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ABSTRACT
With the development of positioning technology, movement
data has become widely available nowadays. An important
task in movement data analysis is to mine the relationships
among moving objects based on their spatiotemporal inter-
actions. Among all relationship types, attraction and avoid-
ance are arguably the most natural ones. However, rather
surprisingly, there is no existing method that addresses the
problem of mining significant attraction and avoidance re-
lationships in a well-defined and unified framework.

In this paper, we propose a novel method to measure the
significance value of relationship between any two objects
by examining the background model of their movements via
permutation test. Since permutation test is computationally
expensive, two effective pruning strategies are developed to
reduce the computation time. Furthermore, we show how
the proposed method can be extended to efficiently answer
the classic threshold query: given an object, retrieve all the
objects in the database that have relationships, whose sig-
nificance values are above certain threshold, with the query
object. Empirical studies on both synthetic data and real
movement data demonstrate the effectiveness and efficiency
of our method.

1. INTRODUCTION
Rapid advances of sensors, wireless networks, GPS, satel-

lites, smart-phone, and web technologies have provided us
with tremendous amount of time- and space-related data.
Mining patterns from spatiotemporal data has many impor-
tant applications in human mobility understanding, smart
transportation, urban planning, biological studies, environ-
mental and sustainability studies.
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An important and interesting question people often ask
about movement data is: What is the relationship between
two moving objects based on their spatiotemporal interac-
tions? Relationships between two moving objects can be
classified as attraction, avoidance or neutral. In an attrac-
tion relationship, the presence of one individual causes the
other to approach (i.e., reduce the distance between them).
As a result, the individuals have a higher probability to be
spatially close than expected based on chance. On the other
hand, in an avoidance relationship, the presence of one in-
dividual causes the other to move away. So the individuals
have a lower probability to be spatially close than expected.
Finally, with a neutral relationship, individuals do not alter
their movement patterns based on the presence (or the ab-
sence) of the other individual. So the probability that they
are being spatially close is what would be expected based
on independent movements.

The attraction relationship is commonly seen, for exam-
ple, in animal herds or human groups (e.g., colleague and
family). In addition, the avoidance relationship also natu-
rally exists among moving objects. In animal movements,
prey try to avoid predators, and different animal groups of
the same species tend to avoid each other. Even in the same
group, subordinate animals often avoid their more dominant
group-mates. In human movements, criminals in the city try
to avoid the police, whereas drug traffickers traveling on the
sea try to avoid the patrol.

In real applications, however, people often want to know
more than just the relationship type. Given the answer to
the previous question (i.e., attraction, avoidance, or neu-
tral), people may immediately ask: What is the degree of
the relationship? In other words, we need to know the con-
fidence in a given type of relationship. To answer such prob-
lem, in principle, one needs to test all possible hypotheses
and examine the statistical significance of each hypothesis.

In the literature, study of moving object relationship has
been largely restricted to attraction relationship only. In
particular, various measures [30, 29, 6, 5], such as Euclidean
distance and dynamic time warping, have been proposed to
calculate the distance between two trajectories. Meanwhile,
moving object clusters, such as flock [1], convoy [16], and
swarm [21], are detected by counting the frequency of ob-
jects being spatially close, i.e., the meeting frequency. All
these studies make a common assumption that, the smaller
the distance is or the higher the meeting frequency is, the
stronger the attraction relationship is.

Unfortunately, as we will see soon, such assumption is
often violated in real movement data. Consequently, none
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of the existing work can provide a definite answer to our
questions regarding the type and degree of moving object re-
lationships. For example, two animals may be observed to
be spatially close for 10 out of 100 timestamps. But is this
significant enough to determine the attraction relationship?
Further, another two animals are within spatial proximity
for 20 out of 100 timestamps. Does this mean that the lat-
ter pair has a more significant attraction relationship than
the former pair? Finally, if two animals are never being
spatially close, do they necessarily have an avoidance rela-
tionship? We use the following example to further illustrate
this problem.
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Figure 1: Attraction and avoidance relationships

Example 1. In Figure 1(a), the green points and blue
points show the locations of two moving objects, respectively.
The red points indicate the locations at which the two objects
are spatially close at the same time. There are 40 co-locating
(red) points, which means that the meeting frequency is 40.
As we can see from Figure 1(a), these two objects have their
own territories but are attracted to meet in the overlapped
region. In Figure 1(b), we show another pair of moving ob-
jects which also meet 40 times in the same period of time.
However, since these two objects share the same territories,
they are expected to meet more often than 40 times. There-
fore, they are likely to have an avoidance relationship. In
the real world, Figure 1(a) may correspond to two monkeys
who are attracted by time-specific food resources, thus show
up in the same region at the same time. Figure 1(b) could be
the case where a wolf and a deer share the same territory but
the dear is trying to avoid the wolf. Comparing Figure 1(a)
and Figure 1(b), we see that meeting frequency is not a good
measure for attraction and avoidance relationships.

Motivated by the example above, we argue that it is nec-
essary to look into the background territories to mine rela-
tionships between two objects. In other words, we detect
the relationships through the comparison between how fre-
quent two objects are expected to meet and the actual meet-
ing frequency they have. Intuitively, if the actual meeting
frequency is smaller (or larger) than the expectation, the
relationship is likely to be avoidance (or attraction).

However, such comparison does not tell us the degree of
a relationship. To evaluate the significance value of the re-
lationship, we propose to use permutation test, a popular
non-parametric approach to performing hypothesis tests and
constructing confidence intervals. In our problem, the null
hypothesis is that two movement sequences are independent.
Under this hypothesis, if we randomly shuffle orders in the
movement sequence, the meeting frequency should remain a
similar value.

In addition, efficient discovery of significant relationships
in a large moving object database is a nontrivial task. The
major challenge lies in the exponential number of permuta-
tions needed to calculate the significant value (i.e., p-value).
In fact, obtaining the exact significance value is a #P-hard
problem. Nevertheless, we observe that, in practice, the sig-
nificance value converges quickly after a few hundred rounds
of permutations. In this paper, we further design two prun-
ing rules that greatly speed up the permutation test on real
data.

Finally, we use the proposed method to address a classic
threshold query: given one query object, retrieve the objects
that have relationships, whose significance values are above
certain threshold, with the query object. A straightforward
solution to this problem is to compute the significance value
for each object and check whether it is above the thresh-
old. But this could be time-consuming because of the large
number of moving objects. We design an adaptive algorithm
which reduces the number of permutations needed while pro-
viding the same accuracy guarantee for the answers.

In summary, the contributions of the paper are as follows.

• We propose a novel and unified framework to mine sig-
nificant attraction and avoidance relationships among
moving objects.

• Since computing significance value is a #P-hard prob-
lem, we design an approximate counting algorithm and
provide the approximation ratio given a limited num-
ber of permutations. Pruning techniques are further
developed to speed up the permutation test.

• We propose an adaptive algorithm to efficiently answer
threshold queries and retrieve significant relationships.

• The effectiveness and efficiency of our methods are
demonstrated on both real and synthetic moving ob-
ject databases.

The remainder of the paper is organized as follows. We
formally define our problem in Section 2, and introduce the
permutation-based method for computing significance value
in Section 3. Threshold query processing is discussed in
Section 4. Experimental results on both synthetic and real
datasets are shown in Section 5. Finally, we describe the
related work in Section 6, discuss future work in Section 7,
and conclude our study in Section 8.

