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ABSTRACT

We demonstrate our SPIRE technology for supporting interactive
mining of both positive and negative rules at the speed of thought. It
is often misleading to learn only about positive rules, yet extremely
revealing to find strongly supported negative rules. Key techni-
cal contributions of SPIRE including region-wise abstractions of
rules, positive-negative rule relationship analysis, rule redundancy
management and rule visualization supporting novel exploratory
queries will be showcased. The audience can interactively explore
complex rule relationships in a visual manner, such as comparing
negative rules with their positive counterparts, that would otherwise
take prohibitive time. Overall, our SPIRE system provides data
analysts with rich insights into rules and rule relationships while
significantly reducing manual effort and time investment required.

1. INTRODUCTION
1.1 Motivation

Mining of associations and correlations from huge data sets is
critical for applications ranging from market basket analysis [2]
and bioinformatics [11] to intrusion detection and web usage min-
ing [7]. Traditionally, association rule mining algorithms [2, 5, 13]
were developed to find only positive associations between items.
Yet positive rule mining based on the support-confidence frame-
work has been criticized for its misleading results [3]. A negative
association rule (e.g., Coke — — Pepsi), on the other hand, consid-
ers the presence (coke) as well as absence (pepsi) of an item and
mines for negative implications between items, meaning, if cus-
tomers buy coke products, they probably won’t buy pepsi products.

Yet mining for negative association rules, which are considered
complement to positive rule mining, received surprising little atten-
tion due to the challenge in discovering these rules. Computation
for both positive and negative rules requires the examination of an
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exponentially large search space and thus renders their approaches
unfit for interactive analysis. Mining systems with huge response
delays risk losing a user’s attention and, more importantly, are im-
practical in time critical applications.

Besides having unacceptable high response times, a mixture of
positive and negative rules as result poses another challenge. Ana-
lysts have to manually compare and contrast the positive rules with
negative ones to identify genuine rules. For instance, while a pos-
itive rule that has a reasonable high support and confidence could
be considered a significant rule, its opposite rules (negative ones)
that might be more valuable may be hidden in the large ruleset.
Thus they may go unnoticed due to possibly lower support or con-
fidence value. For discovering such opposite rules, the analyst has
to go about a tedious and time-consuming manual search for all of
its opposite rules from the ruleset. The task of analyzing and ex-
ploring the relationship between negative and positive association
rules, as part of sense-making of the mined rules, requires much
manual effort with little or no help from existing systems.

Visually identifying similarities or differences among rules based
on their attributes is yet another desired feature that existing sys-
tems lack. Beyond manual sifting, analysts using existing systems
cannot quickly gain an intuitive insight about mined rules. Yet an
interactive visualization solution fitting both positive and negative
association rules is desired for advanced sense-making of rulesets.

Therefore, an interactive data mining system, capable of not only
answering mining queries for rules efficiently on huge datasets, but
also providing positive-negative rule relationship exploration to-
gether with support for visualizing the result at near real-time speed
is important for decision making applications as motivated by the
example below.

Motivating Example: The study of space shuttle landing con-
trol is important in aeronautics. The analyst may want to study
the association between landing conditions (such as stability, wind,
visibility, etc.) and the choice of manual or automatic control from
the shuttle landing control dataset [4]. A rule miner could be used
to generate rules for determining the conditions under which man-
ual control would be preferable to auto landing of the spacecraft.
An example rule would be R1 = {Stability:stab — Class:manual }
with support = 27% and confidence = 53%. However, its opposite
rule such as R2 = {— Stability:stab — Class:manual} with support
= 6% and confidence = 100% won’t be generated by such a tradi-
tional rule miner. Even though R2 might be detected by a negative
rule miner using an extreme low threshold, the computation might
take hours or possibly days to finish. Plus a mass of insignificant
rules would be generated as well due to low threshold. This con-
flicts with the near real-time responsiveness required for effective
interactive analysis. Even if R2 is generated, the analyst proba-
bly won’t notice either rule R2 or the relation between R1 and R2.
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Figure 1: SPIRE Parameter Space
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Then, the analyst may miss R2 (a rule with 100% confidence) that
is more beneficial than R1. We will demonstrate that our SPIRE
system can instantaneously provide useful insights to the analyst
about the rules relationships between positive and negative rules.

The SPIRE Contributions: In this demonstration, we present
SPIRE (Support for Parameter-driven Interactive Rule Min-
ing and Exploration) system that overcomes the above challenges
by offering real-time responsiveness and enhanced sense-making
of mined rules. Over the past 15 years the XMDV team at WPI,
composed of visualization, HCI and database experts, supported
by a series of six NSF grants, has developed a freeware visual tool
suite XmdvTool [12] to facilitate interactive data exploration. We
currently focus on extending XmdvTool to support interactive pa-
rameter space exploration for mining association rules.

