

Indexing HDFS Data in PDW: Splitting the data from the index

Vinitha Reddy Gankidi
University of Wisconsin-Madison

vinitha@cs.wisc.edu

Nikhil Teletia
Microsoft Jim Gray Systems Lab

nikht@microsoft.com

Jignesh M. Patel
University of Wisconsin-Madison

jignesh@cs.wisc.edu

Alan Halverson
Microsoft Jim Gray Systems Lab

alanhal@microsoft.com

David J. DeWitt
Microsoft Jim Gray Systems Lab

dewitt@microsoft.com

Abstract
There is a growing interest in making relational DBMSs work

synergistically with MapReduce systems. However, there are

interesting technical challenges associated with figuring out the

right balance between the use and co-deployment of these

systems. This paper focuses on one specific aspect of this balance,

namely how to leverage the superior indexing and query

processing power of a relational DBMS for data that is often more

cost-effectively stored in Hadoop/HDFS. We present a method to

use conventional B+-tree indices in an RDBMS for data stored in

HDFS and demonstrate that our approach is especially effective

for highly selective queries.

1. Introduction
The debate between relational DBMS and MapReduce systems

for big data management has now converged in the traditional

RDBMs vendor space to produce hybrid systems that aim to

balance performance and cost. In such systems, a database is split

across a parallel RDBMS and a MapReduce [3] system. Data in

the MapReduce/Hadoop system is stored in HDFS and is made

“visible” to the RDBMS as an external table. Several large

database vendors employ this mechanism [1, 4, 5, 6]. Queries can

now be issued to the RDBMS against data that is split across these

two data systems. During query execution, a portion of the query

may be executed as MapReduce jobs in Hadoop, while another

portion of the query is executed inside the RDBMS.

This hybrid model has evolved naturally since relational DBMSs

tend to provide far higher performance on queries compared to

MapReduce-based systems (and support a larger set of SQL), but

tend to be far more expensive when measured on the $/TB

measure (which is often dominated by the installing, licensing,

and annual service/maintenance fees). Deploying large databases

purely in a parallel relational DBMS is cost prohibitive for some

customers, especially since in these large databases all the data is

not uniformly “hot.” A sizable part of the database is cold data

that is queried less frequently than the hot data. A natural

partitioning is to store the hot data in the parallel RDBMS, and

store the cold data in HDFS.

This hybrid model works well in practice when the workload

consists of long-running analytical queries on large tables (which

can be executed in a cost-effective way by keeping the table in

HDFS and processing queries using MapReduce jobs), or for

queries on the small amounts of hot data that is kept in the

RDBMS. For that later category, fast query times are often the

norm, as the RDBMS engines have sophisticated query

optimization and query processing techniques that have been

designed, refined, and solidified over the last three decades.

However, a key limitation of these hybrid systems is that even

simple “lookup” (rifle-shot and range) queries on the large data

files/tables in HDFS have long latencies. Real customer

workloads are getting increasingly complicated in practice, and it

is not unusual to have workloads that demand “interactive” query

response times on these lookup queries. In fact a number of

customers of Microsoft’s product in this space (Polybase) have

this requirement, which motivated the work that is described here.

The focus of this paper is on designing, evaluating and

implementing methods to improve the speed of lookup queries on

data that is stored in HDFS in a hybrid data processing system.

Our approach to solve the problem described above is to leverage

the indexing capability in the RDBMS by building an index on the

external HDFS data using a B+-tree that is stored inside the

RDBMS. This Split-Index method leverages the robust and

efficient indexing code in the RDBMS without forcing a dramatic

increase in the space that is required to store or cache the entire

(large) HDFS table/file inside the RDBMS.

A natural follow-up question is how to keep the index

synchronized with the data that is stored in HDFS. On this aspect,

we recognize that data that is stored in HDFS cannot be updated

in place. Rather, HDFS only allows adding new data or deleting

old data (by adding or deleting files in HDFS). Thus, we can solve

this index-update problem (which can be thought of as a special

case of the materialized view update problem) using an

incremental approach by which we record that the index is out-of-

date, and lazily rebuild it. Queries posed against the index before

the rebuild process is completed can be answered using a Hybrid-

Scan method that carefully executes parts of the query using the

index in the RDBMS, and the remaining part of the query is

executed as a MapReduce job on just the changed data in HDFS.

Thus, lookup queries continue to be executed efficiently even with

HDFS data that is undergoing modification.

