
Chimera: Large-Scale Classification using
Machine Learning, Rules, and Crowdsourcing

Chong Sun1, Narasimhan Rampalli1, Frank Yang1, AnHai Doan1,2

1@WalmartLabs, 2University of Wisconsin-Madison

ABSTRACT
Large-scale classification is an increasingly critical Big Data
problem. So far, however, very little has been published
on how this is done in practice. In this paper we describe
Chimera, our solution to classify tens of millions of prod-
ucts into 5000+ product types at WalmartLabs. We show
that at this scale, many conventional assumptions regarding
learning and crowdsourcing break down, and that existing
solutions cease to work. We describe how Chimera employs
a combination of learning, rules (created by in-house ana-
lysts), and crowdsourcing to achieve accurate, continuously
improving, and cost-effective classification. We discuss a
set of lessons learned for other similar Big Data systems.
In particular, we argue that at large scales crowdsourcing
is critical, but must be used in combination with learning,
rules, and in-house analysts. We also argue that using rules
(in conjunction with learning) is a must, and that more re-
search attention should be paid to helping analysts create
and manage (tens of thousands of) rules more effectively.

1. INTRODUCTION
Classification is a fundamental problem in machine learn-

ing, data mining, and data management [20, 21]. Large-scale
classification, where we need to classify hundreds of thou-
sands or millions of items into thousands of classes, is be-
coming increasingly common in this age of Big Data. Such
needs arise in industry, e-science, government, and many
other areas.

So far, however, very little has been published on how
large-scale classification has been carried out in practice,
even though there are many interesting questions about such
cases. For example, at this scale, how does the nature
of the learning problem change? Would existing methods
that employ manual classification, supervised learning, or
hand-crafted rules work? In recent years crowdsourcing has
emerged as a popular problem solving method [8], and has
been applied to classification (e.g., [6, 29, 3, 11, 22, 13]).
Can crowdsourcing work at such large scales? It is often

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

informally understood that industrial practitioners employ
hand-crafted rules to “patch” system performance. What
kinds of rules do they write? How many, and who write
these rules? Finally, how do we evaluate the output of clas-
sification at this scale? Answers to these questions can sig-
nificantly advance the development of effective solutions to
large-scale classification, an important Big Data problem.

In this paper we explore the above questions. We de-
scribe the product classification problem at WalmartLabs,
a research and development lab of Walmart, the second
largest e-commerce company in the world. This problem
requires classifying tens of millions of product descriptions
into 5000+ product types (e.g., “area rugs”, “rings”, “laptop
bags & cases”) over an extended period of time. Interest-
ingly, at this scale many conventional assumptions seem to
break down and existing methods cease to work.

For example, many learning solutions assume that we can
take a random sample from the universe of items, manu-
ally label the sample to create training data, then train a
classifier. At this scale, however, we do not even know the
universe of items, as product descriptions keep “trickling
in”, a few tens of thousands or hundreds of thousands at a
time, over months (while we need to get the product clas-
sifier up and working as soon as possible). We never know
when we have seen “enough products”, so that we can take
a representative sample. This of course assumes that the
overall distribution of items is static. Unfortunately at this
scale it often is not: the overall distribution is changing, and
concept drift becomes common (e.g., the notion “computer
cables” keeps drifting because new types of computer cables
keep appearing).

Further, even if we have the entire universe of items at
hand, it turns out that taking a representative sample for
certain product types is still extremely difficult. Consider
the product type “ornament”, which turns out to have nu-
merous subtypes. A domain analyst would need to spend
hours searching the Web to understand the different sub-
types, in order to create a representative sample for orna-
ment (that contains examples of all subtypes). The same
goes for “handbags” and “computer cables”. Such problem-
atic types are quite common at the scale of 5000+ product
types, thus making it extremely time consuming to create
representative training data.

One would imagine that crowdsourcing can help slash
this time, as it has been commonly used to create train-
ing data for learning [6, 29, 3, 11, 22, 13]. Unfortunately at
this scale the conventional wisdom does not seem to work:
to label a product, a crowd worker must navigate a very

1529

large set (5000+) of product types and often has to choose
among multiple types that sound very similar (e.g., “util-
ity knives”, “pocket knives”, “tactical knives”, “multitools”
for item “Gerber Folding Knife 0 KN-Knives”). This is not
the kind of micro-questions that most crowd workers prefer
and are well suited for, namely questions that requires little
training and can be answered with yes/no within minutes.

For the above reasons and more, we show that existing
solutions by themselves do not work well for our problem:
manual classification takes too long; learning has difficulties
obtaining sufficient and representative training data, han-
dling “corner cases”, and dealing with distribution changes
and concept drifts; rule-based methods do not scale to 5000+
types; and crowdsourcing cannot help label training data
(see Section 3).

We then describe our solution Chimera1, which combines
learning, hand-crafted rules, and crowdsourcing to perform
large-scale classification. In particular, Chimera employs
multiple classifiers, both learning- and rule-based ones. It
employs crowdsourcing to evaluate the classification result,
flag problematic cases, then forward those cases to the in-
house analysts. The analysts analyze the cases, write rules
to address them, correct the labels, and in general incor-
porate feedback into the system, to enable continuous im-
provement over time. We show that Chimera is novel in four
important aspects (see Section 4):

• Chimera uses both learning and hand-crafted rules (writ-
ten by domain analysts) extensively.

• It uses a combination of crowdsourcing and in-house
analysts to evaluate and analyze the system, to achieve
an accurate, continuously improving, and cost-effective
solution for classification.

• Chimera is scalable in terms of human resources, by us-
ing in-house analysts and tapping into crowdsourcing,
the most “elastic” and “scalable” workforce available
for general use today, and

• Chimera uses a human-machine hybrid algorithm that
treats learning, rules, crowd workers, in-house ana-
lysts, and developers as “first-class citizen”.

Overall, we make the following contributions:

• We show why many conventional assumptions and ex-
isting methods break down for large-scale classifica-
tion.

• We describe Chimera, a solution developed and has
been in use for years at WalmartLabs, which combines
learning, rules, crowdsourcing, in-house analysts, and
developers to perform accurate, continuously improv-
ing, and cost-effective classification.

• We describe a set of lessons that can be valuable for
other similar Big Data systems. In particular, we ar-
gue that at large scales crowdsourcing is critical, but it
must be used in combination with learning, rules, and
in-house analysts. We also argue that using rules (in
conjunction with learning) is a must, and that more
research attention should be paid to helping analysts
create and manage (tens of thousands of) rules more
effectively.

1Chimera is a creature in Greek mythology that composed
of the parts of three animals: a lion, a snake and a goat.

2. PROBLEM DEFINITION
We now describe the problem considered in this paper:

classifying millions of product items into thousands of prod-
uct types in a product taxonomy.