Through the simple yet effective SPIRE interactive visualiza-
tions, the audience will be able to experience the benefits of using
the SPIRE model over using other existing mining technologies [2,
5, 13]. First, for benchmark datasets such as Chess [4] and Mush-
room [4] datasets, SPIRE demonstrates 6 orders of magnitude or
more improvement in response times over the state-of-the-art tech-
niquesl [2, 5, 13]. In particular, our experiments confirm that even
for large datasets (e.g. webdocs [7] ~ 1.5 GB) SPIRE responds
in less than a second while state-of-the-art technologies [2, 5, 13]
tend to take several hours to compute the results. Second, SPIRE
provides a competitive advantage to the analysts by linking posi-
tive rules with their negative rules. Thus, they help the analysts
to make sense of rule relationships and extract the most desirable
associations. Third, SPIRE enables analysts to perform real-time
in-depth investigation of association rules via a rich set of novel ex-
ploratory mining queries. We demonstrate the powerful interactive
capabilities of SPIRE using several real datasets.

2. THE SPIRE FRAMEWORK

As depicted in Fig. 2, the SPIRE framework consists of two
phases (a) offline index construction and (b) online query process-
ing. In the offline stage, to construct SPIRE index, Rule & Regions
Generator generates all rules and construct regions. P-N Relation
Abstractor summarizes positive-negative rule relationships to en-
able users to navigate through the rule relationships. Redundancy
Abstractor captures rule redundancy relation such that, if desired
by the user, non-redundant rules can be efficiently generated upon
demand. Index Constructor creates our SPIRE Index.

The online query processing phase is performed by SPIRE En-
gine. The interactive user requests are supported via the SPIRE
visualizer allowing analysts to interact with three innovative views
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Figure 2: SPIRE Framework

of rules, to submit mining requests and navigate through responses
in a visual manner. The requests are passed to the SPIRE Proces-
sor for efficient execution. The SPIRE Access module offers the
API for accessing the SPIRE index. The index compactly stores
regions along with their association rules, relation abstractions and
redundancy abstractions as explained below.

3. KEY INNOVATIONS OF SPIRE SYSTEM

The SPIRE system encompasses several innovations that form
the foundation for effective exploration of rules as explained below.

3.1 SPIRE Region-Wise Abstractions

The core principle behind our interactive rule exploration frame-
work is the preprocess-once-query-many paradigm [1]. SPIRE ex-
tracts all positive and negative rules satisfying a low primary thresh-
old and then compactly indexes these extracted rules for subse-
quent interactive rule exploration by analysts in an offline phase.
We extend the notion of the PSpace [6, 8, 9] to managing, retriev-
ing and exploring both positive and negative association rules ex-
tracted from a dataset. In the context of rule mining, the parameter
space consists of an n-dimensional space, with each dimension rep-
resenting an interestingness measure. For simplicity, we henceforth
work with a two-dimensional PSpace using support and confidence
as dimensions. A key observation is that even for a huge number
of rules, many rules may map to the same location. In particular,
positive and negative rules tend to share the same set of parameter
settings. In the parameter space example shown in Fig. 1, negative
rules {-Y — XZ}, {Z - -XY}, {Z — X-Y} and posi-
tive rule { XY — Z} co-locate in (0.1,0.25). Thus the generated
rules can be compactly indexed by their location. An important
discovery is that for many realworld datasets several settings on the
parameter space either contain no rules at all or vice versa the same
set of rules may be valid across a large range of diverse parame-
ter settings. Thus, the parameter space can be divided into several
regions, which we call stable regions.

The ruleset valid for any possible parametric location within a
stable region remains unchanged (£1 and £2 in Fig.1), whereas
rulesets valid for two locations not in the same stable region are
guaranteed to be distinct (£2 and £3 in Fig.1). Stable regions form
our coarse granularity abstractions for storing and managing both
positive and negative rules. In an offfine step, we partition the pa-
rameter space into a finite number of non-overlapping stable re-
gions and we index rules by stable regions in our rule base.

