
PDQ: Proof-driven Query Answering over Web-based Data∗

Michael Benedikt, Julien Leblay, and Efthymia Tsamoura
Oxford University, UK

name.surname@cs.ox.ac.uk

ABSTRACT
The data needed to answer queries is often available through Web-
based APIs. Indeed, for a given query there may be many Web-
based sources which can be used to answer it, with the sources over-
lapping in their vocabularies, and differing in their access restric-
tions (required arguments) and cost. We introduce PDQ (Proof-
Driven Query Answering), a system for determining a query plan
in the presence of web-based sources. It is: (i) constraint-aware
– exploiting relationships between sources to rewrite an expensive
query into a cheaper one, (ii) access-aware – abiding by any access
restrictions known in the sources, and (iii) cost-aware – making use
of any cost information that is available about services. PDQ takes
the novel approach of generating query plans from proofs that a
query is answerable. We demonstrate the use of PDQ and its ef-
fectiveness in generating low-cost plans.
1. INTRODUCTION

This work concerns answering queries on top of remote data-
sources, such as web forms and web services, that have restricted
access, i.e., one must provide some input to retrieve some data. Our
system starts with a query and a schema, consisting of integrity
constraints and access restrictions and (a) determines whether the
information in the sources is sufficient to completely answer the
query and (b) assuming the answer to (a) is yes, finds the plan
which minimizes the cost, with respect to some cost function. Our
queries need not be written explicitly in terms of the sources, but
can be written in terms of other relations related to the accessible
sources via mappings or integrity constraints. The system automat-
ically considers pulling in data from related sources in searching
for a plan. Indeed, the use of integrity constraints may be critical
for finding any plan.

EXAMPLE 1. Consider a scenario where queries are being
written directly using the Yahoo! GeoPlanet API. The YPlaces ser-
vice is at the center of the API, featuring basic information about
places of various granularities. This includes a unique place ID
(yId), as well as, other attributes name, type, latitude, longitude,
etc. YPlaces requires a yId as input, or a place name with an
∗Supported by EPSRC grant EP/H017690/1, Query-driven Data
Acquisition from Web-based Data Sources

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

optional type. A plethora of other services also exists provid-
ing, for example, the relationships among places (YBelongsTo,
YChildren, etc.). The following query asks for all countries be-
longing to “Asia”:

SELECT p1.name FROM YBelongsTo AS belong
JOIN YPlaces AS p1 ON p1.id=belong.source,
JOIN YPlaces AS p2 ON p2.id=belong.target

WHERE p1.type = ’Country’ AND p2.name = ’Asia’

where source is a required input of YBelongsTo. At first sight, the
query is not answerable since not all required inputs to YPlaces
and YBelongsTo are provided. However, there exists a relation
YCountries with input-free access listing all places of type “Coun-
try”. Therefore, it is possible to answer the query by (i) retriev-
ing all countries from YCountries and projecting on their yId and
name, (ii) retrieve all places named “Asia” from YPlaces (iii) us-
ing each returned yId from (i) as input to YBelongsTo, returning
name’s whose associated yId has output joining with the result of
(ii).

This is a simple example, but it shows that a complete query
plan may or may not be obtainable, and that information on the
semantics of the data plays a key role in determining a plan. Above
there was one reasonable plan, but often there can be many, with
different costs.

EXAMPLE 2. Consider a data integration scenario, where the
user writes queries on a global schema, without any knowl-
edge of the underlying web-accessible relations. In this example,
Continent, Country and CapitalCity are (virtual) global relations,
thus we model them as inaccessible.