Product Items: A product item is a record of attribute-
value pairs that describe a product. Figure 1 shows three
product items in JSON format. Attributes “Item ID” and
“Title” are required. Most product items also have a “De-
scription” attribute. Both “Title” and “Description” are
textual (see Figure 1). Some product items have more at-
tributes (e.g., “Manufacturer”, “Color”). Many, however,
come with just the “Item ID” and “Title” attributes (this is
the worst-case scenario for our classification system).

Millions of product items are being sent in continuously
(because new products appear all the time) from thousands
of Walmart vendors. In theory, we can ask the vendors to fill
in a very elaborate set of attributes (e.g., “Title”, “Color”,
“Manufacturer”, “Weights”, “Description”, etc.) when de-
scribing a product. In practice this raises many problems:
vendors may be reluctant to spend a lot of effort filling in
the attributes; they may agree to fill in the attributes, but
doing so with low accuracy; and this may take a long time.
Consequently, we ask them to fill in at least the “Title” at-
tribute, and optionally other attributes, as many as they are
comfortable. This explains why product items typically do
not have a very rich set of attribute-value pairs, as shown in
Figure 1.

Product Taxonomy & Product Types: We maintain
a very large product taxonomy, based on the Structured
Commerce Classification initiative that Walmart and eBay
spearheaded with GS1. The taxonomy is created offline us-
ing automatic, outsourcing, and crowdsourcing methods. It
has more than 5000 mutually exclusive product types, such
as “laptop computers”, “area rugs”, “laptop bags & cases”,
“dining chairs”, “decorative pillows”, and “rings”.

The taxonomy is constantly being updated, with nodes
being deleted, merged, modified, and new nodes being cre-
ated all the time. Consequently, the set of product types
is also constantly changing, and this significantly increases
the complexity of our classification task. For the purpose of
this paper, however, we will assume that the set of product
types remains unchanged. Managing a changing taxonomy
in a principled fashion is ongoing work.

Classifying Product Items into Product Types: Our
goal is to classify each incoming product item into a product
type. For example, the three products in Figure 1 are clas-
sified into the types “area rugs”, “rings” and “laptop bags
& cases” respectively. Our problem setting is distinguished
by the following characteristics:

• We have a very large number of product types (5000+)
to classify into, and we started out having very little
training data (for learning-based classification). Cre-
ating training data for 5000+ product types is a daunt-
ing task, and for certain product types, it is not even
clear how to create a representative sample of training
data, as we will see later.

• We have limited human resources, typically 1 devel-
oper and 1-2 analysts. The analysts can be trained
to understand the domain, but cannot write complex
code (as they typically have no CS training). Such a

1530

{
"Item ID": 30427934,
"Title": "Eastern Weavers Rugs EYEBALLWH-8x10 Shag Eyeball White 8x10 Rug",
"Description": "Primary Color: White- Secondary Color: White- Construction: Hand Woven- Material: Felted Wool- Pile Height: 1’’- Style:
Shag SKU: EASW1957"

}
{
"Item ID": 31962310,
"Title": "1-3/8 Carat T.G.W. Created White Sapphire and 1/4 Carat T.W. Diamond 10 Carat White Gold Engagement Ring",
"Description": "As a sincere declaration of your devotion, this gorgeous Created White Sapphire and Diamond Engagement Ring is fashioned
in lustrous white gold. The engagement ring showcases a stunning created white sapphire at its center and a total of 24 round, pave-set
diamonds along the top and sides of the rib-detailed band."

}
{
"Item ID": 17673919,
"Title":"Royce Leather Ladies Leather Laptop Briefcase",
"Description":"This handy ladies laptop brief has three zippered compartments. The first on the front is a deep pocket with a tucked-in
hidden zipper. The second compartment has multiple interior pockets for a Blackberry/Palm Pilot, cell phone, business cards, credit cards,
pen loops and much more. The final compartment is divided to hold your laptop computer and files all in one location. Topped off with two
handles and a comfortable shoulder strap."

}

Figure 1: Examples of product items.

small team size is actually quite common even at large
companies, because a large company often must spread
its people over many projects. In any case, when clas-
sifying at such a large scale, doubling the team size is
unlikely to help much. Instead, we believe the key is
in using crowdsourcing, as we will discuss.

• Product items often come in bursts. There may be a
sudden burst of hundreds of thousands of items that
come in (either from a new vendor, or from an existing
vendor who has just finished cleaning their items). We
would need to classify these items fast, so that they
show up on walmart.com as soon as possible. This
makes it hard to provision for analysts and outsourcing
people.

• We need very high precision, around 92% or higher
(i.e., 92% of our classification results should be cor-
rect). This is because we use the product type of
an item to determine the “shelf” on walmart.com on
which to put the item, such that users can easily find
this item by navigating the item pages on walmart.com.
Clearly, incorrect classification will result in putting
the item on the wrong “shelf”, making the item dif-
ficult to find and producing a bad customer experi-
ence. We can tolerate lower recall, because items that
we cannot yet classify will be sent to a team that at-
tempts to manually classify as many items as possible,
starting with those in product segments judged to be
of high value for e-commerce. But of course we want
to increase recall as much as possible.

We now discuss how the above characteristics make current
approaches not well suited to solving our problem.

3. LIMITATIONS OF CURRENT APPROACHES
To solve the above problem, we can manually classify the

items, use hand-crafted rules, or use machine learning. None
of these solutions by itself is satisfactory, as we discuss next.

3.1 Manually Classifying the Product Items
We can manually classify the items using analysts, out-

sourcing, or crowdsourcing.

Using Analysts: We find that an analyst can accurately
classify about 100 items per day (or 13 items per hour, as-
suming 8-hour workday). So classifying an item takes about
4-5 minutes. The reason it takes this long is because the an-
alyst must understand what the item is, navigate through a
large space of possible product types, examine them, then
decide on the most appropriate one.

For example, given a product item, the analyst may first
do research on what are the potential product types, nor-
mally by searching on the Web to get more detailed de-
scriptions, pictures or any other related information. Some
item titles can be very misleading. For example, without a
lot of research, it would be difficult to determine that item
“Misses’ Jacket, Pants And Blouse - 14 - 16 - 18 - 20 - 22
Pattern” has the product type “sewing patterns”.

After having a rough idea about what potential segments
or product types an item belongs to, the analyst must nav-
igate (using a visual tool) to a particular product segment,
look at hundreds of product types in that segment, and de-
cide which one seems the most appropriate. This is not easy,
as there may be two or more product types that look very
similar, or there is no suitable product type in our taxonomy
yet. (Our taxonomy structure is not fully mature yet and
taxonomists are actively updating or adding more product
types.)

