HDBTracker: Monitoring the Aggregates On Dynamic
Hidden Web Databases

Weimo Liu!, Saad Bin Suhaim?, Saravanan Thirumuruganathan?,
Nan Zhang', Gautam Das?, Ali Jaoua?®
The George Washington University'; University of Texas at Arlington?; Qatar University®
{wliu, ssuhaim, nzhang10}@gwu.edu;
{saravanan.thirumuruganathan@mavs, gdas@cse}.uta.edu; jaoua@qu.edu.qa

ABSTRACT

Numerous web databases, e.g., amazon.com, eBay.com, are “hid-
den” behind (i.e., accessible only through) their restrictive search
and browsing interfaces. This demonstration showcases HDBTrack-
er, a web-based system that reveals and tracks (the changes of) user-
specified aggregate queries over such hidden web databases, espe-
cially those that are frequently updated, by issuing a small num-
ber of search queries through the public web interfaces of these
databases. The ability to track and monitor aggregates has appli-
cations over a wide variety of domains - e.g., government agen-
cies can track COUNT of openings at online job hunting websites
to understand key economic indicators, while businesses can track
the AVG price of a product over a basket of e-commerce websites
to understand the competitive landscape and/or material costs. A
key technique used in HDBTracker is RS-ESTIMATOR, the first
algorithm that can efficiently monitor changes to aggregate query
answers over a hidden web database.

1. INTRODUCTION

We propose to demo HDBTracker, a prototypical system we built
for monitoring the real-time changes of various types of aggregates,
e.g., COUNT, SUM, and AVG queries with or without selection
conditions, over frequently-changed web databases that are hidden
behind proprietary search and/or browsing interfaces.

Hidden Web Databases: Many web databases are “hidden” be-
hind restrictive search/browsing interfaces that allow a user to spec-
ify the desired values for one or a few attributes (i.e., form a con-
junctive search query), and return to the user a small number (e.g.,
k =50 or 100) of tuples that match the user-specified query, select-
ed and ranked according to a proprietary scoring function. Exam-
ples of such databases include Yahoo! Autos, amazon.com, eBay,
CareerBuilder.com, etc.

Motivations for Aggregate Tracking: The ability to track and
monitor aggregates has applications over a wide variety of domain-
. We briefly discuss a few motivating examples as follows.

e Tracking the number of tuples in a web database is by itself an
important problem. For example, the number of active job post-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08.

1569

ings at Monster.com or listings at realestate.com can provide an
economist with real-time indicators of US economy. Similarly,
tracking the number of apps in Apple’s App Store and Google
Play provides us a continuous understanding of the growth of
the two platforms. Note that while some web databases (e.g.,
App Store) periodically publish their sizes for advertisement
purposes, such published size is not easily verifiable, and some-
times doubtful because of the clear incentive for database own-
ers to exaggerate the number.

More generally, there is significant value in monitoring a wide
variety of aggregates. For example, a sudden drop on the COUN-
T of used Ford F-150s on a used-car trading website may indi-
cate a subsequent increase of prices. Similarly, a rapid increase
of AVG salary offered on job postings which require a certain
skill (e.g., Objective C) may indicate a fast expansion of the
corresponding market (resp. iOS/Mac OSX development).

Throughout this demo proposal, a running example we shall use
is the monitoring of average bidding price for certain categories of
products (e.g., watches) on eBay.com, and the comparison with that
over amazon.com.

Key Technical Challenges: Since most real-world web databases
do not allow aggregate queries to be specified through their public
web interfaces, a key technical challenge facing a third-party' ag-
gregate tracking/monitoring system is that it must somehow “trans-
late” the aggregates being tracked to a number of search queries
that are supported by the public web interfaces. Prior work have
introduced sampling-based algorithms (e.g., [1]) and system im-
plementations (e.g., see demo [3]) that enable such a translation for
producing unbiased estimations of SUM and COUNT aggregates.
Like any sampling-based technique, the more queries the system
issues (i.e., the longer delay one can tolerate before receiving an
aggregate estimation), the smaller the estimation error (caused by
the variance of estimations) will be.

