
Getting Your Big Data Priorities Straight: A Demonstration
of Priority-based QoS using Social-network-driven Stock

Recommendation

Rui Zhang, Reshu Jain, Prasenjit Sarkar and Lukas Rupprecht*,1
IBM Research - Almaden, *Imperial College London

{ruiz, jainre, prsarkar}@us.ibm.com, lr12@imperial.ac.uk

ABSTRACT
As we come to terms with various big data challenges, one
vital issue remains largely untouched. That is the opti-
mal multiplexing and prioritization of different big data ap-
plications sharing the same underlying infrastructure, for
example, a public cloud platform. Given these demand-
ing applications and the necessary practice to avoid over-
provisioning, resource contention between applications is in-
evitable. Priority must be given to important applications
(or sub workloads in an application) in these circumstances.

This demo highlights the compelling impact prioritization
could make, using an example application that recommends
promising combinations of stocks to purchase based on rele-
vant Twitter sentiment. The application consists of a batch
job and an interactive query, ran simultaneously. Our un-
derlying solution provides a unique capability to identify
and differentiate application workloads throughout a com-
plex big data platform. Its current implementation is based
on Apache Hadoop and the IBM GPFS distributed stor-
age system. The demo showcases the superior interactive
query performance achievable by prioritizing its workloads
and thereby avoiding I/O bandwidth contention. The query
time is 3.6× better compared to no prioritization. Such a
performance is within 0.3% of that of an idealistic system
where the query runs without contention. The demo is con-
ducted on around 3 months of Twitter data, pertinent to
the S & P 100 index, with about 4 × 1012 potential stock
combinations considered.

1. INTRODUCTION
Despite increasing focus on big data technologies, little

has been done with regard to providing Quality of Service
(QoS) guarantees to applications and users. Indeed the com-
ment “One of the next frontiers of Hadoop performance is
QoS (Quality of Service) [. . .].” [11] remained a prominent

1Work done during internship at IBM Research.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

message in Hadoop forums as late as 2013. This demo ad-
dresses one fundamental QoS aspect, the capability to pri-
oritize applications when resources are stretched.

Big data applications are often hosted in an environment
shared with other applications in order to minimize infras-
tructure, data duplication and management costs. It is
without surprise that major public cloud providers such as
Amazon provide MapReduce capabilities (EMR) and shared
storage (S3) to support big data applications. However,
this sharing creates complex resource interference and con-
tention, making it difficult to provide performance guaran-
tees for high priority applications or more important sub
workloads within a single application. This is especially
problematic for near real-time decision making applications
such as stock purchases or personalized recommendations.
These applications require fast responses to users, which can
not be achieved without intelligent prioritizing throughout
the environment due to resource contention.

The aforementioned QoS capability entails addressing two
problems: classification and protection. Any big data appli-
cation has to be assigned a class and identified consistently
in a multi-tier, distributed big data environment. Protection
is then provided to the properly identified workloads, using
actuators within different resources such as CPU, memory,
cache, storage and/or network. Big data applications typi-
cally cross many distributed software and hardware compo-
nents. A typical big data stack may consist of a query engine
such as Hive [6], a multi-node parallel computing platform
such as Hadoop [9], a multi-node distributed storage system
such as GPFS [5] and other resources, e.g., the network.

Additionally, a shared infrastructure such as a public or
private cloud will often not only host a single big data sys-
tem, but rather multiple, different systems [2]. These sys-
tems might have individual components on higher layers but
are built on top of shared components. Consider a cluster
setup as depicted in Figure 1. The distributed file system
is shared by the processing engines while the engines them-
selves are shared by higher level libraries. For example, as
shown in Figure 1 Hive and Mahout (a machine learning li-
brary for Hadoop) [10] share the Hadoop instance. Ensuring
QoS across these components is difficult as top-level com-
ponents are independent of each other. If prioritization only
happens at those layers, the enforced priorities will get lost
as soon as the shared layers are reached because there is no
common notion of priorities.

