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ABSTRACT
Companies providing cloud-scale data services have increas-
ing needs to store and analyze massive data sets (e.g., search
logs, click streams, and web graph data). For cost and
performance reasons, processing is typically done on large
clusters of thousands of commodity machines by using high
level scripting languages. In the recent past, there has been
significant progress in adapting well-known techniques from
traditional relational DBMSs to this new scenario. However,
important challenges remain open. In this paper we study
the very common join operation, discuss some unique chal-
lenges in the large-scale distributed scenario, and explain
how to efficiently and robustly process joins in a distributed
way. Specifically, we introduce novel execution strategies that
leverage opportunities not available in centralized scenarios,
and others that robustly handle data skew. We report exper-
imental validations of our approaches on Scope production
clusters, which power the Applications and Services Group
at Microsoft.

1. INTRODUCTION
An increasing number of companies rely on the results of

massive data analytics for critical business decisions. Such
analysis is crucial to improve service quality, support novel
features, and detect changes in patterns over time. Usually
the scale of the data volume to be stored and processed is
so large that traditional, centralized DBMS solutions are
no longer practical. Several companies have thus developed
distributed data storage and processing systems on large
clusters of thousands of shared-nothing commodity servers [2,
4, 11, 24].

In the MapReduce model, developers provide map and re-
duce functions in procedural languages like Java or C#, which
perform data transformation and aggregation. The under-
lying runtime system achieves parallelism by partitioning
the data and processing each partition concurrently, han-
dling load-balancing, outlier detection, and failure recovery.
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Newer scripting languages [15, 19, 24] raise the level of ab-
straction of pure MapReduce jobs. These languages offer a
single machine programming abstraction and allow develop-
ers to focus on application logic, while providing systematic
optimizations for the underlying distributed computation.

Over the years, the underlying distributed engines bene-
fited from retrofitting well-known techniques from centralized
relational DBMSs. For instance, query optimization and
several execution alternatives in distributed scenarios are
adapted and generalized from those in traditional database
systems. One of the most common operations over data
sources is that of joining on a set of attributes. Fortunately,
many of the lessons learned over the years for optimizing
and executing join queries can be directly translated to the
distributed world. At the same time, some unique char-
acteristics of distributed scenarios result in new challenges
and opportunities for efficient and reliable join processing.
Although the problems and solutions described in this work
are generally applicable, we focus on the Scope system, the
cloud-scale computation environment in Microsoft Applica-
tions and Services Group, to showcase our techniques.

Existing taxonomies for join alternatives pivot around join
algorithms (e.g., hash-based join), join types (e.g., left-outer
join), and in case of n-ary joins, tree shapes (e.g., left-deep
joins). In the context of distributed systems, a new dimension
to characterize join operations emerges from considering the
execution graph topology, which results in new processing
alternatives. In this work we study this topic in detail.

In many distributed applications, some values are often ex-
tremely more frequent than others1 and a näıve join strategy
over those values typically explodes the amount of intermedi-
ate results produced by a single compute node. The cost of
processing these highly skewed intermediate results, in turn,
either eventually fail the entire query or dominate its latency.
For that reason, handling data skew in a robust way is an
important problem due to not only the sheer volume of data
but also extreme heavy-tail distributions. In this work we
introduce different alternatives to deal with such large data
skew in a robust way.

The rest of the paper is structured as follows. In Section 2
we review necessary background on the Scope system. In
Section 3 we study the solution space for join processing
and identify new alternatives in the distributed scenario.
In Section 4, we present a class of logical transformations

1For instance, in the context of Microsoft Applications and Ser-
vices, consider the destination IP addresses under denial of service
attack, daily queries to the Bing search engine, or a tweet from a
celebrity retweeted by millions of followers.
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that mitigate the impacts of data skew in distributed join
operations. In Section 5 we report experimental evaluations
of the techniques introduced in this paper on real workloads
in production clusters. Finally, in Section 6 we review related
work.

2. THE SCOPE SYSTEM
In this section we describe the main architecture of the

Scope computation system at Microsoft [11, 24].

2.1 The Language and Data Model
The Scope language is declarative and intentionally rem-

iniscing SQL. The select statement is retained along with
joins variants, aggregation, and set operators. Like SQL,
data is modeled as sets of rows composed of typed columns,
and every rowset has a well-defined schema. At the same
time, the language is highly extensible and is seamlessly
integrated with the .NET framework. Users can easily define
their own functions and implement their own versions of re-
lational operators: extractors (parsing and constructing rows
from a raw file), processors (row-wise processing), reducers
(group-wise processing), combiners (combining rows from
two inputs), and outputters (formatting and outputting final
results). These user-defined operators are well-integrated
into the system and allow algebraic transformation just like
other relational operators. This extensibility allows users
to solve problems that cannot be easily expressed in SQL,
while at the same time enables sophisticated optimization of
scripts.

In addition to unstructured data, Scope supports struc-
tured streams. Like tables in a database, a structured stream
has a well-defined schema that every record follows. A struc-
tured stream is self-contained and includes, in addition to
the data itself, rich metadata information such as schema,
structural properties (i.e., partitioning and sorting informa-
tion), statistical information on data distributions, and data
constraints [24].

Figure 1(a) shows a simple Scope script that counts the
different 4-grams of a given single-column structured stream.
In the figure, NGramProcessor is a C# user-defined operator
that outputs, for each input row, all its n-grams (4 in the
example). Conceptually, the intermediate output of the
processor is a regular rowset that is processed by the main
outer query (note that intermediate results are not necessarily
materialized between operators at runtime).

2.2 Query Compilation and Optimization

A Scope script goes through a series of transformations
before it is executed in the cluster. Initially, the Scope
compiler parses the input script, unfolds views and macro
directives, performs syntax and type checking, and resolves
names. The result of this step is an annotated abstract syntax
tree, which is passed to the query optimizer. Figure 1(b)
shows an input tree for the sample script.

