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ABSTRACT
Summingbird is an open-source domain-specific language
implemented in Scala and designed to integrate online and
batch MapReduce computations in a single framework. Sum-
mingbird programs are written using dataflow abstractions
such as sources, sinks, and stores, and can run on differ-
ent execution platforms: Hadoop for batch processing (via
Scalding/Cascading) and Storm for online processing. Dif-
ferent execution modes require different bindings for the
dataflow abstractions (e.g., HDFS files or message queues
for the source) but do not require any changes to the pro-
gram logic. Furthermore, Summingbird can operate in a
hybrid processing mode that transparently integrates batch
and online results to efficiently generate up-to-date aggre-
gations over long time spans. The language was designed
to improve developer productivity and address pain points
in building analytics solutions at Twitter where often, the
same code needs to be written twice (once for batch process-
ing and again for online processing) and indefinitely main-
tained in parallel. Our key insight is that certain algebraic
structures provide the theoretical foundation for integrat-
ing batch and online processing in a seamless fashion. This
means that Summingbird imposes constraints on the types
of aggregations that can be performed, although in practice
we have not found these constraints to be overly restrictive
for a broad range of analytics tasks at Twitter.

1. INTRODUCTION
MapReduce, particularly the open-source Hadoop imple-

mentation, has given the data management community a
powerful “hammer” with which to tackle big data problems.
Higher-level dataflow abstractions such as Pig [32] and Cas-
cading provide data scientists with powerful tools to unlock
insights from the petabytes residing in modern data ware-
houses. These solutions focus on high-throughput batch pro-
cessing, an area that has received substantial attention over
the past few years.
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More recently, we have seen growing interest in online
processing, which represents a different class of problems.1

Typically, batch analytics are performed on static or slowly
changing datasets ranging from terabytes to petabytes. The
standard approach for analyzing high-volume data streams
(e.g., log data) is to run periodic batch jobs (e.g., hourly).
Batch processing frameworks (e.g., Hadoop) primarily focus
on job throughput and often have difficult handling latency-
sensitive jobs, e.g., from interactive analyses. There is of-
ten a need for low latency responses to potentially complex
queries over high-volume, infinite streams of data: this de-
mands online processing capabilities. Although data man-
agement on streams is not new, how to best integrate batch
and online processing in a production environment remains
an open question. This is the challenge that we tackle in
this paper.

The key insight of this work is that certain algebraic struc-
tures provide the theoretical foundation for seamlessly in-
tegrating batch and online processing. From this starting
point, we have built Summingbird, a data processing frame-
work that supports both batch and online computations
formulated in terms of these algebraic structures. Sum-
mingbird provides a domain-specific language (DSL) imple-
mented in Scala for expressing analytical queries that trans-
parently generates either Hadoop jobs (batch computations)
or Storm topologies (online computations) without requiring
any changes to the program logic. Furthermore, Summing-
bird can operate in a hybrid processing mode that trans-
parently integrates batch and online results to efficiently
generate up-to-date views over long time spans. Although
aggregations in Summingbird are restricted to certain alge-
braic structures, in practice, we find that our language is
sufficiently expressive to capture large classes of analytical
queries in a production environment.

The contribution of this work lies primarily in the de-
sign of Summingbird (Section 3) and the use of probabilis-
tic data structures implemented as commutative semigroups
for a broad range of analytical tasks (Section 4). Additional
features such as left joins and a hybrid processing mode are

1A clarification on terminology: the terms online, real-time, and
streaming are sometimes used interchangeably, and often without
precise definitions. To us, online means that data are processed as
they are being generated, in contrast to batch. Processing in real
time suggests low latency responses, although online processing
doesn’t always mean real time, e.g., an expensive computation.
The literature on streaming algorithms usually implies limited
working space. This is often, but not always, the case in online
processing; e.g., a system might have access to large distributed
key–value stores for retaining partial results.
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also discussed (Section 5). We share our experiences run-
ning Summingbird in production at Twitter, reflecting on
strengths and future work (Section 6). Since Summingbird
executes analytical workflows on either Hadoop or Storm,
its performance is no worse than programs that are directly
written for each execution framework (but see additional
discussion in Section 6). In this respect, the contribution
of our work lies not in increasing system performance, but
rather in boosting productivity for developers by providing
a unified framework for batch and online analytics.

2. BACKGROUND
We begin by describing pain points that we and our col-

leagues have experienced over the past several years in man-
aging batch and online computations at Twitter. This pro-
vides broader context about the problem that Summingbird
tries to solve. Our situation is hardly unique, and the an-
alytical queries that we describe are common in domains
ranging from social media to online retailing.

Hadoop and batch analytics. A number of large Hadoop
clusters comprise the core of Twitter’s data warehouse. Data
are imported from a variety of sources, including structured
databases (e.g., user profiles and the interest graph), un-
structured text (e.g., Tweets), and semi-structured inter-
action logs [23]. For analytics and building data products,
data scientists typically use a higher-level dataflow language
such as Pig or Scalding (Twitter’s Scala API to Cascading).
This is a mature production system, aspects of which we
have previously described elsewhere [24, 25].

Suppose we are interested in the number of user interac-
tions with some object. This could be clicks on links, impres-
sions of recommendations, numbers of logins on a particular
client, etc. Typically, we wish to know the raw counts as
well as descriptive statistics such as mean, median, and per-
centile breakdowns. Often, we want to perform cardinality
estimation or focus on the heavy hitters. In most applica-
tions, exact answers are not necessary as long as the errors
are bounded—as an example, for links that are clicked more
than one thousand times, it is sufficient to know the click
count to the nearest ten.

Answering these questions on data stored in the Hadoop
data warehouse is straightforward using Pig or any other
comparable analytical tool. Whatever is not provided as
a language primitive can be easily implemented as a UDF.
This suffices for retrospective analysis and building offline
data products (e.g., machine learning models), but what if
we desire these answers in real time on live data, with sub-
second latency?