To ensure QoS for all hosted applications across all sys-
tems, a coordinated end-to-end solution for classification
and protection must be in place throughout the entire en-

1665

Distributed File System
(e.g. GPFS)

MapReduce Engine
(e.g. Hadoop)

Parallel Processing Engine
(e.g. Spark)

SQL Engine
(e.g. Hive)

ML Library/
Long running analysis

(e.g. Mahout)

SQL Engine
(e.g. Shark)

Figure 1: Multiple big data systems running in a
shared environment.

vironment. If application priorities are passed from layer to
layer, shared layers can act accordingly and maintain QoS
policies. Consider the example stack from Figure 1 with
Shark [8] queries having higher priorities than Hive queries
having higher priorities than Mahout jobs. Mahout is usu-
ally used for longer-running analysis while Hive and espe-
cially Shark are designed for interactive exploration. With
an end-to-end QoS mechanism, Hive and Mahout jobs are
prioritized at the Hadoop and file system layer while Shark
and Hive queries are prioritized at the file system layer. This
guarantees the desired performance for the different systems.

Existing work falls short of guaranteeing the same. Firstly,
many big data infrastructure components are emerging sys-
tems still being stabilized. QoS capabilities are lacking or
even non-existent. For example, the community behind
Hadoop only recently started to plan for QoS support [11].
Secondly, legacy QoS solutions do not readily apply to these
new infrastructures. There are various approaches regard-
ing legacy systems concerning job scheduling, data storage,
networking and some limited combinations of these [1, 3,
7]. Effective they may be within their confines, they lack
the end-to-end correlation needed for big data applications.
For instance, a storage QoS solution may be able to provide
QoS to any I/Os in data storage. However, one must know
which I/Os belong to which jobs, applications and/or users,
for the right I/O control to be performed. A storage QoS
solution alone can not provide that correlation.

This paper demonstrates a solution that bridges the very
gaps above. Our research contributions are as follows:

• We provide the design of an end-to-end QoS solution
for prioritizing big data applications,

• we present a specific implementation based on an in-
frastructure consisting of the commercial grade big
data components Hive, Hadoop and IBM GPFS,

• we demonstrate our approach using a big data ap-
plication that makes stock purchase recommendations
based on analyzing around 3 months of live Twitter
data. We show how prioritizing the interactive recom-
mendation query over periodic twitter sentiment anal-
ysis can ensure timely decision making, despite intense
I/O bandwidth contention in distributed storage.

2. OVERALL DESIGN
We consider running an application as the equivalent of

executing tasks on different resources. A task can be fetch-
ing cached query results, executing a mapper/reducer, issu-
ing I/O requests to storage etc.

Launch hadoop job with -Dqos.priority=n

JobTracker

Daemon

The job qos.priority tag is passed through
hadoop contexts to all task trackers

TaskTracker

Daemon

TaskTracker

Daemon

TaskTracker

Daemon...

Launch mappers and reducers with ionice tag

GPFS

Daemon

Figure 2: A prototype for Hadoop over GPFS

The key principle of our solution is end-to-end QoS (e.g.
via application prioritization). The framework we put for-
ward consists of inter-communicating daemons that are care-
fully planted into each type of required resource. Each dae-
mon is a long-running program with two missions: classify-
ing tasks and prioritizing tasks.

Classification involves assigning a priority and/or other
QoS information to a task on a resource and forwarding the
classification to other daemons downstream. For instance, a
daemon in Hadoop tags a set of Hadoop MapReduce tasks as
important. It then forwards that tag to the daemon in stor-
age for further classification. It is through such forwarding
that consistent classification is achieved across all the shared
resources.

Prioritizing tasks entails favoring them in resource sharing
according to their classification. This could mean placing a
job at the front of the Hadoop scheduling queue, giving more
CPU cycles to a MapReduce task, higher I/O bandwidth to
an I/O stream, and/or setting the QoS fields in TCP/IP
accordingly.

3. PROTOTYPE IMPLEMENTATION
Figure 2 illustrates our prototype for a big data platform

comprising Hadoop and IBM GPFS. Note that GPFS re-
places HDFS as the distributed storage behind MapReduce.
The users/administrators specify the priority of an appli-
cation via the Hadoop command line or configuration files.
The goal of the QoS infrastructure is to pass the priority
information from the job submission front-end through to
the storage back-end. The MapReduce model employed by
Hadoop spawns a large number of parallel processes known
as mappers and reducers for each single job. Hence one key
challenge in the implementation is to identify all these pro-
cesses, to which we pass on the priority information, as the
I/Os from these processes also have to be properly tagged.

