PackageBuilder: From Tuples to Packages

Matteo Brucato* Rahul Ramakrishna*

*School of Computer Science
University of Massachusetts

Amherst, USA

{matteo,rahulram,amelii@cs.umass.edu

ABSTRACT

In this demo, we present PACKAGEBUILDER, a system that ex-
tends database systems to support package queries. A package is
a collection of tuples that individually satisfy base constraints and
collectively satisfy global constraints. The need for package support
arises in a variety of scenarios: For example, in the creation of
meal plans, users are not only interested in the nutritional content
of individual meals (base constraints), but also care to specify daily
consumption limits and control the balance of the entire plan (global
constraints). We introduce PaQL, a declarative SQL-based package
query language, and the interface abstractions which allow users to
interactively specify package queries and easily navigate through
their results. To efficiently evaluate queries, the system employs
pruning and heuristics, as well as state-of-the-art constraint opti-
mization solvers. We demonstrate PACKAGEBUILDER by allowing
attendees to interact with the system’s interface, to define PaQL
queries and to observe how query evaluation is performed.

1. INTRODUCTION

Traditional database queries define constraints (selection predi-
cates) that each tuple in the result needs to satisfy. Although they
are undoubtedly expressive and powerful, they prove inadequate in
scenarios that require a set of answer tuples to satisfy constraints
collectively. Such scenarios arise in a variety of applications:

Meal planner: An athlete needs to put together a dietary plan in
preparation for a race. She wants a high-protein set of three gluten-
free meals for the day, having in total between 2,000 and 2,500
calories. It is easy to exclude meals with gluten, as this condition can
be enforced on each individual meal (tuple) with a regular selection
predicate. The other constraints (e.g., total calories), however, need
to be verified collectively over the entire package.

Vacation planner: A couple wants to organize a relaxing vacation
at a tropical destination. They do not want to spend more than
$2,000 on flights and hotels combined. They also want to be in
walking distance from the beach, unless their budget can fit a rental
car, in which case they are willing to stay farther away. Building the
ideal vacation package is challenging as the choice of hotels affects
the choice of flights and car rentals.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08.

Azza Abouzieds Alexandra Meliou*

$Computer Science

New York University
Abu Dhabi, UAE
azza@nyu.edu

Investment portfolio: A broker wants to construct an investment
portfolio for one of her clients. The client has a budget of $50K,
wants to invest at least 30% of the assets in technology, and wants
a balance of short-term and long-term options. The broker cannot
select each stock option individually, but rather needs to find a stock
package that satisfies all these constraints collectively.

These examples cannot be expressed by traditional SQL queries.
We demonstrate PACKAGEBUILDER, a system that augments
database functionality to support the creation of packages. A
package is a collection of tuples that individually satisfy base
constraints and collectively satisfy global constraints. The base
constraints are equivalent to regular selection predicates, and can
be evaluated individually for each tuple. For example, in the meal
planner application, the gluten-free restriction is a base constraint,
as it can be verified independently on each meal. In contrast, the
requirement that the total amount of calories should be between
2,000 and 2,500 cannot be evaluated on each meal individually,
but needs to be assessed over a collection of meals. Our system
addresses three main challenges:

Language specification: Even though many use cases motivate
support for package queries, this class of queries remains largely
unsupported, with few tools targeting domain-specific packages
(e.g., CourseRank supports building course packages [9]]). As part
of this demonstration, we will present PaQL, a declarative query
language that supports package specifications. PaQL is designed
with simple extensions to standard SQL. Those familiar with SQL
should find it intuitive and easy to use (Section[2).

Interactive specification: Even traditional SQL queries can often
be challenging to specify for novice users. To enable user-friendly
database applications, several systems now employ application-
independent visual metaphors for SQL query specification [[12} |8}
11]]. Package queries are fundamentally harder to express and eval-
uate compared to traditional SQL. Therefore, it is increasingly im-
portant to provide visual paradigms to guide users through query
building and through navigating and refining the results. PACK-
AGEBUILDER helps users to interactively specify base and global
constraints for their packages. The system interface also allows
users to visually navigate through the solution space and to easily
refine the resulting packages (Section [3)).