Take item “Dynomax Exhaust 17656 Thrush Welded Muf-
fler” for example. The analysts could recognize it to be a
muffler. However, the taxonomy may not yet have muffler as
a product type. So the analysts need to look for the closest
product type for muffler. This takes time as we have about
150 product types related to automotive, such as “automo-
tive brakes” and “automotive bumpers”. In certain cases
we need to spend a lot of time finding the best product
type. For example, we have multiple product type candi-
dates “utility knives”, “pocket knives”, “tactical knives” and
“multitools” for item “Gerber Folding Knife 0 KN-Knives”.
Which product type to select is difficult to decide. Differ-
ent analysts may even have different opinions and they need
to consult each other to make sure they are consistent in
classifying the items.

Given the rate of 100 product items per day per analyst,
it would take 200 days for a team of 5 analysts to manually
classify 100,000 items. Thus, asking analysts to manually

1531

classify incoming product items is clearly not a practical
solution.

Using Outsourcing: Outsourcing means contracting
with a team of people in another company (typically in a
developing country) to do the work. This practice has been
used extensively in industry for decades. In our problem
context, however, outsourcing does not work well for two
reasons. First, it is prohibitively expensive. Assuming an
outsource worker charges a typical $10 per hour and also can
classify 13 items, or roughly 77 cents per item. Classifying
100,000 items would incur $77K, and a million items incur
$770K, an unacceptable cost to us.

Second, outsourcing is not “elastic”, i.e., it is very diffi-
cult to quickly scale up and down the outsourcing team on
demand. Recall that product items often come in bursts. If
we keep a small outsourcing team, then when hundreds of
thousands of items come in, we often cannot scale the team
up fast enough to classify the items (contract negotiations
take time, many outsourcing companies do not have tens to
hundreds of people at standby ready to work at a moment’s
notice, and training new people takes time). On the other
hand, if we keep a large outsourcing team at standby, then
we have to pay a lot of money even when there is no or few
product items to classify.

Using Crowdsourcing: Given the relatively high cost
and the inelasticity of outsourcing, in recent years many
companies have explored crowdsourcing for a wide range
of data management tasks. In our case, however, a direct
application of crowdsourcing does not work. As discussed
earlier, classifying product items is a complex process that
requires navigating a large taxonomy. This is not well suited
to most crowdsourcing workers on popular platforms (such
as Amazon’s Mechanical Turk), who prefer micro tasks that
require only a few tens of seconds to answer yes or no.

3.2 Learning-Based Solutions
We can create training data (i.e., 〈product item, correct

product type〉 pairs), use it to train a learning-based clas-
sifier (e.g., SVM), then use the classifier to assign product
types to items. In our context, however, this approach raises
the following difficult challenges.

Difficult to Generate Training Data: As mentioned
earlier, we started with very little training data. It turned
out that generating sufficient training data for 5000+ prod-
uct types is very difficult. To label just 200 product items
per product type, we would need to label 1M product items.
Our earlier discussion of the manual methods clearly shows
that we cannot do this using either analysts, outsourcing
(which would have cost $770K), or crowdsourcing.

One would imagine that we can try to obtain training data
from another product taxonomy already populated with prod-
uct items. For example, if our product type X corresponds
to a type Y in some other product taxonomy, then we can
just move all items associated with Y into X as training
data for X. However, in practice, X and Y rarely match per-
fectly. For example, a taxonomy may refer to “child clothes”
as clothes for children under 16, whereas another taxonomy
may refer to “teenage clothes” as clothes for children age
12-18. So we cannot just move the items associated with Y
into X, and filtering the items of Y is also very difficult.

Another idea is to have analysts and outsourcing workers

write rules to generate training data. This would still be
difficult and does not help generate representative samples
as we will see below.

Difficult to Generate Representative Samples: A
common method to generate training data is to take a ran-
dom sample from the universe of product items to be clas-
sified, then label the sample (i.e., assigning correct product
types to the items in the sample).

Our context however raises three problems. First, the
set of product items that we have at any time is typically
highly skewed. So some of the product types may be severely
underrepresented in a random sample. For example, when
taking a random sample of all product items in the Walmart
catalog, more than 40% of the items in the sample are from
the segment “Home & Garden”. We end up having hundreds
of thousands of “area rugs” and “stools” items, while having
very few items for many other product types.

Second, even when we intentionally try to obtain a repre-
sentative sample for a product type, it can turn out to be
very hard, because we (analysts or outsourced workers) have
no idea how to obtain such a sample. Consider for instance
“handbags”. How do we obtain a representative sample for
this product type? All the items named “satchel”, “purse”
and “tote” are handbags and it is hard to collect a com-
plete list of these representative items. Another example is
“computer cables”, which could include a variety of cables,
such as USB cables, networking cords, motherboard cables,
mouse cables, monitor cables, and so on. To obtain a rep-
resentative sample for such a product type, an analyst may
have to search the Web extensively, to understand all the
various subtypes that belong to the same product type, a
highly difficult task.

Finally, a related problem is that we do not even know the
universe of all product items a priori. Recall that product
items arrive regularly, with new vendors and new product
types appearing all the time. As a result, the universe of
all product items keep changing, and what we see at any
time (i.e., the product items that have arrived so far) makes
up just a fraction of this changing universe. This makes it
difficult to judge the representativeness of the sampled data.

Difficult to Handle “Corner Cases”: We often have
“corner cases” that come from special sources and need to
be handled in special ways. Such cases are difficult to handle
using machine learning. For example, Walmart may agree
to carry a limited number of new products from a vendor, on
a trial basis. Since these products are new, training data for
them are not available in the system, and it is also difficult to
generate sufficient training data for these cases. As a result,
we cannot reliably classify them using learning algorithms.
On the other hand, it is often possible to write rules to
quickly address many of these cases.

Another problem is that it is often difficult to use machine
learning alone to “go the last mile”. That is, we can use
learning to achieve a certain precision, say 90%. But then
increasing the precision from 90% to 100% is often very diffi-
cult, because this remaining “10%” often consists of “corner
cases”, which by their very nature are hard to generalize and
thus are not amenable to learning. To handle such cases, we
often must write rules, as we will see in Section 4.5.

Concept Drift & Changing Distribution: A problem
that we hinted at earlier is that we do not know a priori the

1532

Figure 2: The Chimera system architecture.

items for each product type. In fact, the set of such items
keeps changing, as new products appear. For example, the
set of items for “smart phone” keeps changing, as the notion
of what it means to be a smart phone changes, and new
types of smart phone appear on the market. Thus, we have
a “concept drift” (for smart phone). The distribution of all
product items (over the product types) is also constantly
changing. Today there may be a large portion of products
in “Homes and Garden”, but tomorrow this portion may
shrink, in reaction to seasonal and market changes. The
concept drift and changing distribution make it difficult to
learn effectively.

3.3 Rule-Based Solutions
Instead of applying machine learning, we can just ask the

analysts (and possibly also outsourcing people) to write rules
to classify product items (see Section 4.5 for examples of
such rules). But writing rules to cover all 5000+ product
types is a very slow and daunting process. In fact, we did
not find it to be scalable. In addition, we also waste labeled
data that we already have for various product types (data
that we can use to train machine learning algorithms).