The Scope optimizer is a cost-based transformation engine
that generates efficient execution plans for input trees. Since
the language is heavily influenced by SQL, Scope is able to
leverage existing work on relational query optimization and
perform rich and non-trivial query rewritings that consider
the input script in a holistic manner. The optimizer returns
an execution plan that specifies the steps that are required to
efficiently execute the script. Figure 1(c) shows the output
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Figure 1: Compiling and executing in Scope.

from the optimizer, which defines specific implementations
for each operation (e.g., stream-based aggregation), data par-
titioning operations (e.g., the partition and merge operators),
and additional implementation details (e.g., the initial sort
after the processor, and the unfolding of the aggregate into
a local/global pair).

The backend compiler then generates code for each opera-
tor and combines a series of operators into an execution unit
(or stage) obtained by splitting the output tree into compo-
nents that would be processed by a single compute node.
The output of the compilation of a script thus consists of (i)
a graph definition file that enumerates all stages and the data
flow relationships among them, and (ii) the assembly itself,
which contains the generated code. This package is sent to
the cluster for execution. The dotted lines in Figure 1(c)
depict the two stages corresponding to the input script.

2.3 Job Scheduling and Runtime

The execution of a Scope script (or job) is coordinated
by a Job Manager (JM). The JM is responsible for con-
structing the job graph and scheduling work across available
resources in the cluster. As described above, a Scope ex-
ecution plan consists of a directed acyclic graph of stages
that can be scheduled and executed on different machines
independently. A stage represents multiple instances, or ver-
tices, which operate over different partitions of the data (see
Figure 1(d)). The JM maintains the job graph and keeps
track of the state and history of each vertex in the graph.
When all inputs of a vertex become ready, the JM considers
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the vertex runnable and places it in a scheduling queue. The
actual vertex scheduling order is based on vertex priority
and resource availability. One scheduling principle is based
on data locality. That is, the JM tries to schedule the vertex
on a machine that stores or is close to its input whenever
possible. If the selected machine is temporarily overloaded,
the JM may schedule the vertex to another machine that is
close in network topology so reading the input can be done
efficiently with minimum network traffic. Additionally, in
order to cope with potential hardware failures and variations
in machine loads in a large cluster of commodity hardware,
JM judiciously launches duplicate vertices, in what is known
as speculative duplicate execution. Duplicate execution can
help improve job latency and job runtime predictability in
face of unexpected environmental events in the cluster.

During execution, a vertex reads inputs either locally or
remotely. Operators within a vertex are processed in a
pipelined fashion, similar to a single-node database engine.
Every vertex is given enough memory to satisfy its require-
ments (e.g., hash tables or external sorts), up to a fraction
of total available memory, and a fraction of the available
processors. This procedure sometimes prevents a new vertex
from running immediately on a busy machine. Similar to
traditional database systems, each machine uses admission
control techniques and queues outstanding vertices until the
required resources are available. The final results of a vertex
are written to local disks (non-replicated for performance
reasons), waiting for the next vertex to pull them.

The pull execution model and materialization of interme-
diate results have many advantages in the context of highly
distributed computation. First, it does not require both
producer and consumer vertices to run concurrently, which
greatly simplifies job scheduling. Second, in case of failures,
which are inevitable in a large cluster, all that is required is
to rerun the failed vertex from the cached inputs. Only a
small portion of a query plan may need to be re-executed.
Finally, writing intermediate results frees system memory to
execute other vertices and simplifies computation resource
management.

3. JOIN PROCESSING
In this section we first briefly review the taxonomy of

join processing strategies, and then describe additional join
alternatives in a distributed environment.

Traditionally, join strategies are classified in the following
dimensions:

- Join types, which characterize the semantics of the
join, and include cross join (cartesian product), inner
join (equi-join, natural join), outer join (left, right, and
full outer join) and semi-join (left and right semi-join).

- Join algorithms, which are different ways to imple-
ment a logical join operator, and include nested-loop
joins, sort-based joins, and hash-based joins. In ad-
dition, auxiliary data structures, such as secondary
indexes, join indexes, bitmap indexes, bloom filters, are
introduced to further improve the basic join algorithms
(e.g., indexed loop join, indexed sort-merge join, and
distributed semi-join).

- Join tree shapes, which are relevant when performing
multiple joins, and characterize the shape of the join
tree, such as left-deep, right-deep, and bushy trees.

Figure 2: Different types of data exchange topologies (from left
to right: initial partitioning, repartitioning, full merge, partial
repartitioning, and partial merge).

In a distributed environment, an additional dimension is
introduced into the join taxonomy: the join graph topology.
Graph topologies specify how different partitions of data
are processed in a distributed way, and is affected by the
following factors [25]:

- Partitioning schemes, which characterize how data
is partitioned in the system. Partitioning schemes
consist of a partition function (e.g., hash partitioning,
range partitioning, random partitioning 2, and custom
partitioning), a partition key, and a partition count.

- Data exchange operators, which modify the parti-
tioning scheme of a data set, and include initial parti-
tioning, repartitioning, full merge, partial repartitioning
and partial merge (see Figure 2).

- Merging schemes, which modify data exchange op-
erators by ensuring certain additional intra-partition
properties (e.g., order) and include random merge, sort
merge, concat-merge and sort concat-merge [25].

- Distribution policies, which dictate whether parti-
tions can be duplicated to multiple execution nodes,
and include distribution with duplication and distribu-
tion without duplication.

Figure 3 illustrates the taxonomy of join processing. Given
any combinations along those dimensions, it projects onto
the hyper-plane of join implementation strategies. In the rest
of this section we will discuss various join implementation
strategies for distributed environments in detail. Specifically,
we focus on the interactions between join graph topologies
and join types in Section 3.1, and how interesting properties
affect choices of different join graph topologies and join
algorithms in Section 3.2. The join-order dimension is left
out for simplicity without loss of generality.

3.1 Join Graph Topologies
Join graph topologies are classified into symmetric and

asymmetric join graphs. In symmetric join graphs, both
inputs are horizontally partitioned by the very same parti-
tioning scheme, and the joins are carried out by n compute
nodes, where n is the number of partitions. Each compute
node reads the pair of the i-th partitions from both inputs
and performs the join, thus also called pair-wise join graph.
The serial join graph is a special case of the symmetric join
graph, with n = 1.