While in the empirical evaluation in this paper we focus only on

single table queries, we note that the Split-Index method also

provides an opportunity to speed up some analytical join queries

(as opposed to the simpler lookup queries) on data that sits in

HDFS. If the query only looks at attributes that are in the index,

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain
permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08

1520

then even complex join queries can be answered completely

inside the RDBMS. In other cases, the index can be used as a pre-

filter to reduce the amount of work that is carried out as

MapReduce jobs. Thus, the Split-Index method also serves as a

versatile mechanism to cache the “hot” attributes of “cold” HDFS

data inside the RDBMS, where it can generally be processed

much faster. Furthermore, this Split-Index method can also be

used as a mechanism to adapt to changing workloads and system

configurations; thus, for example, if there is a new hot attribute in

a HDFS-resident table, or more nodes are added to the RDBMS,

then one can simply index more attributes of the HDFS file in the

RDBMS. In other words, one can gradually materialize the most

commonly accessed components of data in HDFS inside the

RDBMS and maximize the return-on-investment (ROI) on the

RDBMS deployment.

The remainder of this paper is organized as follows. In Section 2,

we present some background information related to Polybase –

the system that we use in this paper. In Section 3, we present the

Split-Index approach. A method to incrementally update the Split-

Index is presented in Section 4, and Section 5 presents the Hybrid-

Scan approach. Our experimental results are presented in Section

6, and Section 7 contains our concluding remarks.

2. Polybase Background
Polybase employs a “split query processing” [1, 2] paradigm to

achieve scalable query processing across structured data in

relational tables and unstructured data in HDFS. Polybase

leverages the capabilities of SQL Server PDW, especially, its

cost-based parallel query optimizer and execution engine. While

using MapReduce provides a degree of query-level fault tolerance

that PDW lacks, it suffers from fundamental limitations that make

it inefficient when executing trees of relational operators.

Polybase relies on the cost-based query optimizer to determine

when it is advantageous to push SQL operations on HDFS-

resident data to the Hadoop cluster for execution.

2.1 Polybase Architecture
Polybase [1] extends the PDW architecture to allow for querying

data that is stored in HDFS. As shown in Figure 1, PDW has a

control node that manages a number of compute nodes. The PDW

Engine in the control node provides an external interface and

query requests flow through it. The control node is responsible for

query parsing, optimization, creating a distributed execution plan,

issuing plan steps to the compute nodes, tracking the execution

steps of the plan, and assembling the individual pieces of final

results into a single result set returned to the user. The compute

nodes are used for data storage and query processing.

The control and compute nodes each run an instance of SQL

Server and an instance of the Data Movement Service (DMS).

DMS instances are responsible for repartitioning the rows of a

table among the SQL Server instances on the PDW compute

nodes. The HDFS Bridge component hosted inside each DMS is

responsible for all communications with HDFS. It enables DMS

instances to also import/export data from/to HDFS clusters.

2.2 External Tables
Polybase, like Greenplum, Oracle, Asterdata and Vertica, uses an

external table mechanism for HDFS-resident data [4, 5, 6]. The

first step in declaring an external table is to create an external data

source for the Hadoop cluster on which the file resides. The

external data source contains information about the Hadoop

NameNode and the JobTracker for the cluster. The JobTracker is

used to submit a Map job when the PDW optimizer elects to push

selected query computation to Hadoop. The next step is to create

an external file format, which contains information about the

format of the HDFS files. Polybase supports both delimited text

file, and RCFile.

The following example illustrates how an external table is created.

The location clause is a path to either a single file or a directory

containing multiple files that constitute the external table.

CREATE EXTERNAL TABLE hdfsLineItem

 (l_orderkey BIGINT NOT NULL,

 l_partkey BIGINT NOT NULL,

 ...)

WITH (LOCATION='/tpch1gb/lineitem.tbl',

DATA_SOURCE = VLDB_HDP_Cluster,

FILE_FORMAT = TEXT_DELIMITED)

2.3 HDFS-Import
When compiling a SQL query that references an external table

stored in HDFS, the PDW Engine Service contacts the Hadoop

NameNode for information about the HDFS file/directory. This

information, combined with the number of DMS instances in the

PDW cluster, is used to calculate the split (offset and length) of

the input file(s) that each DMS instance should read from HDFS.

This information is passed to DMS in the HDFS Shuffle operation

of the DSQL (distributed SQL) plan along with other information

that is needed to read the file. This additional information includes

the file’s path, the location of the appropriate NameNode, and the

name of the RecordReader that the HDFS Bridge should use.