Online analytics. Over the years, Twitter has developed
several generations of scalable systems for counting events
in real time. From these counters we can answer most of the
questions described above, but the issue is that the systems
are not well integrated into the rest of our analytics infras-
tructure. This creates substantial friction during the devel-
opment cycle: a data scientist would use familiar Hadoop-
based tools for retrospective analyses or model construction.
However, since a production system must run in an online
environment, she must write a separate set of interfaces for
gathering and processing real-time signals. To mitigate the
pain of working with two separate code bases, the common
development practice is to encapsulate core functionality in
a library that is agnostic with respect to the processing

model, and then separately “hook” the library into either
a batch or an online execution framework.

This, however, is an imperfect solution for a few reasons: it
still requires the developer to build and maintain code that
binds to different execution frameworks. In many cases, two
sets of aggregation logics must be created due to the inher-
ent differences between batch and online processing. More-
over, when writing code that is supposedly agnostic to the
processing model, it is easy to forget the constraints of the
execution environment. For example, scaling out in Hadoop
is often as simple as increasing the number of reducers, but
the ability to scale out in an online environment by splitting
streams is more restrictive. Thus, it is not uncommon to
prototype a particular feature in Hadoop and then discover
that the implementation is too slow to run in an online pro-
duction setting. As another example: in batch processing,
it is possible to take advantage of disk storage if in-memory
data structures grow too large, but in online processing this
is usually not possible due to latency requirements. Man-
aging memory limitations is particularly important when
trying to track large event spaces that follow Zipfian distri-
butions, due to the presence of long tails.

In addition to the major pain of, essentially, writing ev-
erything twice (once for batch processing and once for online
processing), there was no standard online processing frame-
work at Twitter until recently. The systems for counting
events in real-time were responsible only for gathering sig-
nals and offered little support in helping a client manipulate
and process them. Over the past several years, the result has
been a proliferation of custom one-off processing engines for
various specialized tasks. A good example that illustrates
all these issues is described in a previous paper about Twit-
ter’s real-time related query suggestion architecture [28]. In
that paper, we shared the case study of how a batch-oriented
system was first built, only to be replaced immediately by
an online system that depended on a custom processing sys-
tem. Because the system was specifically built to implement
a particular type of query-suggestion algorithm, it would be
difficult to reuse the code for other related tasks.

Framework standardization. Today, Twitter has made
progress in addressing the problem of the proliferation of
one-off systems. Hadoop remains the standard for batch
analytics, although it is mostly accessed via higher-level ab-
stractions such as Scalding and Pig. For online processing
and real-time analytics, Storm has emerged as the standard
execution framework. Hadoop requires no introduction, but
here we provide a quick overview of Storm.

Storm [37] is an open-source stream processing framework
released by Twitter in 2011,2 now an Apache project. A
Storm cluster executes user-submitted topologies (the equiv-
alent of Hadoop jobs). A topology represents a directed
acyclic dataflow graph comprised of “spouts”, which are
sources of streams, and “bolts”, which perform stream trans-
formations. Spouts are usually connected to message queues,
from which they consume sequences of tuples. The execu-
tion framework is responsible for running topologies over
a cluster, handling task placement, message routing, and
ensuring robustness in the presence of failures. The frame-
work provides options for either best-effort message delivery
or at-least-once message delivery. Bolts execute in parallel
across nodes in the cluster, and Storm provides “groupings”

2http://storm-project.net/
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to specify connections between bolts. For example, a “fields
grouping” performs a group-by to ensure that all messages
with the same field are delivered to the same bolt.

It might be tempting to eliminate Hadoop and build an
analytics platform entirely around online processing, but
this is impractical for several reasons. Online processing
does not obviate the need to store the raw data: fault tol-
erant systems for distributed online processing are usually
forced to choose between an exactly-once message delivery
guarantee that is expensive and slow or looser guarantees
(e.g., at-least-once, best-effort) that are simpler and faster.
Storm chooses the second option, which is why online pro-
cessing still needs to be “backed up” by traditional batch
processing. Furthermore, to correct errors in the online
processing pipeline or to handle upgraded capabilities (e.g.,
an improved language detector), it is often necessary to re-
run analytics on historical data and recompute results. Al-
though it is possible to simply replay archived data through
Storm, this would be hugely inefficient. In practice, when re-
playing historical data through Storm, we are at best a small
factor faster than consuming the sources in real time, com-
pared to the arbitrary scale out that we are able to achieve
with Hadoop.

Need for batch/online hybrids. It is clear that Hadoop
and Storm both have their place, but merely standardizing
on the two processing frameworks does not solve the problem
of a developer needing to write everything twice. It would
be desirable to have an abstraction for expressing analytical
queries that is agnostic to batch or online processing, and
have a system automatically generate Hadoop jobs or storm
topologies as appropriate. Summingbird does exactly this.

Another common use case for Summingbird is when we
desire aggregations over large volumes of historical data, but
also need up-to-date results. For example, suppose we want
to keep track of impression counts for all Tweets over the
entire life of the service: this obviously entails processing
large volumes of log data, which is more suited to batch
processing—but at the same time, we want real-time counts
so we can identify “hot content” with minimal latency. One
obvious solution would be to run hourly Hadoop jobs, and
then “fill in” the latest hour with Storm.

Now take the perspective of a querying client who wishes
to consume the results of these analyses. The client would
need to implement complex logic for merging results from
the batch and online computations in a robust manner. For
example, the client needs to ensure that messages are not
double counted by both Storm and Hadoop, and also handle
the opposite problem, when gaps appear between Hadoop
and Storm coverage. The client must also handle various
abnormal operating scenarios, the most common of which
is batch processing delays. When the Hadoop cluster is op-
erating beyond capacity, jobs may not generate results in a
timely fashion, in which case the client must continue gath-
ering results from Storm and wait for Hadoop to “catch up”.
Summingbird transparently handles these issues to provide
an integrated view of the data to querying clients.

We emphasize that the biggest pain point that Summing-
bird tries to address is developer productivity, not runtime
performance, since ultimately, what runs is either a “vanilla”
Hadoop job or Storm topology. Thus, the contributions of
the language lie in the abstractions it introduces and its bal-
ance between simplicity and expressivity with respect to a
broad range of analytical queries encountered at Twitter.