Asymmetric join graphs are joins on inputs with different
partitioning schemes. Figure 4 illustrates a sample asymmet-
ric join graph, where table T is partitioned into five partitions,

2Random partitioning can be viewed as a partition function over
the key column.
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Figure 3: Taxonomy of join alternatives.

Figure 4: An example of an asymmetric join graph.

while table S is partitioned into six partitions. The join oper-
ation is carried out with degree of parallelism (DOP) equal to
five. It is asymmetric because (i) some partitions participate
in more than one join node (those partitions, such as T4

and S4, are distributed with replication), and (ii) some joins
take asymmetric numbers of inputs (e.g., both the third and
the fifth join nodes from the left take one input partition
from T and two input partitions from S). In addition, not
all partitions from T participate in the join, e.g., T5

3.
It is important to note that join graph topologies describe

how partitions from both inputs are connected to the join
operator, but are orthogonal to specific join algorithms.

A commonly adopted asymmetric join strategy in a dis-
tributed environment is the broadcast join graph. In a broad-
cast join graph, one input is fully-merged to a single partition,
while the other input is arbitrarily partitioned. The join is
then implemented by broadcasting (with replication by defi-
nition) the serial input to all the partitions of the other join
operand.

Another common asymmetric join graph is the full-cross
join graph, where both join operands are arbitrarily parti-
tioned. The join is implemented by broadcasting every left
partitions (of the left input) to all the right partitions (of
the right input), resulting in a complete bipartite graph.

Figure 5 illustrates another generic join graph for dealing
with data skew. Both tables T and S are custom partitioned
into 4 groups of partitions. The first group of partitions
(shown in blue) are connected as pair join graph. The second
group of partitions (shown in brown) are connected as right-
broadcast graph, and the third group (shown in red) are

3Careful readers may question how Figure 4 can be a valid join
implementation strategy that produces correct results. Such a
join graph is only viable if the system has rich knowledge about
distributions and semantics/constraints of the underlying data.

Figure 5: An example of a skew join graph.

connected as left-broadcast graph4. Finally, the fourth group
(shown in white) are connected as full-cross graph. More
details on such strategies are discussed in Section 4.

Not all alternatives in the generalized join taxonomy make
intuitive sense. For example, it is commonly less efficient to
implement an inner join using random partitioning with a
nested loop algorithm (resulting in a full-cross join graph)
than using hash partitioning with sort-merge algorithm (re-
sulting in a symmetric join graph) due to the large amount
of data transfer in the first alternative. However, in cer-
tain cases those intuitively uninteresting approaches become
favorable solutions. For example, if extreme data skew is
present (either in the inputs or in the join result), the tra-
ditional symmetric parallel join graph will suffer on those
outlier compute nodes (more details in Section 4). Also, in
the presence of interesting properties 5, full-cross join graphs
become interesting parallel join alternatives that have not
been considered in traditional DBMSs (see Section 3.2).

If we take the join type dimension into consideration, not
all join types can be implemented näıvely with arbitrary join
graph topologies, especially those strategies that imply distri-
bution with replication. For instance, a left-outer join cannot
be implemented by a left-broadcast join graph without tak-
ing additional actions to eliminate duplicates. In Section 4,
we will discuss the duplicate elimination techniques used in
Scope and existing techniques in the literature in Section 6.

Figure 6 depicts the solution space by enumerating the di-
mensions of the partition functions and the partition counts.
The x-axis denotes the partition numbers of the left join
operand, the y-axis denotes the partition numbers of the
right join operand and the z-axis denotes the partition func-
tions. The z-axis, i.e., x = y = 1, represents serial join
graphs. The plane where x = y represents symmetric join
graphs. All other space represents asymmetric join graphs
which can be further classified as follows. The {x, z} plane
represents the right-broadcast join graphs, and the {y, z}
plane represents the left-broadcast join graphs. The remain-
ing space represents the full-cross or partial-cross join graphs.

The solution space of inner joins covers the entire space
depicted in Figure 6. However, without advanced duplicate
elimination techniques, left outer/semi/anti-semi joins can
only be covered by the planes where x = y or y = 1, and
right outer/semi/anti-semi joins can only be covered by the
plans where x = y or x = 1. Full outer joins can only be
covered by the plane where x = y, and cartesian products
can be covered by the entire space except the plane x = y.

4A right-broadcast join graph is the one that broadcasts the right
input to the left input. Similarly, a left-broadcast join graph is
the one that broadcasts the left input to the right input.
5Interesting properties include sorting, grouping, partitioning
properties and additional access paths.
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Figure 6: Parallel join graph topologies.

Figure 7: Join example.

Notation Definition

1 inner (equi-) join operator

RPart(C) range partition on column sequence C

Sort(C) sorting on column sequence C

TP, SP partition keys of table T and S, respectively

TS, SS sort keys of table T and S, respectively

TJ, SJ join keys from table T and S, respectively

TN, SN partition counts of table T and S, respectively

|χ| degree of parallelism (DOP) on χ, e.g., | 1 |
denotes the DOP of the join, and |T| denotes the
partition count of table T

A v B column sequence A is a prefix subset of column
sequence B

A ⊆ B column set A is a subset of column set B

Table 1: Notations used in the running example.

3.2 Interesting Properties
In this section, we discuss how interesting properties, such

as partitioning and sorting properties, further widen the
viable solution space in practice, and how we can exploit
such information to improve parallel joins.

Consider the following running example in Figure 7 with
notations defined in Table 1. For simplicity, we do not
enumerate the entire solution space but instead focus on
a typical example. Figure 7 shows a query joining table
T with S on an equality predicate TJ = SJ, where the join
is implemented as indexed loop join6. Table T is range

6Similar analysis can be applied to other join algorithms with
slight modifications.

