x) is domain independent and for all s ∈ ΩD,
[φT,ψ(x)]

s = > iff T = [{x|ψ(x)}]s.
We can now give sufficient conditions for the decidability

of the EQUALF problem.

Lemma 6.2. Let F be a query language. EQUALF is de-
cidable if there is a query language F ′ such that:

1. F ⊆ F ′,
2. AGREEF

′
is decidable for all F -policies, and

3. for any finite set T ∈ L and any formula ψ(x) ∈ F ,
we can compute a sentence φT,ψ(x) ∈ F ′ that encodes
the property ψ(x) satisfied by the set T .

Using Lemma 6.2, we prove the following result.

Theorem 6.6. EQUALERC is decidable.

Similarly to Section 5.4, we have:

Lemma 6.3. Let D be a database schema, F be a query
language, AV be a set of F -authorization views, s ∈ ΩD
be a state, and q be a non-boolean F -query. Moreover, let
S be the F -security policy equivalent to AV . The query q
is conditionally valid in the state s with respect to AV iff
EQUALF (D,S, q, [q]s, s) = >.

Theorem 6.7. Let F be a query language. A strongly-
optimal F -SAQP for non-boolean queries is an optimal F -
SAQP for non-boolean queries in the Non-Truman model
when † is interpreted as rejecting the query.

For non-boolean queries, strongly-optimal algorithms and
optimal algorithms are distinct. Therefore, from Theorem 6.7,
we have:

Corollary 6.1. There is a non-boolean RC-query q, a
state s, a set AV of RC-views, and the equivalent row-level
RC-policy S, such that the result of an optimal SAQP for
non-boolean queries in the Non-Truman model is different
from the result of an optimal SAQP for non-boolean queries
in the Truman model.

For boolean RC-queries, optimal algorithms in the Non-
Truman model are a special case of optimal algorithms in
the Truman model. Corollary 6.1 shows that this result
does not hold for non-boolean queries. In this case, the two
models are distinct.

The reason for this difference is that in the Truman model
we can return partial results, whereas in the Non-Truman
model we either return the query’s result or reject the query.
Moreover, given the same inputs, the result of an optimal
SAQP in one model does not provide any insights about
the result of an optimal SAQP in the other model. For
instance, if an optimal SAQP in the Non-Truman model
rejects a query q, we do not know anything about the result
in the Truman model. Similarly, if an optimal SAQP in

1316

the Truman model returns {∅} as a query’s result, we do
not know whether an optimal SAQP in the Non-Truman
model accepts the query or rejects it. Hence, we cannot use
optimal SAQPs in the Truman model as optimal SAQPs in
the Non-Truman model and vice versa.

Theorem 6.7 shows that, for RC, optimal SAQPs in the
Non-Truman model are a special case of strongly-optimal
SAQPs. From this, it follows that Lemma 6.2 and Theo-
rem 6.6 apply to optimal SAQPs in the Non-Truman model,
and to the conditional validity problem. Note too that, for
sufficiently powerful query languages, optimal SAQPs in the
Non-Truman model and strongly-optimal SAQPs are equiv-
alent modulo the interpretation of †.

7. RELATED WORK
In this section we review previous work on Fine-Grained

Access Control and on other relevant topics.

Security-Aware Query Processing Security-Aware
Query Processing algorithms are implemented in commer-
cial databases [1, 7, 18]. Despite that, only limited work
has been done on theoretical aspects of this problem. In
[16], Rizvi et al. proposed the notions of Truman and Non-
Truman models. They provided inference rules, which are
sound but not complete, for determining whether a query
is conditionally valid. The undecidability of the uncondi-
tional validity problem follows from well-known results on
query rewriting using views [14]. Zhang et al. [20] studied
the conditional validity problem for conjunctive queries and
showed that it is decidable. We improve these results in that
we provide sufficient conditions for the decidability of condi-
tional validity. We also show that this problem is decidable
for the existential fragment of the relational calculus, which
contains conjunctive queries, and for our security policies,
which are more expressive than authorization views.

Wang et al. [19] were the first to propose correctness cri-
teria for algorithms in the Truman model. They proposed a
secure and sound SAQP algorithm. Other secure and sound
algorithms have been proposed since then, such as [10, 17].
Our results prove the claim of Wang et al. that optimal
Security-Aware Query Processing is difficult. We also prove
that optimal SAQP in the Truman model is possible for the
existential fragment of the relational calculus.