3. COMPUTATIONAL MODEL
Summingbird was developed as a solution to the pain

points described in the previous section. Although our dis-
cussion is couched within the Twitter production environ-
ment, we believe that many other organizations face the
same challenges. The goal of the project is to provide a
MapReduce-like programming model that generalizes over
both batch and online computations, thus allowing code to
be written once and executed on multiple processing frame-
works. Furthermore, the programming model provides ab-
stractions that allow results from batch and online process-
ing to be integrated in a seamless manner. In concrete
terms, Summingbird is an open-source domain-specific lan-
guage implemented in Scala.

To enable efficient aggregations in both batch and online
processing, Summingbird takes advantage of commutative
semigroups, a type of algebraic structure (more details be-
low). This means that Summingbird imposes constraints on
the types of aggregations that can be performed in the “re-
duce”, although in practice we have not found this to be
overly restrictive in the types of analytical queries that are
possible with the language.

Summingbird consumes and generates two types of data:
streams, which are (potentially) infinite sequences of tu-
ples, and snapshots, which represent the complete state of a
dataset at some point in time.

A producer is an abstraction over the state of a data
transformation in Summingbird (i.e., a node in a dataflow
graph). A producer has an associated source, which mate-
rializes objects of a particular type for processing. At the
beginning of a program, in the online setting, sources are
usually attached to message queues from which data are
consumed in real time. In the batch setting, sources might
read from files that are stored in HDFS. From a producer, a
workflow can be constructed via transformations described
below, each of which creates another producer.

A platform describes how Summingbird workflows are
instantiated in a specific execution framework. Currently,
Summingbird provides platform implementations for Storm,
Scalding, and an in-memory execution engine (primarily for
testing purposes). Scalding is Twitter’s Scala API to Cas-
cading, an open-source framework for building dataflows
that can be executed on Hadoop. Thus, Summingbird is
connected to Hadoop for batch processing indirectly via
Scalding and Cascading.

Summingbird jobs can generate two types of outputs: A
store represents an abstract model of a key–value store.
In the online setting, a store receives partial results that
are combined with its present state, and might be backed
by memcached, MySQL, or HBase; reasonably low-latency
reads and writes are a requirement. In the batch setting, a
store contains a snapshot of the aggregated value for each
of its keys, which is usually materialized to disk. A sink
materializes (unaggregated) tuples from the producer, typ-
ically after some manipulation. Sinks might populate an-
other message queue for further processing (in the online
case) or simply write data to disk (both online and batch
processing).

Although Summingbird is capable of creating complex
DAG workflows, let us begin by focusing on the canonical
use case. Just like in standard MapReduce, a Summing-
bird job consists of two phases: the “map” phase, where
per-record computations are applied in parallel to generate
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// Running in Hadoop (via Scalding/Cascading)
Scalding.run {

wordCount[Scalding](
Scalding.source[Tweet]("source_data"),
Scalding.store[String, Long]("count_out")

)
}

Map Map Map 

Input Input Input 

Reduce Reduce 

Output Output 

Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 

// Running in Storm
Storm.run {

wordCount[Storm](
new TweetSpout(),
new MemcacheStore[String, Long]

)
}

Map Map Map 

Input Input Input 

Reduce Reduce 

Output Output 

Spout 

Bolt 

memcached 

Bolt Bolt 

Bolt Bolt 

Figure 2: Two separate instantiations of the Summingbird word count program on different execution frame-
works. Code snippet on the left uses the Scalding platform implementation, which creates a Hadoop job (via
Cascading) running over files stored in HDFS. Code snippet on the right uses the Storm platform, which
yields a Storm topology that processes data streaming from a spout in real time.

def wordCount[P <: Platform[P]]
(source: Producer[P, String],
store: P#Store[String, Long]) =
source.flatMap { sentence =>

toWords(sentence).map(_ -> 1L)
}.sumByKey(store)

Figure 1: A simple word count example in Sum-
mingbird.

an arbitrary number of intermediate key–value pairs, and
the “reduce” phase, where values are aggregated by key.
A simple word count example in Summingbird is shown in
Figure 1. In the flatMap we apply a tokenizer that breaks
sentences from the source and for each token generates a
key–value pair with the token as the key and one as the
value. The keys are then aggregated with sumByKey (i.e.,
the “reduce”) and materialized in store. A lot of complex-
ity is hidden in sumByKey, as we detail shortly. To illus-
trate the difference between stores and sinks, if we insert a
write(sink) before the call to sumByKey, the program will
materialize (e.g., to an HDFS file or another message queue)
each parsed token and the count one as a key–value pair. In
contrast, if the write call is inserted after sumByKey, the pro-
gram will materialize a stream of partial aggregations (i.e.,
deltas) for each word.

Note the Summingbird program in Figure 1 references
only the source and store abstractions, and thus remains
agnostic to the processing model (whether batch or online).
To run the job on Hadoop, we supply the Scalding plat-
form, as in Figure 2 (left), which creates a Hadoop job that
processes input data on HDFS and writes results back to
HDFS. Alternatively, we can supply the Storm platform, as
in Figure 2 (right), yielding a Storm topology that processes
Tweets in real time and stores the counts in memcached. To
precisely explain the semantics of a group-by on an infinite
stream requires a discussion of algebraic structures, which
we defer to Section 3.2.

Below, we describe in more detail the “map” and “reduce”
computations in Summingbird.

3.1 “Map” Computations
Just as in MapReduce, the “map” phase of a Summingbird

program specifies per-record computations. These embar-
rassingly parallel computations are amenable to scale out in
both batch and online execution. Three types of per-record
computations are provided for a producer:

flatMap[T, U](fn: T => List[U]): List[U]

The flatMap method takes a function that generates a list
of values, applies the function to each object consumed from
the source, and then flattens together all returned lists. The
result is another producer. The word count example uses
flatMap because the tokenizer generates a list of tokens for
each input sentence.

map[T, U](fn: T => U): List[U]

The map method takes a function and applies it to each
object consumed from the source. The result is another
producer.

filter[T](fn: T => Boolean): List[T]

The filter method takes a binary predicate and discards
objects from the source for which the predicate returns false.
The result is another producer.

In addition to the basic map and map-like computations
described above, the producer API provides a few other ad-
ditional features such as the ability to merge sources from
two producers and to perform left joins (more details in Sec-
tion 5.1).