Nonetheless, all these existing techniques were designed under
one crucial assumption: the database does not change over time.
This is obviously an unrealistic assumption in practice - indeed, in
many cases it is exactly the change of aggregates that are of interest
- e.g., the aforementioned monitoring of the count of job openings
as an economic indicator. A seemingly simple approach to tackle a
dynamically changing web database is to repeatedly execute (e.g.,
at a fixed time interval) the techniques designed for static hidden
databases. Unfortunately, this “patch” has two critical problems:

e Many real-world web databases limit the number of search queries
one can issue through per-IP (for web interface queries) or per-

"Here we use “third-party” to refer to a system that is unaffiliated with - i.e.,
does not have back-end full access to - the web databases being monitored.

developer key (for API based queries) limits. In many cases,
this daily limit is too low to sustain a complete execution of
the static algorithm (to reach a reasonable accuracy level). For
example, eBay limits API calls to 5,000 per day, making it ex-
tremely difficult for a third party user to track changes that occur
to the database. The existing (static) techniques handle this by
stretching its execution over a longer period of time (e.g., sev-
eral days/weeks), and assume that the database does not change
within the execution period - an assumption that often does not
hold for frequently updated web databases such as eBay.

e Even when the daily limit is high enough, repeated executions
actually waste a lot of search queries. To understand why, con-
sider an extreme-case scenario where the underlying database
remains unchanged. With repeated execution, the estimation
error remains the same as the first-day estimate, even after nu-
merous queries have been issued in later days. On the other
hand, it is easy to see that if one somehow detects the fact that
the database changes little over time, then all queries issued af-
terwards can be used to improve the estimation accuracy and
reaching a significantly lower error than the simple patch “re-
peated execution”.

Another straightforward approach is to track all changes that oc-
cur to the underlying database - i.e., to determine which tuples got
inserted/deleted - and then use these changes to update the previous
aggregate estimations. This approach, however, likely requires an
extremely large number of queries in most real-world settings?, as
shown in previous studies of web database crawling [4].

Enabling Technique Behind HDBTracker: In [2], we proposed
RS-ESTIMATOR, an algorithm for estimating and tracking vari-
ous types of aggregates over a dynamically changing hidden web
database (i.e., with insertions, deletions, and updates) by issuing
search queries supported by (the public web interfaces of) these
web databases on a low-frequency basis.

The key idea of RS-ESTIMATOR is a set of subtle inference
rules that indicate how one can take advantage of historic query an-
swers to reduce the number of search queries that a future aggregate-
estimation task is translated to. Equipped with these inference
rules, RS-ESTIMATOR first uses a small number of bootstrapping
queries to estimate how much change has occurred to the under-
lying database. It then uses this information to allocate the search
queries it is about to issue across two categories: (1) for updating
the aggregate estimations generated before, and (2) for directly pro-
ducing new aggregate estimations. Specifically, the more changes
occurred to the database, the more search queries RS-ESTIMATOR
will spend on updating previous estimations. On the other hand, if
little change has occurred to the database, then almost all newly
issued search queries will be for generating new (independent) es-
timations, leading to a smaller estimation error.

In the rest of this demonstration proposal, we shall first describe
the system architecture of HDBTracker, including its technical con-
tributions beyond RS-ESTIMATOR, and then discuss our demon-
stration plan, which showcases the broad class of aggregate queries
and real-world web databases supported by HDBTracker as well as
its practical limits.

2. ARCHITECTURE

ZNote that while some web databases do display a list of recently added
items (e.g., “New and Noteworthy” for App Store), such a list is rarely
comprehensive. In addition, there is no direct way to identify tuples that
were recently deleted (e.g., cancelled job listings at monster.com) or updat-
ed - which are important for understanding how the database changes over
time.

We now discuss the architecture of HDBTracker as depicted in
Figure 1. One can see from the figure that the system contains five
main components: web server, sampling server, sample database,
user credential database, and web database interface server. We
introduce the design of these components respectively as follows.

o - user
Sample DB @ credentials
("
estimations samples
aggregate | 1 HTTP :
- | e request —> Deep Web
‘..J_ timati \t@- " result @Database
estimation L)
Client Web ~ stream a99regale ™ =5 search [@ HTML
Web - auery |, € query Web-DB
Interface Server NebDB
Sampling Server nterface Server
HDEstimator;

Figure 1: Architecture of HDBTracker

2.1 Web Server

The key task of the web server is to provide users with a web in-
terface that allows the specification of aggregate queries (as input)
and the display the change of estimated aggregates (i.e., output) at
real-time through animated charts (e.g., bar chart, line chart, etc.).
Input Interface: HDBTracker allows users to specify an aggre-
gate query through an intuitive, step-by-step, web interface. Fig-
ure 2 depicts an example. One can see from the figure that a user
can specify three elements of the aggregate query: (1) filters, i.e.,
the selection conditions in the aggregate query, (2) control, i.e., the
GROUPBY attribute in the aggregate query - which will serve as
the X axis in the output charts, and (3) features, i.e., one or more
aggregate functions and the corresponding attributes (that is aggre-
gated)3 - i.e., the Y axis(es) in the output charts.