Instance-based Determinacy The instance-based deter-
minacy problem [11] consists of checking whether, given a
database state s, a set of views V , and a query q, the mate-
rialization of the views in V in the state s fully determines
the result of q in s. Koutris et al. [11] proved that the prob-
lem of instance-based determinacy for unions of conjunctive
queries under the set semantics is decidable and is coNP-
complete in terms of data complexity.

When restricted to row-level policies, which are equiva-
lent to RC-views, the AGREE and EQUAL problems are
equivalent to the instance-based determinacy problem for
boolean and non-boolean queries respectively. In general,
these equivalences do not hold because security policies are
more expressive than RC-views and, therefore, AGREE and
EQUAL are more general than instance-based determinacy
under the set semantics. Indeed, masked tuples introduce a
kind of bag semantics that cannot be captured using RC-
views under the set semantics. We are not aware of any
work exploring instance-based determinacy under the bag
semantics.

Certain Answers The problem of computing certain an-
swers using views under the closed world assumption [2]
shares similarities with optimal SAQP. But they have impor-
tant differences. For instance, the result of a boolean query
φ according to optimal SAQP is one of {>,⊥, †} whereas the
certain answer is one of {>,⊥}. Indeed, one must compute
both the certain answer and the possible answer to compute
the result of boolean optimal SAQP.

For non-boolean queries, optimal algorithms in the Tru-
man model return a set of results, whereas the certain an-
swer is unique. Moreover, while optimal SAQP in the Tru-
man model considers masked tuples, the certain answer prob-
lem considers only unmasked tuples. This seriously lim-
its Fine-Grained Access Control. For example, suppose we
have a policy with a constraint on the i-th value of a query
q := {x|ψ}, for some i ∈ {1, . . . , |x|}. The certain answer of
q will be ∅, whereas the result of an optimal SAQP will be
a multiset of masked tuples where the i-th value is replaced
with †. In the Non-Truman model, an algorithm either re-
turns the query’s result or rejects the query. In contrast,
the certain answer to a query is generally different from the
query’s result.

The main difference between optimal SAQP and the cer-
tain answer problem is that security policies are more ex-
pressive than views in the relational calculus. As we previ-
ously noted, the presence of masked tuples introduces a kind
of bag semantics. However, while the problem of querying
views has been studied extensively under the set seman-
tics [2,14], only limited work have been done under the bag-
set and bag semantics [4]. Note that our work can be viewed
in the general setting of querying views under the bag-set se-
mantics. Despite that, we decided to keep the terminology of
Security-Aware Query Processing for consistency with pre-
vious works on Fine-Grained Access Control in databases,
e.g., [16, 19].

Another related problem is computing the certain answer
to a query in an incomplete database [13]. The same consid-
erations for certain answers using views apply to this case.
Moreover, while the notion of indistinguishability appears
related to the semantics of incomplete databases [13], in
general this is not the case.

8. CONCLUSIONS
We presented the first analysis of optimal Security-Aware

Query Processing. Our results show that (1) it is impos-
sible to build optimal SAQP algorithms for Codd-complete
query languages, such as SQL, and (2) this impossibility is
not due to specific characteristics of these query languages
but rather to the undecidability of the relational calculus
and several of its fragments. Note that our results also do
not depend on the particular characteristics of our security
model. We showed that there are interesting fragments of
RC for which optimal Security-Aware Query Processing is
possible, such as the existential fragment of RC. Our results
may be used to prove the decidability of optimal Security-
Aware Query Processing for other fragments of RC, such as
the monadic fragment and the guarded fragment, and other
query languages.

For boolean queries, we showed that, for the relational
calculus, optimal SAQP in the Non-Truman model is a spe-
cial case of optimal SAQP in the Truman model, and that
optimal algorithms in the two models coincide for the re-
lational calculus extended with aggregation operators. In

1317

contrast, for non-boolean queries, optimal algorithms in the
two models are distinct. This has direct consequences for
developing algorithms for those models.

Optimal Security-Aware Query Processing is a difficult
problem: it is intractable even for conjunctive queries. In-
deed, it is coNP-complete in terms of data complexity for
boolean conjunctive queries and row-level security policies
[11]. Despite that, optimal SAQP can still have practical ap-
plications. For instance, there are fragments of conjunctive
queries for which optimal SAQP in the Non-Truman model
is in PTIME in terms of data complexity for row-level poli-
cies [11]. This suggests that there might be other fragments
of conjunctive queries for which optimal SAQP is tractable.

