
Interval Disaggregate: A New Operator for Business

Planning

Sang K. Cha†§, Kunsoo Park†§, Changbin Song†, Kihong Kim†, Cheol Ryu†§, Sunho Lee†§

†
SAP Labs Korea

Seoul, Korea

§
Seoul National University

Seoul, Korea

{sang.k.cha, kunsoo.park01, chang.bin.song, ki.kim, cheol.yoo, sunho.lee}@sap.com

ABSTRACT

Business planning as well as analytics on top of large-scale

database systems is valuable to decision makers, but planning

operations known and implemented so far are very basic. In this

paper we propose a new planning operation called interval

disaggregate, which goes as follows. Suppose that the planner,

typically the management of a company, plans sales revenues of

its products in the current year. An interval of the expected

revenue for each product in the current year is computed from

historical data in the database as the prediction interval of linear

regression on the data. A total target revenue for the current year

is given by the planner. The goal of the interval disaggregate

operation is to find an appropriate disaggregation of the target

revenue, considering the intervals.

We formulate the problem of interval disaggregation more

precisely and give solutions for the problem. Multidimensional

geometry plays a crucial role in the problem formulation and the

solutions. We implemented interval disaggregation into the

planning engine of SAP HANA and did experiments on real-

world data. Our experiments show that interval disaggregation

gives more appropriate solutions with respect to historical data

than the known basic disaggregation called referential

disaggregation. We also show that interval disaggregation can be

combined with the deseasonalization technique when the dataset

shows seasonal fluctuations.

Keywords

Business planning, interval disaggregation, referential

disaggregation, deseasonalization

1. INTRODUCTION
On-Line Analytic Processing (OLAP) [27] and Data Cubes [9] are

common in large-scale data warehouses in many companies.

However, business planning as well as analytics on top of large-

scale database systems is a valuable tool to decision makers [31,

2], and only recently research on planning operations has started

[12,13].

Business planning is an important task of companies in which

business targets are defined for future periods in order to get

specific guidelines for current operations which can also serve as

a means to check whether the targets have been reached or not

[12]. Jaecksch and Lehner [12] extended existing OLAP

operations with planning operations such as copy, delete, revalue,

disaggregate and forecast by using the Extended

Multidimensional Data Model [21]. A main planning operation in

[12] as well as in Oracle Hyperion [20] and IBM Cognos Express

[11] is disaggregation, also called referential disaggregation. An

example of referential disaggregation is shown in Table 1. A

company had the sales revenues 40, 30, and 30 in 2013 for

products A, B, and C, respectively, and it wants the total revenue

of 110 for 2014 (i.e., 10% increase). Referential disaggregation is

to disaggregate the total amount to each product by some

reference values, which in this case are the revenues of 2013. The

result of disaggregation is shown in Table 1, which is 10%

increase in each product. As we can see in this example, however,

referential disaggregation is too simple and obvious to decision

makers, and it doesn’t consider, for instance, sales trends of the

products.

Table 1. Referential disaggregation

Product 2013 2014

A 40 44

B 30 33

C 30 33

Total 100 110

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08

1381

Business forecasting typically uses time series (e.g., monthly,

quarterly, or yearly) data, and it adopts various methods to

calculate forecasts [15, 4, 5, 7, 25]. The most popular method to

identify a trend in historical data is linear regression with least

squares fitting [15, 7]. (We describe a more realistic model for the

trend of historical data in Section 5.) An advantage of linear

regression is that it also provides prediction intervals for future

points [18]. For example, Figure 1 shows a linear regression with

sales data from 2005 to 2011 and the 90% prediction interval for

2012 (i.e., a future point of 2012 will fall in this interval 90% of

time). This prediction interval reflects the characteristics of data,

i.e., not only the slope of linear regression, but also variations of

data points. The smaller the variations are, the narrower is the

interval (Figure 2). When monthly or quarterly forecasting is

being done, the data may show seasonal fluctuations, in which

case a technique called deseasonalization [15] can be applied to

the data before forecasting and then the result is adjusted with

seasonal effects after forecasting (a detailed example of

deseasonalization will be given in Section 3.3).

Figure 1. Linear regression and 90% prediction interval

Figure 2. Narrower prediction interval

We propose a new planning operation called interval disaggregate.

A typical example of this operation goes as follows (see Table 2).

Suppose that the planner, typically the management of a company,

plans sales revenues of its products in the current year. The

revenues of products in the previous year are drawn from the

database. An interval of the expected revenue for each product in

the current year is computed from historical data in the database

(e.g., as the 90% prediction interval). A total target revenue for

the current year is given by the planner. The goal of the interval

disaggregate operation is to find an appropriate disaggregation of

the target revenue, considering the intervals. (The interval for a

product, say product A, may be represented by actual values like

40-48 rather than percentages. But as we will see in real-world

data where actual values are large, percentages are easier to see

their meanings than actual values.)

In Section 2, we formulate the problem of interval disaggregation

more precisely, and give solutions for interval disaggregation.

