
Pronto: A Software-Defined Networking based System for
Performance Management of Analytical Queries on

Distributed Data Stores

Pengcheng Xiong
NEC Laboratories America
pxiong@nec-labs.com

Hakan Hacıgümüş
NEC Laboratories America
hakan@nec-labs.com

ABSTRACT
Nowadays data analytics applications are accessing more
and more data from distributed data stores, creating large
amount of data traffic on the network. Therefore, distributed
analytic queries are prone to suffer from bad performance
in terms of query execution time when they encounter a
network resource contention, which is quite common in a
shared network. Typical distributed query optimizers do
not have a way to solve this problem because historically
they have been treating the network underneath as a black-
box: they are unable to monitor it, let alone to control it.
However, we are entering a new era of software-defined net-
working (SDN), which provides visibility into and control of
the network’s state for the applications including distributed
database systems. In this demonstration, we present a sys-
tem, called Pronto that leverages the SDN capabilities for
a distributed query processor to achieve performance im-
provement and differentiation for analytical queries. The
system is the real implementation of our recently developed
methods on commercial SDN products. The demonstration
shows the shortcomings of a distributed query optimizer,
which treats the underlying network as a black box, and
the advantages of the SDN-based approach by allowing the
users to selectively explore various relevant and interesting
settings in a distributed query processing environment.

1. INTRODUCTION
To become more efficient, effective, and competitive, en-

terprises are expecting ever increasing benefits from data an-
alytics. To meet this demand, data analytics platforms are
including more data sources, which are both internally and
externally available. Those data sources are typically stored
in distributed data stores [1]. Data analytics applications or
data scientists query the data from these distributed stores
and merge and join the data to generate coherent analysis
reports. With continuously increasing data sizes, querying
and joining data from those distributed sources can generate
a significant amount of data traffic on the network, an issue

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

which is exacerbated if the network is shared by other ap-
plications as well. Therefore, optimizing queries that access
the distributed data stores, and specifically optimizing their
network utilization, is likely to be an important problem to
address in order to deliver improved query performance and
query service differentiation.

However, the interaction between the query optimizer and
the network in prior distributed query optimization work
has been limited in that the optimizer has no direct way
to (1) inquire about the current status and performance
of the network, and (2) control the network with direc-
tives, e.g., making bandwidth reservations, which would im-
prove query performance management. Although some dis-
tributed query optimizers and execution systems try to react
in some fashion to unexpected network conditions [4], the de-
cisions they make are either heuristic-driven or potentially
inaccurate due to a lack of ability to predict the true costs of
remote data access. It is perhaps reasonable to expect that
with greater visibility into the network’s state, a distributed
query optimizer could make more accurate cost estimates
for different query plans and make better informed deci-
sions. Moreover, it is also intuitively clear that, with some
control of the network’s future state, a distributed query
optimizer could request and reserve the network bandwidth
for a specific query plan and thereby improve query per-
formance and query service differentiation. The problem is
that historically the networks that distributed data manage-
ment systems rely on have made both these tasks difficult
or impossible.

Yet, we are entering a new era of software-defined net-
working (SDN) [2, 3]. These networks enable such visibil-
ity into and control of the network’s state for a distributed
query optimizer thereby addressing the key limitations we
mentioned above. By decoupling the system that makes de-
cisions about where traffic is sent (the control plane) from
the underlying systems that forwards traffic to the selected
destination (the data plane), network services can be man-
aged through an abstraction of lower level functionality.
SDN raises the possibility that it is for the first time fea-
sible and practical for distributed query optimizers to care-
fully monitor and even control the network. We have de-
veloped a group of methods that exploit the capabilities
of SDN to optimize the performance of analytical queries
on distributed data stores [6], which analyzes and shows
the opportunities of SDN for distributed query optimiza-
tion. In this demonstration, we present the system, called
Pronto, that is the real implementation of those methods on
commercial SDN products. The demonstration shows the

1661



shortcomings of a distributed query optimizer, which treats
the underlying network as a black box, and the advantages
of the SDN-based approach by allowing the users to selec-
tively explore various relevant and interesting settings in a
distributed query processing environment.