The following query asks for capital cities in Asia:

SELECT countryName, capital FROM Continent AS c1
JOIN Country AS c2 ON c1.name=c2.continentName
JOIN CapitalCity AS c3 ON countryCode

WHERE c1.name = ’Asia’

We express relationships between virtual relations and online
services as integrity constraints. There exists a Yahoo service
named YContinents with an input-free access returning all places
of type “Continent”. One of our constraints states that the natural
join Continent ./ Country is equivalent to the join YCountries ./
YBelongsTo ./ YContinents, after projecting on ids and names.
Similar constraints can be defined between our virtual relations
and the Geonames and WorldBank APIs. For instance, Country ./
CapitalCity is equivalent to WBCountries after projecting on
names and countryCode. Yahoo does not hold any information
about capital cities. However, mappings from country codes to cap-
ital cities can be found in two other services, namely both Geon-
ame’s GNCountries and WBCountries, provided by the World-
Bank API.

1553



There are multiple plans to evaluate this query. First, one
can leverage the first constraint described above to extract coun-
tries located in Asia from the Yahoo API, then join with either
GNCountries or WBCountries to obtain capital cities. Since these
two plans are very similar, their difference in cost will be depend
on the cost of accessing GNCountries vs. WBCountries. Alterna-
tively, one could rely exclusively on relations from the Geonames
API.

We use a novel approach to finding plans for queries based on
searching for a proof that a query can be answered. Starting with
a query Q and a schema with access patterns and integrity con-
straints, we first generate a proof goal, where the goal informally
states “assuming that Q holds of a tuple t, show that a user could
learn that it holds”. The goal will have the property that every proof
of the goal corresponds to a way of answering the query. We have
thus reduced the plan-generation problem to that of proof search,
and our Proof-driven Query Answering system (PDQ) searches for
a proof of the goal while concurrently measuring the cost of the
corresponding plans. Two other features that discriminate PDQ
over state-of-the-art approaches are its ability to find low-cost plans
with respect to an arbitrary user-defined cost function, and it abil-
ity to deal with a broader class of constraints. We allow classes
for which the chase terminates (e.g. stratified, weakly-acyclic) and
also guarded tuple-generating dependencies (GTGDs), of the form
∀~x G(~x)→∃~y

∧
i Hi(~x,~y), with G and each Hi atoms.

Related Work. Query answering in the presence of access pat-
terns has been studied in the past with cost-agnostic [5] and cost-
aware approaches [3]. The first work to look at access patterns and
integrity constraints is that of Deutsch et al. [2], where the authors
couple axioms that capture access restrictions with integrity con-
straints, and then apply a query reformulation technique to obtain
a rewriting that accords with access restrictions. In [1], it is shown
that this technique is a special case of a correspondence between
proofs and plans that extends to arbitrary first-order constraints, and
which can be applied effectively beyond the case of “terminating
chase” (a restriction of [2]). [1] outlines an algorithm that searches
for plans (rather than queries) applying a plan cost function as one
searches. Like [2], it is a theoretical work that does not propose a
system or explore any applications (as here). In contrast, Kamb-
hampati et al. [4], Srivastava et al. [7] and Preda et al. [6] present
systems to optimize queries over web services, minimizing some
cost function, but without consideration for integrity constraints.

To the best of our knowledge, PDQ is the first system that
achieves the combined goals of checking the anwerability of a
query and producing an optimal plan, taking into account both ac-
cess restrictions on data sources and integrity constraints.

2. PDQ
Our system takes as input a schema S that consists of relation de-

scriptions (attributes and data types) and integrity constraints that
are GTGDs or have terminating chase. Relations are endowed with
access methods, each of which associates a relation with a set of re-
quired input attributes. Relations and access methods are assumed
to carry cost information, such as selectivity and per-tuple access
cost. The second input is a Select-Project-Join query Q (as in most
prior work on view querying, we assume set semantics). Other in-
puts to PDQ include parameters to our search strategies and heuris-
tics, but we omit them here for simplicity. Section 4 has more de-
tails about these parameters and how they can be used to tune the
planning algorithm from the user interface.