Multidimensional geometry plays a crucial role in the problem

formulation and the solutions. In Section 3, we describe our

implementation of interval disaggregation on SAP HANA, and

show experimental results of interval disaggregation on real-world

data. Our experiments show that interval disaggregation gives

more appropriate and advanced solutions than referential

disaggregation, when historical data are taken into consideration.

In Section 4 we describe related work, and we conclude with

future research directions on business planning in Section 5.

Table 2. Interval disaggregation

Product 2013 Interval 2014

A 40 100-120%

B 30 90-110%

C 30 100-110%

Total 100 110

2. INTERVAL DISAGGREGATION
In this section we formulate the problem of interval

disaggregation, and present solutions for the problem.

2.1 Example Scenario
Consider the following business planning scenario. The planner

wants to plan the revenue of the company for year 2014 based on

historical data. The sales revenues of products and product groups

in 2013 are shown in Table 3. The planner typically works out

disaggregation of the target revenue top-to-bottom. Initially, he

works on the level of product groups. For product groups, the

intervals of expected sales for 2014 are computed from historical

data as prediction intervals. The planner gives a total target

revenue of 2014 and wants to find an appropriate disaggregation

of the target revenue for product groups. Suppose that the target

revenues of product groups in Table 4 are computed by the

interval disaggregate operation, which we will describe below.

The planner may adjust the disaggregated target revenues by some

other managerial considerations as in Table 5.

1382

Table 3. Example scenario

Product 2013 Interval 2014

A 40 100-120%

A1 20

A2 10

A3 10

B 30 90-110%

B1 30

C 30 100-110%

C1 20

C2 10

Total 100 110

Table 4. Interval disaggregation on product groups

Product 2013 Interval 2014

A 40 100-120% 46.1

A1 20

A2 10

A3 10

B 30 90-110% 31.6

B1 30

C 30 100-110% 32.3

C1 20

C2 10

Total 100 110

Table 5. User adjustment

Product 2013 Interval 2014

A 40 100-120% 47

A1 20

A2 10

A3 10

B 30 90-110% 31

B1 30

C 30 100-110% 32

C1 20

C2 10

Total 100 110

Now the planner goes one level down and works on the level of

products for product group A. The system again shows the

planner the intervals of expected sales for the products in group A,

and it also computes the disaggregation of group A’s target

revenue which is also an interval disaggregate operation (Table 6).

Finally, the planner may adjust the disaggregated values.

Table 6. Interval disaggregation on products

Product 2013 Interval 2014

A 40 100-120% 47

A1 20 100-120% 23.5

A2 10 110-140% 13.6

A3 10 90-100% 9.9

B 30 90-110% 31

B1 30

C 30 100-110% 32

C1 20

C2 10

Total 100 110

In this example scenario, we have seen two occurrences of the

interval disaggregate operation, which we will formulate in the

next section. Hierarchical disaggregation in this scenario can be

applied not only to the product dimension but also to the time

dimension (monthly or quarterly from yearly) and the location

dimension, plus any combinations of these dimensions.

2.2 Problem Formulation
We define the interval disaggregate operation as follows. The

input of the operation is:

 Interval of expected sales for each product in the current year

  Total target revenue for the current year

The output of the operation is an appropriate disaggregation of the

target revenue.

A main question in this definition is: what is an appropriate

disaggregation? We answer this question by the example in Table

2 because three-dimensional geometry is easier to comprehend

than other dimensions. The intervals of products A, B, and C

define a rectilinear polyhedron, which will be called a rectilinear

box. When a, b, and c are disaggregations of 110 for products A,

B, and C, respectively, is a hyperplane as shown

in Figure 3. The intersection of the rectilinear box and the

hyperplane is the set of feasible solutions for the disaggregation.

Therefore, an appropriate disaggregation would be some midpoint

in the intersection. In general, the set of feasible solutions is a (d-

1)-dimensional polytope (where d is the number of products),

which will be called the feasible polytope.

Figure 3. Feasible polytope and intersecting point

1383

There can be many candidates for the midpoint, but we mainly

consider the following four points.

1. Point where the min-max line and the feasible polytope

intersect

2. Center of mass of the feasible polytope

3. Centroid of the feasible polytope vertices

4. Point whose probability is maximized in the linear

 regression model

The min (max) point is the point of the rectilinear box defined by

the intervals which has the minimum (maximum) value in each

axis. The min-max line is the line between the min point and the

max point. The point where the min-max line and the feasible

polytope intersect will be called the intersecting point. For the

example in Table 2, the intersecting point is shown in Figure 3.

The center of mass is the center point of the distribution of mass

in the feasible polytope [29]. The centroid of the feasible polytope

vertices is simply the average of the vertices [22]. The point

whose probability is maximized is called the mode [23].

Let () and () be the min point

and the max point of the rectilinear box, respectively. Note that all

intervals () () are specified by Min and Max. Let

T be the target value of interval disaggregation. In Figure 3,

 () , () , and . In the

following sections, we describe how to find the four points.

