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ABSTRACT
Differential privacy has recently emerged in private statisti-
cal data release as one of the strongest privacy guarantees.
Releasing synthetic data that mimic original data with
differential privacy provides a promising way for privacy
preserving data sharing and analytics while providing a
rigorous privacy guarantee. However, to this date there is no
open-source tools that allow users to generate differentially
private synthetic data, in particular, for high dimensional
and large domain data. Most of the existing techniques that
generate differentially private histograms or synthetic data
only work well for single dimensional or low-dimensional
histograms. They become problematic for high dimensional
and large domain data due to increased perturbation error
and computation complexity. We propose DPSynthesiz-
er, a toolkit for differentially private data synthesization.
The core of DPSynthesizer is DPCopula designed for high-
dimensional and large-domain data. DPCopula computes a
differentially private copula function from which synthetic
data can be sampled. Copula functions are used to describe
the dependence between multivariate random vectors and
allow us to build the multivariate joint distribution using
one-dimensional marginal distributions. DPSynthesizer also
implements a set of state-of-the-art methods for building d-
ifferentially private histograms, suitable for low-dimensional
data, from which synthetic data can be generated. We will
demonstrate the system using DPCopula as well as other
methods with various data sets and show the feasibility,
utility, and efficiency of various methods.

1. INTRODUCTION
Privacy preserving data analysis and publishing [2] has

received considerable attention in recent years as a promis-
ing approach for sharing information while preserving data
privacy. Differential privacy [5] has recently emerged as
one of the strongest privacy guarantees for statistical data
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release. A statistical aggregation or computation is DP1

if the outcome is formally indistinguishable when run with
and without any particular record in the dataset. The level
of indistinguishability is quantified by a privacy parameter
ε. A common mechanism to achieve differential privacy is
the Laplace mechanism [6] that injects calibrated noise to a
statistical measure determined by the privacy parameter ε,
and the sensitivity of the statistical measure influenced by
the inclusion and exclusion of a single record in the dataset.
A lower privacy parameter requires larger noise to be added
and provides a higher level of privacy.

There are two main settings for differentially private data
sharing. The first one is interactive setting where data
users send queries to the original database through an
access mechanism which returns a perturbed query answer
if the allowed privacy budget on the original dataset is not
exhausted based on the composibility of differential privacy
[10]. This can be challenging in practice especially when
multiple users need to pose a large number of queries for
exploratory analysis. The second one is non-interactive
setting where a statistical summary such as marginal or
multi-dimensional histograms or a set of synthetic data that
mimic the original data is publicly released in place of the
original database with a given level of differential privacy
and users can arbitrarily access the released data for query
and analysis purposes. For example, Figure 1 shows an
example dataset and a one-dimensional marginal histogram
for the attribute age.
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Figure 1: Dataset vs. histogram illustration

Releasing synthetic data that mimic original data with
differential privacy provides a promising way for privacy
preserving data sharing and analytics while providing a
rigorous privacy guarantee. However, to this date there is no
open-source tools that allow users to generate differentially
private synthetic data, in particular, for high dimensional
and large domain data. Most of the existing techniques that

1we shorten differentially private as DP
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Figure 2: Synthetic data generation

generate differentially private histograms or synthetic data
only work well for single dimensional or low-dimensional
histograms. They become problematic for high dimensional
and large domain data due to increased perturbation error
and computation complexity. The main approaches of exist-
ing work can be illustrated by Figure 2(a) and classified into
two categories: 1) parametric methods that fit the original
data to a multivariate distribution and makes inferences
about the parameters of the distribution (e.g. [9]). 2) non-
parametric methods that learn empirical distributions from
the data through histograms (e.g. [7, 12, 3, 4]). Most of
these work well for single dimensional or low-order data,
but become problematic for data with high dimensions and
large attribute domains. This is due to the facts that:
1) The underlying distribution of the data may be unknown
in many cases or different from the assumed distribution,
especially for data with arbitrary margins and high dimen-
sions, leading the synthetic data generated by the paramet-
ric methods not useful;
2) The high dimensions and large attribute domains result
in a large number of histogram bins that may have skewed
distributions or extremely low counts, leading to significant
perturbation or estimation errors in the non-parametric
histogram methods;
3) The large domain space

∏m
i=1 |Ai|

2 (i.e. the number of
histogram bins) incurs a high computation complexity both
in time and space. For DP histogram methods that use
the original histogram as inputs, it is infeasible to read all
histogram bins into memory simultaneously due to memory
constraints, and external algorithms need to be considered.

In this demo, we present DPSynthesizer, a toolkit for dif-
ferentially private data synthesization. The core of DPSyn-
thesizer is DPCopula, a novel differentially private data syn-
thesization method for high dimensional and large domain
data using copula functions. The system implements and
extends our recent work [8] as well as several state-of-the-
art histogram methods and presents several contributions.

First, DPSynthesizer implements DPCopula [8] for gener-
ating high-dimensional and large domain DP synthetic data
using copula functions. Copula functions are a family of

2
We define

∏m
i=1 |Ai| as the domain space of all dimensions, where

|Ai| is the domain size of the ith attribute and m is the number of
attributes

distribution functions representing the dependence struc-
ture implicit in a multivariate random vector. Intuitively,
any high-dimensional data can be modeled as two part-
s: 1) marginal distributions of each individual dimension,
and 2) the dependence among the dimensions. Copula
functions have been shown to be effective for modeling
high-dimensional joint distributions based on continuous
marginal distributions. The key innovation of DPCopula is
that it utilizes semi-parametric copula functions to separate-
ly consider the marginal histograms (non-parametric) for
each single dimension and the joint dependence (parametric)
among all dimensions, as shown in figure 2(b). One of the
advantage of DPCopula is that it can utilize any state-of-
the-art histogram method for building marginal DP his-
tograms. In addition, DPCopula allows direct sampling for
the synthetic data from the generated DP joint distribution.
Although existing histogram techniques can be used to
generate DP synthetic data, post-processing is required
to enforce non-negative histogram counts or consistencies
between counts resulting in either degraded accuracy or high
computation complexity.