3.2 “Reduce” Computations
In Summingbird, a call to sumByKey triggers a reduce op-

eration where key–value pairs from the mapper stage are
grouped by keys and all values associated with the same
key are aggregated. The results are typically materialized
in a store such as a file on HDFS or an in-memory key–value
store. To enable efficient aggregation and the integration of
batch and online processing, values in Summingbird are lim-
ited to certain algebraic structures. First, a few definitions:

Definition 1. A semigroup is a tuple comprised of a set
M and an associative binary operation � : M×M → M.
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That is, for all m1,m2,m3 ∈M,

(m1 �m2) �m3 = m1 � (m2 �m3)

The � operation can be viewed as a generalization of arith-
metic addition (sum) over arbitrary types.

Definition 2. A monoid is a semigroup that also contains
an identity element ε, such that for all m ∈M,

ε �m = m � ε = m

The identity element can be viewed as a generalization of
zero for arithmetic addition (sum).

Definition 3. A commutative semigroup (or monoid) is
a semigroup (or monoid) where the associated binary oper-
ation is also commutative, that is, m1,m2 ∈M,

m1 �m2 = m2 �m1

Commutativity allows us to reorder operands in a computa-
tion without affecting results.

In the general case, to guarantee the correctness of computa-
tions, values in Summingbird must be at least commutative
semigroups (and of course, they can be algebraic types with
more properties such as commutative monoids). In the re-
duce phase of Summingbird, sumByKey aggregates all values
with the same key using the associative binary operation
belonging to the semigroup (�).

The introduction of semigroups allows us to precisely de-
fine the semantics of sumByKey on an infinite stream of key–
value pairs. Formally, each aggregation is get(K) � V, i.e.,
we incrementally apply the associative operation to the cur-
rent value held in the store and each new value. In prac-
tice, however, this approach does not scale to the volumes of
data that Twitter processes. Our solution is to buffer output
key–value pairs after the group-by and perform aggregations
in batches: buffer sizes are entirely user configurable, and
a typical setting might be to process batches of 10K key–
value pairs, but no less frequently than every 30 seconds.
Processing in small batches also allows us to take advantage
of efficient multi-get and multi-put operations that are sup-
ported by many key–value stores. Summingbird also pro-
vides options for buffering key–value pairs prior to network
shuffling on Storm and performing aggregations on the map
side; this is entirely analogous to combiners in MapReduce
and reduces network traffic.

Note that pre-shuffling and post-shuffling batching should
be considered optimizations, since they do not affect result
correctness (due to the commutative guarantees provided
by the semigroup). It is more accurate to think of these as
knobs that the developer can tune to control the tradeoff
between latency and resource consumption. For example, if
an application really demands updates for each key–value
pair as it is encountered, batching can be turned off, and
we would simply need to allocate sufficient resources in the
store implementation to support the query load.

In practice, most of the value types used in analytical
processing tasks at Twitter are commutative monoids. The
next section describes them in more detail, but here we dis-
cuss how the properties of associativity and commutativity
relate to online and batch processing more generally.

In the online case when a single processor is consuming
from a single message queue or in the batch case when a sin-
gle processor is consuming a single file, semigroups are suf-
ficient for correctness, i.e., we do not need commutativity,

since input key–value pairs will be processed sequentially.
Note, however, that even in this simple scenario commuta-
tivity is needed to handle transient data glitches that are
often encountered in online processing such as out-of-order
message delivery.

In both the online case and the batch processing case, we
need commutativity to guarantee correctness as soon as we
introduce partitioned input, that is, multiple processors con-
suming from a single message queue or mapping over mul-
tiple files on HDFS. This is in fact the common case, since
there is no other easy way to build scale-out distributed pro-
cessing systems. Commutativity is needed because partial
results from each partition may be aggregated in arbitrary
order.3 In the online processing case, commutativity lets us
handle issues like out-of-order message delivery. For both
online and batch processing, commutativity further enables
certain optimizations such as combiners in MapReduce and
partial aggregations in Storm (as discussed above).

We have recently been considering cases where commuta-
tivity may be relaxed. With respect to an error function E ,
one way to formalize this might be:

Pr[E(m1 �m2,m2 �m1) < ε] > δ

for some given ε and δ that are specified by the algorithm
designer. Of course, errors are likely to compound as more
operands are swapped, but in an online setting, monoids
that obey this property will be resilient to a certain (quan-
tifiable) amount of transient data glitches without needing
to be fully commutative. Nevertheless, this relaxed notion of
commutativity is mostly a curiosity at this point, since the
data structures that are commonly used in analytics tasks
at Twitter form commutative monoids, as we discuss next.

4. ALGEBRAIC STRUCTURES
Although values in Summingbird must be at least com-

mutative semigroups to enable efficient aggregation in both
the online and batch contexts while maintaining correctness,
this has not been a limitation in practice at Twitter. We
have implemented a number of types that capture a broad
range of analytical tasks, described below.

One simple monoid is the set of integers with addition (+)
as the binary operation and the identity element zero. This
means that Summingbird is capable of any analytical query
that involves counting events. Integers also form a monoid
under multiplication (×) with the identity element one, so
Summingbird can handle queries involving products, such as
computing probabilities (although in most cases we would
prefer working with log probabilities). Sets of arbitrary ob-
jects are also monoids with respect to set union and the
empty set as the identity—these are useful for keeping track
of set membership, e.g., the unique users who have clicked
on a link. The operators max and min form semigroups over
the set of integers (because the types lack a distinguished
identity element). These types are obviously useful for a va-
riety of analytical queries. All of the types described above
are also commutative.