3.2 Positive-Negative Rule Relation Analysis
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Rule relationship management empowers analysts’ understand-
ing of the connection between positive and negative rules. A nega-
tive rule is a rule that contains at least the negation of one item (i.e.
a rule for which its antecedent or consequent can be formed by a
conjunction of presence or absence of terms). An example would
be: Wind=tail A Visibility=yes N\ — Error=XL — Landing=manual
control. Each (positive or negative) rule has its opposite rule(s). For
a positive rule, opposite rules are the rules composed of the same
items, but with at least one negative item. For a negative rule, the
opposite rule is the rule composed of same items without any neg-
ative item. E.g., the opposite rules of rule R1 = {X—Y} are R2
={X— =Y}, R3={-X—Y} and R4 = {-X— —Y}. There is a
one-to-many relation between the positive rules and negative rules.
A positive rule R = ((A1:A,) = (C1:Cy,)) has 2™ — 1 negative
rules while a negative rule has only one positive rule. This leads
to the challenge that we must design a corresponding strategy to
maintain and query all opposite rules for every rule.

An important observation that drives our location-aware approach
is that within the set of opposite rules for rule R, many rules share
the same or similar (i.e., same support, different confident or vise
versa) location. By summarizing and indexing the opposite rules
by their locations, SPIRE provides a solution for offline relation-
ship abstraction and efficient online relationship reconstruction.

3.3 Positive and Negative Rule Redundancy

Redundancy relationships among rules, which so far in the liter-
ature have only been defined for positive rules, are used to filter out
redundant rules for presenting succinct query results to the user [1].
In particular, two types of redundancies exist among rules, namely,
simple and strict. For the first time we apply the redundancy rela-
tionship to both positive and negative rules. In Table 1, rule X=Y—
Z simple dominates the rules XY=—Z and X— Z="Y and strict
dominates the rules X=Y and X=-—Z. In general, a rule may be
dominated by several dominating rules and may in turn dominate
several other dominated rules. Moreover, we observe that the prop-
erty of redundancy being a query-time phenomenon from PARAS
model [6] can be naturally applied to this new negative rule context.
Thus, rules cannot be tagged as redundant and discarded apriori.

Rule Support Confidence
X=>Y-7Z | SXUYU~Z)=03 SXUYU=72)/S(X)=0.375
XY=>-7Z | SXUYU-Z)=03 | SXUYU-2Z)/S(XUY)=0.75
X-7Z=Y | SXUYU-72)=03 | SXUYU=Z)/S(XU=7Z)=0.5

X=Y SXUY)=04 S(XUY)/S(X)=0.5
X=>-Z SXU—-7)=0.6 SXU-27)/S(X)=0.75

Table 1: Redundancy among Positive and Negative Rules

We examine how such rule redundancies can be identified. Rule
R = ((A1:An) = (C1:Cyy)) is simple dominated by all rules with
template (((A1:An)-(Av:Aw)) = ((Av:Aw) U (C1:Cyy))), whereas
rule R is strict dominated by all rules with template (((A1:An)-
(At:Aw)) = ((At:Ay) U (C1:Cinte))). Maintaining all dominating
rules for every rule is memory and compute-intensive. Fortunately,
we have discovered that the surprisingly compact representation of
rule redundancies from PARAS model [6] also applies in the con-
text of our negative rule model. It is sufficient to compare each
candidate rule R with only two dominating locations instead of the
large number of dominating rules. Thus, for rule R = ((A1:A,)
= (C1:C,,)) in the output ruleset, while state-of-the-art online re-
dundancy resolution takes O(2™) time, our newly proposed online
redundancy resolution solution takes O(1) time by performing a
O(n) time offline redundancy abstraction step.

3.4 SPIRE Exploratory Queries
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Our SPIRE framework supports a rich variety of analytical queries
broadly classified as (a.) Positive and Negative Rule Mining (RM),
(b.) Positive-Negative Rule Relation Exploration (RE) and (c.)
Rule Cardinality (RC) Queries. Below, we briefly present sample
queries in each category.

Positive and/or Negative Rule Mining (RM) Queries: For a
given dataset D, query Q1 finds the set of rules that satisfy query
parameters (minsupp, minconf). The WITH Rule Included clause
provides users the choice to include Positive, Negative or All rules
into output. The WITH Redundancy Elimination clause gives users
the option to output only non-redundant rules. In case of an over-
whelmingly large number of rules valid for parameter settings (min-
supp.minconf), SPIRE offers analysts the choice of viewing only
the non-redundant rules for the setting. The RM query takes O(N)
time for N rules valid for input (minsupp, minconf).

