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1. INTRODUCTION 
Current applications, from complex sensor systems (e.g. 

quantified self) to online e-markets acquire vast quantities of 

personal information which usually end-up on central servers. 

This information represents an unprecedented potential for user 

customized applications and business (e.g., car insurance billing, 

carbon tax, traffic decongestion, resource optimization in smart 

grids, healthcare surveillance, participatory sensing). However, 

the PRISM affair has shown that public opinion is starting to 

wonder whether these new services are not bringing us closer to 

science fiction dystopias. It has become clear that centralizing and 

processing all one’s data on a single server is a major problem 

with regards to privacy concerns. Conversely, decentralized 

architectures, devised to help individuals keep full control of their 

data, complexify global treatments and queries, often impeding 

the development of innovative services and applications.  

In [3], we proposed a novel architectural approach to this problem 

called Trusted Cells. This approach capitalizes on hardware 

advances representing a sea change in the acquisition and 

protection of personal data. Trusted Cells push the security to the 

edges of the network, through personal data servers [2] running 

on secure smart phones, set-top boxes, plug computers or secure 

portable tokens1 forming a global secure decentralized data 

platform. In [10], we proposed a privacy-preserving querying 

protocol on this asymmetric architecture (see Section 2) aiming to 

reconcile individual's privacy on one side and global benefits for 

the community and business perspectives on the other. 

This querying protocol makes as few restrictions on the 

computation model as possible. We model the information system 

as a horizontally partitioned global database formed by the union 

of a multitude of distributed local data stores. We consider regular 

SQL queries and any traditional access control model. Hence the 

context is different and more general than, (1) querying encrypted 

outsourced data where restrictions are put on the predicates which 

can be evaluated [1, 9], (2) performing privacy-preserving queries 

usually restricted to statistical queries matching differential 

privacy constraints [4] and (3) performing Secure-Multi-Party 

(SMC) query computations which cannot meet both query 

generality and scalability objectives [6]. 

In a nutshell, the contributions presented in [10] are: (1) to 

                                                                 
1 http://www.gd-sfs.com/portable-security-token 

propose different secure query execution techniques to evaluate 

regular SQL queries (including GROUP BY clause) over a set of 

distributed trusted personal data stores and (2) to study the range 

of applicability of these techniques. The demonstration proposed 

here illustrates that such querying techniques can be put in 

practice, that is to say on real hardware platforms, at low cost and 

with a performance level ensuring a nation-wide scalability 

(millions of participants i.e. personal data stores). 

2. ARCHITECTURE AND SCENARIOS 
Asymmetric Architecture and threat model. As pictured in 

Figure 1, the architecture we consider is formed by a large set of 

low power personal Trusted Data Servers (TDSs) embedded in 

secure devices (e.g., GPS tracking units in cars, smart meters 

installed at home, PCEHR - Personally Controlled Electronic 

Health Records - embedded in portable smart tokens). Whatever 

its form factor, a secure device can be abstracted by (1) a Trusted 

Execution Environment hosting and running the code, and (2) a - 

potentially untrusted but cryptographically protected - mass 

storage area (see Fig. 1). TDSs cannot be tampered, even by the 

TDS holder herself, and are thus considered honest. 

 

Figure 1. Trusted Data Servers 

Since TDSs have limited resources and are not necessarily always 

connected, an external infrastructure, called Supporting Server 

Infrastructure (SSI), is required in the architecture to manage the 

communications between TDSs, run the distributed query 

protocol and store the intermediate results produced by this 

protocol, hence the name asymmetric architecture. Because the 

SSI is implemented on regular servers, e.g., the Cloud, it is 

considered as honest-but-curious (i.e., it may try to infer any 

information it can but strictly follows the protocol). Considering 

malicious SSI (i.e., which may tamper the protocol with no limit, 

including denial-of-service) is out the scope of this study. 

Queries of interest. We consider that local databases hosted by 

TDSs conform to a common schema which can be queried in 

SQL. For example, power meter data (resp., GPS traces, 
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healthcare records, etc) can be stored in one or several table(s) 

whose schema is defined by the national distribution company 

(resp., an insurance company consortium, the Ministry of Health, 

etc) horizontally partitioned on the local stores. Queries are 

regular SQL queries2, borrowing the SIZE clause from the 

definition of windows in the StreamSQL standard3. For example, 

an energy distribution company could issue the following query 

on customers' smart meters:  

SELECT C.district, AVG(Cons) 

FROM Power P, Consumer C  

WHERE C.accomodation='detached house'  

and C.cid = P.cid 

GROUP BY C.district 

HAVING Count(distinct C.cid) > 100  

SIZE current_date() >= 2014-04-1 

This query computes the mean energy consumption of people 

living in a detached house, grouped by district, for districts where 

over 100 consumers answered the poll. The poll is open until the 

1st of April 2014. 