2. PRONTO SYSTEM ARCHITECTURE
Figure 1 shows the overall system architecture. The sys-

tem is mainly composed of a user site, a master site, several
data store sites, and an SDN component, which consists of
an OpenFlow controller (Beacon 1) and OpenFlow switches
(NEC OpenFlow PFS5240). The unit of distribution in the
system is a table and each table is stored at one data store
or can be replicated at more than one data store sites. The
user or the application program submits the query to the
master site for compilation. The master site coordinates
the optimization of all SQL statements. We assume that
only the data store sites store the tables. The master and
the data stores run an off-the-shelf, modified database server
(PostgreSQL, in our case).

Data Store

Site 0

...

User (or an 

application 

program)

OpenFlow controller

SDN

OpenFlow 

Switch
OpenFlow 

secure channel

Network link

Mgmt command

Query

ResponseMaster

Query manager

Network

Info. Manager

(NIM)

Dist. 

Query 

Processor

Data Store

Site 1

Data Store

Site n

Physical node

Comm. link

Figure 1: System architecture

We have a query manager running on the master site,
which consists of a distributed query processor and a net-
work information manager (NIM). The distributed query
processor presents an SQL API to users. It also maintains a
global view of meta-data of all the tables in the databases.
The query manager communicates with the OpenFlow con-
troller to (1) receive network resource usage information,
and update the information in NIM accordingly; and (2)
send the control commands to the OpenFlow controller.

The basic operation of the system is as follows: when the
query manager receives a query, it parses the query, gener-
ates and optimizes a global query plan. The global query
plan is divided into local plans. The local plans are sent
to corresponding data store sites for execution via separate
threads. The query manager orchestrates the necessary data
flows among the data store sites. The query manager also
forwards the final results from the master to the user.

3. SDN, OPENFLOW, PERFORMANCE MAN-
AGEMENT WITH OPENFLOW APIS

In this section we give a brief overview of Software-Defined
Networking (SDN), OpenFlow, and how we utilize the Open-
Flow APIs in our system implementation. SDN is an ap-
proach to networking that decouples the control plane from

1https://openflow.stanford.edu/display/Beacon/Home

the data plane. The control plane is responsible for mak-
ing decisions about where traffic is sent and the data plane
forwards traffic to the selected destination. This separation
allows network administrators and application programs to
manage network services through abstraction of lower level
functionality by using software APIs [3]. OpenFlow is a
standard communication interface among the layers of an
SDN architecture, which can be thought of as an enabler for
SDN [2]. An OpenFlow controller communicates with an
OpenFlow switch. An OpenFlow switch maintains a flow
table, with each entry defining a flow as a certain set of
packets by matching the packet information. More specifi-
cally, APIs in the OpenFlow switch enable us to attach the
new flow to one of the physical transmitter queues behind
each port of the switch.

For example, we show a commercial OpenFlow switch and
three data store sites S0,1,2 are connected to the switch
at port 0,1,2 in Figure 2, respectively. When a new flow
Flow0(from S0 to S2) generated by a user arrives, a “Pack-
etIn” message is sent from the switch to the controller. The
controller looks into the packet information, determines the
egress ports (i.e., 2) and one of the transmission queues (e.g.,
q8) according to the user’s priority and sends a “FlowMod”
message to the switch to modify a switch flow table. The
following packets in the same flow will be sent through the
same transmission queue q8 of the egress ports (i.e., 2) to
site S2. If no user information is specified, a default queue
(q4) will be used.

Data store

site S0

Port 0

Data store

site S1

Port 1

Transmitter

Receiver

Transmitter

Receiver

q8
q7
q6
q5
q4
q3
q2
q1

Transmitter

Receiver

Data store

site S2

Port 2

Receiver ...

OpenFlow controller

Flow0

Flow1

Flow for ON

OpenFlow Switch

OpenFlow secure channel

Figure 2: Inside an OpenFlow switch

From the databases point of view, the abstraction and
the control API allow the database to get available net-
work bandwidth as well as to set network traffic differen-
tiation. (1) The distributed query processor can send an in-
quiry to the NIM to inquire the available bandwidth, which
can be used to calculate the cost of candidate plans. (2)
The distributed query processor can communicate with the
NIM which contacts the OpenFlow controller to leverage
the OpenFlow APIs to pro-actively notify the switch to give
certain priority to or make a reservation for specific flows.
The main mechanism in the OpenFlow switch to implement
these methods is the transmission queues.