4. THE CHIMERA SOLUTION
We now describe Chimera, our product classification so-

lution that addresses the above limitations. Chimera uses a
combination of machine learning, hand-crafted rules, devel-
opers, analysts, and crowd workers to form a solution that
continuously improves over time, and that keeps precision
high while trying to improve recall. (It is important to note
that Chimera does not use outsourcing; we discuss the rea-
sons for this in Section 5.)

4.1 Overall System Architecture
Briefly, Chimera works as follows:

1. Initialize the system using a basic set of training data
and hand-crafted rules supplied by the analysts. Train
the learning-based classifiers.

2. Loop:

(a) Given a set of incoming product items, classify
them, then use crowdsourcing to continuously eval-
uate the results and flag cases judged incorrect by
the crowd.

(b) The analysts examine the flagged cases, and fix
them by writing new rules, relabeling certain items,
and alerting the developers.

(c) The newly created rules and the relabeled items
are incorporated into the system, and the devel-
opers may fine tune the underlying automatic al-
gorithm.

(d) For those items that the system refuses to classify
(due to a lack of confidence), the analysts examine
them, then create hand-crafted rules as well as
training data (i.e., labeled items) to target those
cases. The newly created rules and training data
are incorporated into the system, and it is run
again over the product items.

As described, Step 2 not just classifies the incoming product
items, but also uses crowdsourcing, analysts, and developers
to provide a feedback loop into the system, to continuously
improve its performance.

Figure 2 shows the overall Chimera architecture. Given
items to classify, the Gate Keeper does preliminary process-
ing, and under certain conditions can immediately classify
an item (see the line from the Gate Keeper to the Result,
and see the discussion in Section 4.3). Items surviving the
Gate Keeper are fed into a set of Classifiers. We distinguish
three types of classifiers: rule-, attribute-, and learning-
based. There is one rule-based classifier that consists of
a set of whitelist rules and backlist rules created by the ana-
lysts. There is one attribute- and value-based classifier that
consists of rules involving attributes (e.g., if a product item
has the attribute “ISBN” then its product type is “Books”)
or values (e.g., if the “Brand Name” attribute of a product
item has value “Apple”, then the type can only be “laptop”,

1533

“phone”, etc.). The rest is a set of classifiers using learning:
nearest neighbors, Naive Bayes, Perceptron, etc.

We use multiple classifiers because we have found that
none of the classifiers dominates the performance all the
time. Instead, since each classifier exploits a particular kind
of information, by combining multiple classifier we can gen-
erally improve the classification accuracy.

Given an item, all classifiers will make predictions (each
prediction is a set of product types optionally with weights).
The Voting Master and the Filter combine these predictions
into a final prediction. The pair 〈product item, final pre-
dicted product type〉 is then added to the result set (the
box labeled Result in the figure).

In the next step, we take a sample from the result set,
and ask the crowd to evaluate the sample. Briefly, given
a pair 〈product item, final predicted product type〉, we ask
the crowd if the final predicted product type can indeed be
a good product type for the given product item. Pairs that
the crowd say “no” to are flagged as potentially incorrect,
and are sent to the analysts (the box labeled Analysis in
the figure). The analysts examine these pairs, create rules,
and relabel certain pairs. The newly created rules are added
to the rule-based and attribute-based classifiers, while the
relabeled pairs are sent back to the learning-based classifiers
as training data.

If the precision on the sample (as verified by the crowd)
is already sufficiently high, the result set is judged suffi-
ciently accurate and sent further down the WalmartLabs
production pipeline. Otherwise, we incorporate the ana-
lysts’ feedback into Chimera rerun the system on the input
items, sample and ask the crowd to evaluate, and so on.

If the Voting Master refuses to make a prediction (due to
low confidence), the incoming item remains unclassified and
is sent to the analysts. The analysts examine such items,
then create rules and training data, which again are incorpo-
rated into the system. Chimera is then rerun on the product
items.

4.2 The Novelties of Our Solution
As described, compared to existing work our solution is

novel in four important aspects.

Use Both Learning and Rules Extensively: We use
both machine learning and hand-crafted rules extensively.
Rules in our system are not “nice to have”. They are ab-
solutely essential to achieving the desired performance, and
they give domain analysts a fast and effective way to provide
feedback into the system. As far as we know, we are the first
to describe an industrial-strength system where both learn-
ing and rules co-exist as first-class citizens.

Use Both Crowd and Analysts for Evaluation/Analysis:
We show how the step of evaluating and analyzing the classi-
fication results (to measure the system accuracy and provide
feedback) can be done effectively using crowdsourcing and
in-house analysts. At the scale that we are operating (5000+
product types and millions of product items), we argue that
using crowdsourcing and in-house analysts is absolutely es-
sential to achieve an accurate, continuously improving, and
cost-effective solution.

Scalable in Terms of Human Resources: Our solution
is scalable in that (a) it taps into crowdsourcing, the most
“elastic” and “scalable” workforce available for general use

today, and (b) it uses analysts. As the demand surges, we
can scale by making heavier use of crowdsourcing and hir-
ing more analysts, which is often far easier than hiring CS
developers.

Treat Humans and Machines as First-Class Citizens:
We show that to build an industrial-strength classification
system on a very large scale, it is essential to consider not
just automatic algorithms and rules, but also various classes
of human, such as crowd workers, in-house analysts, and
developers. All of these in essence need to be considered
as “first-class citizens”, and the solution needs to carefully
spell out who is doing what, and how to coordinate among
them. This is a clear demonstration for the need of hybrid
human-machine solutions, as well as a novel case study on
how such a solution works in practice.

In the rest of this section, we describe Chimera in more
details, focusing on the above four novel aspects.

4.3 Initializing and Gate Keeping
We initialize the system with a set of training items and

basic rules constructed by analysts (as many as we can create
within a time limit). In the next step, incoming items are
processed one by one. An incoming item x (e.g., in Excel or
JSON format) is converted into a record of attribute-value
pairs, then fed into the Gate Keeper.

The Gate Keeper can immediately make a decision re-
garding item x if (a) the title of x matches the title of an
item y in the training data, or (b) a rule in the Gate Keeper
can classify x with very high confidence (e.g., if x has at-
tribute “ISBN”, then x is of type “Books”), or (c) the title
of x is empty. When (a) or (b) happens, the Gate Keeper
sends item x together with the appropriate product type to
Result. When (c) happens, the Gate Keeper also sends x to
Result, but declines to make a prediction for x.

In all other cases, the Gate Keeper sends item x to the
classifiers. We now describe the learning-, rule-, then attribute-
based classifiers, in that order.

4.4 Learning-Based Classifiers
To classify a product item, our current learning-based

classifiers consider only the product title. This is because e-
commerce vendors typically take great care in creating such
titles, packing the most important information about the
product into the title (to make it as informative and catchy
as possible to customers). Hence, we have found that focus-
ing on the titles gave us a good start.