2. A NEW MEASURE OF RELATIONSHIP

2.1 Preliminaries
We have m moving objects D = {o1, o2, . . . , om}. The

trajectory of a moving object oi can be represented as a
sequence of locations each associated with a timestamp:
traji = (loci1, t

i
1)(loci2, t

i
2) · · · (locin, t

i
n). Each location locik

could be a two-dimensional vector of longitude and latitude
or a vector from a multi-dimensional feature space. For sim-
plicity of presentation, we assume the tracking time of all the
trajectories are synchronized and have the same number of
tracking timestamps as n, that is tik = tjk, ∀i, j ∈ {1, . . . ,m}
and ∀k ∈ {1, . . . , n}. From now on, the i-th trajectory is
denoted as traji = loci1loci2 · · · locin.

We will focus on two moving objects when defining the
relationship. So we simplify the input as two trajectories,
R = r1r2 · · · rn and S = s1s2 · · · sn, where ri and si are the
ith location in trajectories R and S, respectively.
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We then define the distance between two locations ri and
sj : distance(ri, sj). In spatial databases, the distance func-
tion could be the Euclidean distance between two spatial
points, or the graph distance between two nodes in the trans-
portation network. More generally, a location could also be
a vector from a multi-dimensional feature space, and then
the distance function may be defined as the Lp distance be-
tween two vectors.

An intuitive measure of the correlation between two mov-
ing objects is the frequency of their co-occurrences within
certain distance threshold d. That is, when the locations of
two objects are within distance d at certain timestamp, they
are said to meet each other. Let τ(ri, sj) be the indicator of
whether two locations are within distance d:

τ(ri, sj) =

{
1, distance(ri, sj) ≤ d;
0, otherwise.

We define the meeting frequency as follows.

Definition 2.1. (Meeting Frequency) The meeting fre-
quency between R and S is defined as the number of times-
tamps when their spatial locations are within distance d:

freq(R,S) =

n∑
i=1

τ(si, ri).

The value of proximity threshold d varies for different
types of moving objects and for different conditions. For
example, humans and animals may have quite different prox-
imity values. Some animals may sense other animals even
when the distance is over 100 meters; but the proximity
value may be much smaller for humans to be considered
as “being together”. Even for the same type of moving
objects, there could be different levels of proximity which
all make sense in different scenarios. For example, people
within 10 feet could have very close contact, such as fam-
ily members living together or friends hanging out together.
But people within 100 feet could also have loose contact,
such as attending the same football game or traveling to-
gether on a train. When setting d at lower value, we are
giving a more strict definition toward “being together”. On
the other hand, when d is getting larger, such definition of
“being together” is getting looser.

2.2 Probabilistic Background Model
As discussed in Section 1, it is inappropriate to directly

measure the relationship between two trajectories R and S
using meeting frequency. In this section, we introduce a
probabilistic background model to measure to what degree
two objects (their trajectories) attract/avoid each other.

We use permutation test to estimate the probabilistic back-
ground model. The permutation test is a model-free and
computationally-intensive statistical technique for hypothe-
sis testing [26]. The distribution of the test statistic under
the null hypothesis is obtained by calculating all possible
values of the test statistic under rearrangements of the la-
bels on the observed data points. The value of the observed
data points is then compared to the distribution of the test
statistic. If it is significantly high (or low) in this distribu-
tion, the observed value will be deemed significant.

In our problem, the null hypothesis is that two movement
sequences R and S are independent. Under this hypothesis,
if we randomly shuffle orders in the movement sequence, the

meeting frequency between random permutations of trajec-
tories R and S should remain similar value. If the meeting
frequency between R and S is higher or lower than certain
percentage (e.g., 95%) of the randomized results, we reject
the hypothesis and claim that R and S have significantly
non-independent relationship (i.e., attraction or avoidance).

To be more specific, let σ and σ′ denote two (independent)
random permutations of sequence {1, 2, . . . , n}. The meet-
ing frequency of randomly permuted trajectory sequences
σ(R) and σ′(S) is freq(σ′(R), σ(S)). In addition, assum-
ing the distributions of the two random permutations are
independent and both uniform, computing the frequency
between the two randomly permuted sequences is essen-
tially the same as computing the frequency between one
fixed sequence, R, and one random sequence, σ(S). This
is because the probability distribution of freq(σ′(R), σ(S))
is exactly the same as the one of freq(R, σ(S)), as formal-
ized in Lemma 1. So we will focus on the distribution of
freq(R, σ(S)) later on.

Lemma 1. Let σ and σ′ be two independent uniformly
random permutations of sequence (1, 2, . . . , n). For any two
trajectories, R = r1r2 · · · rn and S = s1s2 · · · sn, we have

∀y : Pr
[
freq(σ′(R), σ(S)) = y

]
= Pr

[
freq(σ′(R), S) = y

]
= Pr [freq(R, σ(S)) = y] .

Proof. The proof is directly from the symmetry.

We note that the measures and methods developed in this
work can also be generalized to the cases when σ and σ′

are drawn from non-uniform distributions. But a thorough
discussion on this issue is beyond the scope of this paper.

2.3 Avoidance and Attraction Relationships
Let F = {freq(R, σ(S)) | σ} be the multiset of all random-

ized meeting frequencies, we aim to define the relationship
between two moving objects both qualitatively and quanti-
tatively. We first describe how to measure the degree or the
significance of relationship between two moving objects.

Definition 2.2. (Significance Value of Relationships) We
define the significance value of attraction (or avoidance) be-
tween two moving objects R and S as the fraction of values
in F which are smaller (or larger) than the actual meeting
frequency freq(R,S), plus one half of the fraction of val-
ues in F which are equal to freq(R,S), and denote it as
sigattract(R,S) (or sigavoid(R,S)). That is,

sigattract(R,S) = Pr [freq(R,S) > freq(R, σ(S))]

+
1

2
Pr [freq(R,S) = freq(R, σ(S))] ,

sigavoid(R,S) = Pr [freq(R,S) < freq(R, σ(S))]

+
1

2
Pr [freq(R,S) = freq(R, σ(S))] .

Here, the cases where freq(R,S) = freq(R, σ(S)) contribute
equally to sigattract(R,S) and sigavoid(R,S). Obviously, for
any trajectories R and S, we have

sigavoid(R,S) = 1− sigattract(R,S).

Based on the above definition of significance value, we now
provide our definition of significant attraction and avoidance
relationships with respect to a user-defined significance value
threshold Λ.
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Definition 2.3. (Significant Attraction/Avoidance) Two
moving objects R and S are said to have an attraction (or
avoidance) relationship if the significance value of attrac-
tion (or avoidance) is greater than a user-defined threshold
Λ: sigattract(R,S) > Λ (or sigavoid(R,S) > Λ).

Threshold Λ is typically very close to 1 (e.g., 0.95). Also,
it is obvious that Λ is meaningful only when Λ > 0.5. Con-
sequently, two objects are said to have no relationship (in-
dependent) if they have neither an attraction relationship
nor an avoidance relationship.

2.3.1 An Alternative Way to Define Relationships
Before proceeding, it is worth noting that an alternative

way to define the attraction and avoidance relationships is
to compare the actual meeting frequency freq(R,S) with
the expected meeting frequency E [freq(R, σ(S))]. If the ac-
tual meeting frequency freq(R,S) is less than the expected
meeting frequency E [freq(R, σ(S))], the moving objects are
likely to have an avoidance relationship, and vice versa.