The system attempts to evenly balance the number of bytes read

by each DMS instance. Once the DMS instances obtain split

information from the NameNode, each instance can independently

read the portion of the file that it is assigned, directly

communicating with the appropriate Hadoop Data Nodes without

any centralized control.

Once an instance of the HDFS Bridge has been instantiated by the

DMS process, the DMS workers inform the HDFS Bridge to

create a RecordReader instance for the specified split (offset and

length) of an input file. The RecordReader then processes the

rows in the input split and returns only the required attributes (we

refer to this operation as HDFS-Import). The query is run on this

imported data in PDW.

Figure 1: The Polybase Architecture

1521

The execution path where the external data used inside a query is

imported during the query execution is called Direct-Import.

2.4 Push-Down to Hadoop
When a query involves HDFS resident data, the optimizer can

submit a Map job to the Hadoop cluster and then import only the

result of the Map job. We call this approach the Push-Down

execution path. The optimizer makes a cost-based decision to

decide whether to use the Push-Down path or the Direct-Import

path. A simple example where the Push-Down path is cost

effective is a query with a selective predicate. Using the Push-

Down path, the Filter (i.e. selection) operator can be computed on

the Hadoop cluster, which results in smaller amount of data being

imported into PDW. Currently a few operators (Project and Filter)

are supported in the Polybase Push-Down path.

We illustrate the Push-Down and the Direct-Import paths using

the following query:

SELECT *

FROM hdfsLineItem

WHERE l_orderkey = 1

The logical query plan for the above query is simple – it has two

logical operations: a Scan operator followed by a Filter operator.

Figures 2 and 3 show the DSQL plans for the Direct-Import and

the Push-Down paths, respectively. As shown in Figure 2, in the

Direct-Import path, the entire customer table is first imported into

PDW. While in the case of the Push-Down path, a Map job

containing the Filter operation is submitted to the external Hadoop

cluster. This Map job scans the customer table and materialized

only those rows that have c_nationkey value equal to 1. After the

Map job finishes execution, the result of the Map job is imported

into PDW, and the remainder of the query is executed inside

PDW.

Using the Push-Down approach, Polybase can delegate some

computation responsibility to the external Hadoop cluster, thereby

reducing the amount of data that is imported from the external

cluster. If the data pipe between PDW and the Hadoop cluster has

limited bandwidth, then the Push-Down approach can have

significant performance advantage over the Direct-Import

approach. The Polybase paper [1] discusses the crossover point

between these two approaches in detail.

3. The Polybase Split-Index
In this section, we introduce the Polybase Split-Index approach,

which is used to speed up the query execution time of lookup

queries. Section 3.1 describes how the index is created and

Section 3.2 describes how the index is used during query

execution.

3.1 Index Creation
Consider a TPC-H lineitem table stored in HDFS. Creating a

PDW Split-Index named lineitem_index on the l_orderkey

attribute of the lineitem table entails the following steps:

1. Create a PDW table lineitem_index containing five

columns: l_orderkey (the indexed attribute), filename (the

name of the HDFS file that holds the record/tuple), offset

(the offset of the record from the beginning of the file),

length (the length of the record) and blockNumber (a

computed column). The pair (filename, offset) acts as a

Record Identifier (RID) for the row. The RID and length

attributes are used to read the required number of bytes of

the qualifying records during query execution. The

blockNumber is a computed column (blockNumber =

offset/16MB), on which the rows of the index table are hash

partitioned. By distributing the lineitem_index table on the

blockNumber, we ensure that all rows in a 16MB chunk are

stored together in the Split-Index.

2. To populate the linitem_index table, the HDFS-Import

operation (see Section 2.3) in invoked with a special

“buildIndex” flag set to true. Next, the DMS workers

running on each compute node of the PDW appliance

instantiate an HDFS Bridge instance and pass the special

flag to the RecordReader instance. When this flag is set, the

RecordReader calculates the physical pointer (RID, length,

blockNumber) to the record in addition to the indexed

attributes. As rows are produced, the HDFS-Import

operation inserts them into the hash-partitioned PDW table

lineItem_index, and for each partition creates a clustered B-

tree index on the l_orderkey attribute.

Figure 2: Query plan and the corresponding DSQL plan for the

Direct-Import path

Figure 3: Query plan and the corresponding DSQL plan for the

Push-Down path

Return:
SELECT * FROM TEMP_1 WHERE

l_orderkey = 1

DMS Import:
Import from the HDFS file,

hdfsLineitem, into TEMP_1 using a
round robin distribution

CREATE in PDW:
CREATE TABLE TEMP_1 (…)

Scan
lineitem

Filter

Return
Result

Execute in Hadoop:
Run Map job computing filter
over hdfsLineitem in Hadoop.