We have experimented with using product descriptions
in learning-based classifiers, but found that they often con-
tain “noise” that affects the classification results. For exam-
ple, laptop descriptions often mention memory, hard disks,
video card, CPU and even laptop cases, which are all differ-
ent product types, thereby “confusing” the classifiers. We
are currently working on managing such “noise” to effec-
tively exploit product descriptions in our next-generation
classifiers. Note that our other classifiers, rule-based and
attribute/value-based ones, can and do exploit product de-
scriptions and other attributes (e.g., “ISBN”, “Brand”), as
described in Sections 4.5-4.6.

To build a learning-based classifier, we manually labeled
product titles to create training data. We regard each title
as a mini document, and process it by stemming, remov-
ing stop words, and lower casing the entire title. We have
explored using Naive Bayes, KNN, Perceptron, SVM, and

1534

logistic regression, and found the first three work best. In
what follows we briefly describe these classifiers.

Naive Bayes Classifier: This popular classifier is concep-
tually simple, easy to implement, provides fast classification,
and is good with text data. In our case we started out us-
ing k-grams in the title with k = 1, 2, 3 as possible features.
Eventually we use only bigrams (i.e., two-word phrases) as
features because this produces the best performance. Given
a product title t, we can compute P (c|t), the probability
that t has the product type c, for all product types, then
return the top few product types that maximize P (c|t) as
candidate product types for title t.

Roughly speaking, let f1, . . . , fn be the (bigram) features
derived from title t, then the Naive Bayes classifier computes

p(c|t) = P (t|c)P (c)/P (t),

where P (t|c) is estimated as P (f1|c)P (f2|c) · · ·P (fn|c), as-
suming independence among the features. The probabilities
P (fi|c) and P (c) can be estimated from the training data,
while the probability P (t) can be ignored (as they are the
same for all c).

KNN Classifier: This classifier assigns a product type to
an item based on the types of similar items. It requires es-
sentially no training, and achieves surprisingly good results.
In particular, it guarantees that no incoming product item
that already appears in the training data would be classi-
fied incorrectly. Specifically, given a product item x, we find
the top k items in the training data that are most similar
to x, rank the product types of these top k items based on
their frequency, then return the ranked list as the classifier’s
prediction for item x. The similarity between two items is
the weighted Jaccard measure between their titles (treated
as sets of words), where the weights are computed based on
the TF and IDF of the words in the titles.

Perceptron Classifier: This classifier uses a single-layer
perceptron model with multiple outputs, and uses stochastic
gradient descent for fast model training. Here we also use
words in the items’ titles as features, but perform feature
selection using information gain: selecting the top 100 fea-
tures based on information gain for each product type. This
classifier can be trained fast with simple updates.

Finally, we have also experimented with SVM and logistic
regression, but found that out-of-the-box versions of these
methods underperform Naive Bayes and Perceptron. At the
moment Chimera does not employ these methods. In ongoing
work we are exploring whether better feature selection and
parameter tuning can improve their performance.

4.5 Rule-based Classifiers
Whitelist- and Blacklist Rules: As discussed in Sec-
tion 4.1, Chimera’s analysts write many classification rules.
We keep the rule format fairly simple so that the analysts,
who cannot program, can write rules accurately and fast.
Specifically, we ask them to write whitelist rules and black-
list rules. A whitelist rule r → t assigns the product type
t to any product whose title matches the regular expression
r. The followings for example are whitelist rules that our
analysts wrote for product types “rings”:

• rings? → rings

• wedding bands? → rings

• diamond.*trio sets? → rings

• diamond.*bridal → rings

• diamond.*bands? → rings

• sterling silver.*bands? → rings

The first rule for example states that if a product title con-
tains “ring” or “rings”, then it is of product type “rings”.
Thus it would (correctly) classify all of the following prod-
ucts as of type “rings”:

• Always & Forever Platinaire Diamond Accent Ring

• 1/4 Carat T.W. Diamond Semi-Eternity Ring in 10kt
White Gold

• Miabella Round Diamond Accent Fashion Ring in 10kt
White Gold.

To make it easier for analysts to write rules, we assume that
regular expression matching is case insensitive and that each
regular expression starts on a word boundary (so “rings?”
for example does not match “earrings”). Similarly, a black-
list rule r → NOT t states that if a product title matches
the regular expression r, then that product is not of the type
t.

Guidance on Rule Writing: We have developed a de-
tailed guidance for our analysts on rule writing. Briefly, this
guidance considers the following four important cases:

No training data: An important advantage of using rules is
that they provide a good way to incorporate analysts’ do-
main knowledge. Take product type “television” for exam-
ple. Most analysts could easily create simple rules using
regular expressions such as “televisions?”,“tvs?”, ”hdtv”,
“lcd.*tv”, “led.*tv”, etc. These rules can cover most items
of “television” type (provided that item titles have reason-
able quality; as a counter example of a low-quality title, it
is nearly impossible to classify the item “ss glx gio s5660”).
Thus, at the start, when there was no training data, we
asked the analysts to create many basic rules based on their
knowledge of the product types, to jump start Chimera.
Later we also asked the analysts to create basic rules (as
many as they are able) for product types with no training
data.

Training data is too little and can mislead the classifier: It is
also critical to use rules when we have limited training data
for some product types. Classifiers trained on such limited
training data often make many mistakes. Consider for ex-
ample product type “ornaments”. The initial training data
for this type contained tens of examples, all of which con-
tain the word “Christmas”. Consequently, many Christmas
items (e.g., Christmas trees) are classified as ornaments. In
such cases, ideally we should try to obtain more training
data. But this may be difficult and require too much effort
to achieve in the short term. We deal with this problem in
two ways. First, if a product type has too few training ex-
amples (currently set to 25, which we empirically found to
work well), then we ignore these examples, thereby “turning
off” the classifiers for this product type. And second, we ask
the analysts to write rules for such cases, as many as they
can.

Training data is not representative: In such cases whitelist-

1535

and blacklist rules can provide very fast and effective solu-
tions. Consider for example the product type “rings”. We
may have a lot of training examples for this type, but most
of them mention “ring” in the title, and very few of them
mention “bridal”. As a result, we may not be able to clas-
sify “1 Carat Diamond Marquise Bridal Set in 10Kt White
Gold” as a ring. Noticing this, an analyst can quickly write
a whitelist rule “diamond.*bridal → rings” to address this
and similar cases. Similarly, classifiers often misclassify “Mi-
abella 1/4 Carat T.W. Diamond Solitaire 10kt White Gold
Stud Earrings” as “rings”. By adding the blacklist rule “ear-
rings → NOT rings”, we can quickly address this problem.

Corner cases: Finally, rules provide an effective and quick
way to handle corner cases, such as new products from a
vendor (accepted to walmart.com on a trial basis), or cases
that prevent learning-based classifiers from “going the last
mile”, i.e., increasing the precision from 90% say to 100%.