As illustrated in the figure, the prototype features a dae-
mon for the job tracker, a daemon for each task tracker (per
node) and a daemon for the distributed storage system. In
a nutshell, each type of daemon repeatedly receives priority

1666

information from upstream (another daemon or the user)
and passes it downstream.

The job tracker daemon extracts the job priority infor-
mation from the job submission interface and subsequently
inserts it as a field into a Hadoop JobContext object. Most
of this context (including the priority information) is copied
to each task tracker.

Each task tracker daemon extracts the priority informa-
tion and maps the priority into an I/O tag ranging from 1
to 7. A Hadoop task tracker launches all the mappers and
reducers for the application on a node. The daemon inter-
cepts the launch command and prefixes it with a ionice

command and the I/O tag using this template: ionice -n

io tag java Mapper/Reducer.class. The Linux/Unix OS
automatically inserts the ionice tag into a kernel structure
for each I/O.

The storage daemon retrieves the ionice tag from the ker-
nel structure for each I/O. It then prioritizes important
applications by rate-liming any less important I/O stream
whose aggregate I/O rates exceed its allocated bandwidth.

4. DEMONSTRATION
In this section we introduce the example application which

we use in our demonstration in detail, present the demo
design, and provide some preliminary evaluation results.

4.1 Application
Investors have overly abundant (confusing) choices of what

stocks to purchase. Effective indicators to help narrow-
ing down their choices quickly are thus tremendously valu-
able. It has been demonstrated that Twitter sentiments are
strong indicators of pending stock market movement (see
Figure 3) [4]. Herein, we base our demo on an application
that leverages this very correlation. The application recom-
mends the most promising stock portfolios (i.e. one or more
stocks), whose corresponding tweets have the most positive
sentiment. Positive tweets can include those praising the
company’s strategies or performance results, and predicting
a rise in its stock price.

As illustrated in Figure 4, the demo application conducts
the following tasks: it crawls tweets related to companies in
the S & P 100 index (WL1), it periodically runs a Hadoop
job to compute an aggregate sentiment score for each pos-
sible portfolio of up to 10 stocks, some 4 × 1012 potential
portfolios (WL2), and, using Hive, it ranks the stock port-
folios to recommend those whose latest (e.g. last hour) sen-
timent scores are the highest or within a user-specified range
(WL3). WL2 and WL3 are the workloads of particular in-
terest to our demo and we elaborate them further:

• The Sentiment Compute Batch Workload (WL2): A
periodic, long-running batch workload computing the
latest hourly sentiment for each portfolio. Each tweet
is labeled positive (1), neutral (0) or negative (-1) us-
ing a trained Bayesian classifier. Each portfolio (e.g.
$MSFT + $GOOG + $IBM + $YHOO) gets a sum-
mary sentiment [−1, 1] based on the sentiment of its
individual tweets.

• The Stock Portfolio Query Workload (WL3): Consists
of a Hive query for the top k most promising portfolios
and recommending these to the user. The query is:

SELECT * FROM portfolios ORDER BY sentiment

LIMIT k

Figure 3: Correlation between twitter sentiment
and the Doug index

Web GUI

QoS Control

WL2: Sentiment Analysis
(hadoop)

WL3: Query
(hive) WL1: crawling

Query
Results

Twitter

Stock
Tweets

Stock Portfolio
Sentiment

toggles

differentiates
between

Figure 4: The demo architecture

Among other resources, these two workloads most emi-
nently compete for storage bandwidth as they both rely on
the sentiment score table. As the Hive query is needed for
fast decision making, this is the workload we aim to priori-
tize and protect during I/O bandwidth contention.

4.2 Goals and GUI Design
The demo showcases: (1) The high impact of QoS control

(i.e. workload prioritization) on the performance of the in-
teractive workload and (2) live “behind-the-scene” system
activity when workload prioritization takes place.