One advantage of using expected meeting frequency is
that, unlike the significance value, it can be easily computed,
according to the following lemma.

Lemma 2. The expected meeting frequency is:

E [freq(R, σ(S))] =
1

n

n∑
i=1

n∑
j=1

τ(ri, sj).

Proof. Let yi be the indicator of whether ri meets the
corresponding point in σ(S) at timestamp i. Then

E [freq(R, σ(S))] =

n∑
i=1

E [yi] =

n∑
i=1

n∑
j=1

1

n
τ(ri, sj),

based on the linearity of expectation.

However, by comparing the actual meeting frequency with
the expected meeting frequency, one cannot determine a uni-
versal degree of relationship. Indeed, one can set a thresh-
old for the difference between actual and expected meeting
frequency to define attraction/avoidance relationships (as
in Definition 2.3), but such thresholds are highly problem-
dependent and have no statistical implication.

To remedy this issue, in [9], Doncaster proposes to per-
form a χ2 test to measure the statistical significance of the
difference between the actually meeting frequency and the
expected meeting frequency, assuming a binomial probabil-
ity model for the meeting frequency under the null hypothe-
sis. Instead of making such assumption, our method directly
computes the significance value of relationships by enumer-
ating all possible permutations.

2.4 Problem Definition
In the rest of this paper, we will focus on the following two

problems: (1) computing the significance value of relation-
ship between two trajectories, and (2) finding all trajectories
in a database which have significant relationships with re-
spect to a given query trajectory.

Problem 1. (Measuring Significant Relationships) Given
two trajectories R and S, our goal is to compute the signif-
icance value of relationship between them sigattract(R,S) or
sigavoid(R,S), based on which we can determine if they have
an significant attraction or avoidance relationship.

Problem 2. (Querying Significant Relationships) In a
database D of trajectories, for a user-given threshold Λ of
significance and a query trajectory Q, to determine which
trajectories in D significantly attract or avoid Q.

Since computing the probability distribution of the back-
ground model is not trivial (see Theorem 1 in Section 3.1),
it is challenging to answer the above two questions. In the
following two sections, we discuss how to solve these two
problems both effectively and efficiently, respectively.

3. COMPUTING SIGNIFICANCE VALUE
To determine if a significant attraction or avoidance rela-

tionship exists, we need to compute the significance value of
a relationship. In this section, we first show that the compu-
tation of the true significance value is hard, and then develop
an efficient approximate counting algorithm to estimate it.

3.1 Hardness of Computing Significance Value
We now prove that computing the exact significance value

is a #P-hard problem. Simply put, #P-hardness for count-
ing problems is an analogy to NP-hardness for decision prob-
lems. For a #P-hard problem, there is unlikely to be any
efficient (polynomial-time) algorithm which solves it exactly.

Theorem 1. The problem of computing sigavoid(R,S) or
sigattract(R,S) is #P-hard.

Proof. We reduce the problem of counting perfect match-
ings in bipartite graph to the problem of computing sigattract.
As counting perfect matchings is a #P-complete problem
[28], the proof of our hardness result can be completed.

Consider a bipartite graph G(U, V,E), where U and V are
the vertex sets each having size n, and E ⊆ U × V is the
edge set. From G(U, V,E), create two sets of locations U
and V , s.t. for any u ∈ U and v ∈ V , uv ∈ E if and only
if distance(u, v) ≤ d, i.e., τ(u, v) = 1 (note: the two sets
of locations created here might be from a high-dimensional
space). Let R and S be the orderings of U and V , respec-
tively, s.t. risi ∈ E. In other words, {risi | i ∈ {1, 2, . . . , n}}
is a perfect matching in G(U, V,E). We have freq(R,S) = n,
and from the definition of significance value sigattract,

#perfect matchings in G = 2 · (1− sigattract(R,S)) · n!

So the proof is completed.

3.2 Randomized Approximation Counting
Since computing the significance value sigattract(R,S) or

sigavoid(R,S) is #P-hard, we now focus on approximate
counting algorithms.

3.2.1 Basic Monte Carlo Estimator Algorithm
Our counting algorithms are based on the following basic

Monte Carlo scheme. Let U be a finite set of known size,
and G ⊆ U be a subset of unknown size. The objective is to
estimate the ratio ρ = |G|/|U |. The classical Monte Carlo
scheme works as follows: choose N independent (uniformly
distributed) samples from U , denoted by u1, u2, . . . , uN ,
and let Yi = 1 if ui ∈ G, and 0 otherwise, ∀i = 1, . . . , N .
The ratio ρ is estimated as

ρ̂ =

N∑
i=1

Yi
N
.
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Lemma 3. (Estimator Theorem) [25] Assuming ρ ≥ 0.5,
the above Monte Carlo algorithm yields an ε-approximation
to ρ, i.e.,

(1− ε)ρ ≤ ρ̂ ≤ (1 + ε)ρ

with probability at least 1− δ, provided N ≥ 4
ε2ρ

ln 2
δ

.

In Lemma 3, we can assume that ρ ≥ 0.5, because it
is obvious that |G|/|U | + |U − G|/|U | = 1. So estimating
ρ = |G|/|U | is the same as estimating |U − G|/|U |. The
number of permutations N depends on the larger value of
|G|/|U | and |U −G|/|U |.

One issue in the above Monte Carlo algorithm is that the
number of samples needed, N , is dependent on the real value
ρ itself. Below we show how this issue can be easily fixed
when applying the algorithm to our problem.

3.2.2 Computing Significance Value
A direct way of applying the above basic Monte Carlo al-

gorithm is to let U be the set of all permutations, G1 be
the subset of permutations {σ | freq(R,S) < freq(R, σ(S))},
and G2 be permutations {σ | freq(R,S) = freq(R, σ(S))}.
We can apply Lemma 3 to estimate ρ1 = |G1|/|U | and
ρ2 = |G2|/|U |. Then, sigavoid(R,S) = ρ1 + 1

2
ρ2. However,

based on Lemma 3, the number of samples needed to esti-
mate sigavoid(R,S) accurately depends on its value (or ρ1

and ρ2), which is unknown yet. So we develop the follow-
ing alternative algorithm which estimates at least one of
sigavoid(R,S) and sigattract(R,S) accurately while the num-
ber of necessary samples is independent of their values.

ApproxCount(R,S,N)

1: Randomly select N = 8
ε2

ln 2
δ

permutations σ1, . . . , σN .
2: Let Y< = |{σi | freq(R,S) < freq(R, σi(S))}|

+ 1
2
|{σi | freq(R,S) = freq(R, σi(S))}|.

3: Let Y> = |{σi | freq(R,S) > freq(R, σi(S))}|
+ 1

2
|{σi | freq(R,S) = freq(R, σi(S))}|.

4: Output Y</N as estimation of sigavoid(R,S)
5: and Y>/N as estimation of sigattract(R,S).

Algorithm 1: Computing approximate significance value

Theorem 2. Let N = 8
ε2

ln 2
δ

in ApproxCount(R,S,N):
if sigavoid(R,S) ≥ 0.5, then Y</N is an ε-approximation of
sigavoid(R,S) with probability 1− δ; and if sigattract(R,S) ≥
0.5, then Y>/N is an ε-approximation of sigattract(R,S) with
probability 1− δ.