DOP of the
join

Join Graph Topol-
ogy

Conditions

| 1 | = 1 serial join graph |T| = |S| = 1

| 1 | = |S| left-broadcast join
graph

|T| = 1

| 1 | = |S| × k • for k = 1, symmetric
join graph (pair-
wise join)

• for k < 1, symmetric
join graph with
partial merge

• for k > 1, symmet-
ric join graph
with partial
repartition

|T| > 1, |S| > 1
and SP v SJ

| 1 | = |T| × k • for k = 1
|T| , serial

join

• for k = 1 and
|S| = 1, right-
broadcast join
graph

• for k ≥ 1 and |S| >
1, full-cross join
graph with par-
tial merge on S

|T| > 1 and
SP v SJ v SS

| 1 | = |T| × |S| full-cross join graph none

Table 2: Common parallel join graph topologies in distributed
environments.

partitioned on columns TP and sorted on TS. Table S is
range partitioned on columns SP and sorted on SS. Since
the join algorithm is indexed loop join, we assume that the
sorting key SS can provide seeks over a subset of the join
columns SJ. That is, ∃ S′ v SS, such that S′ ⊆ SJ. Table 2
summarizes various join graph topologies in the distributed
environment, given conditions on the interesting properties.

The first three cases are common parallel join strategies in
the distributed environment. Two variants of the symmetric
join graphs with partial repartitioning and/or partial merge
(the last two variations of the third case) are considered by
the Scope system but have not been described in the litera-
ture to the best of our knowledge. For example, if TP v TJ

and SP v SJ, but TP 6= SP or TN 6= SN, Scope will try to re-
fine RPart(TP) to TN′ = |RPart(TP′)| such that TP′ = SP and
TN′ = SN, or vice versa. The refinement of the partitioning
may include splitting some partitions, or merging some other
partitions.

For the fourth case, i.e., | 1 | = |T| × k, the first two vari-
ants are also commonly adopted strategies described before.
The third variant, where k ≥ 1 and |S| ≥ 1, is a special
case of the fifth case (the full-cross join graph) which will
be discussed now. The full-cross join graphs for equi-joins
are the ones that are less explored in traditional database
systems. It is usually less efficient due to the large data
volume of the intermediate results, and as such it is pruned
heuristically from the search space of the optimizer. In a
distributed environment, there are two major cost compo-
nents in parallel join strategies – data partitioning costs,
and the costs directly associated with the join operation,
such as CPU and local I/O costs of the intermediate results.
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Figure 8: Partial-cross join graph.

Figure 9: Complete bipartite join graph.

The trade-offs between symmetric (pair-wise) join graphs
and full-cross join graphs are offsets of the data partitioning
costs by the reduction of the join costs. In most cases, the
reduction in join costs are much higher than the incurred
costs of data partitioning. However, with the presence of
interesting properties, it may allow further reductions of the
join costs without the incurred data partitioning costs. The
core idea is graph pruning of the complete bipartite graph by
leveraging the interesting properties.

In the example, both table T and S are range parti-
tioned, and suppose that TP v SP and SP ⊆ SJ (which im-
plies TP ⊆ TJ). Figure 8 shows the range boundaries of
RPART(TP) on both T and S in different color codes. Since
TP v SP, RPART(SP) will have finer partition boundaries,
resulting in some boundaries of RPART(TP) reside inside
physical partitions of RPART(SP). Furthermore, since both
TP ⊆ TJ and SP ⊆ SJ, we can infer that, for example, the
join of T2 and S5 will yield empty results. Thus, we can
prune the connection between T2 and S5 from the full-cross
graph. After pruning all unnecessary connections between
Ti(i = 1 . . . 5) and Sj(j = 1 . . . 7), the resulting join graph is
shown as Figure 8. Whether or not we should choose this
execution plan over the conventional pair-wise join graph is
a cost-based decision.

An important factor that affects the costs is the join se-
lectivity. A complete bipartite join graph, shown in Figure 9,
incurs a potentially very large data transfer and total costs,
even though it does not incur data partitioning costs. Nev-
ertheless, in rare but plausible conditions, it still provides
a favorable alternative over the state-of-the-art pair-wise
hash-based or sort-based join strategy. For instance, if the
inner table (S) can provide interesting indexes to evaluate
the join predicate efficiently and the join selectivity is very
low, then both data transfer costs and the total join costs will
remain low, since indexed loop join can leverage the indexing
structures to push join operations to data. The lookup will
only incur data transfer costs for rows that match the join
predicate. In addition, with batched lookups, we can keep a
good amortization of individual network round-trip costs.

SKEW JOIN

Detect Keys

Prepare Input

Join

Figure 10: Three stages of SkewJoin transformation.

In this section, we discussed how join graph topologies
enrich the solution space of join processing in MapReduce
environment. In the following section, we will discuss how
Scope applies different join graphs in tackling the join skew
problems.

4. HANDLING JOIN SKEW
As illustrated in Section 1, handling data skew is a crucial

challenge in large-scale distributed applications. We next
present a class of logical transformations called SkewJoin. A
SkewJoin transformation mitigates the impact of data skew
in a distributed join operation. We present three concrete
SkewJoin transformations and discuss their advantages and
disadvantages.

4.1 Overview
The key idea of the SkewJoin is simple: separate high-

frequency join key values and process them differently from
low-frequency key values. That is, use different partitioning
scheme and join graph topology for high-frequency key values.
At a high-level, the SkewJoin transformation decomposes a
join into three steps (see Figure 10):

1. Detect high-frequency join key values. The first
step is identifying high-frequency (i.e., skewed) values
in the join key. If there is a mechanism to detect
data skew in join key columns (e.g., histograms, or
approximate counts), this step can directly leverage the
mechanism. If not, we generate a simple aggregation
query to collect high frequency values (Section 4.4).

2. Prepare join inputs. Once the key values that re-
quire special handling are identified, the SkewJoin strat-
egy prepares the join inputs by splitting and/or reparti-
tioning the input tables accordingly. The low frequency
values (i.e., non-skewed values) will be prepared for an
ordinary parallel join (e.g., hash partitioned by join key
with pair-wise join graph), while the high frequency
values (i.e., skewed values) will be prepared differently.
We assume that the query execution engine supports
reading intermediate data multiple times as well as
repartitioning intermediate result. We present three
alternatives that have different join graph topologies,
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T.bLH

Split
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Split

Figure 11: B-SkewJoin (a.k.a. Partial Replication Partial Re-
distribution).

different trade-offs between performance and robust-
ness, and different capabilities in supporting join types
and data skew scenarios (Section 4.2).