The example illustrated in Figure 3 is an aggregate query a user
specifies over the Watch department of amazon.com. Specifical-
ly, Gender = Women'’s, Age = Modern, and Band Material =
Carbon Fiber are selected as filters; Style is specified as control,
while two features are selected - i.e., COUNT(*) and AVG(Price).
One can see that through these tri-element specification, the user is
essentially defining aggregate SELECT COUNT(*), AVG(Price)
FROM D WHERE Gender = Women’s AND Age = Modern
AND Band Material = Carbon Fiber GROUP BY Style.

Output Interface: The output interface displays the estimated ag-
gregates in a 2D chart, and visualizes the change of estimations us-
ing an animation. Note that each feature specified in the input query
is represented as a line (or a group of bars, etc.) in the chart. Fig-
ures 4 and 5 depict examples of the output interface. One can see
from Figure 4 that the X-axis is the control attribute Style, while
the feature attributes, COUNT(*) and AVG(Price), are represented
as two lines respectively in the chart.

Historic Aggregate Tracking: A user of HDBTracker may be
interested in both short-term (real-time) and long-term aggregate
tracking. Thus, the web interface allows a user to save an aggregate
query and later check back in to retrieve the change of aggregate
estimations over days or weeks. To this end, we store each user-
specified aggregate query as a tuple in the query database (which
contains (user, aggregate query) information). When a user leaves
the front-end web interface, we stop the streaming of aggregates
from the sample database to the web server, but does not stop the
periodic estimation of saved aggregate queries (as initiated by the
sampling server, executed through the web-database interface serv-
er, and eventually has samples and estimations stored in the sample
database). When a user logs back into our front-end interface and

3Note that no attribute is needed when the aggregate function being speci-
fied is COUNT(*)

1570

Figure 2: Request Figure 3: The Re- Figure 4: The Re-
Interface quest sult Graphic

Figure 5: Amazon

Figure 6: eBay

retrieves a saved aggregate query, the web server retrieves past esti-
mations for the aggregate query from the sample database, and then
displays the historic change of aggregate estimations as a 2D chart
with a timeline control.

2.2 Sampling Server

The task of the sampling server is to translate a user-specified ag-

gregate query to a small number of individual search queries sup-
ported by the corresponding hidden web database, and then send
these search queries to the web-database interface server. The key
technique used in the sampling server is the aforementioned RS-
ESTIMATOR. While we refer readers to [2] for technical details
of the algorithm, here we provide a brief summary of the algorith-
m in order to present a more comprehensive picture of the system
implementation.
Summary of RS-ESTIMATOR: The key idea behind Algorithm
RS-ESTIMATOR is to leverage answers of historic queries to infer
(1) the amount of change happened to the database, and (2) what
is the minimum set of search queries to issue in order to update a
previous aggregate estimation.

To understand how the inference works, consider a simple ex-
ample where RS-ESTIMATOR needs to update a sample tuple ob-
tained before. For each sample tuple ¢, we associate with it a des-
ignated valid query q: (i.e., a query which returned ¢ and matched
at most k tuples). When we need to “update” the sample tuple (i.e.,
generate a sample tuple for the changed database), instead of re-
peating the sampling process all over again, we directly start from
issuing g: and compare its results with the historic query answer. If
g: returns fewer tuples, it means the database “shrinks” (at least on
the part containing t). As such, we make ¢; “broader” by randomly
removing (conjunctive) selection conditions from it, and then gen-
erate a new sample tuple from the broader query. On the other hand,
if g: returns more tuples, we make g: narrower by appending new
random conditions, and generate the sample from the narrower q;.
Interestingly, this update strategy not only saves queries, but main-
tains the unbiasedness of SUM and COUNT aggregate estimations
produced by the updated samples [2].

In addition to this key idea, RS-ESTIMATOR also allocates the
number of search queries used for updating previous samples and
generating new ones dynamically based on the estimated changes
to the database, in order to achieve the smallest estimation vari-
ance (and error) in a way similar to the sample allocation in s-
tratified sampling. Besides the optimization strategies used in RS-
ESTIMATOR, HDBTracker also includes new technical ideas to
further improve the performance of aggregate tracking. For exam-
ple, since multiple users may be tracking aggregate queries over
the same web database, we implement in sampling server a query

1571

reuse module which aims to maximize the reuse of search queries
among all aggregate-tracking tasks over the same web database.
In addition, HDBTracker also dynamically determines the number
of search queries spent on each aggregate-tracking task based on
an estimation of the confidence interval (for both current estima-
tion and estimation of change from historic estimations), in order
to avoid overspending search queries on aggregate estimations that
are already highly accurate and/or rarely change in history.

