

SQL/AA: Executing SQL on an Asymmetric Architecture
Quoc-Cuong To

INRIA, France
PRISM, UVSQ, France

Benjamin Nguyen
INRIA, France

PRISM, UVSQ, France

Philippe Pucheral
INRIA, France

PRISM, UVSQ, France

<Fname.Lname>@inria.fr, <Fname.Lname>@prism.uvsq.fr

1. INTRODUCTION
Current applications, from complex sensor systems (e.g.

quantified self) to online e-markets acquire vast quantities of

personal information which usually end-up on central servers.

This information represents an unprecedented potential for user

customized applications and business (e.g., car insurance billing,

carbon tax, traffic decongestion, resource optimization in smart

grids, healthcare surveillance, participatory sensing). However,

the PRISM affair has shown that public opinion is starting to

wonder whether these new services are not bringing us closer to

science fiction dystopias. It has become clear that centralizing and

processing all one’s data on a single server is a major problem

with regards to privacy concerns. Conversely, decentralized

architectures, devised to help individuals keep full control of their

data, complexify global treatments and queries, often impeding

the development of innovative services and applications.

In [3], we proposed a novel architectural approach to this problem

called Trusted Cells. This approach capitalizes on hardware

advances representing a sea change in the acquisition and

protection of personal data. Trusted Cells push the security to the

edges of the network, through personal data servers [2] running

on secure smart phones, set-top boxes, plug computers or secure

portable tokens1 forming a global secure decentralized data

platform. In [10], we proposed a privacy-preserving querying

protocol on this asymmetric architecture (see Section 2) aiming to

reconcile individual's privacy on one side and global benefits for

the community and business perspectives on the other.

This querying protocol makes as few restrictions on the

computation model as possible. We model the information system

as a horizontally partitioned global database formed by the union

of a multitude of distributed local data stores. We consider regular

SQL queries and any traditional access control model. Hence the

context is different and more general than, (1) querying encrypted

outsourced data where restrictions are put on the predicates which

can be evaluated [1, 9], (2) performing privacy-preserving queries

usually restricted to statistical queries matching differential

privacy constraints [4] and (3) performing Secure-Multi-Party

(SMC) query computations which cannot meet both query

generality and scalability objectives [6].

In a nutshell, the contributions presented in [10] are: (1) to

1 http://www.gd-sfs.com/portable-security-token

propose different secure query execution techniques to evaluate

regular SQL queries (including GROUP BY clause) over a set of

distributed trusted personal data stores and (2) to study the range

of applicability of these techniques. The demonstration proposed

here illustrates that such querying techniques can be put in

practice, that is to say on real hardware platforms, at low cost and

with a performance level ensuring a nation-wide scalability

(millions of participants i.e. personal data stores).

2. ARCHITECTURE AND SCENARIOS
Asymmetric Architecture and threat model. As pictured in

Figure 1, the architecture we consider is formed by a large set of

low power personal Trusted Data Servers (TDSs) embedded in

secure devices (e.g., GPS tracking units in cars, smart meters

installed at home, PCEHR - Personally Controlled Electronic

Health Records - embedded in portable smart tokens). Whatever

its form factor, a secure device can be abstracted by (1) a Trusted

Execution Environment hosting and running the code, and (2) a -

potentially untrusted but cryptographically protected - mass

storage area (see Fig. 1). TDSs cannot be tampered, even by the

TDS holder herself, and are thus considered honest.

Figure 1. Trusted Data Servers

Since TDSs have limited resources and are not necessarily always

connected, an external infrastructure, called Supporting Server

Infrastructure (SSI), is required in the architecture to manage the

communications between TDSs, run the distributed query

protocol and store the intermediate results produced by this

protocol, hence the name asymmetric architecture. Because the

SSI is implemented on regular servers, e.g., the Cloud, it is

considered as honest-but-curious (i.e., it may try to infer any

information it can but strictly follows the protocol). Considering

malicious SSI (i.e., which may tamper the protocol with no limit,

including denial-of-service) is out the scope of this study.