Evaluation: In traditional database queries, the size of the answer
is polynomial in the size of the input data. This is not true for
package queries: If n tuples satisfy the base constraints of a pack-
age query, there are Q(2") candidate packages that can potentially
satisfy the user’s global constraints. This makes the evaluation
of package queries particularly challenging. With an exponential
search space, efficiently searching for packages that satisfy the
users’ constraints requires applying non-trivial pruning techniques
and search heuristics (Section).

1593

€« C A | packagebuilder.cs.umass.edu/mealplanner

Users can directly add constraints. An |
auto-suggest feature helps with syntax
I Querr PACKAGE

v *

Base constraints on Recipes Fix Recipe Meal

Cuis’i,ne"“ Calories Carbs Protein Fat Gluten

load save share

| Adaptive Exploration < »

Preparation Cook .
Time Time Description

. B i i Breakfast "'érican 520 28 32 32 free 10 30 A classic! Two Pc
include if gluten == free Selecting a constraint shows :“m prgen bl
the rows and columns affected | Rustic Italian Bres
Package Constraints S Mufins

exactly 1 for meal == 'Breakfast' @#Tm‘é’ﬁw—ce Lunch American | 630 28 51 13 free 5 5 Packed with prott
Wrap veggie crunch, the
exactly 1 for meal == 'Lunch’ have sensational f
.) ™ Burger Dinner American 820 10 60 63 free 5 10 A cracking homer
exactly 1 for meal == 'Dinner Trouble from Jamie Oliver
healthy and easy 1

at most 6 for count(*)
Granola Snack American 180 11 5 > 12 free 40 40 This homemade ¢

Madneaa

sum(calories) between [2000, 2500]

|

nate nite and dr

Highlight values,
cells, rows or
columns to get
suggestions for

I SUGGESTIONS

rd
+ include if fat >= 12

The current package's position
- in the result space is highlighted

constraints B
+ exclude if fat <= 12 a0 Only packages found so far are visualized. »
220 8 | Running indicates incomplete result space Q U TR Y SRR Indian
+ minimize total fat 2004 & o = ® v o ttalian
280 3 ° ! . e Vi
. [Y = iddle Eastern
. exactly‘1 for fat == 12 260 > . Q Y
240+ * %) French J
+ avg(fat) >=-12 220 ' Je American
1 (» 10 ® . .
. 200 4 ’ o - Mexican
- — 1807 > .‘ L 0 Undefined
[Natural language descriptions] 160 e° ;
140 > O
120+) ®
1004 sum(fat)
80 T T T T T 1
0 50 100 150 200 250 300

Figure 1: The visual interface of PACKAGEBUILDER provides different visual representations of packages, and allows the user to

interactively manipulate package queries.

We proceed to describe the main three aspects of our system that
are motivated by these challenges. We conclude with a description of
a demonstration scenario that is illustrative of the system (Section[7).

2. PaQL: PACKAGE QUERY LANGUAGE

Our PACKAGEBUILDER system extends traditional database func-
tionality to provide full-fledged support for packages. We identify
two important reasons to support packages at the database level,
rather than at the application level: (a) The data used to construct
packages typically resides in a database system, and packages them-
selves are structured data objects that should naturally be stored in
and manipulated by a database system. (b) The features of packages
and the algorithms for constructing them are not unique to each
application; therefore, the burden of package support should be
shifted away from the application developers.

We designed PaQL, a declarative SQL-based query language for
specifying package queries. The following query builds the athlete’s
daily meal plan described in Section|[T}

SELECT PACKAGE(R) AS P
FROM Recipes R
WHERE R.gluten = ‘free’
SUCH THAT COUNT(*) = 3 AND
SUM(P.calories) BETWEEN 2000 AND 2500
MAXIMIZE SUM(P.protein)

The introduction of the keyword PACKAGE differentiates PaQL
queries from traditional SQL queries. Semantically, PACKAGE
constructs multisets from subsets of tuples from the base relations
listed in the FROM clause. With no further constraints, there are
infinitely many packages that can be built from non-empty base
relationg'} Users can limit the number of times a tuple from the input
relation R can appear in the package result by adding a REPEAT
keyword in the FROM clause. For example, “FROM Recipes R
REPEAT & would allow a tuple to be repeated up to k times in a
package.