The first step of the planning phase is to augment the input
schema S with new relations and with rules that tell how these new
relations are related to the original ones. For each relation R in

the original schema S, we have a relation InferredAccR that infor-
mally denotes all tuples which can be inferred to be in R using ac-
cess methods and constraints. We also have a relation accessible(x)
which holds all values that can be retrieved via accesses. In addition
to the new relations, our augmented schema will have new integrity
constraints, which we refer to as “accessibility axioms”, that cap-
ture the informal semantics of relations of the form InferredAccR,
and the relation accessible. For instance, the augmented schema
for Example 1 will add an axiom:

accessible(name)∧accessible(type)∧Y Places(. . . ,name, type, . . .)
→ InferredAccY Places(. . . ,name, type, . . .)∧accessible(zipc)∧ . . .

Informally this asserts that if name and type values have become
accessible, and we have a hidden YPlaces fact F involving those
values, then a) F can be made known to the user and b) the other
attribute values in the fact can become accessible. It thus encodes
that there is an access method requiring name and type as inputs to
YPlaces. We also have a copy of the original constraints on the in-
ferred accessible copy of the relations. The new schema generated
is referred to as the accessible schema, Sacc. In addition, we create
a copy of Q, named Qinferred , adding atoms accessible(x) for each
free variable x and replacing each R with InferredAccR, i.e., any
atom R(~x) in Q corresponds to InferredAccR(~x) in Qinferred . The
basic result (proven in [1]) is that plans for Q over the schema S cor-
respond to proofs of Qinferred from Q using axioms of Sacc. When
integrity constraints are given by TGDs, a proof can be taken to be
a sequence of databases D1,D2, . . . that starts with the “canonical
database of Q” – the database that has elements for each variable
and constant in Q, and facts for each atom of Q – and adds on facts
by applying rule-firings of Sacc. A proof is successful if it leads to
a database where the goal query Qinferred holds.

A proof is a sequence of facts produced by firing either integrity
constraint rules or accessibility axioms. The sequence of facts in
the proof will be needed to determine whether a proof is successful
and, if it is not yet successful, to determine what new rules could
be applied to extend it. PDQ’s proof-to-plan algorithm is in charge
of producing a plan from a proof. This is achieved by looking at
the sequence of accessibility axiom rule firings (and corresponding
set of facts) that are contained in the proof. The full set of possible
proofs forms a tree. Proof search proceeds by exploring this tree,
expanding one branch at a time. As a branch is expanded, the proof
is checked to see if it is successful, a plan is generated from the
proof and the cost of the plan is computed. The exploration of a
branch stops when a successful proof has been fired or when the
cost of the associated plans is too high. For a tree node that corre-
sponds to a not-yet-successful proof, the accessibility axioms that
can still be fired represent candidates for extending the tree.

Algorithm 1 outlines these steps. Here we have omitted a num-
ber of details, such as what it means to obtain “all consequences”
in various steps. Our system can handle cases where the number
of such consequences is infinite, determining a cut-off point where
further derivation is not useful. The detailed algorithm is available
in [1]. Figure 1 shows a portion of the proof space for the query
in Example 2. Nodes in Figure 1 represent partial proofs. For clar-
ity, we only show a subset of the facts that each node contains,
and abbreviate (e.g. accessible(x) as Acc(x)). Also note that each
node includes the facts of its parent. The initial node S0 at the top
simply contains a grounded version of the query. From there, we
exhaustively apply rules (up to a termination condition), other than
accessibility axioms, to derive new facts. In S1, we have already
derived several facts that could trigger candidate accessibility ax-
ioms. In this case, the axiom corresponding to an input-free access
to YCountries is picked. We represent the firing of this axiom by

1554



Algorithm 1: Planning algorithm
Input: query Q, schema S, cost threshold t
Output: plan BestPlan

1 Sacc := augmented schema formed from S
2 Qinferred := augmented query formed from Q
3 v0 :=derive all consequences of Q w.r.t. constraints of S
4 ProofTree := {v0} // initial state

5 BestPlan :=⊥ BestCost := ∞

6 while there is a proof node in ProofTree that still has
candidate rules to explore do