Queries of interest. We consider that local databases hosted by

TDSs conform to a common schema which can be queried in

SQL. For example, power meter data (resp., GPS traces,

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very

Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 13

Copyright 2014 VLDB Endowment 2150-8097/14/08

1625

healthcare records, etc) can be stored in one or several table(s)

whose schema is defined by the national distribution company

(resp., an insurance company consortium, the Ministry of Health,

etc) horizontally partitioned on the local stores. Queries are

regular SQL queries2, borrowing the SIZE clause from the

definition of windows in the StreamSQL standard3. For example,

an energy distribution company could issue the following query

on customers' smart meters:

SELECT C.district, AVG(Cons)

FROM Power P, Consumer C

WHERE C.accomodation='detached house'

and C.cid = P.cid

GROUP BY C.district

HAVING Count(distinct C.cid) > 100

SIZE current_date() >= 2014-04-1

This query computes the mean energy consumption of people

living in a detached house, grouped by district, for districts where

over 100 consumers answered the poll. The poll is open until the

1st of April 2014.

Global objective. In the example presented above, only the smart

meter of customers who opt-in for this service will participate in

the computation. Needless to say that the querier, that is the

distribution company, must be prevented from seeing the raw data

of its customers for privacy concerns4. In terms of privacy

protection, the querying protocol must guarantee that (1) the

querier gains access only to the final result of authorized queries,

as in a traditional database systems and (2) intermediate results

stored in SSI are fully obfuscated. Preventing inferential attacks

by combining the result of a sequence of authorized queries as in

statistical databases and privacy-preserving data publishing

(PPDP) work is orthogonal to this study. In terms of

performance, the querying protocol must guarantee nation-wide

scalability. The time to collect data is highly scenario dependent,

i.e., very fast if TDSs are always connected (e.g., smart metering

context), probably quite long otherwise (e.g., querying mobile

PCEHR embedded in TDSs). Therefore the performance

challenge is not on the overall response time, but rather query

computation time on data collected, given local TDSs resources.

3. QUERYING PROTOCOLS
In [10], three querying protocols have been proposed and

compared in terms of privacy protection and performance. Our

querying protocols share common basic mechanisms and mainly

differ in the way data is obfuscated from the SSI during the

computation. The computation is split in three phases summarized

in Figure 2. We first present these three phases and then discuss

how they are instantiated by each protocol.

Basic mechanisms. Queries are executed in pull mode. A querier

posts its query to SSI and TDSs download it at connection time.

2 We simply do not consider joins between data stored in

different TDSs in this study. However, internal joins which can

be executed locally by each TDS are supported.

3 http://www.streambase.com/developers/docs/latest/streamsql/

4 At the 1HZ granularity provided by the French Linky power

meters, most electrical appliances have a distinctive energy

signature. It is thus possible to infer the inhabitants' activities

using power meter data [7].

Result tuples are gathered by SSI until the SIZE clause is

evaluated to true. All data (queries and tuples) exchanged

between the querier and the TDSs, and between TDSs themselves,

can be spied by SSI and must therefore be encrypted. Moreover,

an honest-but-curious SSI can try to conduct frequency-based

attacks [8], i.e. exploiting prior knowledge about the data

distribution to infer the plaintext values of ciphertexts. Depending

on the protocols (see later), various encryption schemes are used

to prevent these attacks. While SELECT-FROM-WHERE queries

remain easy to compute in this context, GROUP BY clauses

require performing set-oriented computations over intermediate

results sent by TDSs to the SSI. The point is that TDSs usually

have limited RAM, limited computing resources and limited

connectivity. It is therefore unrealistic to devise a protocol where

a single TDS downloads the intermediate results of all

participants, decrypts them and computes the aggregation alone.