Monoids can also be composed from other monoids in
more complex data structures. For example, the set of tuples

3One possible way around this in the batch processing case is to
sort intermediate data by timestamp (if available), but this in-
troduces potential scalability bottlenecks and eliminates the pos-
sibility of intermediate aggregations.
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def wordCount[P <: Platform[P]]
(source: Producer[P, Query],
store: P#Store[Long, Map[String, Long]]) =
source.flatMap { query =>

(query.getHour, Map(query.getQuery -> 1L))
}.sumByKey(store)

def wordCount[P <: Platform[P]]
(source: Producer[P, Query],
store: P#Store[Long, SketchMap[String, Long]])

(implicit countMonoid: SketchMapMonoid[String, Long]) =
source.flatMap { query =>

(query.getHour,
countMonoid.create((query.getQuery, 1L)))

}.sumByKey(store)

Figure 3: Example of counting query frequency by hour using hashmaps (left) and count-min sketches (right).

of monoids are themselves monoids under element-wise ap-
plication of the � operation. For example, the set of all pairs
of integers forms a monoid with element-wise addition, i.e.,
(a, b) � (c, d) = (a+ c, b+ d) and the identity element (0, 0).
This can be useful for concurrently keeping track of multiple
counts over a series of observations. One specific example
is an algebraic group for computing moments (e.g., mean,
variance, skewness, kurtosis, etc.), where we keep track a
tuple consisting of (1, x, x2, x3, . . .). These tuples can be
aggregated by element-wise addition, from which standard
moments can be straightforwardly derived.

Another useful monoid is the set of all hashmaps (i.e.,
associative array) that map from arbitrary keys to values
that are monoids. Similar to complex tuples, the associative
operation is key-wise application of the � operation with the
empty hashmap as the identity element. If the � operation is
commutative, then so is the hashmap monoid. The common
use case for this type is to compute histograms

One more non-trivial example worth a passing mention is
our monoid treatment of minhash [6], a fast probabilistic al-
gorithm for computing similarity between arbitrary objects.
In this case, � computes the minimum of two signatures (i.e.,
the “min” in minhash).

Beyond these examples, much of the power of Summing-
bird derives from monoid implementations of common prob-
abilistic data structures. These types were motivated by the
realization that in many analytics scenarios, exact counts are
not necessary—one might argue that exact counts are not
even desirable due to the noise inherent in human behavior,
e.g., accidental clicks. In concrete terms, it doesn’t matter
much if a retweet counter displays 141 or 142. Any count
is “good enough” as long as the value is within, say, 1% of
the true count; in fact, front-end designers might choose to
round the value to the nearest ten anyway. We hasten to
emphasize that for some analytics scenarios (e.g., for billing
advertisers), there is no tolerance for error and exact counts
are absolutely necessary—for those tasks, probabilistic data
structures are not appropriate.

Summingbird leverages the tolerance for errors in many
analytical tasks by the use of probabilistic data structures,
which are primarily based on hashing, and where the source
of error often comes from hash collisions. The use of such
data structures means that Summingbird processes every in-
put key–value pair, unlike a strategy based on sampling. Of
course, there is no reason why Summingbird cannot also in-
corporate sampling, although proper sampling requires some
knowledge of the underlying distribution. In our experience,
probabilistic data structures can be used as “black boxes”
by engineers who have no understanding of the underlying
implementations. In contrast, proper sampling usually re-
quires engineers to have a much more sophisticated knowl-
edge of statistics. Below, we describe a few useful commu-
tative monoids:

Bloom Filters [4] are compact probabilistic data structures
for keeping track of set membership, i.e., whether an element
is a member of a set or not. False positive matches are pos-
sible (e.g., a Bloom filter might assert that an element is
in the set when in reality it is not), but false negatives are
not possible. One canonical use case for Bloom filters is to
keep track of users who have been exposed to a certain event
(e.g., Tweet, recommendation, etc.) in order to avoid dupli-
cate impressions. For Twitter, this involves keeping track of
O(108) objects/day for O(108) users. The asymmetric error
properties of Bloom filters (i.e., no false negatives) means
that a user will never be exposed to the same treatment
twice. Bloom filters provide accuracy/space tradeoffs: given
a desired error rate and a given capacity (determined a priori
by the developer based on different application scenarios),
we can appropriately size the filter.

Hyperloglog counters [10, 15] are compact probabilistic
data structures for cardinality estimation (i.e., size of a set).
A canonical use case of hyperloglog counters is to keep track
of the number of unique users who have performed a cer-
tain action, e.g., retweeted or favorited a Tweet, clicked
on a link, etc. For Twitter, a näıve exact solution based
on sets would be impractical for O(108) users, particularly
for events with high cardinalities (e.g., retweets of celebri-
ties’ Tweets or Tweet impressions). These counters are also
useful for computing graph statistics such as the size of a
node’s second-degree neighborhood (e.g., followers of follow-
ers [29]). A hyperloglog counter occupies O(log log n) space
for cardinalities of up to n. These data structures are tun-
able within the (ε, δ) framework—that is, achieving (1± ε)-
approximation with probability δ. The choice of parameters
affects the constant factor in the size of the counters.

Count-Min Sketches [9] are compact probabilistic data
structures for keeping track of frequencies (i.e., counts) as-
sociated with events. A canonical use case of count-min
sketches is to keep track of the number of times a query was
issued to Twitter search within a span of time. In general,
count-min sketches can be used for building histograms of
events. The data structure is based on hashing objects into
a two dimension array of counts using a series of hash func-
tions. Given a desired error bound in the (ε, δ) model based
on the application scenario, we can compute the size of the
data structure that underlies the count-min sketch.

As a concrete example, Figure 3 shows two versions of a
Summingbird program to generate hourly counts of search
queries. The left version provides an exact solution by keep-
ing track of the query counts in a hashmap (which is a com-
mutative monoid, as previously discussed). This solution
will not scale because there is not enough memory to keep
track of all unique queries and their counts. The version on
the right replaces the hashmap with a count-min sketch: note
that the program has exactly the same logic. The couple of
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Task Exact Approximate
Set membership set Bloom filter
Set cardinality set hyperloglog counter
Frequency count hashmap count-min sketch

Table 1: A summary of common analytical queries
and the exact/approximate versions of the monoid
used in Summingbird.

def urlCount[P <: Platform[P]]
(tweets: Producer[P, Tweet],
urlExpander: P#Service[String, String],
store: P#Store[String, Long]) =
source.flatMap { tweet =>

extractUrls(tweet.getText)
}.map { url => (url, 1L) }
.leftJoin(urlExpander)
.map {
case (shortUrl, (count, optResolvedUrl)) =>

(optResolvedUrl.getOrElse("unknown"), count)
}.sumByKey(store)

Figure 4: Summingbird join example for counting
resolved URLs in Tweets using a URL expander.

extra lines are necessary to properly initialize the count-min
sketch (type SketchMap), and the (implicit countMonoid:

...) statement declares that whatever is calling this code
must have the monoid available in its implicit scope.