A package query defines two types of constraints. Base con-
straints, defined in the WHERE clause, are equivalent to selection
predicates and can be evaluated with standard SQL: any tuple in the
package needs to individually satisfy all the base constraints. In the
example query, the base constraint “R.gluten = ‘free”” specifies that
each meal in the package should be gluten-free. Global constraints
are defined in the SUCH THAT clause. They express higher-order
predicates: tuples in a package need to collectively satisfy all global
constraints. This means that a global constraint is a property of
a package, not of a single tuple. For example, “COUNT(x) = 3”
specifies that the entire package should have exactly 3 meals. PaQL
also allows the expression of sub-queries in the SUCH THAT clause.
In contrast with base constraints, global constraints cannot be ex-
pressed by traditional SQL queries.

IThis assumes that a tuple from an input relation can appear multiple
times in the package result.

1594

The objective clause, MAXIMIZE (or MINIMIZE), is unique to
packages as well: it specifies that out of all packages that satisfy
the base and global constraints, the ones with larger value in the
MAXIMIZE clause are preferable. A detailed description of PaQL
can be found online [[1]].

3. INTERFACE ABSTRACTIONS

Package queries are more complex, semantically and algorith-
mically, compared to traditional database queries, and they pose
challenges on several fronts: (a) they can have complex specifi-
cations, (b) they produce a large number of results, which poses
usability challenges, and (c) they are computationally intensive to
evaluate. We discuss the third challenge in Sectionfd] In this section,
we describe several interface abstractions that PACKAGEBUILDER
implements to address the first two challenges.

3.1 Specification

Our package template abstraction encodes package specifications
in a familiar tabular format (Figure [I] shows a screenshot exam-
ple). The central component of the template is a sample package,
presented as a scrollable table. Additional components include rep-
resentations of base and global constraints, optimization objectives,
and suggestions for additional package refinements. As a user in-
teracts with the template by highlighting elements in the sample
package, PACKAGEBUILDER suggests constraints [6} 2]]. For exam-
ple, when the user selects a cell within the “fats” column, the system
proposes several constraints that would restrict the amount of fat in
each meal, and objectives that would minimize the total amount of
fat. The package template is quite expressive but is not as powerful
as the PaQL language itself. The abstraction tries to strike a balance
between ease-of-use and expressive power.

3.2 Presentation

In addition, PACKAGEBUILDER presents packages in a way that
allows users to meaningfully view the entire package space, without
having to actually examine it in its entirety (see the visual summary
at the bottom of Figure[T). The system analyzes the current query
specification and selects two dimensions to visually layout the valid
packages along. Users can use the visual summary to navigate
through the available packages by selecting glyphs that represent
them.

3.3 Adaptive exploration

Many users may prefer specifying queries in trial-and-error, in-
cremental form, rather than providing a complete and precise speci-
fication from the very beginning. To facilitate this approach, PACK-
AGEBUILDER initially presents a sample package that satisfies a
few basic constraints. Users can then select good tuples within the
sample, and request a new sample that replaces the unselected tu-
ples. Users can repeat this process until they reach the ideal package.
PACKAGEBUILDER uses these selections to narrow the search space
as well as to identify additional package constraints.

4. EVALUATION

Evaluating package queries is nontrivial: even if the package
query does not allow duplicate tuples, the number of valid packages
is in the worst case exponential in the number of base tuples. In fact,
any subset of the base tuples may potentially be a valid package.
A brute-force approach that generates and evaluates all candidate
packages is thus impractical.

PACKAGEBUILDER is an external module which communicates
with the DBMS, where the data resides, via SQL. To evaluate a pack-
age query, the system parses a PaQL query and performs a search to

generate valid packages. The system either: (i) uses SQL statements
to generate and validate candidate packages; or (ii) translates pack-
age queries to constraint optimization problems, and employs state-
of-the-art constraint solvers to derive valid packages. At the heart of
the query evaluation system, PACKAGEBUILDER uses and extends
the Tiresias query engine [7]]. Even though PACKAGEBUILDER uses
the Tiresias query engine, it has several differences:

e Package queries specify tuple collections (packages), whereas
Tiresias” how-to queries specify updates to underlying datasets.

e PACKAGEBUILDER allows a tuple to appear multiple times in a
package result; this does not map to any operation in Tiresias.

e PaQL is SQL-based whereas Tiresias uses a variant of Datalog.

e PACKAGEBUILDER supports arbitrary Boolean formulas in the
SUCH THAT clause, whereas Tiresias only supports conjunctive
how-to queries.

e PACKAGEBUILDER employs additional heuristic and pruning
techniques to increase the efficiency of package queries.