On the other hand, the SSI cannot help much in the processing

since (1) it cannot decrypt any intermediate results and (2) it

cannot gather encrypted data into groups based on the encrypted

value of the grouping attributes, denoted by AG={Gi}, without

gaining some knowledge about the data distribution. To solve this

problem, we suggest the following generic protocol.

Collection phase: (step 1) the querier posts on the SSI a query Q

encrypted with a key shared between the querier and the TDSs5,

its credential C signed by an authority and S the SIZE clause of

the query in cleartext so that the SSI can evaluate it; (step 2)

targeted TDSs download Q when they connect; (step 3) each of

these TDSs decrypts Q, checks C, evaluates the access control

policy AC associated to the querier and computes the result of the

WHERE clause on the local data; then each TDS either sends its

result tuples (step 4), or a dummy tuple if the result is empty or

TDS’s owner refuses to send his data to answer the query (step

4’). The result tuples are encrypted with a key shared by the TDSs

only. The collection phase stops when the SIZE condition has

been reached. The result of collection phase (Covering Result) is

actually the result of the query complemented with dummy tuples.

Figure 2. Querying protocols

5 key management is more deeply explained in [10].

1626

Aggregation phase (this phase is empty for simple SELECT-

FROM-WHERE queries): (step 5) SSI partitions the Covering

Result with the objective to let several TDSs manage these

partitions in parallel. The Covering Result being fully encrypted,

the SSI sees partitions as uninterpreted chunks of bytes; (step 6)

connected TDSs (may be different from the ones involved in the

collection phase) download these partitions; (step 7) each of these

TDS decrypts the partition, eliminates the dummy tuples and

computes partial aggregations (i.e., aggregates data belonging to

the same group inside each partition); (step 8) each TDS sends its

partial aggregations encrypted back to the SSI; depending on the

protocol (see later) the aggregation phase can be iterative, and

continues until all tuples belonging to the same group have been

aggregated (steps 6', 7', 8'); The last iteration produces a Covering

Result containing a single (encrypted) aggregated tuple per group.

Filtering phase: (step 9) the SSI partitions the Covering Result

with the objective to let TDSs either eliminate dummy tuples

(SELECT-FROM-WHERE queries) or manage the HAVING clause

(queries with group by and aggregations); (step 10) connected

TDSs download these partitions; (step 11) depending on the

query, each of these TDS decrypts the partition and filters out

dummy tuples or partitions which do not satisfy the HAVING

clause; (step 12) each TDS returns the final tuples to the SSI,

encrypted with a key known by the querier; the SSI finally

concatenates all results and informs the querier that she can

download the result (step 13).

This generic protocol is instantiated differently depending on

which encryption scheme is used in the collection and aggregation

phases, how the SSI constructs the partitions, and what

information is revealed to the SSI. Each solution has its own

strengths and weaknesses and therefore is suitable for a specific

situation. We have implemented three solutions described below.

The idea underlying each of this solution is the following.

Secure aggregation (S_Agg): During the collection phase, result

tuples are non-deterministically encrypted (i.e., equality is not

preserved) to prevent any frequency-based attack by SSI. The

consequence is that SSI cannot get any knowledge about the

group each tuple belongs to, forcing the aggregation phase to be

iterative. At each iteration, TDSs download partitions containing a

sequence of (AG, Aggregate value) pairs and returns to the SSI a

smaller sequence of (AG, Aggregate value) pairs where values of

the same group have been aggregated. The SSI gathers these

partial aggregations to form new partitions, and so on and so forth

until a single partition is produced. The security of this protocol is

maximum at the price of an iterative aggregation phase, the

parallelism of which decreases at each iteration. Termination is

discussed in [10].