In summary, the three most commonly-used probabilis-
tic data structures in Summingbird are shown in Table 1
with their exact equivalents. In our experience, the alge-
braic types discussed above appear to be sufficient for large
classes of analytical queries that Twitter data scientists issue
on a daily basis.

5. ADDITIONAL FEATURES

5.1 Joins
Summingbird can perform left joins via the service ab-

straction. As described in Section 3, a producer has a source
which materializes the input; in addition, it can have a ser-
vice, which can be viewed as a mapping from values of type
T to values of type U. Possible implementations for a ser-
vice include gets from in-memory key–value stores, database
queries, remote procedure calls, etc. In data warehousing
parlance, a service would hold a dimension table to be joined
with the fact table (i.e., the source).

An example is shown in Figure 4, which computes counts
of URLs that are contained in Tweets. Since the URLs
contained in the text are always shortened, we need to look
up the expanded URLs: this is accomplished by the service.
In the first flatMap call, we extract all URLs from the Tweet
text. These URLs are then left joined with the service. More
precisely, leftJoin takes a producer that generates (K, V1)

pairs and a service K→ V2 to yield a producer that generates
(K, (V1, Option[V2])], where Option is the Scala monad
for an optional value of type V2. In this case, both types are
strings. After the left join, a call to map converts each joined
result into a key–value pair with the expanded URL as the
key (or the special token “unknown” if the URL expander
does not find an expansion) and the value one. Finally, a
call to sumByKey computes the aggregate counts.
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Figure 5: The Summingbird architecture for hybrid
online/batch processing.

5.2 Hybrid Online/Batch Processing
Summingbird’s ability to integrate batch and offline ana-

lytics supports a hybrid processing model where we are able
to efficiently and seamlessly provide access to aggregations
across long time spans while maintaining up-to-date values
with minimal latency. One common use case is to keep track
of counts for a very large event space (e.g., all Tweets) across
a long time span (e.g., for the life of the service).

The basic idea behind hybrid processing is to periodically
“roll up” aggregates using Hadoop and to “fill in” results
from real-time data using Storm. While this general de-
sign pattern is decades old [22], our architecture illustrates
the role of semigroups in allowing Summingbird to integrate
batch and online results while transparently preserving cor-
rectness. We begin by highlighting two key features:

• Hybrid processing does not require changing the logic of
Summingbird programs—the same exact program runs in
either batch or online mode. The only additional require-
ments from the developer’s perspective are a few metadata
extractors to define how inputs are grouped in batches and
a modest number of hooks into other parts of Twitter’s in-
frastructure. Any additional “bookkeeping” is performed
behind the scenes without the developer’s knowledge.

• Downstream clients are completely shielded from the de-
tails of the hybrid processing. Integration of results from
Hadoop and Storm are transparently handled by the client
library, which presents a simple key–value interface.

The complete architecture of Summingbird running in hy-
brid mode is shown in Figure 5, but we begin by introducing
a few basic concepts. In addition to the Summingbird pro-
gram, we assume that the developer has defined two addi-
tional classes: the TimeExtractor extracts timestamps out
of sources, and the Batcher maps a timestamp onto an in-
teger batch id. The batch id defines disjoint batches (e.g.,
hourly), the level of granularity at which aggregations are
computed, and internally, Summingbird will never partially
aggregate across two different batches. In most cases, the
implementations of these classes are trivial, as nearly all
log events are annotated with a timestamp, which can be
straightforwardly mapped (for example) to the nearest hour.

Summingbird in hybrid mode requires integration with
other infrastructure at Twitter: On the source end, we as-
sume the existence of message queues that deliver event data
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in real-time and that the same data are also deposited onto
HDFS (for example, see Lee et al. [23] for a description of
Twitter’s logging infrastructure). On the store end, we as-
sume the existence of two separate key–value stores: one
for the batch results, and the other for the online results
(although the client library transparently handles results
merging). Twitter uses open-source software for most of
these components, but even in cases where we rely on an in-
ternal implementation, comparable open-source equivalents
are readily available.

Periodically, a Summingbird job on the Scalding (Hadoop)
platform is triggered to compute aggregates on the next in-
cremental source batch that has been deposited in HDFS.
The process of physically launching these jobs is accom-
plished through Mesos [16], although conceptually it is no
different from cron. The mapping from batch ids to phys-
ical HDFS paths can be deterministically computed since
data are structured according to a YYYY/MM/DD/HH/ physi-
cal layout. The data import pipeline is engineered so that a
directory does not appear until all the files contained in that
directory have arrived [23], so it is not possible to process
partially-imported results.

A minor detail here is worth noting: many log messages
that are generated near the end of an hour appear in the di-
rectory for the next hour due to unavoidable latencies in the
log pipeline. We address this issue by running the Hadoop
jobs across a moving window of two hours, but discarding
events that do not belong to the relevant batch. The size of
the moving window is configurable, but in practice, we have
found that a negligible fraction of events arrive more than
an hour late. The results of these Summingbird jobs are
materialized in HDFS files (at known locations) that hold
the aggregated values for the relevant batch.

The batch results key–value store polls HDFS periodically
for the appearance of newly-created stores, and when one ap-
pears, the contents are ingested. Since the key–value pairs
on HDFS capture results for only that source batch, the in-
gestion process requires applying the semigroup associative
operator (i.e., �) to aggregate those key–value pairs with the
current contents of the batch results store. However, instead
of storing (K, V) pairs directly, the contents are transformed
into (K, (batchId, V)) pairs—this data structure captures
the value of a particular key up to and including the speci-
fied batch id. This transformation is performed “behind the
scenes” without the developer’s knowledge. Note that fold-
ing the batch id into the value to form a tuple is necessary
because our key–value store implementation does not have
an atomic ingest feature, or otherwise it would be sufficient
to store a global batch id for the entire store.