The demo GUI is a single PHP page featuring 3 scenario
planes with 2 side-by-side windows in each plane. The first
window of a plane (see Figure 5(a)) is capable of launch-
ing jobs and displaying the results while the second win-
dow shows the I/O activity of the different workloads (see
Figure 5(b)). The 3 scenario planes allow for a clear single-
screen comparison view that highlights the QoS impact from
a macro (query completion time) and micro (I/O activity)
perspective. Via the side-by-side windows, we can observe
the interaction of I/Os from the two workloads for the dif-
ferent scenarios and the effect of prioritizing bandwidth al-
location for the query.

4.3 Demo in Action
The demo resides in a small cluster with Apache Hadoop

1.1.2 and IBM GPFS 3.6. Each node is equipped with 8 Intel
Xeon(R) 2.5 GHz CPUs, 8 GB of memory, and a 250 GB
hard disk and runs RedHat Linux.

1667

(a) The job launching and result window (b) The I/O activity window

Figure 5: Screenshots of the demo GUI

Scenario Query completion time
Showpiece Scenario, QoS off 126.13 s
Showpiece Scenario, QoS on 34.25 s
Baseline Scenario 34.17 s

Table 1: Query completion times for the three dif-
ferent scenarios

We highlight the impact of prioritizing the query work-
load over the sentiment batch workload using three scenar-
ios for comparison: (a) the showpiece scenario in which both
workloads are running and QoS is enabled, (b) the baseline
scenario with both workloads but without QoS, and (c) the
optimal upper-bound scenario where the query workload is
running alone.

Assume that a user wants to retrieve the 10 portfolios
comprising 4 stocks with the highest sentiment score. The si-
multaneously running batch and interactive workloads cause
I/O bandwidth contention. As shown in Table 1, this causes
a very high query response time in the case of no QoS. When
QoS is enabled, the query completion time is reduced signif-
icantly by 3.6×, due to the difference prioritizing makes in
alleviating the negative impact of contention. This comple-
tion time is also within 0.3% of the optimal scenario where
the query is running alone on the system and has dedicated
access to all resources.

Figure 5(b) demonstrates the reason for the above obser-
vations. When the Hive query is launched to query the sen-
timents for the last full hour, the long-running batch work-
load is often already running and computing the new senti-
ments. As shown, the batch workload is heavily consuming
I/O bandwidth. The drop of I/O consumption marks the
effect of QoS, when the Hadoop job for the query is started.
The drop happens before any actual query processing in or-
der to prioritize the startup phase and later I/O processing
of the query. Once startup is complete, the query is pro-
cessed and enjoys as much bandwidth as it needs, while the
batch I/Os are limited.

Note that the improvement factor of QoS over the scenario
without QoS is somewhat constrained by the rather limited
memory and CPU cores the current demo cluster has. The

lack of memory and CPU cores restricts the number of paral-
lel MapReduce tasks. We are migrating the demo to a larger
environment to support more parallel tasks which will cause
more I/O contention and longer query times in the non-QoS
case. We then expect to see even higher improvement factors
when turning on our QoS mechanism.

5. REFERENCES
[1] Y. Georgiou. Contributions for Resource and Job

Management in High Performance Computing. PhD
thesis, LIG, Grenoble-France, 2010.

[2] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[3] J. Lu, J. Wu, C. Wu, Y. Li, X. Xu, and S. Deng. Qos
control method of cloud storage system based on
differentiated service, Aug. 31 2011. CN Patent App.
CN 201,110,116,396.

[4] C. Oh and O. Sheng. Investigating predictive power of
stock micro blog sentiment in forecasting future stock
price directional movement. In ICIS, 2011.

[5] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk
file system for large computing clusters. In FAST,
2002.

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
VLDB Endowment, 2(2), 2009.

[7] C. Wan, C. Wang, Y. Yuan, H. Wang, and X. Song.
Utility-driven share scheduling algorithm in hadoop.
In Advances in Neural Networks, volume 7952 of
LNCS. Springer Berlin Heidelberg, 2013.

[8] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: Sql and rich
analytics at scale. In SIGMOD, 2013.

[9] Apache Hadoop. http://hadoop.apache.org/.

[10] Apache Mahout. http://mahout.apache.org/.

[11] RPC Support for QoS. https:
//issues.apache.org/jira/browse/HADOOP-9194.

1668