Proof. We only prove the case when sigavoid(R,S) ≥ 0.5.
Similar argument applies to the case when sigattract(R,S) ≥
0.5. Define U as the set of all permutations, and

G1 = {σ | freq(R,S) < freq(R, σ(S))}.

Let’s first assume thatG2 = {σ | freq(R,S) = freq(R, σ(S))}
= ∅. Then, we have sigavoid(R,S) = |G1|/|U |. From Lemma 3
that, since sigavoid(R,S) ≥ 0.5, Y</N is an ε-approximation
of sigavoid(R,S).

When G2 6= ∅, the analysis is more involved and we only
provide an outline here. First, we color half of permuta-
tions in G2 as red, denoted as G−2 , and the other half as
green, denoted as G+

2 . Then, we can rewrite sigavoid(R,S)
as |G1 ∪ G−2 |/|U |. If the coloring is known in advance, di-
rectly sampling from G1 ∪G−2 and applying Lemma 3 yield

the desired bound. However, in practice, we do not know
the coloring. Nevertheless, one can show that the estima-
tor in ApproxCount (i.e., Y</N) is at least as good as this
coloring estimator, hence the proof is completed.

3.3 An Efficient Algorithm
In this section, we describe how to speed up the basic

ApproxCount algorithm. Given trajectories R and S, the
time complexity of ApproxCount is O(N · n), since it uses
N random permutations to calculate the significance value,
and takes O(n) to generate a permutation σ for a sequence
with length n and compare freq(R,S) with freq(R, σ(S)).
When we need to compute significance value for every pair
in a dataset consisting of m trajectories, the time complexity
is O(m2 ·N ·n). Such time complexity could be too high for
some real applications when the length n of each trajectory
or the number of trajectories m is large.

We observe that, while the number of permutations N re-
quired in ApproxCount needs to be large enough to provide
accuracy guarantee, the major bottleneck of the complex-
ity lies in testing whether freq(R,S) is smaller/equal/larger
than freq(R, σ(S)), i.e., lines 2-3 in ApproxCount, for each
random permutation σ. We propose two pruning techniques
below that can greatly speed up this test. The key idea is
that, as we only care about the comparison result (<, >, or
=) between freq(R,S) and freq(R, σ(S)), instead of the ac-
tual value of freq(R, σ(S)), in many cases, it is not necessary
to generate the complete permutation sequence σ(S) and/or
compute the exact value of freq(R, σ(S)). So we propose to
use Knuth shuffle to generate a permutation and stop shuf-
fling as soon as the comparison result is clear.

The function Compare is presented in Algorithm 2 with the
two pruning techniques. It outputs <, >, or = as the com-
parison result between freq(R,S) and freq(R, σ(S)) (used in
lines 2-3 of ApproxCount).

Pruning I: Eliminating non-overlapping locations
In real scenarios, we observe that most moving object pairs
have small portions of overlapping locations. A location ri
in R is said to overlap with trajectory S if there exists a
location sj in S s.t. the distance between ri and sj is less
than the distance threshold d (i.e., τ(ri, sj) = 1). Let R′ v
R denote the maximal subsequence r′1r

′
2 · · · r′n′ of R, where

each r′i is a location in R that overlaps with S, and |R′| = n′.
Recall that σ is a random permutation, or in other words,

a one-to-one mapping [n] → [n] (where [n] = {1, 2, . . . , n}).
Let σ′ be the first n′ elements of each random permuta-
tion σ, i.e., a one-to-one mapping [n′] → [n]. We have that
the probability distribution of {freq(R, σ(S)) | σ} is identi-
cal to the one of {freq(R′, σ′(S)) | σ}. The reason is ob-
vious: a point in the set R − R′ will not have any impact
on the meeting frequency freq(R, σ(S)), so we only need to
consider the points in R′. Therefore, comparing freq(R,S)
and freq(R, σ(S)) in lines 2-3 of algorithm ApproxCount can
be replaced with comparing freq(R,S) and freq(R′, σ′(S)).
And since the size of R′ is usually much smaller than that
of R (i.e., n′ � n) in real data, this pruning technique can
greatly save the computation time.

Pruning II: Early termination conditions
Another pruning technique is to early stop a permutation
test. Let R′[i] denote the first i elements in R′, and let σ′[i] de-

note the first i elements of σ′. Obviously, if freq(R′[i], σ
′
[i](S))
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Compare(R,S)

1: R′ ← r′1r
′
2 · · · r′n′ , s.t. ∀r′i ∈ R ∃sj ∈ S : τ(r′i, sj) = 1

2: freq← 0
3: for i = 1→ n do σ′(i) = i
4: for i = 1→ |R′| do
5: randi ← a random number in [i, n]
6: Switch σ′(i) and σ′(randi)
7: if τ(r′i, sσ′(i)) = 1 then
8: freq← freq + 1

9: if freq(R,S) < freq then return <

10: if freq(R,S) > freq + |R′| − i then return >

11: return =

Algorithm 2: Generate one permutation σ(S) and com-
pare freq(R,S) with freq(R, σ(S)).

is already larger than freq(R,S), there is no need to compare
the rest part of R′ and σ′(S), because we have:

freq(R,S) < freq(R′[i], σ
′
[i](S)) ≤ freq(R′, σ′(S)).

Also, note that freq(R′[i], σ
′
[i](S)) + n′ − i is an upper bound

of freq(R′, σ′(S)) after comparing the first i elements. So
one can stop if the upper bound is smaller than freq(R,S):

freq(R,S) > freq(R′[i], σ
′
[i](S)) + n′ − i ≥ freq(R′, σ′(S)).

By checking these two conditions (i.e., the underlined parts
of the above formula), we could early stop the permutation
generation and thus save the running time.

In Algorithm 2, we first get all the overlapped locations in
R, denoted as R′ (line 1). This is a pre-processing step and
can be speeded up using R-tree. It only needs to be executed
once for all theN permutation tests. It takesO(n logn) time
to obtain R′ by querying each location ri in the R-tree of
S. If ri overlaps with S, it is inserted into R′. The random
one-to-one mapping σ′ : [n′] → [n] is generated sequen-
tially in lines 4-6. The variable freq maintains the value of
freq(R′[i], σ

′
[i](S)), and is updated in each iteration (lines 7-

8). Pruning II is then implemented in lines 9-10. Even with
the pruning rules, the complexity of Compare is still O(n) in
the worst case. However, as we will show in Section 5, the
two pruning techniques are indeed very effective in practice.

It is worth noting that if R and S do not have any over-
lapped location, we will have |R′| = 0 and function Compare
will immediately return “=”. We could further speed up the
computation by first filtering the obviously non-overlapped
trajectories. We can check whether the minimum bound-
ing boxes of two trajectories overlap. This checking step
only takes O(1) time and could save a lot of time if most
trajectory pairs in database do not overlap.

4. THRESHOLD QUERY PROCESSING
In this section, we tackle the problem that, given a thresh-

old Λ and a query trajectory Q, determine which trajecto-
ries in the database are significantly attracting or avoiding
Q. For presentation simplicity, we only consider the signifi-
cance value of attraction, sigattract, and use “sig” to denote
it for short. The algorithms and analysis for sigavoid are
quite similar to the ones for sigattract and thus are omitted
here.