2.3 Finding Intersecting Point
Given the rectilinear box and the hyperplane, we describe how to

find the intersecting point. The min-max line, which passes

through and , is denoted by a vector (

) for a real number t, i.e., (()

 ()). See Figure 4 in the case of two dimensions. The

equation of the hyperplane is for a d-

dimensional point (). To find the intersecting point, we

plug the coordinates of X into the equation of the hyperplane,

which results in () (()

()) . Hence,

 ()

() ()
.

If we put the value of t into X, we get the intersecting point. For

the example in Table 2, (),

,

and the intersecting point is ().

Figure 4. Line passing through Min and Max

Another way to view the above computation is as follows. Given a

vector () in d dimensions, its Manhattan distance (also

known as L1 distance) [22] is , while its Euclidean

distance is √

 . The line segment between Min and

Max (i.e., vector) has Manhattan distance (

) (), and the line segment between Min and the

intersecting point has Manhattan distance ()

because the Manhattan distance of the intersecting point is T and

that of Min is . Hence, the intersecting point is the

point in the line segment between Min and Max whose relative

distance from Min is
 ()

() ()
, i.e., it is

 ().

2.4 Finding Feasible Polytope (Center of Mass

and Centroid)
To find the center of mass and the centroid, we need to find the

feasible polytope, i.e., the vertices of the feasible polytope. The

vertices of the feasible polytope are the intersections of the

hyperplane and the edges (1-faces by the terminology of [17]) of

the rectilinear box. In Figure 3, the intersection of the hyperplane

and the edge between (48,27,33) and (48,33,33) is (48,29,33),

and the other intersections are (48,32,30), (47,33,30), and

 (44,33,33).

Figure 5. Rectilinear box when Min = (0,0,0)

To find the intersections of the hyperplane and the edges of the

rectilinear box, we assume that the min point of the rectilinear box

is (0,0,0). See Figure 5. After finding intersections with this

assumption, we can get the correct intersections by adding the min

point to the intersections. Consider the edges parallel to the A-axis

in Figure 5. There are four edges parallel to the A-axis, and the

value of a in these edges satisfies Since the hyperplane

is , the intersections with these edges satisfy

 Since the value of b is either 0 or 6 and the value

of c either 0 or 3 in these edges, we need to find the combinations

of these values that satisfy They are ,

 , which results in intersection () , which is

 () after adding the min point, and , ,

which results in (), which is ().

1384

In general, let () be the max point of the rectilinear

box, when the min point is (), i.e., for

 . To find the intersections on the edges parallel to the A-axis, we

need to find all subsets of whose sum is between

 and , where (). This is a variant

of the subset sum problem [3,16,28,32]. Similarly, we can find the

intersections on the edges parallel to the B-axis, etc. In the

following, however, we present two algorithms to find the

intersections for all axes at the same time, i.e., all vertices of the

feasible polytope.

Table 7. First algorithm when

i 0 1 2 3 4 5 6 7

Sum 0 8 6 14 3 11 9 17

The first algorithm computes all possible subsets of

and checks if each subset can produce intersections. Let

 be an array such that is the sum of the

subset represented by the binary notation of , i.e., is in the

subset if the k-th rightmost bit of is 1. For example, if

in Figure 5, because represents where

 and . Array Sum can be computed as follows.

 ()

 ()

 []

From each entry , we find intersections by the following

cases. Let .

1. : the subset represented by is an

intersection.

2. : for each dimension

 we do the following: if the k-th rightmost

bit of is 0 and , output intersection

() , where if and the j-th

rightmost bit of i is 1; if and the j-th

rightmost bit of i is 0; if . (If

 , there is an intersection, but this

intersection will be found in Case 1 of some other

entry.)

3. : output no intersections. (If

 , again this intersection will be

found in Case 1 of some other entry.)

For the example in Figure 5, .

Array Sum for this example is shown in Table 7. Since

 is in Case 2, and it produces intersection ().

Let S be the number of intersections, and P the number of entries

such that . Computing Sum takes ()

time. For each entry such that , the

three cases above take at least () time, and if there are many

intersections from the entry then Case 2 takes () time for each

intersection. Therefore, the time complexity of the first algorithm

is ().

Table 8. Second algorithm when

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 8 8 8 8 8 8

2 0 0 0 0 0 0 6 6 8 8 8 8 8 8

3 0 0 0 3 3 3 6 6 8 9 9 11 11 11

The second algorithm uses dynamic programming. Let () be

the maximum value that can be obtained with . Then

a dynamic programming recurrence for () is:

 ()

{

 ()

 {
 ()

 ()
 }

We first compute all entries of table () by the

recurrence above, and then find all paths from the entries

 () to A(0,0) by backtracking [30]. Each

path corresponds to a subset of whose sum is

 . Hence, the number of distinct paths is exactly P. For each

path, we perform Cases 1 and 2 of the first algorithm, where

Sum[i] is now the sum of the subset corresponding to the path.

The time complexity of the second algorithm is (

) , since computing table A takes () time and

backtracking ().