In addition, we ask analysts to consider writing whitelist
rules that have high precision, even if the recall is low. To
achieve high precision, analysts may write blacklist rules
that “prune” the coverage of a whitelist rule. For example,
the whitelist rule “rings? → rings” covers also cases such
as “Bluecell 50pcs 25MM Split Key Chain Ring Connector
Keychain with Nickel Plated”, which is clearly not a ring. To
address this, an analyst may write the simple blacklist rule
“key chain? → NOT rings”. For the product type “rings”,
we have 12 whitelist rules and 76 blacklist rules (created
over a period of months). Finally, the same product item
may match multiple whitelist rules. For example, “Lucky
Line 71101 Key Ring” matches both “rings? → rings” and
“key.*rings → key chains”.

Applying the Rules: Given an item x to be classified,
we first apply all whitelist rules. Let S be the set of product
types predicted by the rules that match x. Next we apply
all blacklist rules to “prune” the set S.

In the next step we rank the types in S in decreasing
likelihood of being the correct type for x. To do so, we use
two observations. First, if the set of words (in the title of x)
matched by a rule R1 subsumes the set of words matched
by a rule R2, then R1 is more likely than R2 to have the
correct product type. For example, consider “Lucky Line
71101 Key Ring”. A rule R1 for “key chains” may match
“Key” and “Ring”, and a rule R2 for “rings” may match just
“Ring”. In this case the correct type is indeed “key chains”.

The second observation is that in a product title (e.g.,
“LaCuisine 18pc Microwave Cookware Set KTMW18”),
phrases that appear early in the title (e.g., Lacuisine, 18pc)
tend to describe the characteristics of the product, whereas
phrases that appear later in the title (e.g., Cookware Set)
tend to refer to the product itself. So if a rule matches
phrases later in the title, it is more likely to refer to the
correct product type.

Formally, let W s
i be the position in the title where the

very first phrase that matches rule Ri starts, and let W e
i

be the position in the title where the very last phrase that
matches rule Ri ends. Let ti be the product types predicted
by Ri. We have

• If W s
1 = W s

2 & W e
1 = W e

2 , then rank(t1) = rank(t2),

• if W e
1 ≤W s

2 , then rank(t2) ≥ rank(t1),

• If W s
1 ≤W s

2 & W s
2 ≤W e

1 & W e
1 ≤W e

2 ,
then rank(t2) ≥ rank(t1),

• If W s
1 ≤W s

2 & W e
1 ≥W e

2 , then rank(t1) ≥ rank(t2).

Finally, we return the ranked list of types in S as the result
of applying the rule-based classifier to product item x.

4.6 Attribute- & Value-Based Classifiers
These classifiers make predictions based on the presence

of certain attributes or attribute values. For example, if
a product item has attribute “ISBN”, then classify it as
“books”. Other examples include “Director”, “Actors”, “Rat-
ings”, and “Screen Format” for movies, and “Console” and
“Platform” for video games. As yet another example, if the
brand attribute of an item has value “Apple”, then we know
that its type comes from a limited set of types, e.g., laptop,
phone, etc. We ask the analysts to write such attribute-
and value-based classification rules (in particular, our ana-
lysts have compiled a list of 20,000+ brand names together
with associated product types). Such rules prove especially
useful for certain product types, e.g., books, movies, musics,
that share the same title (e.g., “The Hunger Games”).

4.7 Voting Master and Filter
Given a product item x, the learning-, rule-, and attribute

and value-based classifiers output ranked lists of predicted
product types. The voting master then aggregates these
ranked lists to produce a combined ranked list. It does so
using either majority voting or weighted voting. Majority
voting ranks product types based on their frequency in the
classifiers’ output, whereas weighted voting takes into ac-
count the weights of the classifiers (assigned manually by
the developer or learned via training data).

Once the voting master has produced a combined ranked
list of product types, the filter applies a set of rules (cre-
ated by the analysts) to exert a final control over the output
types. Note that analysts can already control the rule-based
classifiers. But without the filter, they do not have a way
to control the output of the learning-based classifier as well
as the voting master, and this can produce undesired cases.
For example, learning-based classifiers may keep misclassi-
fying “necklace pendant” as of type “necklace” (because we
have many items of type “necklace” in the training data
that do contain the word “necklace”). As a result, the vot-
ing master may produce “necklace” as the output type for
“necklace pendant”. The analysts can easily address this
case by adding a rule such as “pendant → NOT necklace”
to the filter. As another example, at some point Chimera
kept classifying some non-food item into “pizza”. As a quick
fix, the analysts can simply add a rule stating that if a title
does not contain the word “pizza”, then the type cannot be
“pizza”. We omit further details on the voting master and
the filter.

4.8 Crowdsourcing the Result Evaluation
Motivations: We need to evaluate the accuracy of Chimera
extensively during development as well as deployment. In
particular, during deployment we must evaluate Chimera
continuously for several reasons: (a) to detect cases where
the output is not sufficiently accurate, so that the analysts
and developers can improve those, (b) to ensure that the
results we send further down the WalmartLabs production

1536

Figure 3: Sample question to crowd workers to verify the predicted type of a product item.

line are highly accurate, and (c) to detect accuracy deterio-
ration: accurate cases that stop being so due to a change in
the incoming data, the underlying algorithm, or the crowd.

Continuous evaluation is expensive. Our in-house ana-
lysts with good taxonomy knowledge can evaluate only 300
items per day on average. So if we have classified 1M items,
and want to evaluate a 5% sample, that would be 50K
items, which take 166 analyst workdays. Outsourcing is
prohibitively expensive at the rate of $10/hour. Further-
more, since our items arrive in burst, it is very hard and
expensive to provision and keep a large team of analysts
and outsourcing workers on standby.

Crowdsourcing addresses the above problems and appears
ideal for classification evaluation. Evaluation tasks can be
easily distributed to multiple crowd workers working in par-
allel. These tasks are relatively simple and do not require
much expert knowledge. In our experience crowdsourcing
has proven scalable and even a large number of tasks can
be finished in a short amount of time. We can crowdsource
any time (and often do so during the nights). Finally, we do
not have to maintain a large workforce dedicated to classi-
fication evaluation.

Sampling: To crowdsource the result evaluation, we per-
form two kinds of sampling. First, we sample over all the
classified items, using a confidence level of 95% with a confi-
dence interval of 2-3% to determine the number of items we
should sample. Second, we do product type based sampling:
from all product items classified into a type c, select a fixed
number of items for evaluation. We use these two types of
sampling to judge the overall performance of Chimera, and
to pinpoint “places” that we need to improve.

Asking Crowd Workers: The samples contain pairs
〈item, type〉. For each pair we ask crowd workers to judge if
the type can be a correct type for the item. Figure 3 shows
such a sample question.