Global objective. In the example presented above, only the smart 

meter of customers who opt-in for this service will participate in 

the computation. Needless to say that the querier, that is the 

distribution company, must be prevented from seeing the raw data 

of its customers for privacy concerns4. In terms of privacy 

protection, the querying protocol must guarantee that (1) the 

querier gains access only to the final result of authorized queries, 

as in a traditional database systems and (2) intermediate results 

stored in SSI are fully obfuscated. Preventing inferential attacks 

by combining the result of a sequence of authorized queries as in 

statistical databases and privacy-preserving data publishing 

(PPDP) work is orthogonal to this study. In terms of 

performance, the querying protocol must guarantee nation-wide 

scalability. The time to collect data is highly scenario dependent, 

i.e., very fast if TDSs are always connected (e.g., smart metering 

context), probably quite long otherwise (e.g., querying mobile 

PCEHR embedded in TDSs). Therefore the performance 

challenge is not on the overall response time, but rather query 

computation time on data collected, given local TDSs resources. 

3. QUERYING PROTOCOLS 
In [10], three querying protocols have been proposed and 

compared in terms of privacy protection and performance. Our 

querying protocols share common basic mechanisms and mainly 

differ in the way data is obfuscated from the SSI during the 

computation. The computation is split in three phases summarized 

in Figure 2. We first present these three phases and then discuss 

how they are instantiated by each protocol. 

Basic mechanisms. Queries are executed in pull mode. A querier 

posts its query to SSI and TDSs download it at connection time. 

                                                                 
2  We simply do not consider joins between data stored in 

different TDSs in this study. However, internal joins which can 

be executed locally by each TDS are supported. 

3 http://www.streambase.com/developers/docs/latest/streamsql/ 

4 At the 1HZ granularity provided by the French Linky power 

meters, most electrical appliances have a distinctive energy 

signature. It is thus possible to infer the inhabitants' activities 

using power meter data [7]. 

Result tuples are gathered by SSI until the SIZE clause is 

evaluated to true. All data (queries and tuples) exchanged 

between the querier and the TDSs, and between TDSs themselves, 

can be spied by SSI and must therefore be encrypted. Moreover, 

an honest-but-curious SSI can try to conduct frequency-based 

attacks [8], i.e. exploiting prior knowledge about the data 

distribution to infer the plaintext values of ciphertexts. Depending 

on the protocols (see later), various encryption schemes are used 

to prevent these attacks. While SELECT-FROM-WHERE queries 

remain easy to compute in this context, GROUP BY clauses 

require performing set-oriented computations over intermediate 

results sent by TDSs to the SSI. The point is that TDSs usually 

have limited RAM, limited computing resources and limited 

connectivity. It is therefore unrealistic to devise a protocol where 

a single TDS downloads the intermediate results of all 

participants, decrypts them and computes the aggregation alone. 

On the other hand, the SSI cannot help much in the processing 

since (1) it cannot decrypt any intermediate results and (2) it 

cannot gather encrypted data into groups based on the encrypted 

value of the grouping attributes, denoted by AG={Gi}, without 

gaining some knowledge about the data distribution. To solve this 

problem, we suggest the following generic protocol. 

Collection phase: (step 1) the querier posts on the SSI a query Q 

encrypted with a key shared between the querier and the TDSs5, 

its credential C signed by an authority and S the SIZE clause of 

the query in cleartext so that the SSI can evaluate it; (step 2) 

targeted TDSs download Q when they connect; (step 3) each of 

these TDSs decrypts Q, checks C, evaluates the access control 

policy AC associated to the querier and computes the result of the 

WHERE clause on the local data; then each TDS either sends its 

result tuples (step 4), or a dummy tuple if the result is empty or 

TDS’s owner refuses to send his data to answer the query (step 

4’). The result tuples are encrypted with a key shared by the TDSs 

only. The collection phase stops when the SIZE condition has 

been reached. The result of collection phase (Covering Result) is 

actually the result of the query complemented with dummy tuples. 