7 Choose such a node v.
8 Choose a candidate rule firing c in v. // The choice is

guided by search strategies
9 Fire the rule to create a new node vc, adding it to

ProofTree as a child of v.
10 Close vc under firing inferred accessible integrity

constraint rules.
11 Generate Plan(vc) and compute Cost(Plan(vc)).
12 Mark vc as aborted if the cost is higher than BestCost, or

above t.
13 Mark v as fully explored if it has no more candidates.
14 Check if Qinferred holds in vc, i.e., there is a complete

proof.
15 if vc is successful and Cost(Plan(vc))< BestCost then
16 BestPlan := Plan(vc)
17 BestCost := Cost(Plan(vc))

18 return BestPlan

an edge leading to a new node S2. Reasoning on this new set of
facts renders Country’s ids accessible. Therefore, the accessibil-
ity axiom that corresponds to an access to YBelongsTo, with its
first attribute as input, can now be fired, leading to S3. This can be
directly followed by a rule-firing of an axiom corresponding to an
input-free access to YContinents. In S4, we have already inferred
that the Country and Continent facts from Q are accessible. Fi-
nally, the two pink nodes S5 and S6 at the bottom of the figure show
alternative proofs reached through accessibility axioms firings cor-
responding to distinct accesses: one on GNCountries and one on
WBCountries, both with input-free accesses. In either case, we can
immediately infer that the CapitalCity relation is accessible, which
also means there is a match with Qinferred .

3. ARCHITECTURE AND TEST DATA
The architecture of our application is shown in Figure 2. It com-

prises two main components: a planner and a runtime.
Plan exploration. The planner is the central part of the software,

with a reasoning module at its core. Incoming queries are provided
to the reasoner, which starts searching for proofs as described in
Section 2. Proofs, successful or incomplete, are sent to a proof-to-
plan module in charge of producing sub-plans. The planner enu-
merates complete plans, each corresponding to a complete proof,
and returns an optimal one w.r.t. to some cost functions. PDQ sup-
ports a variety of cost functions whose applicability depends on
the nature of the underlying resources. The cost estimation mod-
ule is responsible for determining which function can be used in a
given context, and delegating the cost computation to the appropri-
ate implementation during the planning phase. For instance, if all
relations in the considered schema reside in a common relational
database and this database provides a cost estimation interface, this
interface can be used directly during the planning phase. The cost
estimation module also provides its own set of generic cost met-

Figure 1: A portion of the plan search space for Example 2.

Figure 2: System’s architecture.

rics. When these are used, the computation is performed within the
module itself.

Plan evaluation. The runtime component is a set of executors,
which take plans as input and output collections of tuples as results.
Available executors include: (i) an in-memory linear plan execu-
tor, which evaluates linear plans naı̈vely, producing a temporary
table in-memory at each step of the execution, (ii) a materializ-
ing linear plan executor, which materializes every intermediary ta-
bles in a relational database and delegates other operations (select,
project, join, etc.) to the RDBMS, (iii) a pipelined executor, which
converts linear plans to conventional relational plans, making use
of standard caching and pipelining techniques wherever applicable,
(iv) two SQL translators, which convert plans to single SQL state-
ments that are sent of the underlying RDBMS for evaluation. The
first one uses standard SPJ queries, while the second relies on the
non-standard “SELECT WITH” syntax. The latter enables defining
intermediary tables explicitly and produces queries whose execu-
tion strictly follows that of the initial definition. In some cases, the

1555



Figure 3: Screenshot of the user interface’s main window.

choice of the executor is guided by the cost function that was used
during the planning phase. For instance, if the cost estimation was
achieved through a RDBMS interface, then the execution will take
place using the appropriate SQL translators.

Interfaces with data sources. The final component, depicted at
the bottom of Figure 2, provides wrapping functionality for vari-
ous types of datasources. We currently support relational databases
and RESTful services. As data coming from web services and on-
line forms are generally semi-structured, this module is in charge
of providing a “relational view” on such sources, converting data
back and forth from trees to sets of tuples. It also encapsulates the
concrete access mechanism for a service, forming the appropriate
requests for any given relation and set of input tuples.