We proceed to describe, at a high level, some of the extensions to
Tiresias used in PACKAGEBUILDER to evaluate package queries.

4.1 Cardinality-based pruning

With pruning techniques, the system can avoid generating can-
didate packages that cannot possibly satisfy some of the global
constraints. Given a global constraint C, our pruning strategy iden-
tifies a lower cardinality bound / and an upper cardinality bound
u for any package that can satisfy C. For example, if C is de-
fined as a < COUNT (%) < b, the cardinality bounds are trivially
[=a and u = b. As another example, consider the global con-
straint on total calories per package: 2000 < SUM(calories) < 2500.

In this case, the cardinality bounds are [= [m] and
3000

u= Lmj. In fact, with at least / recipes with MAX(calories)
and at most u recipes with MIN(calories) we can achieve both the
lower and upper bounds of the summation constraint.

Assuming queries that do not allow repeated tuples, if n tuples
satisfy the base constraints, this pruning approach reduces the search
space from 2" to (7) + (,}1) +---+(,”,) + (), without losing any
valid solution.

4.2 Heuristic local search

Pruning often reduces the search space significantly, but this re-
duction alone is seldom sufficient. In addition to pruning algorithms,
which reduce the search space while maintaining completeness,
PACKAGEBUILDER employs a heuristic local search to hasten the
computation. As with any heuristic, there is no guarantee that all
valid solutions will be found. Given a starting package Py (which
can be constructed, for example, at random), PACKAGEBUILDER
identifies all possible k-tuple replacements that can lead to a valid
package, by using a single SQL query. For example, suppose we
wish to generate meal packages with less than 2,500 total calories.
Given a package Py having a total of 3,000 calories, we can identify
all possible single-tuple replacements which lead to valid packages
with the following SQL query:

SELECT Py.id, R.id
FROM Py, Recipes R
WHERE 3000 — Py.calories + R.calories < 2500

This query implements a greedy heuristic that is only able to
locate valid packages that differ from Py by one single tuple. It fails
to find any valid package that differ from Py by more than one tuple.
The query can be also modified to explore packages of different
cardinalities in a straightforward way. Notice that the query is a

1595

selection over a Cartesian product between the candidate package
and the recipe relation. This approach is very efficient if we are
attempting to replace only a few tuples at a time. For k replacements,
however, this method would require a 2k-way join, which quickly
becomes intractable.

This local search is also particularly useful for adaptive explo-
ration (Section[3.3), where users usually request the replacement of
only a few tuples at a time.

S. CHALLENGES

Package queries pose a series of new challenges on database
query engines. We discuss here a few of the research directions that
we plan to explore.

Optimizing PaQL queries: Our experience with PACKAGE-
BUILDER shows that each of the evaluation techniques we
adopted have different strengths and weaknesses. Currently,
PACKAGEBUILDER heuristically combines all of them to efficiently
derive packages. However, a more principled approach to package
query optimization could add several benefits to the query engine.

Solver limitations: Constraint solvers are typically limited to re-
turning a single package solution at a time, and retrieving more
packages requires modifying and re-evaluating the query. Moreover,
solvers cannot usually handle non-linear global constraints; hence
evaluating such queries requires different methods.

Diverse package results: The number of solutions to a package
query can potentially be extremely large, making it harder for users
to explore the package space and find interesting packages. We plan
to devise techniques to present the user with the most diverse and
potentially interesting packages, extracted from the space of valid
or invalid solutions.