 

Figure 2. Querying protocols 

                                                                 
5 key management is more deeply explained in [10]. 
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Aggregation phase (this phase is empty for simple SELECT-

FROM-WHERE queries): (step 5) SSI partitions the Covering 

Result with the objective to let several TDSs manage these 

partitions in parallel. The Covering Result being fully encrypted, 

the SSI sees partitions as uninterpreted chunks of bytes; (step 6) 

connected TDSs (may be different from the ones involved in the 

collection phase) download these partitions; (step 7) each of these 

TDS decrypts the partition, eliminates the dummy tuples and 

computes partial aggregations (i.e., aggregates data belonging to 

the same group inside each partition); (step 8) each TDS sends its 

partial aggregations encrypted back to the SSI; depending on the 

protocol (see later) the aggregation phase can be iterative, and 

continues until all tuples belonging to the same group have been 

aggregated (steps 6', 7', 8'); The last iteration produces a Covering 

Result containing a single (encrypted) aggregated tuple per group. 

Filtering phase: (step 9) the SSI partitions the Covering Result 

with the objective to let TDSs either eliminate dummy tuples 

(SELECT-FROM-WHERE queries) or manage the HAVING clause 

(queries with group by and aggregations); (step 10) connected 

TDSs download these partitions; (step 11) depending on the 

query, each of these TDS decrypts the partition and filters out 

dummy tuples or partitions which do not satisfy the HAVING 

clause; (step 12) each TDS returns the final tuples to the SSI, 

encrypted with a key known by the querier; the SSI finally 

concatenates all results and informs the querier that she can 

download the result (step 13). 

This generic protocol is instantiated differently depending on 

which encryption scheme is used in the collection and aggregation 

phases, how the SSI constructs the partitions, and what 

information is revealed to the SSI. Each solution has its own 

strengths and weaknesses and therefore is suitable for a specific 

situation. We have implemented three solutions described below. 

The idea underlying each of this solution is the following. 

Secure aggregation (S_Agg): During the collection phase, result 

tuples are non-deterministically encrypted (i.e., equality is not 

preserved) to prevent any frequency-based attack by SSI. The 

consequence is that SSI cannot get any knowledge about the 

group each tuple belongs to, forcing the aggregation phase to be 

iterative. At each iteration, TDSs download partitions containing a 

sequence of (AG, Aggregate value) pairs and returns to the SSI a 

smaller sequence of (AG, Aggregate value) pairs where values of 

the same group have been aggregated. The SSI gathers these 

partial aggregations to form new partitions, and so on and so forth 

until a single partition is produced. The security of this protocol is 

maximum at the price of an iterative aggregation phase, the 

parallelism of which decreases at each iteration. Termination is 

discussed in [10]. 

Noise-based (Noise): Deterministic encryption is used on the 

grouping attributes AG during the collection phase, so that the SSI 

can assemble tuples belonging to the same groups in the same 

partitions. To prevent frequency-based attacks from the SSI, TDSs 

add some noise (i.e., fake tuples) to the data in order to hide the 

real distribution. Fake tuples are filtered out in a later step of the 

protocol. The performance benefit comes from the fact that the 

contents of partitions are no longer random, thereby accelerating 

convergence and allowing parallelism up to the final iteration. 

However, the information revealed to the SSI is directly linked to 

the amount of noise added in the intermediate results. 

Histogram-based (EDHist): EDHist exploits a prior knowledge 

of the real distribution of AG attributes. The idea is to produce a 

uniform distribution of true data sent to the SSI by grouping them 

into equi-depth histograms, in a way similar to [5]. Hence, the 

SSI can group data in partitions based on histogram identifiers; 

each tuple is marked with the identifier of the histogram its 

grouping attributes AG belongs to; each histogram represents a 

small set of AG domain values and histograms are formed in such 

a way that they all have nearly the same cardinality. The SSI only 

sees a nearly uniform distribution of the tuples and the 

performance penalty incurred either by an iterative aggregation 

phase or by managing fake tuples is avoided. 

We refer the reader interested by a deeper presentation of the 

generic querying protocol and by a complete discussion about the 

performance and information leakage linked to each of its 

instantiation to [10]. 

4. DEMONSTRATION 
In this section, we present our prototype platform and describe 

how we will demonstrate the proposed protocols and their 

scalability and parallelism, through a scenario illustrating a 

distributed architecture where a SSI connects to various TDSs. To 

make the demonstration user-friendly and easy to follow, we use a 

graphical interface (Figure 4) that helps understand the overview 

of the system and how data flows through the system.  