For Figure 5, dynamic programming table A is shown in Table 8,

where there are four backtracking paths, each of which produces

an intersection (e.g., the backtracking path from A(3,6) produces

intersection ()). If we backtrack from A(3,7), we arrive

at (0,1). Thus, if there are identical values in (

), we backtrack only from the leftmost one, which leads to

A(0,0).

Comparing the two algorithms, the first one is preferable when the

dimension d is small whereas the second is a good choice when

the target value is moderate. Note that the second is also an

exponential time algorithm because the value of is exponential

with respect to the input size representing . When we run the

two algorithms on a PC with a 4GB memory, the maximum value

of for the first algorithm and that of for the second

algorithm is due to the memory limit. The running times of

the two algorithms are shown in Table 9. When either d or is

moderate, the algorithms are very fast. Even in the extreme case,

they finish within 5 seconds or so.

1385

Figure 7. Two-dimensional interval disaggregation with (t-distribution with 5 degrees of freedom)

Table 9. Running times (sec) of two algorithms on various

values of d and

() () () () ()

First

algorithm
0.001 0.001 5.009 5.007

Second

algorithm
0.001 4.140 0.002 3.720

Once all vertices of the feasible polytope are found by one of the

two algorithms above, the centroid, which is the average of the

vertices, can be easily computed. For instance, the centroid is

 () in Figure 3.

To find the center of mass, we first divide the feasible polytope

into simplexes (e.g., a simplex in two dimensions is a triangle, and

it is a tetrahedron in three dimensions) by using Delaunay

triangulation [8]. The center of mass of a simplex is the centroid

of its vertices, and the center of mass of the feasible polytope is

the weighted sum of the centers of mass of the simplexes where

the weights are the volumes of the simplexes [8]. We

implemented this computation by incorporating the code for

Delaunay triangulation from CGAL, Computational Geometry

Algorithms Library [1]. For the example in Figure 3, the center of

mass is ().

Figure 6. Linear regression and probability density function

2.5 Finding Mode
When there are d dimensions in interval disaggregation, we apply

linear regression to each dimension. Let be the linear

equation obtained by linear regression on a sample of n points in a

dimension. We are interested in the value of the response variable

 at a future value . Let . The value of at

follows a t-distribution whose mean is . See Figure 6, where

n=7. If () is the probability density function of the t-

distribution with n-2 degrees of freedom, the probability density

function for is

 (

√ (

(̅)

)

),

where ̅ are values computed from the n sample

points [18].

Let , be the response variable (in the previous

paragraph) in the i-th dimension at the future value . Let

 () be the probability density function for . If we assume

for simplicity that the d dimensions of interval disaggregation are

independent, the mode is a point () such that ()

 () is maximized. Consider a two-dimensional interval

disaggregation in Figure 7, where Min=(5,6), Max=(15,10), and

T=23. The mode is the point () such that and

 () () is maximized. For the example in Figure 3,

the four points are shown in Figure 8.

Figure 8. Intersecting (46.1, 31.6, 32.3), center of mass (46.6,

31.6, 31.8), centroid (46.75, 31.75, 31.5), mode (47.01, 31.22,

31.7)

1386

To find the mode in the search space of the feasible polytope, we

use three methods: hill climbing of our own implementation,

pattern search in MATLAB [19], and Interalg of Openopt [14]. In

every experiment in Section 3, the three methods found the same

point, which is the mode.

Table 10. Comparison of intersecting point, center of mass,

and mode. Inside parentheses are values of probability density

functions.

Product Intersecting Center of mass Mode

A 13.57 (0.134) 14.00 (0.108) 14.55 (0.081)

B 9.43 (0.134) 9.00 (0.218) 8.45 (0.336)

Prob. 0.0180 0.0236 0.0273

Table 10 shows the intersecting point, the center of mass, and the

mode for the example in Figure 7. The intersecting point is the

point () where () () .

The center of mass (also centroid) is (), which is the center

point of the feasible polytope (which is a line segment in this

case). The mode is () where ()

 () is the maximum.

2.6 Cell Locking
As described in the scenario of Section 2.1, the planner may

adjust disaggregated values after interval disaggregation. During

the process of adjusting, he may fix some values and want to see

the remaining values determined by interval disaggregation. For

the disaggregated values in Table 4, suppose that the planner fixes

the value of product group A to 47 and wants the values of

product groups B and C to be computed by interval disaggregation

(Table 5). This is a case of cell locking, and the locking of k cells

reduces a d-dimensional problem to a (d-k)-dimensional one.

In Table 5 where the disaggregated value of product group A is

fixed to 47, it becomes a two-dimensional interval disaggregation

in which Min = (27,30), Max = (33,33), and the target value is

110 – 47 = 63. For each of the four points as the midpoint, the

two-dimensional interval disaggregation can be solved. For

instance, we can compute the intersecting point as follows. Max –

Min = (6,3), which has Manhattan distance 9. Since the

Manhattan distance of the intersecting point is 63 and that of Min

is 57, the intersecting point has relative distance 6/9 from Min,

and it is ()

 (), as shown in Table 5.