Noise-based (Noise): Deterministic encryption is used on the

grouping attributes AG during the collection phase, so that the SSI

can assemble tuples belonging to the same groups in the same

partitions. To prevent frequency-based attacks from the SSI, TDSs

add some noise (i.e., fake tuples) to the data in order to hide the

real distribution. Fake tuples are filtered out in a later step of the

protocol. The performance benefit comes from the fact that the

contents of partitions are no longer random, thereby accelerating

convergence and allowing parallelism up to the final iteration.

However, the information revealed to the SSI is directly linked to

the amount of noise added in the intermediate results.

Histogram-based (EDHist): EDHist exploits a prior knowledge

of the real distribution of AG attributes. The idea is to produce a

uniform distribution of true data sent to the SSI by grouping them

into equi-depth histograms, in a way similar to [5]. Hence, the

SSI can group data in partitions based on histogram identifiers;

each tuple is marked with the identifier of the histogram its

grouping attributes AG belongs to; each histogram represents a

small set of AG domain values and histograms are formed in such

a way that they all have nearly the same cardinality. The SSI only

sees a nearly uniform distribution of the tuples and the

performance penalty incurred either by an iterative aggregation

phase or by managing fake tuples is avoided.

We refer the reader interested by a deeper presentation of the

generic querying protocol and by a complete discussion about the

performance and information leakage linked to each of its

instantiation to [10].

4. DEMONSTRATION
In this section, we present our prototype platform and describe

how we will demonstrate the proposed protocols and their

scalability and parallelism, through a scenario illustrating a

distributed architecture where a SSI connects to various TDSs. To

make the demonstration user-friendly and easy to follow, we use a

graphical interface (Figure 4) that helps understand the overview

of the system and how data flows through the system.

4.1 Demonstration platform
The Hardware Platform. The demonstration platform is an

instance of the architecture presented in Figure 1. A PC plays the

role of the SSI, listens to connections from TDSs, manages the

communication between TDSs, runs the distributed protocols,

stores intermediate results, and shows encrypted data and results it

receives from TDSs. A number of development boards (Figure 3)

represent the TDSs and host the client application. This

application can open a connection to the SSI using an Ethernet

connection via a switch. These boards exhibit hardware

characteristics representative of secure tokens-like TDSs,

including those provided by Gemalto (the smartcard world

leader), one of our industrial partners. This board has the

following characteristics: the microcontroller is equipped with a

32 bit RISC CPU clocked at 120 MHz, a crypto-coprocessor

implementing AES and SHA in hardware (encrypting or

decrypting a block of 128bits costs 167 cycles), 64 KB of static

RAM, 1 MB of NOR-Flash and is connected to a 1 GB external

NAND-Flash and to a smartcard chip hosting the cryptographic

material. Other devices used to represent the TDSs are tokens

built by the ZED company (Figure 3) that can connect to a host

(e.g. a laptop connected to SSI via ethernet) by USB port. The

ZED tokens have the same characteristics as the boards: they are

equipped with a crypto coprocessor, run the same client

application to receive encrypted data from the SSI, decrypt data,

compute the aggregation, encrypt the result, and return the result

to the SSI. Because both boards and ZED token are by design

unobservable, they are connected to the PC through a COM port

used by our demonstration to trace their behavior.

The Graphical User Interface (GUI). A GUI is used to control

the system and show what information each actor can see in our

system. The GUI is divided into three parts: Set of TDSs, SSI, and

Querier. The first part shows the (fictional) geographic location of

1627

the TDSs. The original cleartext distribution is displayed next to

it. The real distribution will be compared with the distribution of

the ciphered data seen by the SSI during each protocol. The

second part displays the encrypted query that the SSI receives

from Querier, the encrypted data from the collection phase of each

protocol and its visualization to compare the difference between

protocols. The final part consists of a textbox that allows users to

input any SQL query and a table to display the final cleartext

result of the query.

Figure 3. TDS development board & ZED token

Figure 4. Demonstration graphical interface

Dataset. We use a randomly-generated dataset for the demo with

the objective to change the dataset distribution and analyze the

impact on each querying protocol. We assume that the result of

the collection phase is stored in an encrypted table and all boards

and ZED tokens share the same key to encrypt/decrypt data. The

cardinality of the encrypted table is one million tuples.