Ql: OUTPUT RuleSet {R}(minsupp,minconf)

FROM D

HAVING minsupport=minsupp,
WITH Rule Included
WITH Redundancy Elimination

minconfidence=minconf

Positive/Negative/All;
T/F;

Positive-Negative Rule Relation Exploration (RE) Queries:
This new query class explores positive-negative relationships (see
Section 3.2) in the context of association rules. The analyst selects
one rule R; from the rules generated from Q1, Query Q2 obtains
the set of all opposite rules for the chosen rules. The RE query
incurs O(N) time complexity for the N rules returned.

Q2: OUTPUT Opposite Rules R; {R}*
FROM P
HAVING rule = R;;

Rule Cardinality (RC) Queries: For the stable region contain-
ing input (minsupp,minconf), Query Q3 obtains the number of rules
within that region. The query identifies the region and the cardinal-
ity of rules within that region through a constant time O(1) lookup
over the SPIRE index, while also allowing analysts to specify the
preference of redundancy elimination and rule types. The RC query
gives analysts a sense of the population of rules within the region.
03: OUTPUT Rule Cardinality |{R}|(minsupp,minconf)
FROM P
HAVING minsupport=minsupp,
WITH Rule Included
WITH Redundancy Elimination

minconfidence=minconf

Positive/Negative/All;
T/F;

4. SPIRE DEMONSTRATION

Our demonstration illustrates how analysts can interact with our
SPIRE visualizer. Datasets from several domains will be used, in-
cluding the Shuttle Landing Control and the Chess datasets [4].

Region & Rule Exploration: SPIRE provides analysts with an
abstract view of the distribution of rules within the parameter space.
As depicted on the left hand side (LHS) of Fig. 3, the Region view
presents rules in a two dimensional plot of the regions within a
space of support (x-axis) and confidence (y-axis) dimensions. De-
pending on the distribution of rules within the two-dimensional
space, datasets may differ in number, size and density of the sta-
ble regions. One example is shown in Fig. 3 depicting the chess
dataset. This offers an overview of the complete rule space driven
by a parameter-centric perspective. The audience can alternate
among the POSITIVE, NEGATIVE and POSITIVE+NEGATIVE ra-
dio button options. With POSITIVE, the audience will be able to
view only the positive rules within each region. With NEGATIVE,
only the negative rules will be shown. POSITIVE+NEGATIVE is



Figure 3: Positive and Negative Rule Mining

the default setting that displays all rules within each region. The
Rule View (RHS of Fig. 3) lists the rules valid within the selected
region via cross links between the views. When the analyst clicks
on aregion (in black), a list of 30 rules are returned instantaneously
in the Rule View in Fig. 3.

Exploration via Positive-Negative Rule Linkage: To provide
rich insights into the positive-negative rule relationships, we pro-
vide explicit linkage analysis support between positive and negative
rules. When the analyst clicks on a single positive rule, multiple re-
gions containing its opposite rules (negative ones) are highlighted.
The Rule view then will present a comparative display of opposite
rules along with their parameters. In Fig. 4, the analyst clicks on
a rule {Wind:tail — Sign:pp} in the selected region (in black), its
opposite rules are then displayed in the box below. The regions in
which those opposite rules fall are highlighted (in grey). Similarly,
when the analyst selects a negative rule, its opposite rule (positive
one) is shown and the related region is highlighted. Analyst can
then compare and contrast the results or further explore to deter-
mine which rule is genuinely interesting.
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Figure 5: Profile Glyph Representation of Rules

The Profile Glyph View: Our profile glyph view (Fig. 5) helps
analysts to visually comprehend similarities or differences between

Figure 4: Positive-Negative Linkage

the rules being displayed. However, this task is difficult to ac-
complish using only the tabular textual view due to the overload
of text information. Beyond the straightforward tabular view de-
scribed above, we thus designed a novel glyph view for graphically
representing both positive and negative rules to facilitate efficient
visual analysis of rulesets. We adopt and adapt profile glyph rep-
resentation [10] to visualize both positive and negative rules. Fig.
5 depicts a profile glyph representation of rules from the shuttle
landing control dataset. There are 7 slots corresponding to 7 dif-
ferent attributes, where an upward (downward) bar for an attribute
indicates a positive (negative) value for that item and the height
of the bar represents the value of that attribute. The antecedent is
represented in red and the consequent is represented in blue. The
detailed information about the glyph is shown underneath by hover-
ing and clicking the cursor. The selected glyph in Fig. 5 represents
the association rule: {—Sign:pp — Class:auto and Stability:stab}
with support=0.33 and confidence=0.42. Users can further filter
the glyphs using a rich variety of filters, including content filter
(antecedent/consequent) or type filter (positive/negative/all).

Conclusion: In summary, our demonstration will give the au-
dience a rich insight of rules while significantly reducing manual
effort and time investment required.
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