2.7 Discussions
We now make a comparison between the four points. Consider the

two-dimensional interval disaggregation in Figure 7. Now we

change the value of T from 13 to 23 as shown in Figure 9. Note

that the feasible polytope is a line segment, e.g., the line segment

between (5,8) and (7,6) when T=13.

The intersecting point is the intersection of the min-max line and

the feasible polytope. Hence, it moves from (6.43, 6.57) to (13.57,

9.43) as T goes from 13 to 23 in Figure 9. In d dimensions, the

intersecting point is (), and thus it has relative

distance t from Min in each dimension. Hence, it is a point

() such that () (), i.e., it balances

the probabilities in all dimensions.

Figure 9. Intersecting point, center of mass, and mode when T

changes from 13 to 23

Since the center of mass is the center point of the feasible

polytope, it moves from (6,7) to (7,8), then to (13,8), and finally

to (14,9) as T goes from 13 to 23 in Figure 9. The centroid is the

same as the center of mass in two dimensions, but it may be

different in higher dimensions. In Figure 3, if we change T from

112 to 110, the feasible polytope is a triangle from T=112 to 111,

but just after 111 it becomes a quadrilateral. Thus the centroid

does not make a continuous line when T changes from 112 to 110,

while the center of mass always makes a continuous line. Hence,

the centroid may be less appropriate as the midpoint than the

center of mass in three or higher dimensions.

An advantage of finding the feasible polytope (on the way of

computing the center of mass or the centroid) is that we can

tighten the intervals so that they don’t have ranges where there

exist no feasible solutions. In Table 2, input intervals are 40-48

for A, 27-33 for B, and 30-33 for C, but the tightened intervals are

44-48 for A, 29-33 for B, and 30-33 for C as computed in Section

2.4.

The mode is a point () such that ()

 () is maximized, and it moves from (5.45, 7.55) to (14.55,

8.45) in Figure 9. Let us compare the mode and the intersecting

point in Table 10. The intersecting point (13.57, 9.43) satisfies

 () (). In the dimension where the prediction

interval is larger, i.e., 1st dimension, the mode point moves to the

direction of decreasing , and in the other dimension it moves

to the direction of increasing , because the increased amount

of is larger than the decreased amount of as shown in

Table 10 and Figure 7.

Our algorithms find the intersecting point, the center of mass, and

the centroid (in addition to finding the feasible polytope) exactly

as they are defined. For the mode, however, we presented

heuristics (hill climbing, pattern search of MATLAB, and Interalg

of Openopt) to find a point which is close enough to the mode.

1387

All the programs that compute the four points finish

instantaneously in every experiment of Section 3, except pattern

search of MATLAB and Interalg of Openopt which take 1-3

seconds depending on function tolerances.

3. EXPERIMENTS

3.1 Planning in SAP HANA

Figure 10. Planning engine of SAP HANA

Figure 10 shows a diagram of SAP HANA, a commercial in-

memory column-store database system. Planning users build an

initial plan and refine it interactively by changing queries, target

values and the distribution of target values. The planning engine

supports this use case via planning commands to build a

calculation model for the initial plan and to interactively change

the calculation model. A calculation model is essentially a data

flow graph, where each node represents a relational operator, a

composition of relational operators in the form of a SQL query

against its input nodes, or a custom operator written in the L

language. Calculation models are optimized and evaluated by the

calculation engine.

SAP HANA supports disaggregation as relational operators.

Disaggregate operators can be placed in any proper location of

relational algebra trees. The result of any relational operator such

as aggregation can be fed into a disaggregate operator. And the

result of a disaggregate operator can be fed into other relational

operators such as a join operator. Disaggregation is provided as

two variants, a unary disaggregate operator and a binary

disaggregate operator. Each of them supports two different

disaggregation algorithms, referential disaggregation and interval

disaggregation.

Figure 11. Unary interval disaggregate operator

Figure 11 illustrates a unary interval disaggregate operator. It

receives relation R as an input, distributes the given target value,

110, to the three tuples of R. Its output is the relation R

augmented with a new column 2014 storing the disaggregated

values, where the intersecting point is used as the midpoint.

Figure 12. Binary interval disaggregate operator

Figure 12 illustrates a binary interval disaggregate operator. It

receives two input relations, a disaggregation element relation and

a target relation storing the target values to distribute. It works as

follows. First, the element relation is partitioned by the grouping

columns. In the example, the target relation has three partitions by

the Product Group column. Second, for each partition, the

corresponding target value is retrieved from the target relation.

This lookup is similar to equi-join processing. Third, the target

value is distributed to the tuples of the corresponding partition in

the element relation. The element relation plus a new column

storing disaggregated values is emitted as the operator output.

1388

Figure 14. Experiment with group X1 and target value SR×1.1

Figure 13. Filter pushdown across disaggregate operator

For performance optimization, a filter or selection operator on the

partition columns or a subset of the partition columns are pushed

down across binary disaggregation operators, as shown in Figure

13. The binary disaggregation works partition by partition. Thus,

it is safe to skip disaggregation for a partition if the partition is

filtered out later. In this regard, the disaggregate operator can be

compared to the SQL window functions, across which filters on

partition-by columns are pushed down.