Non-optimal SAQP algorithms can benefit from efficient
optimal algorithms for some special cases. In this way, we
can use tractable optimal algorithms when it is possible, and
fall back to efficient non-optimal algorithms for the cases
where optimal SAQP is undecidable or intractable. Fur-
thermore, the study of optimal SAQP may shed some light
on the trade-offs between efficiency and optimality, and can
therefore lead to improvements for non-optimal algorithms.

In the future, we plan to study the complexity of opti-
mal Security-Aware Query Processing. We also aim to iden-
tify fragments of the relational calculus with efficient opti-
mal algorithms and to implement a prototype of an optimal
Security-Aware Query Processor for these fragments.

Acknowledgments. The authors would like to thank Jannik
Dreier, Christoph Sprenger, Mohammad Torabi Dashti, Eu-
gen Zalinescu, as well as the anonymous reviewers for their
comments and suggestions. This work is partially supported
by the EU FP7-ICT-2009.1.4 Project No. 256980, NESSoS:
Network of Excellence on Engineering Secure Future Inter-
net Software Services and Systems.

9. REFERENCES
[1] New Security Features in Sybase Adaptive Server

Enterprise. Sybase Technical White Paper, 2003.

[2] S. Abiteboul and O. M. Duschka. Complexity of
answering queries using materialized views. In
Proceedings of the 17th Symposium on Principles of
Database Systems, pages 254–263. ACM, 1998.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
databases, volume 8. Addison-Wesley, 1995.

[4] F. Afrati, R. Chirkova, M. Gergatsoulis, and
V. Pavlaki. View selection for real conjunctive queries.
Acta Inf., 44(5):289–321, Aug. 2007.

[5] R. Agrawal, P. Bird, T. Grandison, J. Kiernan,
S. Logan, and W. Rjaibi. Extending relational
database systems to automatically enforce privacy
policies. In Proceedings of the 21st International
Conference on Data Engineering, pages 1013–1022.
IEEE, 2005.

[6] E. Börger, E. Grädel, and Y. Gurevich. The classical
decision problem. Springer Verlag, 2001.

[7] K. Browder and M. Davidson. The virtual private
database in Oracle9iR2. Oracle Technical White
Paper, Oracle Corporation, 500, 2002.

[8] E. F. Codd. Relational completeness of data base
sublanguages. IBM Corporation, 1972.

[9] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara. A
general approach to securely querying XML.
Computer standards & interfaces, 30(6):379–389, 2008.

[10] R. Halder and A. Cortesi. Fine grained access control
for relational databases by abstract interpretation. In
Software and Data Technologies, volume 170, pages
235–249. Springer, 2013.

[11] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Query-based data pricing. In
Proceedings of the 31st Symposium on Principles of
Database Systems, pages 167–178. ACM, 2012.

[12] K. LeFevre, R. Agrawal, V. Ercegovac,
R. Ramakrishnan, Y. Xu, and D. DeWitt. Limiting
disclosure in hippocratic databases. In Proceedings of
the 30th International Conference on Very Large Data
Bases, pages 108–119. VLDB Endowment, 2004.

[13] L. Libkin. Incomplete information and certain answers
in general data models. In Proceedings of the 30th
Symposium on Principles of Database Systems, pages
59–70. ACM, 2011.

[14] A. Nash, L. Segoufin, and V. Vianu. Views and
queries: Determinacy and rewriting. ACM
Transactions on Database Systems, 35(3):21, 2010.

[15] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens,
and S. Morucci. fQuery: SPARQL query rewriting to
enforce data confidentiality. In Data and Applications
Security and Privacy, pages 146–161. Springer, 2010.

[16] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained
access control. In Proceedings of the 31st International
Conference on Management of Data, pages 551–562.
ACM, 2004.

[17] J. Shi, H. Zhu, G. Fu, and T. Jiang. On the Soundness
Property for SQL Queries of Fine-grained Access
Control in DBMSs. In 8th IEEE/ACIS International
Conference on Computer and Information Science,
pages 469–474, 2009.

[18] M. Stonebraker and E. Wong. Access control in a
relational data base management system by query
modification. In Proceedings of the 1974 Annual
Conference - Volume 1, pages 180–186. ACM, 1974.

[19] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin,
and J.-W. Byun. On the correctness criteria of
fine-grained access control in relational databases. In
Proceedings of the 33rd International Conference on
Very large data bases, pages 555–566. VLDB
Endowment, 2007.

[20] Z. Zhang and A. Mendelzon. Authorization views and
conditional query containment. In Proceedings of
International Conference on Database Theory, volume
3363, pages 259–273. Springer, 2005.

1318