3. Perform join proper. SkewJoin strategies does not
require a special join algorithm implementation. Any
join algorithm implementation available in the query
execution engine (e.g., hash join, sort-merge join) can
be used. However, certain join types require careful
handling (Section 4.3).

In the rest of section, we use joining T(a, b) and S(b, c)
on b as a running example. We also use bLL, bHL, bLH to
represent sets of join key values that are (i) not skewed in
T and S, (ii) skewed in T but not skewed in S, and (iii) not
skewed in T but skewed in S, respectively. If a key value has
high-frequency in both tables, the higher frequency side takes
precedence. We denote T.bx as T.bx = {t|t ∈ T ∧ t.b ∈ bx}.
For example, S.bLH represent tuples in S that their b values
are not skewed in T but skewed in S. For simplicity, we first
restrict the discussion to inner join, then extend the approach
to cover outer joins in Section 4.3.

4.2 SkewJoin Transformations
We describe the three alternative transformations to handle

join skew, and discuss the benefits and drawbacks of each
approach.

4.2.1 B-SkewJoin
B-SkewJoin (or Broadcast SkewJoin) is perhaps the most

intuitive way to workaround join skew. We have observed
many users who had a severe data skew problem had manu-
ally implemented this strategy by handcrafting their scripts
before we implement SkewJoin in the system. B-SkewJoin

is also known as Partial Replication Partial Redistribution
(PRPD) [23]. B-SkewJoin mitigates data skew by splitting
join input and using broadcast join. Suppose running T 1b S,
T.b has a skewed distribution, and T is partitioned on a. By
broadcasting S, join product skew is spread across the parti-
tions as long as partitioning on T.a keeps the distribution of
T.b relatively uniform. Splitting the input based on skewed
values keeps the size of broadcasted rows small thus makes
B-SkewJoin applicable to larger data.

T

T S

Detect Keys

Join 

SJP

S

SJP

Figure 12: F-SkewJoin.

Figure 11 illustrates the graph topology of B-SkewJoin

join at a high-level. Each join input is split into three dis-
joint subsets according to key distribution and processed
by three distinct parallel joins. The non-skewed side (i.e.,
T.bLH and S.bHL) will be broadcasted (dashed lines) to the
other side. The non-skewed input (T.bLL and S.bLL) are
processed by a pair-wise parallel join implementation. The
results of these three sub-joins are put together to get the
final result. B-SkewJoin is simple yet potentially the most
efficient strategy for two reasons. First, this strategy does
not require repartitioning input data if the input tables de-
liver interesting properties. Second, the result of join retains
the data partitioning property of the non-broadcasted side
thus can avoid repartitioning steps required by subsequent
operators.
B-SkewJoin trades off reliability of execution time for per-

formance because the overall performance heavily relies on
the initial data partitioning of the non-broadcasted side. For
example, suppose T is already partitioned on T.b. In this sce-
nario, broadcasting S.bHL is not different from an ordinary
pair-wise join because each high-frequency join key value
is processed by a single node. Thus, B-SkewJoin should be
used carefully by considering the input data partitioning
scheme.

4.2.2 F-SkewJoin
The second alternative F-SkewJoin (or Full SkewJoin)

is at the other extreme of trade-off between performance
and reliability. Instead of avoiding repartitioning as much
as possible, F-SkewJoin always fully repartitions the input
data. Fully repartitioning data imposes greater overhead
than B-SkewJoin. However, it results in better control over
balancing join product skew by fine-tuning the join graph
topology. Additionally, the overhead of repartitioning is
more predictable than estimating the resulting join product
skew from the initial data partitioning.

Specifically, F-SkewJoin repartitions the inputs as follows:

- Rows with high-frequency values in the table are
round-robin partitioned to downstream join operators
(i.e., distribute without duplication).

- Rows with high-frequency values in the other ta-
ble are replicated to downstream join operators (i.e.,
distribute with duplication).

- Rows with low-frequency values in both tables are
hash partitioned on the join key.
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/* Called per key in L like a left outer join */
LeftSkewJoinPartitioner (L, R, o)
// L: left input rows.
// R: high-frequency key value from detection
// schema: (key, source, DOP)
// o: output row. schema: (schema of L, partition)
1 r = R.First()
2 if (r is null)
3 // Hash partition
4 l.CopyTo(o)
5 o.partition = Hash(r.key) % r.DOP
6 yield return o
7 else if (r.source is LEFT)
8 // Round-robin partition
9 i = 0
10 foreach (l in L)
11 l.CopyTo(o)
12 o.partition = ++i % r.DOP
13 yield return o
14 else
15 // Replicate
16 foreach (l in L)
17 l.CopyTo(o)
18 for (i = 0; i < r.DOP; ++i)
19 o.partition = i
20 yield return o

Figure 13: Left skew join partitioner as a user-defined combiner.

In this way, F-SkewJoin effectively rebalances the non-
broadcasted side of B-SkewJoin across multiple join opera-
tors. Each join operator processes both low frequency key
values and high frequency key values. F-SkewJoin can vary
parallelism of join operator to distribute the high frequency
values if the information is available (e.g., collected by a
simple aggregation in the detection step as discussed in
Section 4.4). Note that if F-SkewJoin always use full paral-
lelism for each high-frequency key value, it behaves similar
to B-SkewJoin.

To implement F-SkewJoin, a query execution engine needs
a new partitioning operator, called Skew Join Partitioner,
which repartitions and/or replicate the input table with re-
spect to the high-frequency key information. If the system
supports a user-defined operator (UDO), this Skew Join

Partitioner can be implemented as a UDO. For example
in Scope, we implemented Skew Join Partitioner as a
user-defined combiner that implements a custom binary op-
eration [24]. The combiner interface lets users enumerate and
process all rows from both inputs bearing the same join key
value. Figure 13 shows an example Skew Join Partitioner

implemented as a Scope combiner UDO that prepares the
left input according to high-frequency value detection results
(i.e., taking the left input table and high-frequency key values
with their frequencies).