In real-world planning scenarios, disaggregate operations usually

take place in a hierarchy as described in Section 2.1, and fixing

values (cell locking) may be interleaved with disaggregate

operations as in Section 2.6. Such a situation requires

disaggregation as relational operators, because SQL

implementations may not be able to handle it.

3.2 Experimental Data and Results
In this section we show experimental results of interval

disaggregation on real-world data. The dataset used in our

experiments is a nine-dimensional data cube represented as a star

schema with a fact table of 67.2 million rows and nine dimension

tables such as product, region, time, etc. Each dimension has one

or more hierarchies defined in it. For instance, the time dimension

hierarchy consists of three levels: year, quarter, and month. The

cube contains seven years (2005~2011) of general ledger data for

financial accounting in one of the leading industrial companies,

which manufactures industrial tools and equipment. Note that the

original line-item table has tens of billions of rows and the 67.2

million fact table rows are aggregated ones at the lowest hierarchy

levels. When loaded into HANA’s in-memory column-store tables,

the total table size is about 2.9GB, including indexes.

In our experiments we used the revenues of the company in

various countries. We selected 9 countries from region X, 6

countries from region Y, and 3 countries from region Z which

have all the data in 2005-2011, and divided them into groups of 3

countries each, i.e., the groups are X1-X3, Y1-Y2, and Z1. We

applied referential disaggregation and interval disaggregation to

the data of six years 2005-2010 and compared the results of

disaggregation against the actual revenues of 2011. In interval

disaggregation we used the 90% prediction intervals which are

computed from the t-distribution with 4 degrees of freedom. The

target values of disaggregation were based on the sum, SR, of the

revenues in 2010 (last data points for business planning) or the

center, CP, of the prediction interval in 2011 to reflect the trend of

historical data. The target values used in experiments were SR,

SR×1.1, SR×1.2, CP, CP×1.15, and CP×0.85. Since there were 6

groups and 6 target values in each group, we had 36 experiments.

Table 11. Experimental result of group X1 and target value

SR×1.1

Mean

percentage error
Rank

Referential 10.5% 4

Intersecting 5.0% 1

Center of Mass 9.5% 3

Centroid 10.5% 5

Mode 8.4% 2

Figure 14 illustrates one of the 36 experiments, where the group is

X1 and the target value is SR×1.1. In Figure 14, the 90%

prediction intervals and the results of disaggregation (4 bars) are

shown. The leftmost bar is the result of referential disaggregation,

the next bar (on the prediction interval) the intersecting point, the

next the center of mass, and the last the mode. The results of

referential disaggregation are simply 110% of the data points of

2010. But the intersecting point, the center of mass, and the mode

reflect the trend in the linear regression model. Thus, in country

X11 where the trend is upward, they are higher than the referential

point, and in country X13 where the trend is almost flat, they are

lower than the referential point. The intersecting points are in the

same positions in the prediction intervals relative to the lengths of

R S

disaggregate

a

filter a Product Group = A

filter a filter a

disaggregate

R S

...
partition by
Product Group a
...

1389

Figure 15. Deseasonalized data points

the intervals, and in country X13 where the prediction interval is

small, the mode is closer to the center of the interval than the

intersecting point. The results of disaggregation are compared

against the actual revenues of 2011. For each point, say the mode,

we take the absolute value of the percentage error between the

mode and the actual revenue of 2011 in a country, and calculate

the mean of the absolute values for the three countries. The mean

values are shown in Table 11, where the rightmost column shows

the ranks of the points based on the mean values.

Table 12. Summary of experimental results

Group X1 X2 X3 Y1 Y2 Z1 Average

Referential 3.33 2.67 3.67 3.83 3.50 3.83 3.47

Intersecting 2.83 2.00 2.50 2.17 1.67 3.17 2.39

Center of Mass 3.00 3.50 3.67 2.67 3.17 2.50 3.09

Centroid 3.83 3.50 2.83 3.50 3.83 2.67 3.36

Mode 2.00 3.33 2.33 2.83 2.83 2.83 2.69

The result of the 36 experiments are shown in Table 12, where the

value of an entry, say the mode in group X1, is the average of the

ranks of the mode in the 6 experiments with 6 target values. A

value in the rightmost column is the average in the 36 experiments.

In general, the referential point which depends only on the last

data point does not perform well, and the four points in the linear

regression model are better, which shows that it is helpful to use

historical data in disaggregation. Among the points in the linear

regression model, the intersecting point and the mode are better

than other points.

We remark on how to select one among the five points. If the

trends of all dimensions are more or less the same, referential

disaggregation works fine. But, if the trends differ from each other,

interval disaggregation should be used. Among the four points of

interval disaggregation, the intersecting point performs the best in

general, and the mode may be used if the planner wishes to put

more bias on the dimension of a larger interval (i.e., when the

target value is larger than the center point of the rectilinear box,

the dimension of a larger interval gets a bigger portion than that of

the intersecting point in disaggregation; it gets a smaller portion,

otherwise, as shown in Figure 9).

