
Real-Time Twitter Recommendation:
Online Motif Detection in Large Dynamic Graphs

Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy,
Volodymyr Zhabiuk, Quannan Li, and Jimmy Lin

Twitter, Inc.
San Francisco, California

@pankaj @venusatuluri @ajeet @sgurumur @vzhabiuk @truthseeker1985 @lintool

ABSTRACT
We describe a production Twitter system for generating rel-
evant, personalized, and timely recommendations based on
observing the temporally-correlated actions of each user’s
followings. The system currently serves millions of recom-
mendations daily to tens of millions of mobile users. The
approach can be viewed as a specific instance of the novel
problem of online motif detection in large dynamic graphs.
Our current solution partitions the graph across a number
of machines, and with the construction of appropriate data
structures, motif detection can be translated into the lookup
and intersection of adjacency lists in each partition. We con-
clude by discussing a generalization of the problem that per-
haps represents a new class of data management systems.

1. INTRODUCTION
One major strength of Twitter is its ability to inform users

about what’s happening in the world in real-time, be it news
of natural disasters, breaking political stories, or the latest
sports scores. To keep users informed, we have developed
services that proactively deliver content via push notifica-
tions to their mobile devices.1

Naturally, such notifications must be relevant, personal-
ized, and timely, or else they run the risk of becoming an an-
noyance. We have discovered, perhaps unsurprisingly, that
local network signals are important for discovering content.
Twitter users curate accounts they follow, which represent
their interests as well as social and professional connections.
Thus, the temporally-correlated activities of a user’s follow-
ings provide a rich source of recommendations. For example,
suppose we wish to make “who to follow” [5] recommenda-
tions to user A: we examine the list of accounts that A fol-
lows (call them B1 . . . Bn), and if more than k of them follow
an account C within a time period τ , then we recommend
C to A (where k and τ are tunable parameters). The idea
applies to recommending content as well, based on user ac-
tions such as retweets, favorites, etc. Empirically, we have

1https://blog.twitter.com/2013/stay-in-the-know

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

found this approach to yield high engagement—intuitively,
the temporally-correlated activities capture “what’s hot”
(hence, timely) among the accounts that a user follows,
which is by definition the group that the user is interested
in (hence, relevant and personalized).

This recommendation strategy represents a specific in-
stance of the more general problem of network motif detec-
tion in real-time on large dynamic graphs. Network motifs
are recurrent patterns in graphs [6], usually defined in terms
of vertices and edges that are arranged in a specific con-
figuration. Motifs have significance across a wide range of
domains, including biochemistry, ecology, computer science,
and sociology. Nearly all approaches to motif detection are
based on a static graph snapshot and viewed as batch com-
putations. Our novel “twist” is to identify motifs as they are
being formed in real time and trigger appropriate actions.

How does this relate to previous work? Of course, stream-
oriented databases have a long history [4], but they are de-
signed for relational and not graph processing. Much of the
work in large-scale graph analytics focuses on batch compu-
tations, although there is work in a streaming setting, e.g.,
on random walks [1], triangle counting [2], and clustering
coefficients [3]. Our work is very much in this spirit.

This paper makes two contributions. First, we present
the design of a large-scale production system at Twitter for
serving real-time recommendations to tens of millions of mo-
bile users. Second, we identify the algorithm implemented
in this service as one instance of a more general problem
of real-time motif detection on large dynamic graphs and
discuss implications for future data management systems.

2. SYSTEM DESIGN
As a running example, we refer to the graph fragment in

Figure 1. For simplicity, let us assume that a directed edge
indicates a follow, and so in this case we are recommending
user accounts. In terms of notation, A’s refer to users for
whom we wish to make recommendations; B’s are the users
whom the A’s follow, and C’s are the users whom the B’s
follow. We want to recommend the appropriate C’s to the
A’s. Note that this notation is highly schematic, as the
C’s are also A’s for a different set of B’s (i.e., we want to
make recommendations for everyone). For simplicity, let us
assume k = 2 in the above definition, which means that
when the edge B2 → C2 is created in Figure 1, we want to
push C2 to A2 as a recommendation. In other words, we
are interested in the “diamond” motif involving four graph
vertices (although in production, k = 3).

What is the scale of this problem? The Twitter follow
graph (as of 2012) contains O(108) vertices and O(1010)

1379



A2 

B1 

A1 

B2 

A3 

C2 
C1 

C3 

Figure 1: Sample graph fragment.

edges [7]. The system must be able to handle a highly dy-
namic graph—our design targets O(104) edge insertions per
second—and be able to deliver recommendations within sec-
onds. Naturally, we desire a horizontally-scalable solution.

At the outset, we ruled out two obvious but näıve solu-
tions. One could poll each user’s network periodically to see
if the motif has been formed since the last query; however,
the latency would be unacceptably large. Another approach
would be to keep track of each A’s two-hop neighborhood; a
rough calculation shows that this is impractical, even using
approximate data structures such as Bloom filters.