The first point is illustrated in the following example. Fig-
ure 3 shows the query execution time (y-axis) of two candi-
date plans (plan 0 and 1) for repeated execution of TPC-H
Q14 in a distributed setting, where the join tables are hosted
in two separate data store sites. (The more specific details
of the experimental setup are not too important for illus-
tration purposes.) The horizontal lines at 600th and 1200th
seconds mark the observed network status changes. We can
see that, as the network status between the sites changes,
the query execution times for specific plans (Plan 0 and 1 in

1662



the figure) are significantly affected. If a distributed query
optimizer treats the network as a fixed cost, black box re-
source and sticks to a fixed plan, which is the case for most
distributed database query optimizers, it may not be able
to choose the plan with the shortest execution time. In our
system the query optimizer communicates with NIM and
chooses the appropriate plan based on the status of the net-
work.

0 200 400 600 800 1000 1200 1400 1600 1800
40

60

80

100

120

140

160

180

Time (s)

Q
ue

ry
 e

xe
cu

tio
n 

tim
e 

(s
)

 

 

1
st

 network
status change → ← 2

nd
 network

status change
Plan 0

Plan 1

Figure 3: TPC-H Q14 different plans’ execution
time in a distributed setting

For the second point, i.e., priority management, when the
queues within the switch are set as priority queues (PQ), the
PQ sends the frames in the order of queue priority. During
transmission, this system gives the higher-priority queues
higher preference over the lower-priority queues. If any port
is set as PQ, then the queues from the highest priority to
the lowest priority are q8,q7,...,q1. When the queues within
the switch are set as Weighted fair queue (WFQ), the switch
sends the amount of frames equivalent to the minimum guar-
anteed bandwidth from each queue to begin with. Under
both settings, the calculation of the available bandwidth for
a certain query plan should be changed accordingly.

4. DEMONSTRATION
This demonstration will show the novel features of Pronto

and also provide an intuitive way of understanding the lim-
itations of existing systems. The demo system implements
the architecture described in Section 2.

4.1 Demonstration Components
Distributed Query Processor (DQP): DQP imple-

ments the methods we referred to in Section 3. We will
demonstrate DQP’s capabilities to 1) adaptively choose an
optimal distributed query plan based on the network status
and 2) deliver differentiated query performance management
through prioritization.

The DQP uses a model, which estimates the total response
time for a query. This estimate is used in the optimizer’s cost
model. We use the framework proposed in [5] to estimate
the cost for a local operator and we propose our own method
to estimate the cost for a network operator. More details
can be found in [6].

Command Line Interface (CLI): The system includes
a CLI that allows the users to interact with the system.
The valid CLI commands are similar to the ones in other
commercial database products where the users can interact
with and query the database optimizer (such as the explain
facility).

Traffic Emulator: The system includes a traffic emu-
lator that allows the users to create a network traffic with
very specific characteristics to emulate realistic situations
in the actual system. The traffic emulator is implemented
and added to the demo system to give the users the abil-
ity to experiment with the system and explore interesting
situations, which could emerge in the real life situations.

Naturally when our system is running in real deployment it
directly works with the actual traffic conditions created by
actual applications.

4.2 Demo Scenarios
We demonstrate the following 4 scenarios: 1) We show

how the users can see alternative distributed query execu-
tion plans generated by the system. 2) We show how the sys-
tem adaptively chooses a dynamic plan based on the avail-
able network bandwidth monitored by SDN. 3) We show
how differentiated query execution can be achieved when
the user gives a specific priority to a specific workload and
when the user reserves a specific bandwidth capacity for a
specific workload through SDN. 4) We also show how the
user can manipulate the system conditions to generate real
life situations and explore the previous scenarios under vary-
ing conditions. In the following illustrations we use TPC-H
Q14 as an example. The data tables that include the neces-
sary TPC-H benchmark data are distributed over the data
stores in the system.

4.2.1 Query Plan Generation and Reporting
Figure 4 shows how the user can query the optimizer to

show the alternative plans generated for a specific query.
Each plan is a tree such that each node of the tree is a
physical operator. Moreover, the site that will execute the
operator is labeled next to the operator. The screen shows 3
alternative plans (plan 0,1, and 2). As an example, plan 0

performs the final aggregation in the query in server jedi22
whereas plan 1 performs the aggregation in server jedi21.
This function allows the users to understand, analyze, and
debug the specific details of complex distributed query exe-
cution plans.