Formally, for a trajectory database D, a threshold query
(Q,Λ) is to find all trajectories S’s in D such that the sig-
nificance value of avoidance or attraction between Q and S
is no less than Λ. The answer to this query is:

AQ,Λ = {S ∈ D | sig(Q,S) ≥ Λ}.

A naive query-processing algorithm is to directly apply
the ApproxCount algorithm to compute sig(Q,S) with cer-
tain accuracy parameters ε and δ for each trajectory S in
the database D; and generate answers to threshold queries
by simply scanning all trajectories. Of course, the answers
obtained are approximate. Following are the guarantees we
aim to provide for answers to threshold queries.

Definition 4.1. (ε-approximate threshold query) An an-
swer AQ,Λ to a threshold query (Q,Λ) is ε-approximate iff:
i) there are only a constant number (i.e., O(1) in expecta-
tion) of items in AQ,Λ such that sig(Q,S) < Λ/(1 + ε);
ii) there are only a constant number (i.e., O(1) in expecta-
tion) of items NOT in AQ,Λ such that sig(Q,S) > Λ/(1−ε).

In other words, if an answer AQ,Λ is ε-approximate, we
have no guarantee on whether a trajectory S with Λ/(1 +
ε) ≤ sig(Q,S) ≤ Λ/(1 − ε) is included in/excluded from
AQ,Λ. However, if sig(Q,S) < Λ/(1 + ε), S is excluded from
AQ,Λ with high probability; and if sig(Q,S) > Λ/(1− ε), it
is included in AQ,Λ with high probability.

Theorem 3. Applying algorithm ApproxCount, we can get
an ε-approximate answer to a threshold query with a total of
(8m ln 2m)/ε2 random permutations, where m = |D| is the
total number of trajectories in the database.

Proof. For each trajectory S ∈ D in the database, we
use algorithm ApproxCount to compute sig(Q,S) with N =
8
ε2

ln 2m random permutations. Let sig′(Q,S) be the esti-
mated result returned by ApproxCount. From Theorem 2, if
sig(Q,S) < Λ/(1 + ε), then with probability at least 1− 1

m
,

we have sig′(Q,S) ≤ (1+ε)sig(Q,S) < Λ. So only with prob-
ability 1

m
, S is put into AQ,Λ (incorrectly). Hence, the total

number of such trajectories S’s is at most m· 1
m

= 1 in expec-
tation. Similarly, we can show that, if sig(Q,S) > Λ/(1−ε),
we will miss such S in AQ,Λ with probability at most 1

m
(S

should have been put into the answer set as sig(Q,S) ≥ Λ).
Again, we have at most 1 such trajectory in expectation.
Applying algorithm ApproxCount for each S ∈ D, we need a
total of m · 8

ε2
ln 2m random permutations.

The cost of the query-processing algorithm is dominated
by the number of random permutations needed. Next, we
introduce the AdaptSample algorithm (Algorithm 3) which
reduces the number of permutations needed while providing
the same accuracy guarantee for the answers.

The basic idea is as follows. Let sigi(Q,S) be the sig-
nificance value computed using ApproxCount(Q,S, i) with i
random permutations. Clearly we have limi→∞ sigi(Q,S) =
sig(Q,S). More specifically, according to Lemma 3, N =

4 ln 2m
ε2sig(Q,S)

permutations are needed to get an ε-approximation

of sig(Q,S) with probability at least 1− 1
m

. However, since
our goal is just to compare sig(Q,S) with Λ, such an ε-
approximation is often unnecessary. In particular, for any
trajectory S with sigi(Q,S) either far below or above Λ, a
much smaller number of permutations should suffice to de-
termine if we should exclude or include S in the query result.
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AdaptSample(D, Q, ε,Λ)

1: Let N = 4 ln 2m
ε2Λ

;
2: for i = 1 to N do
3: for each trajectory S in D do
4: v ← Compare(Q,S)
5: (Compare freq(Q,S) and freq(Q, σi(S)))
6: Calculate sigi(Q,S) from v and sigi−1(Q,S)
7: if sigi(Q,S) < l(i, ε,Λ) then
8: D ← D − {S};
9: if sigi(Q,S) > u(i, ε,Λ) then

10: D ← D − {S} and A ← A+ {S};
11: for each trajectory S in D do
12: if sigN (Q,S) ≥ Λ then A ← A+ {S};
13: Output A.

Algorithm 3: Threshold query processing with adaptive
sampling.

Based on this observation, we design the bounds l(i, ε,Λ)
and u(i, ε,Λ) in AdaptSample to make such decisions “on
the fly”, hence greatly reduce the computation time.

Next, we show that AdaptSample produces ε-approximate
answers to threshold queries. Although the algorithm has
the sameO

(
m
ε2

lnm
)

complexity as ApproxCount in the worst
case, we show that under certain conditions, the number of
random samples is much smaller than the worst case on av-
erage, with an improvement of a factor of O (1/ε).

Theorem 4. In AdaptSample algorithm, let m = |D|,

l(i, ε,Λ) =

(
1−

√
4

iΛ
ln

8m ln 2m

ε2Λ

)
Λ, and

u(i, ε,Λ) =

(
1 +

√
4

iΛ
ln

8m ln 2m

ε2Λ

)
Λ.

Then the output A is an ε-approximate answer to the thresh-
old query (Q,Λ). Suppose sig(Q,S) is uniformly distributed
in [0, 1], the total number of random permutations needed is
O
(
m
ε

ln m
ε2

)
in expectation.

Proof. To prove this theorem, we first show that the
output A is indeed ε-approximate, and then prove the effi-
ciency, i.e., the number of permutations needed.

For a trajectory S, if sig(Q,S) ≥ Λ, using Lemma 3, we
can prove that we may have sigi(Q,S) < l(i, ε,Λ) in an
iteration i only with probability at most

Pr [fail] =
1

m
· ε2Λ

4 ln 2m
=

1

mN
.

So the probability of not making a mistake for this trajectory
S (having sigi(Q,S) ≥ l(i, ε,Λ) for all iterations) is at least

(1− Pr [fail])N ≈ 1− 1/m.

Similarly, for a trajectory S with sig(Q,S) < Λ, we can
prove that the probability of not making a mistake (having
sigi(Q,S) ≤ u(i, ε,Λ) for all iterations) is at least 1− 1/m.

There are a total of m trajectories. Therefore, in expecta-
tion, we make at most m · 1

m
= 1 mistakes (missing S when

sig(Q,S) ≥ Λ or putting S into A when sig(Q,S) < Λ).
For all the other trajectories left in D after lines 2-9, from
Lemma 3, lines 10-11 ensure that the final output A is an
ε-approximate answer to the query (Q,Λ).

Assuming that sig(Q,S) is uniformly distributed in [0,1]
for all trajectories S in D, let’s analyze how many random
permutations are needed in total. Let’s consider the case
when Λ = 1, as it is not hard to show that, in this case,
we need the max number of permutations (for Λ ∈ [0.5, 1]).
The average (expected) number of permutations needed for
each trajectory S ∈ D in the database (note that sig(Q,S)
is uniformly distributed in [0,1]) can be calculated as:

4 ln
8m ln 2m

ε2
+

4 ln 2m
ε2∑

i=4 ln 8m ln 2m
ε2

√
4

i
ln

8m ln 2m

ε2

≈ 4 ln
8m ln 2m

ε2
+

∫ 4 ln 2m
ε2

4 ln 8m ln 2m
ε2

√
4

x
ln

8m ln 2m

ε2
dx

= O
(m
ε

ln
m

ε2

)
.