Table 13. Disaggregation for Q1 2011.

Country
Deseasonalized

intersecting point

2nd column × Q1

seasonal index

Actual

revenue

Y21 26080.6 20465.1 (5.46%) 19405.0

Y22 9416.2 8530.7 (3.10%) 8803.8

Y23 6302.7 5583.2 (8.11%) 6076.0

3.3 Deseasonalization
So far, interval disaggregation was applied to yearly planning.

Suppose that the planner wants quarterly planning, but the

quarterly dataset shows seasonal fluctuations. An easy solution is

that if the next quarter to plan is Q1, then we pick only Q1 data

points and apply interval disaggregation as in yearly planning. But,

if sales started to increase significantly from Q2 of last year, this

recent trend cannot be reflected in this easy solution. That is, we

want to use all data points of the quarterly dataset, in which case a

technique called deseasonalization [15] should be incorporated. In

this section we describe how our interval disaggregation can be

combined with deseasonalization in quarterly or monthly planning.

When we are going to use all data points for quarterly planning,

we need to remove the effect of seasonal variations. In

deseasonalization, we first compute a seasonal index for each

quarter [15], and then the sales revenue of each quarter is divided

by its seasonal index. Figure 15 shows (1) quarterly revenues of

country Y21 in 2007-2010 where Q4 revenues are higher than

those of other quarters, (2) seasonal indexes in the four quarters,

and (3) the deseasonalized quarterly data points which show the

overall trend that is increasing.

We apply interval disaggregation (with intersecting points and

target values CP) to the deseasonalized quarterly data of group Y2

in 2007-2010 as in yearly planning, which is shown in Figure 16

and Table 13. Finally, we multiply the seasonal index of Q1 to the

intersecting points computed by interval disaggregation (2nd

column of Table 13) to get the final disaggregation (3rd column of

Table 13) for Q1 2011. A value inside parentheses in Table 13 is

the absolute value of the percentage error between final

disaggregation (3rd column) and the actual revenue of Q1 2011 (4th

column).

1390

Figure 16. Interval disaggregation on deseasonalized quarterly revenues. Bars on prediction intervals are the intersecting points,

bars on the right are intersecting points multiplied by the seasonal index of Q1, and circles are actual revenues of Q1 2011.

4. RELATED WORK
The needs of tools for business planning were identified as early

as 2000 [31], but research on planning operations has been done

only recently [12,13]. A main planning operation in the literature

and in practice [11,20] is referential disaggregation, and the

problem formulation of interval disaggregation proposed in this

paper is new. So is the solution approach for interval

disaggregation, including the feasible polytope, etc.

Referential disaggregation frequently appears not only in planning

applications but also in business accounting applications.

Disaggregation has been implemented as application logic or as a

function that application servers provide. For instance, SAP

accounting applications heavily use disaggregation functions to

distribute shared costs, such as office maintenance costs, to

relevant departments by a certain criteria such as the number of

employees per department. It is a kind of referential

disaggregation and is implemented as business functions that SAP

application servers provide [24]. However, we are unaware of any

effort to provide disaggregation as a relational operator in database

engines.

The subset sum problem has been studied extensively [3,16,28,32],

but to our knowledge the problem of finding the feasible polytope

in Section 2.4, i.e., solving d subset sum problems simultaneously

is new in the field of algorithms. So are the two algorithms in

Section 2.4 that solve the problem.

Deseasonalization has been studied in the context of business

forecasts [15], and Section 3.3 is a straightforward adaptation of it

to interval disaggregation.

5. CONCLUDING REMARKS
We have proposed a new planning operation called interval

disaggregate and presented solutions for interval disaggregation.

Our experiments on real-world data show that interval

disaggregation gives more appropriate and advanced solutions

than the known basic disaggregation called referential

disaggregation.

However, this is just a beginning of new research directions on

business planning. More advanced disaggregate operations can be

developed by incorporating various factors. For example, the

relationship between revenues and costs as in the cost-volume-

profit analysis [6, 10] can be considered in disaggregation, and

more sophisticated constraints such as factory capacities may be

taken into account. Also product life-cycles [26] rather than linear

regression can be used as a trend model of historical data.

Developing new kinds of business planning operations other than

disaggregation will be interesting as well.

Acknowledgments. The work of Park, Ryu, and Lee was

supported in part by Next-Generation Information Computing

Development Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Science, ICT & Future

Planning (2011-0029924).

6. REFERENCES
[1] CGAL, Computational Geometry Algorithms Library,

http://www.cgal.org

[2] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C.

Welton. MAD skills: new analysis practices for big

data. Proceedings of the VLDB Endowment, 2(2):1481-1492,

2009.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. The MIT press, 3th Edition, 2009.

[4] L. Dannecker, M. Böehm, W. Lehner, and G. Hackenbroich.