Figure 12 illustrates F-SkewJoin at a high-level. Skew

Join Partitioner (SJP) prepares each join input by repli-
cating (T.bLH and S.bHL), partitioning in round-robin (T.bHL

and S.bLH), and hash-partitioning (T.bLL and S.bLL) depend-
ing on the detection result. The prepared input is processed
by a single parallel join thus does not require union.

Although F-SkewJoin is more versatile and reliable than
B-SkewJoin, always repartitioning input data may incur high
overhead for very large dataset. Additionally, if the join oper-
ator is part of a more complex pipeline, subsequent operators

T.bLL
S.bHL S.bLH

T S

Detect Keys

Union ALL

Join Join

T.bHL T.bLH

Split-SJP

S.bLL

Split-SJP

Figure 14: H-SkewJoin.

may require an extra repartitioning step because Skew Join

Partitioner breaks the existing input data partitioning.

4.2.3 H-SkewJoin
The last alternative H-SkewJoin (Hybrid SkewJoin) is

a hybrid of B-SkewJoin and F-SkewJoin. It strikes bal-
ance between performance and reliability. This strategy
splits the join inputs as in B-SkewJoin but uses Skew Join

Partitioner to repartition the skewed side as in F-SkewJoin.
By splitting the input, H-SkewJoin can retain the original

data partitioning on the non-skewed side (i.e., ∗.bLL) but
loses it in the skewed side. If majority of join key values
are distinct, H-SkewJoin can avoid expensive repartitioning
compared to F-SkewJoin. However, splitting the dataflow
into two parts might result in more operators to schedule at
runtime, and such extra overheads could counter the benefits
of preserving the original data partitioning.

Figure 14 illustrates H-SkewJoin join graph topology. The
join inputs are first split as in B-SkewJoin (∗.bLL and the
rest), then tuples bearing high-frequency values are processed
by Skew Join Partitioner. Two parallel joins process the
data then we union partial results to obtain the final answer.

Summary. In this section, we reviewed three SkewJoin trans-
formations. Each transformation has a unique trade-off be-
tween performance and reliability. We summarize the three
transformations in Table 3.

4.3 Handling different Join Types
The actual join operation in SkewJoin can be done using

any join algorithm implementation. However, data skew
in certain outer join scenarios requires special attention for
correctness. For example, as discussed in Section 3, broad-
casting the left input to the right is not correct in a left outer
join because those broadcasted left rows will produce wrong
null values when they do not join with the tuples from the
right. Thus, B-SkewJoin can not handle data skew in the
inner table of an outer join.
F-SkewJoin and H-SkewJoin, in turn, can support this

scenario by ensuring that at least one tuple is distributed to
each downstream partition when repartitioning skewed key
values from inner table (e.g., S.bLH) in round robin fashion.
The property is satisfied if the frequency of a value is high
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B-SkewJoin F-SkewJoin H-SkewJoin

Applicability

Source of data skew Left Right Left Right Left Right

Inner
√ √ √ √ √ √

Left Outer ×
√ √ √ √ √

Right Outer
√

×
√ √ √ √

Full Outer × ×
√ √ √ √

Partition Requirements
Repartition low-frequency keys if necessary Yes if necessary
Repartition high-frequency keys No Yes Yes

Require SJP ×
√ √

Join Graph Topology
High-Frequency Key Source None Round-Robin Round-Robin
High-Frequency Key Other Broadcast Partial Replication Partial Replication
Join Low-Frequency Keys Separate Not Separate Separate

Derived Interesting Properties
Preserve Partitioning Yes No Partial

Preserve Sort Yes Yes Yes

Cost
Overhead Low High Moderate

Robustness Low High High
# of Scheduled Operators High Low Moderate

Table 3: Summary of SkewJoin transformations.

enough. Specifically, whenever the high-frequency values
are repeated at least roughly |D| ∗ | 1 |/2 where |D| is the
number of input partitions (e.g., |T|, |S|), and | 1 | is the
number of partitions of the join operator.

If that is not the case, Skew Join Partitioner can enforce
this property by generating witness tuples for each key value
partitioned in round-robin so that each join operator sees
at least one original or witness tuple. The witness tuple
prevents an outer join operator from generating null values
but results produced by a witnessed tuple must be excluded
from the final result. This can be implemented as an extra
filter after the join or a modified outer join operator variant
that natively understands witness tuple semantics.

4.4 Detecting High Frequency Key Values
The three SkewJoin alternatives discussed in previous sec-

tions rely on the information about high frequency key values.
In this section, we answer the following questions through
cost analysis. First, what is the threshold of high-frequency
values? And second, how many partitions need to be used?
We assume fully pipelined execution for simplicity and differ-
ent execution model may require adjustment of the results.
We assume joining m×n (m > n) tuples using K processors
where both inputs are already partitioned on join key. This
is the worst scenario in SkewJoin because both replication
and redistribution process the entire data for each join key
value.

Threshold for high-frequency key values
Given frequency of a value, when is it beneficial to repli-
cate? Let cj , cr, cx be cost of join per output tuple, cost of
replicating/broadcasting one tuple to other processor, and
cost of transferring one tuple to other processor respectively.
SkewJoin is beneficial when running the join in a single node
takes longer than running it in multiple nodes. When run-
ning in multiple nodes, n tuples will be replicated K times
and each processor produces 1

K
output tuples. m tuples

will be evenly distributed to K processors in a round-robin
fashion. Then, SkewJoin is beneficial when the latency of a
serial join is greater than that of SkewJoin:

m · n · cj > max(m · cx, n ·K · cr) +
m

K
· n · cj

Depending on the cost of round-robin distribution and
replication, we get following inequalities:

m >
K2

K − 1

cr
cj

> K · cr
cj

if m · cx ≤ n ·K · cr

n >
K

K − 1

cx
cj

>
cx
cj

if m · cx > n ·K · cr

Thus, we can apply SkewJoin for keys of which frequencies
are above the thresholds. Although the two inequalities need
to be applied depending on relative costs of redistribution
and replication, we found that threshold on m (i.e., higher
frequency between the two) is sufficient in practice. The
coefficients can be determined as system-wide constants and
K is often known in advance from the system configuration.
Therefore, the threshold can remain intact per data change,
which is not possible with a relative threshold (e.g., fraction of
tuples). Having an absolute threshold has another advantage
with heavy-tailed distribution especially where there are
hundreds of thousands of keys that are better to join in
parallel at the cost of the overhead.