Return:
SELECT * FROM TEMP_1

DMS Import:
Import the result of the Map job

from HDFS into TEMP_1

Scan
lineitem

Filter

Return
Result

CREATE in PDW:
CREATE TABLE TEMP_1 (…)

1522

3. The list of all the HDFS files on which the Split-Index is

created is stored as an extended property of the PDW Split-

Index table. This information is used to update the index

incrementally to keep it up-to-date with changes to the

“master-data” in HDFS.

In Polybase, we can create an index on any number of columns,

and on any PDW supported data type.

3.2 Index-based Query Execution
To reduce the latency of lookup queries, we enhance Polybase to

use the Split-Index that is created in PDW. Note that this index

can be used only when a query includes a predicate that involves

the indexed attributes.

In the existing implementation of the HDFS-Import operation, the

HDFS Bridge is given a range [offset, offset + length] to retrieve

records from an HDFS file. This operation is called the Range-

Scan operation. To execute the query using the Split-Index

mechanism, we enhanced the HDFS Bridge to support an Index-

Scan operation (in addition to the Range-Scan operation). With

the Index-Scan operation, instead of giving the HDFS Bridge a

range, it is provided a collection of RIDs to retrieve records from

the HDFS file(s). The HDFS Bridge retrieves records by iterating

over the list of RIDs.

Figure 4 shows the DSQL plan for the Index-Scan path using the

following query:

SELECT *

FROM hdfsLineitem

WHERE l_orderkey = 1

The execution of this query involves the following steps:

1. Once the query is submitted to PDW, the PDW Engine (in

the control node) creates a DSQL plan that uses the

lineItem_index table in PDW.

2. Each compute node executes the query: ‘SELECT * FROM

lineItem_index WHERE l_orderkey=1’ against its

portion of the Split-Index in PDW.

3. The results of the above query (i.e. a set of qualifying RIDs)

are exported to a HDFS directory via the HDFS Bridge

running in the DMS instances of the compute nodes.

4. A temporary table is created in PDW to store the result of the

HDFS-Import-using-Index operation that is described next.

5. An HDFS-Import-using-Index operation is executed on each

compute node. During the execution of this operation, a

reference to the exported/materialized files containing the

qualifying RIDs is passed to the HDFS Bridge instances. The

HDFS Bridge performs a pointer-based join between these

materialized RIDs and the lineitem files in HDFS.

6. The required attributes of the qualifying records are then

imported into the temporary table in PDW that was created in

Step 4 above.

There are multiple ways in which qualified RIDs can be passed to

the HDFS Bridge. We used HDFS files to transfer the qualified

RIDs to the HDFS Bridge. Other potential options include using

shared memory or passing a list of RIDs along with the function

call.

4. Incremental Index Update
Compared to data in a traditional database system, rows in

Hadoop cannot be updated in place. Rather, new rows are added

by adding new HDFS files to the directory, or existing rows are

deleted by dropping one or more HDFS files from the directory.

Given this pattern of data creation and updates, at any given point

of time the data in the external table can be classified into three

categories: 1) Existing data that is covered by the existing Split-

Index in PDW, 2) New data that is not indexed, and 3) Deleted

data that has been dropped in HDFS but is still represented in the

Split-Index.

The Split-Index is an offline index, which means that when the

data is updated, the index is not updated at the same time and

requires that the administrator/user issue an explicit update

statement. When an update statement is issued, an incremental

index update method is invoked, which has the following two

phases: i) Detecting updates (new or deleted data), and ii)

Incrementally updating the existing index.

Recall that with each PDW Split-Index table we also store the list

of HDFS files that are covered by that index (cf. Section 3.1). We

use this index metadata to find new and deleted files.

For new files, the index update first requests the HDFS Bridge to

scan the new files with the “buildIndex” flag set to true. The

HDFS Bridge then returns the indexed attribute values and the

physical pointer to the new records in these files. These records

are then inserted into the existing PDW Split-Index table, and the

index metadata is updated to add these new files.

For deleted files, we update the index using the following SQL

statement:

DELETE FROM <index>

WHERE filename IN (<Deleted Files>)

These deleted files are also removed from the index metadata.