Therefore, the total number of random permutations needed
is at most O

(
m
ε

ln m
ε2

)
in expectation.

In a large-size dataset, R may be clearly irrelevant with
most moving objects. We could first index the bounding
boxes of all objects in R-tree and only consider those ob-
jects with bounding boxes overlapped with that of R as
candidates. This preprocessing step can filter many irrel-
evant candidates before query processing.

5. EXPERIMENT
In this section, we present a comprehensive performance

study of the proposed methods on both real and synthetic
datasets. All the experiments are conducted on a 2.9 GHz
Intel Core i7 system with 16GB memory.

Note that, to simplify the presentation, we will only show
the values of sigattract(R,S) in all the experiments, since
we have sigattract(R,S) + sigavoid(R,S) = 1. Therefore,
if sigattract(R,S) is close to 1, then R and S have signifi-
cant attraction relationship; If sigattract(R,S) is close to 0
(i.e., sigavoid(R,S) close to 1), then R and S have signifi-
cant avoidance relationship. Parameter N is determined by
parameters ε and Λ. For simplicity of experiment, we study
the performance by directly tuning N .

5.1 Experiments on Synthetic Data
We first conduct experiments on synthetic dataset to demon-

strate the effectiveness and efficiency of our method. Note
that, for this experiment, it is not necessary to generate the
trajectories R and S, as long as we have the pairwise dis-
tance matrix, denoted as M , of the two trajectories. More
specifically, M(i, j) takes value 1 if distance(ri, sj) < d, and
0 otherwise. For a pair of trajectories of the same length
n, we generate the pairwise distance matrix as follows. (1)
Generate a vector of length n by setting α · n (0 < α < 1)
uniformly chosen entries of the vector to 1 and the rest to 0.
Use this vector as the diagonal of M . (2) Draw two distinct
random integers i, j uniformly from [1 : n] and set M(i, j)
to 1. Repeat this till the number of 1’s in M reaches β · n2

(including its diagonal), where 0 < β < 1.
In this way, we ensure that the resulting synthetic trajec-

tory pair has E [freq(R,S)] = β · n, and freq(R,S) = α · n.

5.1.1 Computing Significance Value
In this section, we study how fast the significance value

converges to its true value w.r.t. the number of permutations
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N . We generate trajectory pairs with β = 0.2, n = 1000,
and vary α to get different significance values. Since comput-
ing the exact significance value given M is #P-hard (The-
orem 1), we use the significance value estimated using a
sufficiently large number of permutations (N = 1000) as the
ground truth, and denote it as sig∗attract.

Figure 2: Difference between significance value and
ground truth using N permutations

In Figure 2, we show the difference between the ground
truth sig∗attract and the significance value calculated after
N permutations. Each line corresponds to one significance
value and the result is the average over the 100 trials.

We can see from Figure 2 that the estimated significance
value converges fast to its true value. For example, when
N = 100, the differences are below 0.05 for all significant
values. Further, in the zoomed-in figure, we can see that
the estimated significance value converges faster as sig∗attract

approaches 0 or 1, and slower when sig∗attract is close to 0.5.
This observation is consistent with Lemma 3, which suggests
that, to achieve the same ε-approximation to ρ (assuming
ρ ≥ 0.5), the lower ρ is, the more permutations are needed.

5.1.2 Efficiency of Computing Significance Value
Now we study the effectiveness of our pruning rules devel-

oped in Section 3.3 for computing the significance values. In
this experiment, we compare the original ApproxCount algo-
rithm proposed in Algorithm 1 with the one which combines
ApproxCount with the pruning rules, denoted as ApproxCount+.

Here, we define the ratio of overlapped locations as σ =
|R′|
|R| (β < σ < 1), and denote the number of trajectory pairs

as np. By default, we use the following parameters: α =
0.05, β = 0.05, σ = 0.07, n = 1000, np = 2000, N = 1000. In
this set of experiments, we examine the total running time
needed for all np trajectory pairs.

Running time w.r.t. trajectory length n. Fig-
ure 3(a) shows that the running time grows roughly lin-
early in n for both methods. However, pruning rules re-
duce the computation time. And it becomes more obvi-
ous as the trajectory length grows. For example, when
n = 1000, ApproxCount+ takes less than 15 seconds, whereas
ApproxCount takes 160 seconds.

Running time w.r.t. number of pairs np. Figure 3(b)
shows that as the size of moving objects in a dataset be-
comes larger, our pruning rules are saving more computation

time. For example, when the number of pairs np = 10, 000,
ApproxCount+ takes about 60 seconds, while ApproxCount
takes about 800 seconds.

Running time w.r.t. the ratio of overlapped loca-
tion σ. In this experiment, we set the number of pairs

np = 10, 000. Figure 3(c) shows that, as σ = |R′|
|R| decreases

from 0.1 to 0.06, the running time of ApproxCount+ de-
creases from about 90 seconds to 55 seconds. This is because
Pruning I is more effective when σ is smaller. Meanwhile,
the running time of ApproxCount is not affected by σ (about
800 seconds in this case), and is omitted in Figure 3(c).

5.1.3 Efficiency of Threshold Query Processing
Given a query moving object, a threshold query is to

retrieve all the objects with significance values above cer-
tain threshold Λ. In this section, we compare AdaptSample
method proposed in Section 4 with Baseline. Baseline com-
putes the significance value for each object and then return
the objects satisfying threshold Λ. We show that AdaptSample
can reduce query time without sacrificing accuracy.

We use the following parameters by default: β = 0.2,
σ = 1, n = 1000, m = 500, N = 1000, and the threshold Λ =
0.9. Further, we vary α during the data generation process
so that the significance values are uniformly distributed in
[0, 1]. We use the significance value computed with N =
10, 000 permutations as the ground truth.

100 200 300 400 500 600
0

20

40

60

80

100

120

140

m

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

 

 

AdaptSample
Baseline

(a) Running time w.r.t. num-
ber of objects m

100 200 300 400 500 600
0

2

4

6

8

10

12

14

m
N

um
be

r 
of

 e
rr

or
s

 

 

AdaptSample
Baseline

(b) Number of errors w.r.t.
number of objects m

0 500 1000 1500 2000
0

50

100

150

200

N

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

 

 

AdaptSample
Baseline

(c) Running time w.r.t. num-
ber of permutations N

100 300 600 900 1200 1500 2000
0

5

10

15

20

25

30

N

N
um

be
r 

of
 e

rr
or

s

 

 

AdaptSample
Baseline

(d) Number of errors w.r.t.
number of permutations N

0.75 0.8 0.85 0.9 0.95
30

35

40

45

50

Λ

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

 

 

AdaptSample
Baseline

(e) Running time w.r.t.
threshold Λ

0.75 0.8 0.85 0.9 0.95
0

5

10

15

20

Λ

N
um

be
r 

of
 e

rr
or

s

 

 

AdaptSample
Baseline

(f) Number of errors w.r.t.
query threshold Λ

Figure 4: Threshold query evaluation
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Figure 3: Efficiency study on synthetic data

Performance w.r.t. number of objects m. In Fig-
ure 4(a), we show the running time as a function of m. We
can see the difference between AdaptSample and Baseline is
more obvious as m increases. For example, when m = 600,
AdaptSample takes about 70 seconds, while Baseline takes
120 seconds. In Figure 4(b), we further show the number
of errors made by both methods. One can see that, as m
increases, the number of errors remains roughly constant.
This is consistent with Theorem 3 and 4.