Parallelism for each high-frequency key value
The distribution of join keys might have one or two values
with extreme frequencies but it is also possible that there
are hundreds or thousands of values with relatively high
frequencies. Clearly, if frequency is not extreme, it may not
worth to use all K processors to balance the workload. By
rearranging the threshold inequality, the desired parallelism
k with respect to the frequency m is calculated as:

k ≤
⌊
cj
cr
·m

⌋
k = min(

⌊
cj
cr
·m

⌋
,K)

If we adapt the parallelism per frequency, then the thresh-
old inequality should use the minimum desired parallelism
(e.g., 2) for K.
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Figure 15: Job execution latency.

5. EXPERIMENTAL EVALUATION
We implemented the different join strategies introduced

in this work in the Scope system, which is deployed on pro-
duction clusters consisting of tens of thousands of machines
at Microsoft. Scope clusters execute tens of thousands
of jobs daily, reading and writing tens of petabytes of data
in total, and powering different online services. Our experi-
ments were conducted on a cluster with machines with two
six-core AMD Opteron processors running at 1.8GHz, 24
GB of RAM, and four 1TB SATA disks. All machines run
Windows Server 2008 R2 Enterprise X64 Edition.

5.1 Join Graph Topologies
We first evaluate the performance of different join graph

topologies. In particular, as stated in Section 3, asymmetric
join graphs are less intuitive to outperform symmetric join
graphs. As a result, traditional parallel database systems as
well as recent big data processing platforms often overlook
them from the solution space. When interesting properties
are present, asymmetric join graphs become attractive, due
to the facts that (i) there are no incurred repartitioning
costs, and (ii) the complete bipartite graph can be reduced
to partial-cross join graph based on interesting properties.

We picked two jobs, each with a single two-table join
with different join selectivity values. The bigger table, T,
is approximately 500 TB in size, while the other smaller
table, S, is approximately 30 TB in size. Table T is range
partitioned on columns sequence 〈a, b, c, d〉 into m partitions,
and table S is range partitioned on columns 〈a, b〉 into n
partitions7. The join predicate is T.a = S.a AND T.b = S.b.

We measure two data points - job execution latency (shown
in Figure 15) and total CPU time aggregated across all
parallel execution (shown in Figure 16). Job 1 has a selection
predicate that results in very low join selectivity (< 5%),
and Job 2 has very high join selectivity (> 90%). The two
parallel join strategies in the comparisons are joins with
partial-cross join graph (PCG) such as those in Figure 8, and
joins with (pair-wise) symmetric join graph (SG). We can
see that with the interesting partitioning properties, PCG
outperforms SG in both cases due to the huge costs associated
with repartitioning totally 530 TB of data. Interestingly, the
reason why the total CPU time of PCG is only slightly
lower than that of SG for Job 1 is that the execution with
PCG will read part of the underlying data twice due to
the overlapping partition boundaries. In addition, since the

7Without loss of generality, the sorting order use in the example
is ascending.
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Figure 16: Total CPU time aggregated across all parallel execu-
tion.
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Job 1 8.21 1.34 1.41 1.63

Job 2 3.15 3.72 3.62 3.78

0.00

2.00

4.00

6.00

8.00

10.00

Ex
ec

u
ti

o
n

 T
im

e 
(h

o
u

rs
) Job 1 Job 2

Figure 17: Difference in execution time among SkewJoin alter-
natives in the presence of data skew.

highly selective predicate is pushed before join, the total data
volume decreases a lot, thus reduce the differences between
these two strategies. However, the big improvements in
latency are due to the saving of eliminating repartitioning
in the PCG run. As for Job 2, the SG run eventually failed
(killed by the system due to policies to prevent run-away
jobs) after 170 minutes into the job execution due to the
huge amount of data repartitioning. On the other hand, the
PCG run completed within 74 minutes.

The join algorithm in the experiments is the sort-merge
join. For different join algorithms, the break-even point
between PCG and SG will be different. Nevertheless, with the
above experiments we demonstrate that there are interesting
parallel join strategies with asymmetric join graphs that
can be explored by the system to further reduce the join
processing time.

5.2 SkewJoins
We next evaluate the characteristics of the various SkewJoin

alternatives and discuss their relative performance in real
workloads on production clusters.

To compare the relative performance of the various SkewJoin
alternatives, we executed two representative jobs from the
production workload forcing each SkewJoin variant. Fig-
ure 17 shows the total elapsed time of each approach. In Job
1, there is a single inner join that has severe data skew in the
join key (the highest frequency is in the order of millions).
In Job 2, there are two left outer joins in which the join
key has a mild data skew (the highest frequency is in the
order of thousands). As shown in the figure, there is no
SkewJoin alternative that consistently performs the best. In
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1 IJ 2 LOJ 4 IJ 1 FOJ 18 IJ 2 LOJ

Original 8.21 10.00 14.50 5.08 11.37 0.68

SkewJoin 1.34 1.28 1.40 0.83 6.90 0.87
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Figure 18: Difference in execution time with and without
SkewJoin in 6 distinct jobs. IJ, LOJ, and FOJ are Inner Join,
Left Outer Join, and Full Outer Join respectively. B, F, and H
represent B-SkewJoin, F-SkewJoin, and H-SkewJoin.

Job 1, B-SkewJoin yields the best runtime while F-SkewJoin

is the best in Job 2 among the three SkewJoin transforma-
tions. H-SkewJoin performed the worst in the two jobs but
it can outperform F-SkewJoin where interesting properties
are desired by the following operations.