Figure 4: Query plan and the corresponding DSQL plan for

the Index-Scan path

Return:
SELECT * FROM TEMP_1 WHERE

c_nationkey = 1

DMS Import:
Import only qualifying rows of HDFS
file, hdfsLineitem, into TEMP_1 using

a round robin distribution

CREATE in PDW:
CREATE TABLE TEMP_1 (…) Index Scan

lineitem

Filter

Return
Result

DMS Export:
Export qualifying RIDs in

hdfsLineitem into a HDFS folder
“HdfsDir_1”. The following query is
used to retrieve the qualifying RIDs:

SELECT * FROM lineItem_index
WHERE l_orderkey=1

1523

5. Hybrid-Scan
As discussed above, a Split-Index in PDW can potentially be stale

w.r.t. the data in HDFS. When a Split-Index is stale, we exploit

the absence of in-place updates in HDFS, and use a Hybrid-Scan

operation. This operation uses the stale index for ‘existing’ data

(i.e. it invokes the Index-Scan operation), and it invokes the

Range-Scan method (cf. Section 3.2) to scan the ‘new’,

unindexed, data. ‘Deleted’ data is removed from the scan by

adding the clause “filename NOT IN (<Deleted Files>)”

to the query that computes the qualifying RIDs. We refer to the

query execution path that uses the Hybrid-Scan operation as the

Hybrid-Scan path. The optimizer also has the option of using

either the Direct-Import path or the Push-Down path.

6. Experiments
In this section we present our experimental results. The key goals

of our experiments are to:

1. Measure the performance gain of the Split-Index and the

Hybrid-Scan paths over the Push-Down path for highly-

selective lookup queries.

2. Understand the cost of index creation and index maintenance.

3. Understand the sensitivity of the Index-Scan operation to the

data access pattern.

4. Understand the space vs. time tradeoffs when the data is

entirely in PDW or HDFS with/without indexes built on the

data.

6.1 Setup
We used a cluster with 9 PDW nodes and 29 Hadoop nodes. Each

node has dual 2.13 GHz Intel Xeon L5630 quad-core processors,

96GB of main memory, and ten 300GB 10K RPM SAS disk

drives. One drive is used to hold the operating system (OS),

another to hold the OS swap space, and the remaining eight are

used to store the actual data (HDFS files, or permanent and

temporary table space for SQL Server). All the PDW nodes are on

a single rack and all the Hadoop nodes are spread across the

remaining two racks. Within a rack, nodes are connected using a

10 Gb/sec Ethernet link to a Cisco 2350 switch. Between the racks

these switches communicate at 10 Gb/sec.

The PDW and Hadoop services on their corresponding nodes

were run in a single Windows Hypervisor VM configured with

Windows Server 2012, 88GB RAM, SQL Server 2012, a

prototype version of PDW V2 AU1, and HDP 2.0 (Windows

Hadoop 2.2.0). On each node 80 GB of memory was allocated for

PDW or Hadoop services.

All experiments were run using a TPC-H lineitem table of

different scale factors. The lineitem table was loaded into the

Hadoop cluster as uncompressed text files. All the numbers

reported in this section are cold cache numbers, which means

neither PDW nor HDFS data was in memory cache.

6.2 Index Build Cost
In this section, we describe the cost associated with building the

Split-Index. It took 3,265 and 32,714 seconds to build indexes

over the 1000 and 10000 scale factor TPCH lineitem tables on the

l_orderkey attribute respectively. The corresponding lineitem

tables sizes are 1 TB and 10 TB, respectively. The sizes of the

indexes are ~10% of the original data size (~80GB and ~800GB).

6.3 Lookup Queries
In this section, we compare the performance of the Split-Index

against the Push-Down path, using the following query:

SELECT * FROM lineitem

WHERE l_orderkey <= [Variable]

For the above query, the optimizer has three execution paths. We

will briefly explain these three execution paths and the costs

associated with each path.

1. The Direct-Import execution path: In this path, the

lineitem table is imported entirely into PDW incurring a

“Data Import cost.” Then, the remainder of the query is

executed inside PDW.

Figure 5: Split-Index execution path performance for lookup

queries using the traditional Push-Down and the proposed Split-

Index method for the 1TB lineitem table

Figure 6: Split-Index execution path performance for lookup

queries using the traditional Push-Down and the proposed Split-

Index method for the 10TB lineitem table

1524

2. The Push-Down execution path: In this path, a Map job is

submitted to the Hadoop cluster. The Map job filters the

rows and stores the output of that job in HDFS. After the

Map job has completed, the result of the Map job is imported

into PDW, and the final result is returned back to the user.