In parallel with the batch jobs, the same Summingbird
program is continuously executed in a Storm topology, and
the results are deposited in an online results key–value store.
Instead of aggregating by key K, however, the system auto-
matically builds a compound key (K, batchId) for perform-
ing the grouping. These represent the online partial results
for each batch.

Let us now turn our attention to the client. The client
library maintains connections to both the online and batch
results store. All queries first go to the batch results store:
by comparing the wall clock time and the batch id from
the result, the system knows how “far behind” the value
is. Based on this, the client can figure out how many values
need to be “filled in” from the online store, which is keyed by

(K, batchId). It can then issue appropriate requests to the
online results store. The final, up-to-date value is arrived
at by aggregating all the partial values—once again, the
validity of these operations is licensed by the fact that the
values are (at least) semigroups. Note that all this logic is
handled by the client library, and thus downstream systems
are presented with a simple key–value interface.

Typically, the batch results key–value store is much larger
and backed by durable storage, whereas the online results
are kept in memory-resident key–value stores (e.g., mem-
cached). To prevent memory overflow, keys are pruned
based on a time-to-live (TTL) setting. The TTL is tuned
such that, under normal operating circumstances (and within
a “margin of safety”), there will be no “gap” between the
batch and online results—that is, largest batch id in the
batch results store will be greater than the smallest batch
id in the online results store. However, during times of ex-
cessive load on the Hadoop cluster or outages, gaps may
appear when the online results coverage is not sufficient to
fill in where the batch results end. In this case, a client
lookup will fail.

6. PRODUCTION EXPERIENCE
As previously discussed in Section 2, Summingbird evolved

from several generations of systems within Twitter for count-
ing and processing events in real-time that date back at least
2009. The project itself, however, began in late 2012. Sum-
mingbird has been in production since early 2013, and it
was open-sourced in September of that year.4

The adoption of Summingbird has grown over time, and
here we provide a snapshot of its deployment status within
Twitter. Currently, there are a few dozen Summingbird jobs
that are running in production, which account for roughly
half of the jobs that depend on online analytics. A typ-
ical Summingbird job might process 1–20 MB/s (around
100-250K events per second) in the online mode and exe-
cute hourly in batch mode, translating to several hundred
Hadoop jobs daily. The results of these jobs typically feed
online dashboards for internal monitoring purposes or gen-
erate signals that serve as input to user-facing products.

Overall, there are roughly a dozen teams at Twitter who
run production jobs on Storm, and half of them use Sum-
mingbird exclusively. Many of the other teams were early
adopters of Storm, before Summingbird was sufficiently ma-
ture, and are considering migrating to it. In the same way
that Pig or Hive emerged a few years ago as the preferred
interface for Hadoop (as opposed to writing Java programs),
Summingbird is becoming the standard tool to access online
analytics capabilities within the company.

We have found that most online analytics needs at Twitter
can be handled by Summingbird, but admittedly, there is a
large amount of self-selection in users. However, since the
framework evolved out of several years of experience building
and running disparate online analytics systems, we are fairly
confident to have captured at least a large fraction of the
cumulative needs of the organization.

In many ways, the current state of online analytics pro-
cessing on high-volume event data is similar to the state of
Hadoop-based data warehousing several years ago. Data in-
frastructure builders discovered that simple primitives such

4https://blog.twitter.com/2013/
streaming-mapreduce-with-summingbird
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as selections, joins, aggregations were sufficient to encom-
pass most use cases (at the time), which made simple domain-
specific languages such as Pig highly successful. Of course,
as time went on, the types of analyses data scientists wish
to perform increased in sophistication to include advanced
analytics such as data mining, machine learning, etc. In the
same way, we see a co-evolution of needs and capabilities for
online analytics: being able to handle “the easy cases” is an
essential first step that Summingbird solves, but we have no
doubt that new needs will arise in the future.

One particular limitation we have encountered so far is the
need for generic folds (that are available in functional pro-
gramming languages): we wish to retain some state, which is
altered by an incoming event to produce new state. Unless
the updates themselves form a semigroup, this use case can-
not be efficiently handled by Summingbird.5 One specific
example of this is online learning, say with a linear model
using stochastic gradient descent [5]. In the general case, a
model learned online will be different from a model learned
using a batch algorithm; even the order in which the training
examples are presented to the online learner affects the final
model parameters. Thus, it is difficult to develop an ap-
proach that generalizes across online learning, batch learn-
ing, and distributed learning (over different partitions) while
maintaining stability in the output models and theoretical
guarantees. We are aware of recent work by Izbicki [17] in
formulating standard machine learning constructs in terms
of algebraic types, and it would be interesting future work to
see how those results can be integrated into Summingbird.

In general, Summingbird users are able to take advan-
tage of probabilistic data structures (Bloom filters, hyper-
loglog counters, count-min sketches) with relative ease, since
there is a fairly straightforward mapping between exact data
structures and their probabilistic equivalents (see Figure 1).
Most engineers do take the effort to learn, at least at a high
level, how the data structures work, but this is not an abso-
lute pre-requisite for writing Summingbird programs. How-
ever, the use of probabilistic data structures requires us to
educate developers about their proper usage and limitations—
in particular, setting parameters to achieve the desired com-
pactness/accuracy tradeoff and understanding the effects of
certain skewed distributions. To assist developers, we explic-
itly expose the approximation errors for structures where it
is easy to do via an API that provides error bounds and the
probability that the true value lies within the error bound.
With these metadata exposed, errors can be monitored and
the data structures can be retuned when necessary.