Ultimately, we implemented a solution that requires only
standard data structures. To explain, we first consider the
case where the entire graph fits on a single machine. Let us
treat the edges from A’s to B’s as static (we’ll see why later)
and store the inverse as an adjacency list (for convenience,
we’ll refer to this data structure as S). Given a particular
B, we can query S to look up all A’s that follow it.

We assume the existence of a data source (e.g., message
queue) that provides a stream of graph edges as they are
created in real-time. In our notation, these are treated as
edges from B’s to C’s; we refer to this as the dynamic part
of the graph. We maintain a data structure D that holds
the edges pointing to C’s. In other words, given a query
vertex C, we can easily fetch all edges from the B’s along
with their creation timestamps—in this way we enforce the
freshness of the recommendation (i.e., τ).

Note that in our design, all data structures are held in
main memory. Given this setup, the recommendation algo-
rithm proceeds as follows: when a B → C edge is created (in
this case, B2 → C2), we query D to find all other B’s that
also point to the C (in this case, B1). At this point, we’ve
compute the top half of the diamond motif. For all these
B’s (in this case, B1 and B2), we look up their incoming
edges from the A’s in S to compute an intersection, which
is whom we’re making the recommendation to—in this case,
A1 and A2 point to B1 and A2 and A3 point to B2, so A2 is
the intersection. Note that since S is a static data structure,
we can easily keep the A’s sorted and thus intersections can
be implemented efficiently using well-known algorithms.

To distribute this design over multiple machines, we par-
tition by the A’s. This means each partition (currently, 20)
holds a disjoint set of source vertices for the S data struc-
ture; thus, the same B’s may reside in multiple partitions.
Such a design guarantees that all adjacency list intersec-
tions are local to each partition, which eliminates complex
cross-partition operations at scale. Note that we can repli-
cate the partitions for both fault tolerance and increased
query throughput. The final design is a fairly standard par-
titioned, replicated architecture with coordination handled
by brokers that fan-out queries and gather results.

We note one potential scalability bottleneck with the cur-
rent design: each partition needs to keep the complete D
data structure (holding the incoming B’s to C’s), since in

principle any B can be in any partition. Thus, every par-
tition needs to handle the entire stream of edge creation
events, which creates both network pressure and memory
pressure. In practice, we have not found network bandwidth
to be an issue, and memory pressure can be alleviated by
pruning the D data structure to only retain the most recent
edges (since we desire timely results).

Currently, new incoming edges are inserted into the D
data structures in each partition but these updates are not
propagated to the S data structures (since in principle the
new B → C edges can be viewed as A→ B edges for another
set of vertices). Technically, there is nothing to prevent us
from keeping both data structures updated, but currently
the A → B edges are computed offline and loaded into the
system periodically: this allows us to take advantage of rich
features to prune the graph. For users who follow many
accounts, in practice we have found it more effective to limit
the number of “influencers” (e.g., B’s) each user can have.
This has the additional benefit of limiting the size of the S
data structures held in memory.

Our system has been serving recommendations in produc-
tion to Twitter mobile users since September 2013. Each
day, billions of raw candidates are generated, yielding mil-
lions of push notifications (after eliminating duplicates, sup-
pressing messages during non-waking hours, controlling for
fatigue, etc.) The system operates with a median latency of
∼7s and p99 latency of ∼15s, measured from the edge cre-
ation event to the delivery of the recommendation. Nearly
all the latency comes from event propagation delays in var-
ious message queues; the actual graph queries take only a
few milliseconds.

3. CONCLUSIONS
The system we have described for making real-time Twit-

ter recommendations has two logical components: the first
is the partitioned graph infrastructure that maintains the
relevant data structures; the second is the “program” that
performs the motif detection. Of course, beyond the “dia-
mond” motif there may exist others that are useful for gener-
ating recommendations—these may be implemented as ad-
ditional programs that use the graph infrastructure (which
may need to be augmented to include other data structures).
To go even further, we envision the development of a gen-
eralized framework where one can declaratively specify a
motif, which would yield an optimized query plan against
an online graph database. This would seem to represent an
entirely new class of data management systems.

4. REFERENCES
[1] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and

personalized PageRank. VLDB, 2010.

[2] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting triangles
in graphs. SODA, 2002.

[3] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader. Massive
streaming data analytics: A case study with clustering
coefficients. MTAAP, 2010.

[4] J. Gehrke. Special issue on data stream processing. Bulletin of
the Technical Committee on Data Engineering, 26(1):2, 2003.

[5] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh.
WTF: The Who to Follow service at Twitter. WWW, 2013.

[6] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon. Network motifs: Simple building blocks of complex
networks. Science, 298(5594):824–827, 2002.

[7] S. Myers, A. Sharma, P. Gupta, and J. Lin. Information
network or social network? the structure of the Twitter follow
graph. WWW Companion, 2014.

1380