All three SkewJoin alternatives come with their own pros
and cons. The gains depend on the severity of data skew
in join keys. For example, with a severe data skew in Job
1, all three alternatives significantly improved the execution
time by more than factor of 5. On the other hand, in Job
2, all three alternatives run slightly slower than the original
job where the data skew problem is not severe enough to
compensate the overhead of SkewJoin. The overhead is
proportional to the intermediate data size and trading the
performance over reliable runtime at the cost of overhead
(e.g., from 14% to 20% in Job 2). Such overhead may or may
not be acceptable depending on user requirements and one
of the criteria in choosing the transformation.

Figure 18 compares elapsed time of six production jobs
in production clusters with and without SkewJoin strate-
gies. Original jobs use conventional pair-wise parallel join
implementation and SkewJoin jobs use SkewJoins for some
of joins in the original jobs. For example, 2 LOJ with H
label means that two of the left outer joins in the job use
H-SkewJoin. Some original jobs (Job 3, 4, 5) did not run to
finish because some vertices ran for too long and were killed
by the system or the user. Such jobs are marked with grey
cross signs. Overall, the degree of improvement varies per
data distribution, per job but we generally observe at least
factor of 4 to 10 improvements in terms of latency. If the
data skew is not significant enough, SkewJoin runs slightly
slower than the original job as shown in the 2 LOJ with
F-SkewJoin case in Figure 18.

Summary: In this section we showed that SkewJoin

strategies effectively mitigate different data skew scenar-
ios in inner- and outer- joins. The benefits of balancing
join workload depend on the severity of data skew in join
key. The three alternatives of SkewJoin strategy have their
own pros and cons and there is no single alternative that
outperforms the others in all occasions.

6. RELATED WORK
Join processing has been extensively studied in the database

community for several decades. Graefe gave a comprehensive
survey on query processing for large databases, including
join types, join orders and join algorithms [7]. More recently,
new research emerged regarding improvements on some spe-
cific aspects of join processing in MapReduce environments,
such as multi-way joins [1], outer join with skew [22], and
broadcast-joins [16]. In this paper, we categorize new aspects
of parallel join processing in MapReduce environment into
a new dimension of the solution space – join graph topol-
ogy. To the best of our knowledge, there is no prior work
proposing such a taxonomy. Instead, there is recent work
that tackle individual factors of the join graph topology – in
particular regarding partition schemes, data exchange opera-
tors and distribution polices [3]. A formal taxonomy allows
us to systematically discover new improvements and identify
missing optimization opportunities.

The problem of skew in parallel databases has been ex-
tensively studied by many research groups, especially in the
context of the join operator [5, 9, 10, 12, 13, 17, 20, 21].
Specifically, these references range from exploiting low-level
system support (e.g., network switches or operating system
features) [12, 17], to optimizing data distribution among
processors [9, 10], to scheduling partitions in an optimal
order [20, 21], to improving a specific join algorithm [13].

DeWitt et al. proposed a practical approach to handle
skew in a parallel join [5]. They considered combinations
of range partitioning (with subset-replication, weighting),
load scheduling (e.g., round-robin, longest processing time
(LPT)), and virtual processors (i.e., create many logical
partitions and schedule multiple partitions per physical pro-
cessor). For range partitioning, DeWitt et al. proposed an
efficient sampling technique to estimate the distribution of
the join key value. For LPT scheduling, they used a sim-
ple cost model to estimate the cost of each partition. As
it is relying on range partitioning, this technique can han-
dle redistribution skew but not the join product skew very
well. The technique is easy to implement yet effective in
practice. At a high-level, F-SkewJoin is a hash variant of
virtual processor partitioning with round-robin strategy in
DeWitt et al. with improvements on handling all data skew
scenarios as well as outer joins. Pig, a declarative layer of
Hadoop, implements DeWitt et al. (virtual processors with
round-robin in range partitioning) and extends the technique
to handle outer join [6, 18]. However, it can handle data skew
in one input of the inner join and has the same limitations
as B-SkewJoin in outer join.

Xu et al. proposed a parallel join approach, partial redistri-
bution partial duplication (PRPD) to handle data skew [23].
The PRPD approach first splits the rows of joining rela-
tion into three disjoint groups that are handled differently
(redistributed, duplicated, or kept local). The rows having
skewed values are kept local, the rows bearing skewed values
of joining attributes in the other relation are duplicated,
and the remaining rows are redistributed as in an ordinary
parallel hash join. The final join is computed by union of
three joins (two replicated-joins for skewed join values of
each relation, and an ordinary parallel join for non-skewed
values). In Section 4, we captured PRPD as B-SkewJoin

transformation in the SkewJoin framework and discussed
its pros and cons. Xu et al. also proposed a parallel outer
join algorithm OJSO (Outer Join Skew Optimization) in
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the presence of data skew [22]. OJSO handles data skew
in a chain of outer joins by separating result of each outer
join into nulls (i.e., joined) and non-nulls (i.e., not joined),
and only processing non-nulls in following outer join. OJSO
can be orthogonally applied to the chain of outer joins with
SkewJoins.

Hive, another popular declarative layer of Hadoop MapRe-
duce, also implements two complementary strategies to han-
dle data skew in join [8, 14]. The first strategy is a run time
strategy which the join spills high-frequency keys to HDFS
then process them in follow-up conditional map-side joins
(i.e., broadcast join). As of Hive 0.12, this approach only
supports an inner join. The second strategy is a compile
time strategy similar to B-SkewJoin: it splits the input into
the skewed and the non-skewed, then uses map-side join to
handle the data skew. This approach has the same limitation
and applicability as that of Pig.

7. CONCLUSIONS
Massive data analysis in cloud-scale data centers plays

a very important role in making critical business decisions.
High-level scripting languages free users from understand-
ing various system trade-offs and complexities, support a
transparent abstraction of the underlying system, and pro-
vide the system great opportunities and challenges for query
optimization. In this paper, we studied the very common
join operation and identified challenges and opportunities in
the distributed setting. Specifically, we introduced a generic
taxonomy that results in new join strategies, and new query
rewrites that deal with data skew joins robustly. Experi-
ments on a large-scale Scope production system at Microsoft
show that the proposed techniques systematically solve the
challenges of data skew and generally improve query latency
by a significant margin.
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