4.1 Demonstration platform 
The Hardware Platform. The demonstration platform is an 

instance of the architecture presented in Figure 1. A PC plays the 

role of the SSI, listens to connections from TDSs, manages the 

communication between TDSs, runs the distributed protocols, 

stores intermediate results, and shows encrypted data and results it 

receives from TDSs. A number of development boards (Figure 3) 

represent the TDSs and host the client application. This 

application can open a connection to the SSI using an Ethernet 

connection via a switch. These boards exhibit hardware 

characteristics representative of secure tokens-like TDSs, 

including those provided by Gemalto (the smartcard world 

leader), one of our industrial partners. This board has the 

following characteristics: the microcontroller is equipped with a 

32 bit RISC CPU clocked at 120 MHz, a crypto-coprocessor 

implementing AES and SHA in hardware (encrypting or 

decrypting a block of 128bits costs 167 cycles), 64 KB of static 

RAM, 1 MB of NOR-Flash and is connected to a 1 GB external 

NAND-Flash and to a smartcard chip hosting the cryptographic 

material. Other devices used to represent the TDSs are tokens 

built by the ZED company (Figure 3) that can connect to a host 

(e.g. a laptop connected to SSI via ethernet) by USB port. The 

ZED tokens have the same characteristics as the boards: they are 

equipped with a crypto coprocessor, run the same client 

application to receive encrypted data from the SSI, decrypt data, 

compute the aggregation, encrypt the result, and return the result 

to the SSI. Because both boards and ZED token are by design 

unobservable, they are connected to the PC through a COM port 

used by our demonstration to trace their behavior. 

The Graphical User Interface (GUI). A GUI is used to control 

the system and show what information each actor can see in our 

system. The GUI is divided into three parts: Set of TDSs, SSI, and 

Querier. The first part shows the (fictional) geographic location of 
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the TDSs. The original cleartext distribution is displayed next to 

it. The real distribution will be compared with the distribution of 

the ciphered data seen by the SSI during each protocol. The 

second part displays the encrypted query that the SSI receives 

from Querier, the encrypted data from the collection phase of each 

protocol and its visualization to compare the difference between 

protocols. The final part consists of a textbox that allows users to 

input any SQL query and a table to display the final cleartext 

result of the query. 

   

Figure 3. TDS development board & ZED token 

 

Figure 4. Demonstration graphical interface 

Dataset. We use a randomly-generated dataset for the demo with 

the objective to change the dataset distribution and analyze the 

impact on each querying protocol. We assume that the result of 

the collection phase is stored in an encrypted table and all boards 

and ZED tokens share the same key to encrypt/decrypt data. The 

cardinality of the encrypted table is one million tuples. 

Algorithms. Our demonstration consists of three proposed 

protocols (i.e., S_Agg, Noise_based, EDhist) presented in Section 

3, plus a Naïve protocol which simply uses deterministic 

encryption without any distribution obfuscation. 

4.2 Demonstration results 
Security. After explaining how the data is collected and stored in 

the encrypted table, we will demonstrate SSI frequency based 

inference attacks on the Naïve protocol. Then we run the three 

proposed protocols, show the difference between their 

distributions, and demonstrate how they prevent frequency-based 

attacks. During the execution of the protocols, we show what 

information (i.e., encrypted data) the SSI can see. 

Performance. We also compare the execution times of these 

protocols to demonstrate their performances and show their 

feasibility (the protocols with a small number of TDSs 

participating in the computation can be executed in few seconds 

for a dataset of one million tuples). At the end of the execution, 

the plaintext result is printed on the TDSs’ side so that audience 

can compare with the SQL result executed on the plaintext table. 

The audience will also be invited to propose aggregate SQL 

queries to be tested. 

Scalability. To show the scalability and parallelism of our system, 

we vary the dataset’s size and the number of TDSs used in our 

protocols. First, we run our protocol with one TDS, then we 

increase the number of TDSs to show that the execution time 

experimentally decreases by approximately the same value, 

demonstrating the scalability of the system. 

Hence, this demonstration will show that decentralized 

architectures can be devised to help individuals better protect their 

privacy without impeding the development of global services of 

great interest. It capitalizes on secure hardware advances 

promising soon the presence of a Trusted Execution Environment 

at low cost in any client device (trackers, smart meters, sensors, 

cell phones and other personal devices). 
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