Figure 4: Query Plan List

4.2.2 Network-Aware Query Execution
This scenario shows the two ways to execute a query, i.e.,

with a default query optimizer (i.e., network-unaware) or
with a query optimizer supported by SDN (network-aware).
The expected behavior of the network-aware optimizer is
similar to the example we gave in Section 3, where the opti-
mal plan dynamically changes based on the network status.

The network-unaware query optimizer. When the
user executes a query with a default query optimizer, the
user just simply types in the query without any parameter
and the results are returned with total runtime.

The SDN-enabled (network-aware) query optimizer.
When the user executes a query with our SDN-enabled query

1663



optimizer, the optimizer uses the network bandwidth mon-
itoring and control knobs provided by SDN to adaptively
choose a plan. This option is enabled by “-d” parameter as
shown in Figure 5. The query optimizer supported by SDN
obtains real-time network information from NIM and ranks
all the plans according to their estimated runtime. The op-
timization time is also calculated. The best plan is chosen
according to the cost model and executed. The final results
are returned with total runtime.

Figure 5: Execute query with a dynamic plan

Investigation Option. Moreover, we also provide a
function for the user to investigate all the candidate plans.
By using “-f” parameter the user can force the optimizer to
use a specific plan (the list of the plan can be obtained as
described in Scenario 1 above.). For example, the user spec-
ifies plan 0 for Q14 to be executed in Figure 6. This is a very
useful function for the users to investigate the performance
of specific plans.

Figure 6: Execute query with a specified plan

4.2.3 Differentiated Query Execution.
Here we first show how the user can set a higher priority

for a specific workload. For example, the user can configure
the OpenFlow switch in PQ mode and specify the highest
priority “q8” for the distributed data store traffic as shown
in Figure 7. In this case, the dynamic query optimizer will
ignore the contention traffic with lower priorities when it
dynamically chooses the best plan.

Figure 7: Specify the priority for a workload

Furthermore, the user can “reserve” a certain amount of
network bandwidth for a specific workload. For example,
the user can configure the OpenFlow switch in WFQ mode
and make a reservation of 600Mbps for a flow from a server

jedi21 to another server jedi22 as shown in Figure 8. In
this case, the dynamic query optimizer will take the band-
width reservation into consideration when it dynamically
chooses the best plan.

Figure 8: Make reservation for a workload

4.2.4 Contention traffic manipulation
We build a tool to monitor the real-time flow rates and to

manipulate contention traffic as shown in Figures 9 and 10,
respectively.

Figure 9: Real-time flow rates

Figure 10: Generate contention traffic

For example, we can observe that the real-time rate of a
flow from port 24 (“jedi24”) to port 27 (“jedi27”) on queue
4 is around 33MBps from the first line in Figure 9. As an-
other example, we can generate a contention network traf-
fic at the rate of 900Mbps from server “jedi21” to server
“jedi22” as shown in Figure 10. In this case, we can com-
pare the query execution times with the default (network-
unaware) query optimizer and the dynamic (network-aware)
query optimizer supported by SDN. We would see that the
default query optimizer chooses the query Plan 0, which ex-
hibits a quite long query execution time due to the network
contention whereas the dynamic query optimizer adaptively
chooses Plan 1, which has a much shorter execution time
than Plan 0, by leveraging the network status information
from SDN.

5. REFERENCES
[1] D. Kossmann. The state of the art in distributed query

processing. ACM Comput. Surv., 32(4), Dec. 2000.
[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner.
Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 2008.

[3] Open Networking Foundation. Software-Defined Networking:
The New Norm for Networks. 2013.

[4] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query
scrambling for initial delays. In Proc. of SIGMOD, 1998.

[5] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacıgümüş, and
J. F. Naughton. Predicting query execution time: Are
optimizer cost models really unusable? In Proc. of ICDE,
2013.

[6] P. Xiong, H. Hacıgümüş, and J. F. Naughton. A
software-defined networking based approach for performance
management of analytical queries on distributed data stores.
In Proc. of SIGMOD, 2014.

1664


	Introduction
	Pronto System Architecture
	SDN, OpenFlow, performance management with OpenFlow APIs
	Demonstration
	Demonstration Components
	Demo Scenarios
	Query Plan Generation and Reporting
	Network-Aware Query Execution
	Differentiated Query Execution.
	Contention traffic manipulation


	References