Performance w.r.t. number of permutations N . As
one can see in Figure 4(c), AdaptSample is again significantly
faster than Baseline, and the difference becomes more obvi-
ous when N is large. For example, when N = 2000, Baseline
takes twice of the time of AdaptSample. In Figure 4(d), one
can see that the number of errors decreases as the number
of permutations increases. Again, comparing two methods,
the difference in accuracy is small.

Performance w.r.t. query threshold Λ. In this ex-
periment, we set N = 500 and vary Λ. The running time of
Baseline is not affected by Λ, as shown in Figure 4(e). Mean-
while, as Λ approaches to 1 (assuming Λ > 0.5), AdaptSample
is more effective in filtering out unqualified candidates. In
Figure 4(f) we again observe that the difference in number
of errors between these two methods is insignificant.

In summary, we have shown that AdaptSample can speed
up the process of threshold query. And the speed-up be-
comes more significant when the data size is bigger, number
of permutations is larger, and the threshold is higher. At
the same time, AdaptSample achieves the same accuracy sta-
tistically as Baseline.

5.2 Experiments on Animal Movement Data
In this section, we use a real movement dataset. The

dataset contains trajectories of 12 capuchin monkeys (cebus
capucinus) with tracking time from 11/10/2004 to 04/18/2005.
The average sampling rate for this dataset is about 15 min-
utes, and the number of locations for one monkey varies from
1,500 to 11,000. The monkeys belong to six groups. Fig-
ure 5(a) plots home ranges of the six monkey groups. Please
refer to [8] for more detailed description of this dataset. By
default, we set distance threshold ε = 100(meters), and
number of permutations N = 1000 for our experiments.

5.2.1 Mining Significant Relationships
Figure 5(b) shows the pairwise significant relationships

for the monkey dataset. A green line represents significant
attraction relationship (sigattract > 0.95). A red line rep-
resents significant avoidance relationship (sigattract < 0.05,

(a) (b)

Figure 5: (a) Home ranges of the six study groups.
(b) Significant relationships for monkey data (green
line: attraction, red line: avoidance).

i.e., sigavoid > 0.95). There are some interesting findings
from this network graph. First, the monkeys in the same
group all have significant attraction relationships, which is
expected. Then, let us look at FC group (#83, #84). We
can see that FC group has a significant avoidance relation-
ship with BLT group (#52, #53), but a significant attrac-
tion relationship with TB group (#51, #87). Looking at
the home range plot in Figure 5(a), we can see that FC and
BLT have much larger shared home range compared with
that shared by FC and TB group. But the meeting fre-
quency between FC and BLT is similar to that between FC
and TB, e.g., freq(#83,#52) = 11 and freq(#83,#51) = 8.
According to a report from animal scientist [8], there have
been 13 fights reported between FC and BLT group, but
only 3 fights reported between FC and TB group. This well
explains the avoidance relationship between FC and BTL
detected by our method. An explanation of attraction re-
lationship between FC and TB group could be the mutual
attraction to some time-specific resource in their overlapped
territories.

Now we study how fast the significance value converges
to its true value on the monkey dataset. We again take
the significance value computed using 1000 permutations as
the ground truth, denoted as sig∗attract. In Figure 6(a), we
show the difference between sig∗attract and sigattract calcu-
lated using N permutations for various significance values.
As we can see, the estimated significance values converge
very fast and the differences are all less than 0.01 after 200
permutations regardless of the true values. However, note
that the green line (0.4 ≤ sig∗attract ≤ 0.6) converges faster
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Figure 6: (a) Convergence rate of significance val-
ues. (b) Histogram of significance values.
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Figure 7: Comparison with traditional measures

than the blue line (sig∗attract ≤ 0.1). This is in contrast to
the synthetic data case and Lemma 3, which suggest that
when sig∗attract approaches to 0 or 1, less number of per-
mutations are needed to achieve the ε-approximation. To
understand this, we show the histogram of number of object
pairs w.r.t. to different significant values in Figure 6(b). We
find that among the pairs whose sig∗attract values are in the
range of [0.4, 0.6], there are 15 pairs which do not have any
overlapped location in their trajectories (i.e., |R′| = 0). For
those pairs, the estimated significance values converge to ex-
actly 0.5 in one iteration, which greatly affects the average
convergence rate for pairs in this group.

5.2.2 Comparing Significance Value with Traditional
Measures

As we discussed before, previous work [30, 29, 6, 5] of-
ten use (1) the Euclidean distance or its variants and (2)
the meeting frequency to measure the relationship between
moving objects. Their assumption is that smaller Euclidean
distance or larger meeting frequency indicates stronger at-
traction relationship. We now demonstrate why this as-
sumption is not necessarily true.

In Figure 7(a), we plot the significance value and the av-
erage Euclidean distance for each pair of monkeys. We can
see that, if the average distance between two monkeys is
larger than 1km, they usually have independent relation-
ship (sigattract close to 0.5). This often occurs when two
monkeys have their own territories and their trajectories do
not overlap. Meanwhile, when the average distance is less
than 0.5km, the pair is very likely to have attraction re-
lationship. However, when the average distance is in the
middle range of 0.5km-1km, the relationship can either be
attraction, independent or avoidance. As a result, by us-
ing the average distance, one cannot correctly identify the
relationship in these cases.

Similarly, in Figure 7(b), we show that meeting frequency
is also not a good measure for attraction and avoidance re-
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Figure 8: Efficiency study on synthetic data

lationships. As one can see, if the meeting frequency is high
(> 20), two monkeys are very likely to have attraction re-
lationship. However, when the frequency is in the middle
range from 1 to 20, the relationships can either be attrac-
tion, independent or avoidance. Further, if two monkeys
have zero meeting frequency, they could either be indepen-
dent or having an avoidance relationship.

5.2.3 Efficiency of Computing Significance Value
Next, we verify the effectiveness of the pruning rules we

developed in Section 3.3 on the monkey dataset. Figure 8(a)
plots the running time of our methods ApproxCount and
ApproxCount+. We can see that ApproxCount+ is much
faster than ApproxCount. For example, when the distance
threshold d = 100(meters), ApproxCount spends about 2200
milliseconds to compute the significance value. On the other
hand, ApproxCount+ only takes 700 milliseconds to finish.
To understand why this is the case, in Figure 8(b) we plot
the average ratio of overlapped locations between monkey
pairs as a function of the distance threshold d. As one can
see, the ratio is typically very small. For example, when
d = 100, that number of overlapped locations (i.e., |R′|) is
only 20% of the total number of points in R (i.e., n). In
addition, as the distance threshold decreases, |R′| becomes
smaller, and therefore Pruning I is more effective.