Although the goal of Summingbird is to increase devel-
oper productivity as opposed to analytics performance, we
see opportunities for faster job execution as well. Our design
follows a traditional separation of logical plan from physi-
cal plan, with many opportunities for query optimization
during plan compilation. One simple example currently im-
plemented is that in the absence of developer-specified con-
straints, the system tries to heuristically tune batch sizes
in Storm. Another trivial example is to coerce the first
set of bolts in a topology to be co-located with the spouts
(sources), thus saving a serialization step and a network hop.
The upshot is that, even now, Summingbird jobs are often
faster than hand-written Storm topologies. This is a nascent
aspect of the project, although the applicability of common

5A trivial solution would be to retain a log of all events, but this
is obviously not scalable.

optimizations in the data management literature is fairly
evident. Furthermore, the logical/physical plan separation
allows us to explore different platforms beyond Hadoop and
Storm—possibilities include Spark [39] and Akka.6

7. RELATED WORK
Dataflow languages. Summingbird is a high-level data-
flow language for analytical processing and thus it shares
common features with other languages such as Pig, Cascad-
ing/Scalding, and DryadLINQ [38]. Their overall approach
is to provide developers with high-level primitives and user-
defined functions (UDFs) in a manner that is abstracted
from the underlying execution engine. Summingbird is rem-
iniscent of Sawzall [33], which supports arbitrary map-side
procedural code but has only a small set of aggregators on
the reduce side. However, Sawzall aggregators do not take
explicit advantage of algebraic structures to help developers
reason about correctness. In contrast to all these languages,
which are suitable only for batch processing, Summingbird
can target execution on Hadoop and Storm without any
modifications to the program logic.

MapReduce extensions to online processing. Previ-
ous attempts to extend MapReduce to online processing in-
clude DEDUCE [20], the system of Grinev et al. [13], and
Muppet [21]. These systems are similar to Summingbird
programs running on Storm, but lack the seamless integra-
tion between batch and online processing that we provide.
DEDUCE is an extension of IBM’s System S stream pro-
cessing middleware that provides support for MapReduce
as embedded jobs within a larger dataflow, and hence has
a different architecture than Summingbird. The system of
Grinev et al. [13] builds on the distributed key–value store
Cassandra and implements a reduce function that incremen-
tally applies a new input value to an already existing aggre-
gated value. This is similar to Summingbird on Storm with-
out any batching, which as we have noted does not scale
to Twitter’s data volume. Furthermore, Grinev et al. de-
scribe aggregations without explicit references to algebraic
structures, which is a critical component of Summingbird
since it provides guarantees of correctness. Muppet [21] de-
scribes a modified MapReduce model called “MapUpdate”:
since streams may never end, “updaters” use storage called
slates to summarize the data they have seen so far, serv-
ing as “memories” of updaters, distributed across multiple
machines and persisted in a key–value store for later process-
ing. This is quite similar to one way in which Summingbird
programs can be executed, but we provide other processing
options as well. Finally, despite its name, Hadoop Online
Prototype (HOP) [8] is primarily about pipelining interme-
diate results between the map and reduce phases of a batch
job; however, it does support continuous queries via batch-
ing on the reduce end.

Another related thread of research explores MapReduce
extensions for incremental batch processing. Examples in-
clude the continuous bulk processing (CBP) model [26], In-
coop [3], and Hourglass [14]. The focus of these systems is on
techniques to minimize reprocessing of old data for reoccur-
ring jobs on data that are being ingested continuously (e.g.,
log files). Summingbird’s solution to the same class of prob-
lems is the hybrid processing mode described in Section 5.2,
but in addition to efficient incremental batch aggregations

6http://akka.io/
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(using Hadoop), we are able to provide up-to-date results
with minimal latency (using Storm).

Other online and stream processing systems. Online
processing of data streams in real time is of course not a
new problem. Below we discuss other systems for online
and stream processing beyond MapReduce extensions.

Stream-oriented databases have a long history [7, 12, 11,
19]. Typically, users issue standing queries in a variant of
SQL with temporal extensions and results are returned via
some sort of callback. One advantage of these systems is that
they build on widespread familiarity with SQL. In addition,
these systems usually have built-in primitives representing
various temporal constructs such as sliding windows, which
makes large classes of queries easy to write (e.g., counting
clicks and clickthrough frequencies). In the last few years,
stream processing engines have received renewed interest.
In addition to Storm, other systems in this space include
S4 [31], Samza,7 BlockMon [36], TimeStream [34], Spark
Streaming [40], MillWheel [1], and Photon [2]. Summing-
bird is different from these systems in its integration of on-
line and batch processing, its dependence on algebraic struc-
tures to allow developers to reason about the correctness of
computations, and its use of approximate data structures.

Online data processing frameworks often have close rela-
tionships to publish-subscribe systems such as Hedwig8 or
Kafka [18] and queuing systems such as RabbitMQ, Ama-
zon’s Simple Queue Service,9 or Twitter’s Kestrel.10 These
systems often serve as sources from which online data pro-
cessing systems consume data—for example, Summingbird
is able to read messages from Kestrel queues and from Kafka.
These systems, however, focus on issues related to the phys-
ical transport and delivery of messages, as opposed to how
the messages are processed by consumers.

Category theory and data analytics. We have seen a
number of researchers explore the relationship between alge-
braic structures, category theory, and large-scale data ana-
lytics. For example, Meijer and Bierman [27] showed that a
single generalization of relational algebra over sets—namely,
monads and monad comprehensions—forms the basis of a
common query language for both SQL and noSQL. In the
machine learning domain, Izbicki [17] described how online
training, parallel training, and cross-validation of classifiers
can be understood in terms of monoids and homomorphisms.
From the distributed systems literature, work on Convergent
and Commutative Replicated Data Types (CRDTs) [35],
which are distributed data structures that are guaranteed to
eventually converge on the same state under asynchronous
replication, are enabled by certain algebraic structures. The
application of CRDTs to stream processing has been illus-
trated in a prototype [30]. Like Summingbird, these works
share in the insight that abstract algebra provides a for-
mal framework for thinking about and potentially resolving
many thorny issues in distributed processing.

8. CONCLUSIONS
The nature of analytics within Twitter has evolved over

the past few years, perhaps leading trends in the broader
community. This paper focuses on a specific pain point

7http://samza.incubator.apache.org/
8http://wiki.apache.org/hadoop/HedWig
9http://aws.amazon.com/sqs/

10https://github.com/twitter/kestrel

that arose from the need for both batch and online analyt-
ics, which previously resulted in duplicate and difficult-to-
maintain code. We describe efforts to address this challenge
and reflect on the impact within the organization. Early on,
we also made the decision to open source Summingbird so
that the community can benefit from our experiences and
build on our efforts. In terms of exploiting the formal prop-
erties of algebraic structures to seamlessly integrate differ-
ent modes of distributed processing, we have only begun to
scratch the surface and hope to stimulate further work.
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