2.3 Web-DB Interface Server and User Cre-
dentials Database

The task of the web-DB interface server is two-fold: (1) to trans-
late a search query issued by the sampling server to an HTTP GET
or POST request that can be sent to the hidden web database, and
(2) to parse the returned web page (which contains the search query
answer) and translate it to the corresponding (structured) tuples that
are then sent to the sample database.

There are two important issues related to the design of the web-
DB interface server: First, each web database may require a dif-
ferent wrapper design for the translation of search query to HTTP
request. Some web databases allow relatively easy translations -
e.g., both amazon.com and eBay provide APIs that directly return
JSON/XML that can be easily casted into structured tuples in the
sample database. On the other hand, API-less web databases may
require more complex techniques - e.g., DOM parsing and/or regu-
lar expressions. In HDBTracker, we specify the translation process
for each website in a separate script file which is then read by the
web-DB interface server and executed to enable the translation.

The second design issue here is the per-user query that is often
enforced by web databases. For example, eBay.com only allows
each registered user 5,000 search queries per day. While some web
databases/APIs allow anonymous access (e.g., YouTube), logging
in with user credentials often significantly increase the quota limit
on search queries. To support a large number of concurrent users,
the user credential database of HDBTracker is designed to store
such user-credential information of end users and ’forward’ it to
the corresponding web database. Specifically, we require each user
to contribute his/her login information for the web database he/she
wants to monitor. Then, we pool the allowable quota (of search
queries) from end users together for use by the sampling server.

3. DEMO PLAN

In this section, we discuss our plan for demonstrating HDB-
Tracker. Specifically, we shall first describe the hardware setup, the
interactions with audience, and the backup plan in case of slow/non-
existent Internet connections. Then, we describe a specific example
of how the audience can interact with our system to estimate inter-
esting aggregates at real time from real-world web databases.

3.1 Overview

Hardware Setup and Backup Plan: Since our HDBTracker sys-
tem is web based, it naturally supports access from multiple plat-
forms. During the demo, we shall use an iPad connected with a
portable projector to demonstrate our system, so as to ease interac-
tions with the audience. Meanwhile, we shall also provide 3 laptops
with access to our system, so visitors who are interested in more in-
teractions with our system can try it out on these computers.

All demo tablets and laptops connect to our web server of HDB-
Tracker (to be hosted at EC2 Singapore for shorter latency for ac-
cess from China) by default. As a backup plan in case of slow
Internet connectivity, we also host the HDBTracker locally at one
of the demo laptops, and access this local server through a local
adhoc wireless network. Similarly, while the default setting is to

access the target web databases (e.g., amazon.com) at real time, we
also include in the local deployment of HDBTracker a lightweight
web server simulating these web databases (using the real historic
data we collected).

System Setup and Audience Interactions: While the design of
HDBTracker is generic to any web database featuring a form-like
search interface, the web-DB interface server component does re-
quire a pre-configured specification file for each web database. The
demo system shall contain a large number of pre-configured speci-
fication files, including popular web databases in a variety of do-
mains such as e-commerce (e.g., amazon.com, eBay.com), real-
estate (e.g., zillow.com), car trading (e.g., Yahoo! Autos), etc. Vis-
itors to the demo can freely select the web database of interest,
specify the aggregate query of interest, and then observe the track-
ing of such aggregates over the selected web database at real time.

To demonstrate during the short demo session the effectiveness
and utility of our HDBTracker system over a longer period of time
(e.g., tracking an aggregate for months), we also setup the afore-
mentioned web-DB simulator with days/months’ historic data col-
lected from popular web databases (e.g., amazon.com, eBay.com).
If a visitor to our demo is interested in seeing how long-term track-
ing of an aggregate works, we shall replay the historic data in a
faster speed, and demonstrate to the visitor (1) what information
our system provides on an aggregate being tracked for a return-
ing user, and (2) animations of how the aggregates change over
days/months. As we shall show in the following subsection, a vis-
itor may be able to observe interesting yet intuitive patterns from
such long-term aggregate tracking results.

Finally, we also plan to demonstrate the /imitations of our HDB-
Tracker system, again with the help of the web-DB simulator. For
example, we shall show that, with an artificially small value of k
(as in the top-k tuple output interface for search queries) or ex-
tremely volatile changes of the web databases (both can be set in
the simulator), HDBTracker might take a long time to converge
and/or produce inaccurate estimations. We shall also demonstrate
(by changing input data to the simulator) why HDBTracker might
not produce accurate estimations for MIN or MAX aggregates.