Datasets. Our demo comes with testsets that show the perfor-
mance of PDQ on synthetic and real world examples. For the for-
mer, we use the TPCH benchmark stored in a PostgreSQL database,
assigning randomly picked access methods. For queries, we use
purely conjunctive variants of those provided with the benchmark.
We had direct access to PostgreSQL’s own cost estimators, and de-
pendencies were generated from TPCH foreign key definitions. In
addition, we defined views over the base relations, which generate
two-way constraints between base relations and views. Our real
world datasets include REST APIs of Google, Yahoo, Geonames
and the World Bank. In this case, access methods were given by
the APIs themselves. We manually defined dependencies between
those services.

4. DEMONSTRATION WALK-THROUGH
The demonstration showcases PDQ’s ability to explore differ-

ent plans. PDQ provides a graphical interface (Figure 3) enabling
users to load schemata. The left-hand panel (a) of the main win-
dow lists all available schemata. Unfolding a schema reveals the
relations and dependencies in it. Users can use the menu at the top
right-hand corner of the panel or context menus to inspect them or
delete them. Upon selecting a schema, a second panel, (b) in the
center of the window, displays a list of available queries over it.
Similarly, queries can be imported or deleted using the top right-
hand corner menu. Currently, PDQ requires both the schemata
and the queries to be written in XML format. We plan to extend
PDQ with a user-interface that will enable users to graphically edit
queries and schemata. Selecting a query refreshes the right-hand
side of the window. At the top (c), an SQL representation of the
query appears, while the table below (d) lists out plans that have
been generated so far for this query, along with the planner con-
figuration used. When a configuration is selected in the table, the

bottom right-hand area of the window is updated; planner configu-
ration details are shown in (e) and the best plan found is displayed
in (f). Two buttons appear at the bottom of panel (e). Pressing the
button labelled “Plan” opens a new window, where one can run a
new planning session for this configuration and visualize the plan-
ner’s search space in real-time. The search is represented as a graph
in which each node corresponds to a partial proof and its associated
plan. Visual cues highlight the choices made by the planner, indi-
cating, e.g. nodes that have been pruned or the next candidates for
the exploration. Nodes can be selected to obtain detailed informa-
tion about them and show the facts that have been inferred so far
during the chase procedure.

Conference attendees will be invited to create their own schemas
and queries from a set of predefined data sources, then run the plan-
ner with various search settings. Once an optimal plan has been
found, it is stored in table (d) for later use. The second button in
panel (e), labelled “Run”, opens another window from where the
user can run the plan using one of the available executors. At-
tendees will have the opportunity to compare evaluation times for
plans obtained with various search settings, as well as comparing
optimal plans to alternative plans. Since we know of no other avail-
able systems with comparable functionality, the demo will focus on
feasibility of the approach rather than comparative evaluation.

5. REFERENCES
[1] M. Benedikt, B. T. Cate, and E. Tsamoura. Generating

low-cost plans from proofs. In PODS, 2014.
[2] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries

using views with access patterns under integrity constraints.
TCS, 371(3):200–226, 2007.

[3] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query
optimization in the presence of limited access patterns. In
SIGMOD, 1999.

[4] S. Kambhampati, E. Lambrecht, U. Nambiar, Z. Nie, and
G. Senthil. Optimizing recursive information gathering plans
in EMERAC. JIIS, 22(2):119–153, 2004.

[5] C. Li and E. Chang. Answering queries with useful bindings.
TODS, 26(3):313–343, 2001.

[6] N. Preda, G. Kasneci, F. Suchanek, T. Neumann, W. Yuan, and
G. Weikum. Active knowledge: dynamically enriching RDF
knowledge bases by web services. In SIGMOD, 2010.

[7] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.
Query optimization over web services. In VLDB, 2006.

1556