6. RELATED WORK

Package queries are instances of constraint satisfaction prob-
lems [10], a well-known class of NP-complete problems. Package
queries can be used to provide set-based recommendations, such
as those available in CourseRank [9]. PaQL offers a more gen-
eral framework for package recommendations. For instance, it can
easily express pre-requisite constraints typical of course package
recommendation systems. PACKAGEBUILDER extends the Tiresias
query engine [[7]] with several new features, which we discussed in
Section]

Package queries are also related to skyline queries [4], top-k
queries [5] and multi-objective queries [3], in their intent to let users
filter a set of objects based on optimization objectives. However,
PaQL queries differ from them for several reasons. First, the opti-
mization objectives of a skyline query are per tuple, rather than per
package. This makes it possible to express a skyline query with tra-
ditional nested SQL [4]], whereas the global constraints expressible
in PaQL are not expressible in traditional SQL. Secondly, PACKAGE-
BUILDER supports one single per-package optimization objective,
as opposed to multiple per-tuple objectives supported by multi-
objective and skyline queries, and does not support top-k queries.
Finally, multi-objective queries (comprising skyline queries) return
the set of non-dominated objects. PACKAGEBUILDER, instead,
returns the optimal package for any given query.

7. DEMO SCENARIO

VLDB attendees visiting our booth will learn, test, and use PACK-
AGEBUILDER. We will demo PACKAGEBUILDER on a real-world
application: the meal planner. Meal planner has a rich recipe data
set scrapped from online recipe and nutrition websites. Attendees

will observe how packages are specified with the package template,
and interactively refined with adaptive exploration. In addition, a
quick tutorial will highlight the key features of PaQL and describe
the query engine optimizations we employ to optimize the pack-
age search process. For instance, we will show how a PaQL query
is translated into a linear program and then solved using existing
constraint solvers. To control booth crowds, we will provide video
tutorials and online guides, and make them accessible through hand-
held devices present at the booth. Attendees can choose to learn
about PACKAGEBUILDER either by using these materials or by
interacting with the presenters.

Attendees will then test PACKAGEBUILDER by building their own
recipe packages using either the visual interface or PaQL. Attendees
can save their packages, as well as share their results through tweets
or emails. The meal planner will be accessible online throughout
the duration of the conference and users will be able to revise their
saved packages at any time.

8. REFERENCES

[1] Packagebuilder. http://packagebuilder.cs.umass.edu,
2013.

[2] A. Abouzied, J. Hellerstein, and A. Silberschatz. Dataplay:
Interactive tweaking and example-driven correction of
graphical database queries. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology,
pages 207-218, New York, NY, USA, 2012. ACM.

[3] W.-T. Balke and U. Giintzer. Multi-objective query processing

for database systems. In Proceedings of the Thirtieth

international conference on Very large data bases, pages

936-947. VLDB Endowment, 2004.

S. Borzsony, D. Kossmann, and K. Stocker. The skyline

operator. In Proceedings. 17th International Conference on

Data Engineering, pages 421-430. IEEE, 2001.

L. E. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k

query processing techniques in relational database systems.

ACM Computing Surveys (CSUR), 40(4):11, 2008.

S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:

Interactive visual specification of data transformation scripts.

In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, pages 3363-3372, New York, NY,

USA, 2011. ACM.

A. Meliou and D. Suciu. Tiresias: The database oracle for

how-to queries. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, pages

337-348, New York, NY, USA, 2012. ACM.

[8] C. Olston, M. Stonebraker, A. Aiken, and J. M. Hellerstein.

Viqging: Visual interactive querying. In Proceedings of the

1998 IEEE Symposium on Visual Languages, pages 162-169,

Sep 1998.

A. Parameswaran, P. Venetis, and H. Garcia-Molina.

Recommendation systems with complex constraints: A course

recommendation perspective. ACM Transactions on

Information Systems, 29(4):20:1-20:33, Dec. 2011.

[10] S.J. Russell and P. Norvig. Artificial intelligence: a modern
approach. Prentice Hall, 2009.

[11] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for
query, analysis, and visualization of multidimensional
databases. Communications of the ACM, 51(11):75-84, Nov.
2008.

[12] M. M. Zloof. Query-by-example: A data base language. IBM
Systems Journal, 16(4):324-343, 1977.

[4

—

[5

—

[6

—_

[7

—

[9

—

1596

http://packagebuilder.cs.umass.edu

	Introduction
	PaQL: Package Query Language
	Interface Abstractions
	Specification
	Presentation
	Adaptive exploration

	Evaluation
	Cardinality-based pruning
	Heuristic local search

	Challenges
	Related Work
	Demo Scenario
	References