3.2 Case Studies: Tracking of Average Price

To provide an intuitive description of how a visitor to our de-
mo may interact with HDBTracker, we discuss here two case stud-
ies of using the system to track the change of average price over
amazon.com and eBay.com, on a longer and shorter time frame,
respectively. Both case studies will be available as the aforemen-
tioned “historic data sets” in our demo, so visitors may observe the
same results discussed below and draw their own conclusions.

For amazon.com, we used HDBTracker to monitor AVG(Price)
of all watches sold by amazon.com during Thanksgiving week,
2013, in order to test whether the price would fluctuate significantly
during the most anticipated shopping week in US. During the de-
mo, a visitor will be able to choose various system parameters in-
cluding selection conditions (e.g., men’s watches only), aggregate
query of interest (e.g., percentage of women’s watches), number of
web requests issued to amazon.com (our default setting was 1,000
queries per day), etc. Figure 5 depicts what the audience will see as
the tracking results from the HDBTracker system. One can observe
from the figure an interesting pattern: The average price (estima-
tions) had a sharp drop (~$50) on Thanksgiving day (Nov 28) and
Black Friday (Nov 29) - consistent with the common belief that
most sellers ran promotions during this period - yet quickly went
back to normal after Black Friday. Meanwhile, the other aggregates
being tracked, i.e., the percentage of men’s and wrist watches, did
not change significantly during the time period.

1572

While the above case study shows what a visitor can observe for
the long-term tracking of an aggregate query, the following case
on eBay.com demonstrates how a visitor can interact with HDB-
Tracker system to conduct real-time monitoring of aggregates, and
draw meaningful conclusions right away during the demo session.
Specifically, Figure 6 shows what a visitor can see with HDBTrack-
er by monitoring two aggregates, the average price of all women’s
wrist watches for “bidding” and “Buy It Now” at eBay, respective-
ly, during a few hours. One can see that the visitor can draw a
number of interesting conclusions from the results: (1) Consistent
with intuition, Buy It Down items are more expensive than items
for bid. (2) Unlike what intuition would suggest (e.g., since most
bidding activities from US happen at night, one might conjecture
that bidding prices in the afternoon would be lower), bidding prices
do not change significantly during the day.

One can see from the figure that HDBTracker can also be con-
figured to plot more technical information in the output chart - e.g.,
the confidence interval of aggregate estimations, the comparisons
between different aggregate estimation algorithms (e.g., a compari-
son with the repeated execution of aggregate estimation algorithms
for static databases [1]), etc. Like what was discussed in the last
case study, during the demo session, a visitor will be able to adjust
a variety of parameters and make interesting observations - e.g.,
whether the average bidding price at exact hour is higher than the
half-hour mark.

4. SUMMARY

We proposed to demonstrate HDBTracker, a system that effi-
ciently tracks and monitors aggregate query answers over a dynam-
ically changing hidden web databases by only issuing (at low fre-
quency) search queries through the public web interfaces of these
databases. As one can see from the demonstration, HDBTracker
not only provides analysts with valuable information for data ana-
lytics, but has the potential for enabling a multitude of third-party
applications, e.g., mashups, infographics, market research, etc.

5. ACKNOWLEDGMENTS

Nan Zhang was supported in part by the National Science Foun-
dation under grants 0852674, 0915834, 1117297, and 1343976.
The work of Saravanan Thirumuruganathan and Gautam Das was
partially supported by National Science Foundation under grants
0812601, 0915834, 1018865 and grants from Microsoft Research.
Any opinions, findings, conclusions, and/or recommendations ex-
pressed in this material, either expressed or implied, are those of
the authors and do not necessarily reflect the views of the sponsors
listed above.

6. REFERENCES

[1] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das.
Unbiased estimation of size and other aggregates over hidden
web databases. In SIGMOD, 2010.

W. Liu, S. Thirumuruganathan, N. Zhang, and G. Das.
Aggregate estimation over dynamic hidden web databases. In
VLDB, 2014.

A. Maiti, A. Dasgupta, N. Zhang, and G. Das. Hdsampler:
revealing data behind web form interfaces. In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of data, pages 1131-1134. ACM, 2009.

C. Sheng, N. Zhang, Y. Tao, and X. Jin. Optimal algorithms
for crawling a hidden database in the web. In VLDB, 2012.

(2]

(3]

(4]