Note that currently PDW doesn’t support returning the result

directly from HDFS. This path has a “Map cost” and a “Data

Import cost” associated with it.

3. Index-Scan execution path: In this path, the qualifying

RIDs are first materialized into a HDFS directory by running

a predicate query on the lineitem_index table. After the

materialization, the HDFS Bridge imports the data only for

the materialized RIDs. This path has an associated “RID

Materialization cost” and a “Data Import cost.”

Note that we do not show the result for the Direct-Import path as

its performance is dominated by the “Data Import Cost” of

importing the entire lineitem table, and adding these numbers

obscures the comparison between the Split-Index and the Push-

Down paths.

The results for the lookup queries are shown in Figures 5 and 6.

For this experiment, we vary the selectivity of the predicate on the

l_ordeykey attribute. The rifle-shot query only retrieves tuples

with a specific l_orderkey value, whereas the range queries

retrieve tuples within a range of l_orderkey values. The figure

shows the time for the two paths: the Push-Down path and the

Split-Index path. The Push-Down path starts a Map job on the

Hadoop cluster to evaluate the predicate, and then imports the

selected records into PDW to evaluate the remainder of the query.

The Split-Index path, first evaluates the predicate using the B+tree

in PDW, and materializes a list of “record-ids”. The records in

this list are then “imported” into PDW, where the remainder of the

query is processed.

Figures 5 and 6 also show the breakdown of these costs for both

methods. As can be seen in the figures, the Split-Index method is

many orders-of-magnitude faster for highly selective queries. The

Split-Index method outperforms the Push-Down method because

the Split-Index method scans and imports only those tuples that

satisfies the query predicate, while the Push-Down method scans

the entire lineitem file during the Map job execution phase.

Consequently, even though the imported data into PDW is the

same for both methods, the amount of lineitem data that is

scanned is far smaller for the Split-Index method, resulting in

significantly better query execution time. For the other queries

(besides the Rifle-Shot query), the Split-Index approach is faster

than the Push-Down approach for similar reasons, but as the Data

Import cost starts becoming a bigger component of the total query

execution time, the performance gap between the two methods

reduces.

6.4 Hybrid-Scan
We have also implemented the Hybrid-Scan (cf. Section 5)

method that we described above. Figure 7 shows the results for

the rifle-shot query from Figure 1 when varying the amount of

new data that is added to the 1TB lineitem table. As can be seen in

Figure 7, the Hybrid-Scan method outperforms the traditional

Push-Down method when there is up to 10% new data, since the

Hybrid-Scan method benefits from the efficient use of the Split-

Index on existing data. In addition to the amount of new data, the

crossover point of the Hybrid-Scan method is affected by the

query selectivity, and the data access pattern. The impact of the

data access pattern is described below in Section 6.6.

Figure 8: Index update cost when varying the amount of new

data added to the 100GB scale and the 1TB scale lineitem tables.

Figure 9: Index update cost when varying the amount of data is

deleted from the 100GB and the 1TB lineitem tables.

Figure 7: Rifle-shot query evaluation with the Hybrid-Scan

method for a 1TB scale lineitem table

1525

6.5 Index Maintenance
In this section, we describe the cost associated with incrementally

updating the index. Figures 8 and 9 show the results when

updating the index while varying the amount of data that is added

or deleted to/from the 100GB and 1TB lineitem tables. (For this

experiment, we use a 100 scale factor, i.e. 100GB, lineitem table.)

As shown in Figures 8 and 9, when we add 10% of ‘New’ data to

the 1TB lineitem table, it takes 2,156 seconds to incrementally

update the index, which is roughly 66% of the initial index build

cost. In addition, it takes 5102 seconds to incrementally update the

index when 10% of the data is deleted from the original 1TB

lineitem table.

As can also be seen in Figures 8 and 9, the cost of incremental

index update is proportional to the size of the lineitem table.

During these incremental updates, transactional logging

dominates the overall execution cost. An interesting option, which

we plan to consider as part of future work, is to use a cost-based

optimizer to drop and recreate the index if a large portion of the

data has changed.