Partitioning and multi-core parallelization of multi-equation

forecast models. In Scientific and Statistical Database

Management, pages 106-123. Springer Berlin Heidelberg,

2012.
[5] L. Dannecker, G. Hackenbroich, M. Boehm, U. Fischer, F.

Rosenthal, and W. Lehner. A survey of forecast models for

energy demand and supply. Journal of the ACM, 2(3):1-35,

2001.

[6] C. Drury. Cost and Management Accounting.

CengageBrain.com, 7th Edition, 2007.

1391

[7] JD Edwards World Forecasting Guide, Release A9.3, 2013,

from Oracle:

http://docs.oracle.com/cd/E26228_01/doc.93/e20706.pdf

[8] J. E. Goodman, J. O'Rourke. Handbook of Discrete and

Computational Geometry. CRC press, Second Edition, 2004.
[9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,

M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: a

relational aggregation operator generalizing group-by, cross-

tab, and sub-totals. Data Mining and Knowledge Discovery.

1(1):29-53, 1997.

[10] C. T. Horngren, S. M. Datar, and M. Rajan. Cost Accounting:

A Managerial Emphasis. Prentice Hall, 14th Edition, 2011.

[11] IBM Cognos Express Advisor User Guide, Version 9.0.0,

2009, from IBM Corp:

http://download.boulder.ibm.com/ibmdl/pub/software/data/co

gnos/documentation/docs/en/9.0.0/ea_ug.pdf

[12] B. Jaecksch, and W. Lehner. The planning OLAP model – A

multidimensional model with planning support. In

Transactions on Large-Scale Data-and Knowledge-Centered

Systems VIII, pages 32-52. Springer Berlin Heidelberg, 2013.
[13] B. Jaecksch, W. Lehner, and F. Faerber. A plan for OLAP. In

Proceedings of the 13th International Conference on

Extending Database Technology, pages 681-686. ACM, 2010.
[14] D. L. Kroshko. Technical Report, 2014, from OpenOpt:

http://openopt.org/interalg
[15] D. A. Lind, W. G. Marchal, and S. A. Wathen. Basic

Statistics For Business and Economics. Boston: McGraw-

Hill/Irwin, 2006.
[16] S. Martello, and P. Toth. A mixture of dynamic programming

and branch-and-bound for the subset-sum problem.

Management Science, 30(6):765-771, 1984.
[17] J. Matoušek. Lectures on Discrete Geometry. Springer, Vol.

212, 2002.
[18] D. C. Montgomery, E. A. Peck, and G. G. Vining.

Introduction to Linear Regression Analysis. Wiley, 5th

Edition, Vol. 821, 2012.

[19] Optimization Toolbox™ User’s Guide, Release 2014a, 2014,

from MathWorks, Inc:

http://www.mathworks.co.kr/help/releases/R2014a/pdf_doc/o

ptim/optim_tb.pdf

[20] Oracle Hyperion Planning – System 9, Release 9.3.1, 2007,

from Oracle:

http://docs.oracle.com/cd/E10530_01/doc/epm.931/hp_user.p

df

[21] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. A

foundation for capturing and querying complex

multidimensional data. Information Systems, 26(5):383-423,

2001.
[22] F. P. Preparata, and M. I. Shamos, Computational Geometry:

An Introduction. Springer-Verlag New York, 1985.

[23] S. Ross. A First Course in Probability. Pearson Education

India, 9th Edition, 2012.
[24] SAP ERP, Business Functions, SAP EHP1 for SAP CRM 7.0,

2013:
http://help.sap.com/saphelp_crm700_ehp01/helpdata/en/11/5

3929b94c84bc89334719b1606c4de/content.htm?frameset=/e

n/d5/b9e2574bbd4373b59fce413325f731/frameset.htm
[25] SAP HANA Predictive Analysis Library, ver. 1.0, 2013, from

SAP:

http://help.sap.com/hana/SAP_HANA_Predictive_Analysis_

Library_PAL_en.pdf

[26] J. Stark. Product Lifecycle Management. Springer London,

2011.

[27] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database

System Concepts. Hightstown: McGraw-Hill, 6th Edition,

2009.
[28] N. Y. Soma, and P. Toth. An exact algorithm for the subset

sum problem. European Journal of Operational

Research, 136(1):57-66, 2002.
[29] G. B. Thomas, R. L. Finney, and M. D. Weir. Calculus and

Analytic Geometry. Reading, Massachusetts: Addison-

Wesley, Vol. 9, 1996.

[30] M. S. Waterman, and T. H. Byers. A dynamic programming

algorithm to find all solutions in a neighborhood of the

optimum. Mathematical Biosciences, 77(1):179-188, 1985.
[31] G. Wiederhold. Information systems that really support

decision-making. Journal of Intelligent Information

Systems, 14(2-3):85-94, 2000.
[32] G. J. Woeginger. Exact algorithms for NP-hard problems: a

survey. Combinatorial Optimization—Eureka, You Shrink!,

pages 185-207, Springer Berlin Heidelberg, 2003.

1392