We use a third-party crowdsourcing platform that allows
us to monitor worker performance and select only certain
workers. We assign each question to two workers and get
a third worker only if the two workers disagree (then do
majority voting). Under this model, evaluating 1,000 items
cost about $80.

Using Analysts to Analyze Crowd Results: All pairs
〈item, type〉 in the sample where the crowd says that “type”
is not the correct type for “item” are flagged and sent to the
in-house analysts. The analysts will verify whether this is
indeed the case (thereby also verifying if the crowd is ac-
curate), examine the problem, detect patterns, and write
whitelist and blacklist rules to correct the problems. The an-
alysts also manually correct the types of problematic items.
Finally, the analysts report commonly observed patterns to
the developers, who can do deeper debugging and adjusting
of the underlying system.

It is important to note that to evaluate the crowd’s perfor-
mance, periodically the analysts will also evaluate a sample
of the product items where the crowd agree with the pre-
dicted product types. Initially we also considered adding the
crowd results directly to the training data of the learning-
based classifier. This however posed a major issue. The
periodic evaluation by the analysts suggests that the crowd
accuracy is typically in the 97-98% range. So by adding their
results to the training data, we add some incorrect training
examples to the system. Later it may be very difficult to

1537

“hunt down” these examples, should they cause problems.
Worse, sometimes the accuracy of the crowd result drops
to about 90% (e.g., when the incoming data is from a new
source, or is unfamiliar in some way to the crowd). In such
cases adding the crowd results to the training data can in-
troduce a lot of incorrect examples. For these reasons, we
now only use the crowd results to flag problematic cases that
the in-house analysts will look at.

Handling Items that the Classifiers Decline to Clas-
sify: If the classifiers have low confidence, they will decline
to classify the item. In such cases, we ask the analysts to
look at the unclassified items, manually label a portion of
them, and write rules. We then re-apply Chimera to these
items, and repeat. Typically we can obtain fairly good accu-
racy (above 90%) with these items after a few days of such
iterations.

5. EVALUATION & LESSONS LEARNED
The Chimera system has been developed and deployed for

about 2 years. Initially, it used only learning-based classi-
fiers. After an extended period of experimentation and us-
age, we found it difficult to achieve satisfactory performance
using just learning alone (e.g., achieving only 50% precision
at 50% recall). So we added rule-based and attribute- and
value-based classifiers.

The system in its current form has been stable for about 6
months and have been used to classify millions of items (as of
March 2014). Specifically, it has been applied to 2.5M items
from market place vendors. Overall we managed to classify
more than 90% of them with 92% precision. Chimera has
also been applied to 14M items from walmart.com. Overall
it classified 93% of them with 93% precision.

As of March 2014, Chimera has 852K items in the train-
ing data, for 3,663 product types, and 20,459 rules for 4,930
product types (15,058 whitelist rules and 5,401 blacklist
rules; an analyst can create 30-50 relatively simple rules
per day). Thus, for about 30% of product types there was
insufficient training data (as of the above date), and these
product types were handled primarily by the rule-based and
attribute/value-based classifiers.

In terms of crowdsourcing, evaluating 1,000 items nor-
mally takes 1 hour with 15-25 workers. Evaluating 5,000
items and 10,000 items takes 3-6 and 6-12 hours, respec-
tively.

In terms of staffing, we have 1 dedicated developer and
1 dedicated analyst. One more analyst can step in to help
when there is a major burst of incoming products to be clas-
sified. This demonstrates that continuous ongoing accurate
large-scale classification is possible with a “thin” staff, but
only with the help of crowdsourcing.

The main lessons that we have learned with Chimera are
the following:

• Things break down at a large scale: This has
been demonstrated amply throughout this paper. For
example, it may be very intuitive to think that crowd
workers can help label examples to create training data.
But it is not clear how they can do this given 5000+
labels. As another example, some of the labels (i.e.,
product types) have so many subtypes that it is very
difficult to obtain a good representative set of exam-
ples for such labels.

• Both learning and hand-crafted rules are criti-
cal: Rules are not “nice to have”. They play a critical
role in Chimera (and in many other systems in industry
that we know of) in injecting domain knowledge into
the system, among others. It is highly desirable for
the academic community to explore how to help ana-
lysts create rules accurately and fast, how to manage
tens of thousands of rules (as in Chimera), and how to
combine such rules with learning.

• Crowdsourcing is critical, but must be closely
monitored: Crowdsourcing is not “nice to have”.
Without it we have no way to scale up performance
evaluation and to handle unpredictable bursts of in-
put in a time- and cost-effective fashion. But crowd
performance can dip (to 90% or lower) on unfamiliar
input data, and so needs close monitoring.

• Crowdsourcing must be coupled with in-house
analysts and developers: For a system like Chimera,
we need in-house analysts to examine problematic cases
flagged by the crowd and to write rules, and we need
developers to be able to debug the underlying system.
While crowdsourcing has received much recent atten-
tion, the need for analysts has barely been studied.

• Outsourcing does not work at a very large scale:
Chimera does not use outsourcing, as it is too expensive
(and slow) at this scale. Eventually, we believe crowd-
sourcing may emerge as a new more effective “type of
outsourcing”.

• Hybrid human-machine systems are here to stay:
While academia has only recently started exploring
such systems, largely in the context of crowdsourcing,
they have been used for years in industry, as evidenced
by Chimera and other systems that we know. Such
systems use not just crowd workers, but also analysts,
and developers, and treat them as “first-class citizens”.
They have been quite successful, and deserve much
more attention and closer studies.

6. RELATED WORK
Classification has been a fundamental problem in machine

learning and data management [20, 21], and crowdsourcing
has recently emerged as a major problem solving paradigm
[8]. Many classification works have used crowdsourcing to
obtain training data for learning [6, 29, 3, 11, 22, 13]. In
Chimera, crowdsourcing cannot be used to obtain training
data because crowd workers must navigate a very large label
space (5000+ product types).

A few works have explored using crowdsourcing to comple-
ment the learning algorithm, for example when the learning
algorithm is uncertain about predicting the label (e.g., re-
CAPTCHA project [1]). Some works have also used crowd-
sourcing for evaluation, but mostly for search relevance eval-
uation [2, 14] and entity matching [9]. In contrast, we use
crowdsourcing to help evaluate the results of classification.

Machine learning techniques have been broadly used for
document and text classification [15, 24]. As the most de-
scriptive information of a product is textual (e.g., title or
description), in our work we have applied a variety of learn-
ing based text classification techniques [18], such as KNN
[30], Naive Bayes [16, 19], and Perceptron [23].

1538

The Naive Bayes classifier [16, 19] has been proven very ef-
fective for text classification. Support vector machine (SVM)
[10] is one of the most powerful classification techniques for
document classification. However, a thorough evaluation of
SVM in [17] shows that the performance of SVM classifica-
tion on large-scale taxonomies is “still far from satisfactory”.