Algorithms. Our demonstration consists of three proposed

protocols (i.e., S_Agg, Noise_based, EDhist) presented in Section

3, plus a Naïve protocol which simply uses deterministic

encryption without any distribution obfuscation.

4.2 Demonstration results
Security. After explaining how the data is collected and stored in

the encrypted table, we will demonstrate SSI frequency based

inference attacks on the Naïve protocol. Then we run the three

proposed protocols, show the difference between their

distributions, and demonstrate how they prevent frequency-based

attacks. During the execution of the protocols, we show what

information (i.e., encrypted data) the SSI can see.

Performance. We also compare the execution times of these

protocols to demonstrate their performances and show their

feasibility (the protocols with a small number of TDSs

participating in the computation can be executed in few seconds

for a dataset of one million tuples). At the end of the execution,

the plaintext result is printed on the TDSs’ side so that audience

can compare with the SQL result executed on the plaintext table.

The audience will also be invited to propose aggregate SQL

queries to be tested.

Scalability. To show the scalability and parallelism of our system,

we vary the dataset’s size and the number of TDSs used in our

protocols. First, we run our protocol with one TDS, then we

increase the number of TDSs to show that the execution time

experimentally decreases by approximately the same value,

demonstrating the scalability of the system.

Hence, this demonstration will show that decentralized

architectures can be devised to help individuals better protect their

privacy without impeding the development of global services of

great interest. It capitalizes on secure hardware advances

promising soon the presence of a Trusted Execution Environment

at low cost in any client device (trackers, smart meters, sensors,

cell phones and other personal devices).

5. ACKNOWLEDGMENTS
This work was funded by project ANR-11-INSE-0005

"Keeping your Information Safe and Secure".

6. REFERENCES
[1] Agrawal, R., Kiernan, J., Stikant, R., Xu, Y. Order-

preserving encryption for numeric data. ACM SIGMOD.

Paris, 2004, 563-574.

[2] Allard, T., Anciaux, N., Bouganim, L., Guo, Y., Le Folgoc,

L., Nguyen, B., Pucheral, P., Ray, Ij., Ray, Ik., Yin, S.

Secure Personal Data Servers: a Vision Paper. VLDB.

Singapore, 2010, 25-35.

[3] Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, B., Sandu

Popa, I., Pucheral, P. Trusted Cells: A Sea Change for

Personal Data Services. CIDR. California, 2013.

[4] Fung, B. C. M., Wang, K., Chen, R., Yu, P. S. Privacy-

Preserving Data Publishing: A survey of Recent

Developments. ACM Computing Surveys, 42, 4 (2010).

[5] Hacigumus, H., Iyer, B., Li, C., Mehrotra, S. Executing SQL

over encrypted data in database service provider model.

ACM SIGMOD. Wisconsin, 2002, 216-227.

[6] Kissner, L., Song, D. X. Privacy-Preserving Set Operations.

CRYPTO. California, 2005, 241–257.

[7] Lam, H. A Novel Method to Construct Taxonomy Electrical

Appliances Based on Load Signatures. TCE, 2007.

[8] Liu, H., Wang, H., Chen, Y. Ensuring Data Storage Security

against Frequency-based Attacks in Wireless Networks.

DCOSS. California, 2010, 201-215.

[9] Popa, R. A., Redfield, C. M. S., Zeldovich, N., Balakrishnan,

H. CryptDB: protecting confidentiality with encrypted query

processing. ACM SOSP. Cascais, 2011, 85-100.

[10] To, Q.C., Nguyen, B., Pucheral, P. Privacy-Preserving Query

Execution using a Decentralized Architecture and Tamper

Resistant Hardware. EDBT. Athens, 2014, 487-498.

1628