6.6 Data Access Pattern
In this section, we look at the sensitivity of the Index-Scan

operation to the data access pattern. The results for this

experiment are shown in Figures 10 and 11. For this experiment,

we fix the selectivity factor at 1% and vary the access pattern by

changing the predicate in the following query:

SELECT * FROM lineitem

WHERE l_orderkey <= [Variable]

The predicates that are used in each query are shown using labels

on the x-axis of Figures 10 and 11. From these two figures we

observe that the Split-Index method benefits as the data access

pattern becomes more sequential, since as the data access pattern

becomes more sequential, the number of unique file seeks that are

required is reduced. The Lineitem table generated by the TPCH

DBGen tool is clustered on the l_orderkey column. Because of

this clustered layout, the predicate “l_orderkey % 100K < 1K”

accesses the rows in sequential order, while the predicate

“l_orderkey%100 = 1” accesses the rows in random seek order.

When the rows are accessed sequentially, as shown in the last two

access patterns in Figures 10 and 11, we see significant benefit for

the Split-Index method over the Push-Down method. Some of

these performance benefits are the artifacts of HDFS caching and

HDFS read ahead that is done on the client side. HDFS client

reads the data in 4KB chunk (this parameter can be update using

the io.file.buffer.size configuration setting, but we used the default

value), and when the read pattern in sequential, there are a large

number of hits (for rows) in the cache. In contrast, when there are

random seeks, the cache hit rate is very low.

Please note that we clear the HDFS cache before running any

individual query, the above mentioned caching occurs during the

execution of the query.

6.7 Space vs. Time Tradeoffs
In this experiment, we analyze the space versus time tradeoff

between keeping the data in HDFS and indexing the data in PDW.

The goal of this experiment is to quantify the space versus

performance tradeoff when all the data is stored in PDW as

opposed to storing the data in HDFS and selectively building

indices (i.e. a Split-Index) on increasingly larger number of

columns in PDW. One way of looking at these experiments is to

think of the Split-Index as a materialized (index) view on the data

in HDFS, and we increase the amount of index data that is

materialized in PDW. To keep this experiment manageable, we

only consider the case where one index is built. (An interesting

direction for future work is to consider the more general problem

of physical schema optimization within the context of the Split-

Index approach that is proposed in this paper.)

For this experiment, we consider the modified TPCH Query 6,

which forecasts revenue change:

SELECT SUM(l_extendedprice*l_discount)

AS REVENUE

FROM lineitem

WHERE l_shipdate >= '1994-01-01'

 AND l_shipdate <

 dateadd(mm, 1, cast('1994-01-01' as date))

 AND l_discount BETWEEN .06 - 0.01 AND

 .06 + 0.01 AND l_quantity < 24

Figure 10: Sensitivity of the Index-Scan operation to the data

access pattern for the 1TB lineitem table when the selectivity

factor is fixed at 1%.

Figure 11: Sensitivity of the Index-Scan operation to the data

access pattern for the 10TB lineitem table when the selectivity

factor is fixed at 1%.

1526

To reduce the selectivity factor of the query, we modified the

l_shipdate predicate to consider dates within a month instead of a

year (as in the original TPCH Q6). As the Split-Index method is

sensitive to the data access pattern, we also sorted the 1TB

lineitem table in HDFS by the l_shipdate attribute, to make

accesses to the HDFS data more efficient.

The different configurations that we considered are shown in

Table 1. There are two categories of approaches. In the first

category of approach, which consists of the approaches A1, A2

and A3, the data is stored entirely in PDW, and we use larger

amounts of disk space in PDW by varying the number of columns

on which the PDW index is built. In the second category, i.e. the

approaches A4 – A8, the data is resident in HDFS, and we vary

the number of columns on which the Split-Index is built.

The first category of approaches consumes increasing larger

amount of space in PDW, while the second category of

approaches takes smaller amounts of space in PDW. The first

category of approaches is expected to have a higher performance,

while the second category of approaches potentially has a lower

cost. Collectively, these methods help gauge the return on

investment (ROI) from using a more sophisticated data processing

engine (PDW) while storing large data sets in the relatively

cheaper HDFS storage.

The results for this experiment are show in Figure 12. As expected

the PDW-only approaches (A1 – A3) have far higher performance

compared to the other methods.

Figure 12 shows that the approaches A1, A2 and A3 have low

execution times but have a high PDW disk footprint. In these

approaches, the lineitem table is resident in PDW. Approaches

A6, A7 and A8 have low execution times with a moderate PDW

disk footprint. These approaches employ the Split-Index method

proposed in this paper. The Push-Down approach (A4) has zero

disk footprint in PDW, but has a very high execution time.

Approach A8 has similar execution times as A2 and A3, but the

disk footprint of A8 is one third that of A2 or A3. This shows the

effectiveness of the Split-Index in balancing the query execution

time and the PDW disk footprint.