Many techniques have been proposed to improve large-
scale multi-label classification based on the hierarchical struc-
ture of the taxonomy or the structure of the categories [5,
27, 25, 26]. In our work however the taxonomy is relatively
flat, with a large number of product types.

Besides learning-based models, rules are also used for clas-
sification. A rule-based classifier [7] uses a collection of “if
... then ...” rules to determine the item categories. Most of
the previous research in rule-based classifiers focus on how
to learn rules from the training data. In contrast, in Chimera
we have analyst experts manually create classification rules
using regular expressions.

Images could also be used for product classification when
available [28]. However, automatically classifying a product
item into thousands of categories based on images is very dif-
ficult. In [12] Kannan et al. proposed to use product images
to help improve the text-based classification performance.

There has been relatively little published about large-
scale classification systems in industry. The paper [4] de-
scribes LinkedIn’s job title classification system, in which
domain experts and crowdsourcing are also heavily used.
Here crowdsourcing is used mainly for labeling “important”
phrases for document classification (these labeled phrases
are then exploited for learning). This process is similar to
how we build classification rules. However, in our system we
use crowdsourcing mainly for classification result evaluation.
Furthermore, in-house analysts generate classification rules
based on regular expression which is often more expressive
than only phases.

The product categorization system at eBay is described
in [25, 26], in which they have been focusing on classifica-
tion based on the taxonomy structure and used a two-level
classification approach. At the coarse level KNN is used and
at the finer level SVM is used. Our classification strategy
is different in that we combine multiple signals from differ-
ent classifiers, including both learning- and rule-based ones.
Furthermore, the system described in [25, 26] does not use
hand-crafted rules and crowdsourcing like in Chimera.

7. CONCLUSION & FUTURE WORK
In this paper we have described the problem of classifying

tens of millions of products into 5000+ product types at
WalmartLabs. At this scale, we have demonstrated that
certain conventional assumptions break down and existing
solutions cease to work.

We have described Chimera, a solution developed at Wal-
martLabs that uses learning, hand-crafted rules, crowdsourc-
ing, in-house analysts, and developers to successfully classify
tens of millions of products with high precision and recall.
We have also discussed a set of lessons learned. Our main
messages are that all of the components – learning, rules,
crowdsourcing, analysts, and developers – are critical for
large-scale classification, and that it is important to explore
further hybrid human-machine systems such as Chimera,
which have proven successful in solving certain classes of
real-world Big Data problems.

In ongoing work we are looking to develop tools that help
analysts write rules better and faster, and to manage such
rules. We are exploring methods to improve the current
learning-based classifiers, as well as quickly generating good
training data (e.g., using active learning). Finally, we are
exploring how to use crowdsourcing for more types of tasks,
such as writing simple classification rules.

8. REFERENCES

[1] reCAPTCHA.
http://en.wikipedia.org/wiki/ReCAPTCHA.

[2] O. Alonso, D. E. Rose, and B. Stewart.
Crowdsourcing for relevance evaluation. SIGIR
Forum, 42(2):9–15, Nov. 2008.

[3] V. Ambati, S. Vogel, and J. G. Carbonell. Active
learning and crowd-sourcing for machine translation.
In LREC, 2010.

[4] R. Bekkerman and M. Gavish. High-precision
phrase-based document classification on a modern
scale. In KDD, pages 231–239, 2011.

[5] S. Bengio, J. Weston, and D. Grangier. Label
embedding trees for large multi-class tasks. In NIPS,
pages 163–171, 2010.

[6] S. Branson, C. Wah, F. Schroff, B. Babenko,
P. Welinder, P. Perona, and S. Belongie. Visual
recognition with humans in the loop. In ECCV, 2010.

[7] W. W. Cohen. Fast effective rule induction. In ICML,
pages 115–123, 1995.

[8] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the World-Wide Web.
Commun. ACM, 54(4):86–96, 2011.

[9] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone:
hands-off crowdsourcing for entity matching. In
SIGMOD, 2014.

[10] T. Joachims. Text categorization with suport vector
machines: Learning with many relevant features. In
ECML, pages 137–142, 1998.

[11] E. Kamar, S. Hacker, and E. Horvitz. Combining
human and machine intelligence in large-scale
crowdsourcing. In AAMAS, 2012.

[12] A. Kannan, P. P. Talukdar, N. Rasiwasia, and Q. Ke.
Improving product classification using images. In
ICDM, pages 310–319, 2011.

[13] D. R. Karger, S. Oh, and D. Shah. Iterative learning
for reliable crowdsourcing systems. In NIPS, 2011.

[14] J. Le, A. Edmonds, V. Hester, and L. Biewald.
Ensuring quality in crowdsourced search relevance
evaluation: The effects of training question
distribution. In SIGIR 2010 Workshop on
Crowdsourcing for Search Evaluation, 2010.

[15] D. D. Lewis. An evaluation of phrasal and clustered
representations on a text categorization task. In
SIGIR, pages 37–50, 1992.

[16] D. D. Lewis. Representation and Learning in
Information Retrieval. PhD thesis, 1992.

[17] T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and
W.-Y. Ma. Support vector machines classification with
a very large-scale taxonomy. SIGKDD Explor. Newsl.,
7(1):36–43, June 2005.

1539

[18] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
1999.

[19] A. McCallum and K. Nigam. A comparison of event
models for naive bayes text classification. In AAAI-98
Workshop, 1998.

[20] T. M. Mitchell. Machine learning. McGraw Hill series
in computer science. McGraw-Hill, 1997.

[21] R. Ramakrishnan and J. Gehrke. Database
management systems (3. ed.). McGraw-Hill, 2003.

[22] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez,
C. Florin, L. Bogoni, and L. Moy. Learning from
crowds. J. Mach. Learn. Res., 11:1297–1322, Aug.
2010.

[23] R. Rojas. Neural Networks: A Systematic
Introduction. Springer-Verlag, 1996.

[24] F. Sebastiani. Machine learning in automated text
categorization. ACM Comput. Surv., 34(1):1–47, Mar.
2002.

[25] D. Shen, J.-D. Ruvini, and B. Sarwar. Large-scale
item categorization for e-commerce. In CIKM, pages
595–604, 2012.

[26] D. Shen, J. D. Ruvini, M. Somaiya, and
N. Sundaresan. Item categorization in the e-commerce
domain. In CIKM, pages 1921–1924, 2011.

[27] C. N. Silla, Jr. and A. A. Freitas. A survey of
hierarchical classification across different application
domains. Data Min. Knowl. Discov., 22(1-2):31–72,
Jan. 2011.

[28] B. Tomasik, P. Thiha, and D. Turnbull. Tagging
products using image classification. In SIGIR, pages
792–793, 2009.

[29] S. Vijayanarasimhan and K. Grauman. Large-scale
live active learning: Training object detectors with
crawled data and crowds. In CVPR, 2011.

[30] Y. Yang and X. Liu. A re-examination of text
categorization methods. In SIGIR, pages 42–49, 1999.

1540