5.2.4 Efficiency of Threshold Query
Lastly, we demonstrate that AdaptSample method can speed

up the threshold query processing without sacrificing the ac-
curacy on the monkey dataset. In this experiment, we use
one monkey as the query object and retrieve all the other
monkeys having significant values sigattract above threshold
Λ. We repeat the process for every monkey in the dataset
and record the total time in Figure 9 w.r.t. the threshold Λ.
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Figure 9: Threshold query on monkey data set

We can see that AdaptSample is significantly faster than
Baseline. For example, with Λ < 0.7, AdaptSample takes less
than 1 second to process the threshold query, while Baseline
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takes about 5.5 seconds. Note that, however, as Λ increases
from 0.5 to 0.9, the computation time for AdaptSample also
increases, which contradicts the result on synthetic dataset.
The reason is that for the monkey dataset, the true signifi-
cance values are not uniformly distributed in [0, 1], as shown
in Figure 6(b). In particular, there is a large number of pairs
with significance values in [0.9, 1], compared to the number
of pairs with significance values in [0.5, 0.9]. So AdaptSample
takes more iterations to process these pairs for bigger Λ.

In terms of accuracy, both methods retrieve identical ob-
jects for all threshold queries, except when Λ = 0.1 and
0.3,AdaptSample has 2 and 1 false positives, respectively.

5.3 Experiment on Human Movement Data
In this section, we use Reality Mining dataset (http://

reality.media.mit.edu) to evaluate the effectiveness and
efficiency of our method on human movements. The dataset
contains movement data of 95 persons. A person’s move-
ment data includes a sequence of timestamps and the corre-
sponding cell tower IDs.

We use friendship survey, affiliation and group informa-
tion as the ground truth in this experiment. Pairs having
certain relationship (i.e., being friends, having the same af-
filiation, or being in the same group) are denoted as 1 (a
positive pair), and 0 otherwise (a negative pair). Out of
the 4465 pairs in total, there are 68 friend pairs, 74 pairs
who are in the same group, and 670 pairs that have same
affiliation.

Group Affiliation Friend
Significance Value 0.6221 0.6538 0.7001
Meeting Frequency 0.3104 0.3371 0.5053

Dynamic Time Warping 0.1967 0.2627 0.5576

Table 1: Cosine similarity score with ground truth

We use cosine similarity to compute the correlation be-
tween ground truth and different measures including the sig-
nificance value, meeting frequency, and dynamic time warp-
ing distance. The number of permutations N is set to 1000
for our method. Since the number of negative pairs is much
more than that of positive ones, we sample the negative
pairs to make the number balanced and report the aver-
age cosine similarity over 1000 sampling trials in Table 1.
As one can see, the cosine similarity scores between signifi-
cance value and ground truth are always above 0.62, and are
consistently higher than the scores for meeting frequency or
dynamic time warping.

The time complexities for calculating the meeting fre-
quency, dynamic time warping and significance value for one
pair are O(n), O(n2), and O(N · n), respectively. To com-
pute the values for all pairs, it takes 1 second for meeting
frequency and 153 seconds for dynamic time warping. The
running time for computing the significance values is 118
seconds with pruning, and 233 seconds without pruning. It
worths noting that persons tracked in this dataset are all
faculties, staffs, and students at MIT. So they share signif-
icant amount of overlapped locations in their movements.
But our pruning techniques are still effective in this case.

6. RELATED WORK
In data mining literature, the problem of mining moving

object clusters, which aims to detect attraction relationships

among moving objects, has been extensively studied. Gener-
ally speaking, a moving object cluster is “a set of objets that
move together”. In particular, several measures have been
proposed to measure the similarity between trajectories, in-
cluding the Euclidean Distance, Dynamic Time Warping
(DTW) [30], Longest Common Subsequences (LCSS) [29],
Edit Distance on Real sequence (EDR) [6], and Edit dis-
tance with Real Penalty (ERP) [5]. The intuition behind
these measures is that, the more similar two trajectories are,
the closer their relationship is. An alternative approach is
to count the number of timestamps at which a set of objects
are located together. If the objects are frequently co-located,
they form a cluster. Representative methods include moving
cluster [17], flock [20, 12, 11, 1], convoy [16], swarm [21], and
gathering pattern [31]. However, all the methods above do
not consider the background model of the moving objects.
Instead, they measure the degree of relationship based on
the similarity of trajectories or co-location frequencies. As
we have previously shown, such measures are not necessarily
valid for mining significant relationships.

Methods have also been proposed to characterize the tem-
poral patterns in order to detect semantic relationships.
Miklas et al. [24] find that “friends meet more regularly
and for longer duration whereas the strangers meet sporad-
ically” and Eagle et al. [10] shows that friend demonstrates
distinctive temporal and spatial patterns. Then, temporal
and spatial features are extracted to build the semantic re-
lationship classifier in a supervised framework [7, 23]. But
in this paper we only focus on unsupervised methods.

In this paper, we use permutation test to calculate the
significance values. The permutation test, also known as
randomization test or shuffle test, is a standard statistical
approach, and has been applied to measure the significant
correlation on social network [2, 3, 19], graph [13], and time
series [4, 18]. The significance values of avoidance and at-
traction relationships we define in this paper have rigorous
statistical semantics. However, computing the exact signifi-
cance values is proved to be #P-hard. So we employ Monte
Carlo sampling methods to compute the significance values
and process the threshold queries approximately. Similar
ideas can be found in other areas of uncertain databases,
such as the works on query evaluation in uncertain databases
[27, 14, 15]. In particular, [27] evaluate the top-k queries
which output tuples satisfying a query and with the top-k
highest probabilities. A Monte Carlo sampling algorithm
is used to compute the probabilities approximately and a
lower-higher bound shrinking scheme is developed to process
top-k queries efficiently. Although sharing some similarities,
techniques in our work and the works on query evaluation in
uncertain database cannot be applied interchangeably. The
major reason is that uncertainty in our work arises from the
statistic model for defining significance, while uncertainty in
those works arises from data itself, not to mention the dif-
ferences on the formulations of “probabilities” and “queries”
for addressing different application interests.

7. DISCUSSION
In this section, we discuss two interesting extensions of

our work. First, our current permutation method may gen-
erate “impossible” trajectories. For example, two consecu-
tive points in a randomized trajectory might be too far away
for the object to travel within a time unit. It is therefore
desirable for our method to preserve certain spatiotemporal
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properties in the trajectories while conducting the permuta-
tion test. Such property could be the distance constraint on
any two consecutive points, or some landscape constraints
induced by a river, a mountain, or the road network. The
property can also come from certain known trajectory pat-
terns of the moving objects, such as daily periodic patterns
or seasonal migration patterns [22].

Second, in our current framework, we simply count the
meeting frequency without considering the semantics in the
meeting events. For example, meeting for 10 consecutive
hours and meeting for 1 hour each day for 10 days obvi-
ously carry different semantic meanings and therefore could
indicate different types of relationships. Also, some places
are visited more frequently in general, such as a public park
in down town, whereas locations like a private property are
visited much less frequently. Meeting events at different
locations also carry different semantics. In the future, we
plan to use the weighted meeting frequency to incorporate
the semantics into the relationship detection framework.

8. CONCLUSION
In this paper, we propose a unified framework to detect

significant attraction and avoidance relationships in move-
ment data. The idea of our method is that, in order to mine
significant relationships, one needs to look into the back-
ground model of the movement data. Based on this idea,
we propose to use permutation test to evaluate the signif-
icance value of the relationships. Two pruning techniques
are proposed to speed up the permutation test. In addition,
we discuss how to answer threshold queries for movement
database and retrieve all the objects having significant rela-
tionships with the querying object. An early-stop strategy
is employed for efficient query processing.
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