An astute reader may have observed that even though the

approach A3 has a clustered index on four columns, the PDW disk

space used by the approach A3 (~405 GB) is less than the PDW

disk space that is used by approach A1 (~417 GB). The reason for

this anomaly is page compression. Adding the clustered index on

the columns l_shipdate, l_discount, l_quantity and

l_extendedprice, results in a data layout that is sorted by these

attributes, and that ordering of data turns out to provide better

page compression for this dataset.

7. Conclusions and Future Work
In this paper we have implement a traditional database technique,

i.e. “indexing,” to speed up queries on HDFS resident data. Our

empirical results show that for lookup queries, our proposed Split-

Index method improves query performance by two to three orders

of magnitude. We also show how our proposed approach has

advantage over existing methods (though to a smaller degree) for

selective range queries. In addition, we exploit the absence of in-

place updates in HDFS to incrementally update the Split-Index,

and to enable a Hybrid-Scan method that can work with data that

is only partially indexed by a Split-Index.

As part of future work, we want to expand our approach to other

file formats such as the RCFile and the ORCFile. The ORCFile

has block-level indexing and exploring synergies with that

indexing method can lead to interesting designs. We also want to

evaluate the impact of using our methods in cloud settings where

the network bandwidth is far more limited. We think our approach

will likely perform even better when the network bandwidth

between PDW compute nodes and the Hadoop nodes is limited.

We also want to implement an index advisor that automatically

identifies the columns that can be cached in PDW given a query

workload.

Table 1: Various approaches that were considered for the

execution of the modified TPCH Query 6

Approach Description

A1 lineitem in PDW.

No Index.

A2 lineitem in PDW.

One clustered B+ Tree PDW index on l_shipdate.

A3 lineitem in PDW.

One clustered B+ Tree PDW index on (l_shipdate,

l_discount, l_quantity and l_extendedprice).

A4 lineitem in HDFS.

No Split-Index, and use the Push-Down approach.

A5 lineitem in HDFS.

One Split-Index on l_shipdate, and use the Index-

Scan approach.

A6 lineitem in HDFS.

One Split-Index on (l_shipdate, l_discount), and use

the Index-Scan approach.

A7 lineitem in HDFS.

One Split-Index on (l_shipdate, l_discount,

l_quantity), and use the Index-Scan approach.

A8 lineitem in HDFS.

One Split-Index on (l_shipdate, l_discount,

l_quantity, l_extendedprice), and use the Index-

Scan approach.

Figure 12: Execution time and PDW disk footprint for the

different approaches that are described in Table 1.

1527

8. Acknowledgements
This research was supported in part by a grant from the Microsoft

Jim Gray Systems Lab.

9. REFERENCES
[1] David J. DeWitt, Alan Halverson, Rimma V. Nehme, Srinath

Shankar, Josep Aguilar-Saborit, Artin Avanes, Miro Flasza,

Jim Gramling: Split query processing in polybase. SIGMOD

Conference 2013: 1255-1266

[2] Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi

Silberschatz, Erik Paulson: Efficient processing of data

warehousing queries in a split execution environment.

SIGMOD Conference 2011: 1165-1176

[3] Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified

Data Processing on Large Clusters. OSDI 2004: 137-150

[4] Oracle White paper. High Performance Connectors for Load

and Access of Data from Hadoop to Oracle Database, June

2012. http://www.oracle.com/technetwork/bdc/hadoop-

loader/connectors-hdfs-wp-1674035.pdf

[5] http://www.greenplum.com/sites/default/files/EMC_Greenpl

um_Hadoop_DB_TB_0.pdf

[6] Aster SQL-H: http://www.asterdata.com/sqlh/

[7] Mohamed Y. Eltabakh, Fatma Özcan, Yannis Sismanis, Peter

J. Haas, Hamid Pirahesh, Jan Vondrák: Eagle-eyed elephant:

split-oriented indexing in Hadoop. EDBT 2013: 89-100

[8] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal,

Yagiz Kargin, Vinay Setty, Jörg Schad: Hadoop++: Making

a Yellow Elephant Run Like a Cheetah (Without It Even

Noticing). PVLDB 3(1): 518-529 (2010)

[9] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter,

Stefan Schuh, Alekh Jindal, Jörg Schad: Only Aggressive

Elephants are Fast Elephants. PVLDB 5(11): 1591-1602

(2012)

[10] http://www.greenplum.com/sites/default/files/EMC_Greenpl

um_Hadoop_DB_TB_0.pdf

[11] http://www.asterdata.com/sqlh/

1528