Second, DPSynthesizer includes a set of representative
histogram methods, which can be used as a component
of DPCopula for generating marginal histograms, or can
be used as independent methods for generating histograms
and synthetic data for low-dimensional datasets. We will
demonstrate the system using various real datasets and show
the feasibility, utility, and efficiency of various methods.

Finally, DPSynthesizer provides an easy-to-use web-based
interface. Through the interface, users can upload their own
datasets, configure parameter settings, visualize original
and generated synthetic data, examine utility results, and
compare different methods.

2. SYSTEM OVERVIEW
In this section, we present DPCopula, the core of DP-

Synthesizer, and its key steps. As seen in Figure 1(a),
the input data is a relational data table while the output
is a differentially private synthetic data table. DPCopula
consists of several key steps: 1) estimate marginal empirical
distributions via private marginal histograms, 2) estimate
private dependence using gaussian copula function and the
original data, 3) sample synthetic data from the marginal
distributions and copula function. Below we describe each
step with some technical details.

2.1 Computing DP marginal histograms
As a first step, we compute DP marginal histograms for

each attribute. Several state-of-the-art techniques have been
proposed for computing one-dimensional DP histograms
effectively and efficiently, such as PSD [3], Privelet [11],
NoiseFirst and StructureFirst [12], EFPA [1]. An important
feature of DPCopula is that it can take advantage of any
existing methods to compute private marginal histograms
for each dimension, which can be then used to obtain
empirical marginal distributions.

2.2 Computing DP dependence
We model the dependence via Gaussian copula function,

a commonly used elliptical class of copula families modeling
the Gaussian dependence, with its density function denoted
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where P is a correlation matrix3, I is the identity matrix,
φ−1 is the inverse CDF of a univariate standard Gaussian
distribution.

We implemented two methods, DPCopula-MLE (maxi-
mum likelihood estimation) and DPCopula-Kendall [8], to
estimate the correlation matrix P in equation (1). An
overview of DPCopula-MLE and DPCopula-Kendall is il-
lustrated in figure 3, where the original data set contains
three attributes: age, hours/week, and income, and the
dependence structure is modeled by Gaussian copula.
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Step 2: Computing DP correlation matrix 
through DP Kendall’s tau
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Figure 3: DPCopula techniques overview

In DPCopula-MLE, it partitions the original data D hori-
zontally into l disjoint partitions of n

l
records each, computes

a correlation matrix Pi (1 ≤ i ≤ l) on each partition
using MLE, and then releases the average of these estimated
matrices with some small additive noise injected to each
entry. The noise follows Laplace distribution which is

Lap(
(m2 )Λ

lε2
), where Λ is the diameter of each correlation

coefficient space Θ with a value of 2.
In DPCopula-Kendall, the differentially private estimator

P̃ of the general correlation matrix is estimated by cal-
culating noisy pairwise Kendall’ τ correlation coefficients
matrix. From the original data vector (X1, . . . ,Xm), we
can compute a noisy Kendall’s τ coefficient of any arbitrary
two attributes Xj and Xk by the standard sample Kendal-
l’s τ coefficient ρ̃τ (Xj ,Xk) using Laplace mechanism that
guarantees differential privacy. We then construct a noisy
Kendall’ τ matrix ρ̃τ with each element defined by ρ̃τjk =
ρ̃τ (Xj ,Xk). Finally, we construct the noisy correlation

3
Here P must be a positive definite matrix to ensure that P−1 exists

matrix estimator as P̃ = sin(π
2
ρ̃τ ) with all diagonal entries

being 1.

2.3 Sampling DP synthetic data
Once the DP marginal histograms and DP correlation ma-

trix are generated from the previous two steps, we can sam-
ple synthetic data. We first generate DP pseudo-copula syn-
thetic data (T̃1, . . . , T̃m) by generating a multivariate ran-

dom vector (X̃1, . . . , X̃m) following Gaussian joint distribu-

tion Φ(0, P̃), then transforming (X̃1, . . . , X̃m) to (T̃1, . . . , T̃m) ∈
[0, 1]n×m. Here, P̃ is the DP correlation matrix from the

second step, and T̃j = φ(X̃j),j = 1, . . . ,m and φ(X̃j) is
the standard Gaussian distribution. Second, we compute

DP synthetic data D̃ via D̃ = (F̃−1
1 (T̃1), . . . , F̃−1

m (T̃m)),

where F̃−1
j is the output of the first step, the inverse of DP

empirical marginal distribution function generated from the
jth DP marginal histogram.

2.4 DPCopula-hybrid
Although DPCopula can model continuous attributes and

discrete attributes with a large domain (e.g. attributes with
the number of values no less than 10), it cannot directly
handle attributes with small domains. DPSynthesizer also
contains a DPCopula-hybrid method, which first partitions
the original dataset based on small-domain attributes (i.e.
gender) and computes the number of records for each parti-
tion in a differentially private way, then applies DPCopula-
MLE or DPCopula-Kendall on each partition.

3. SYSTEM DEMONSTRATION
DPSynthesizer is a web-based application implemented

with Django Framework on python. It can invoke binaries of
DPCopula and other different methods. For example, cur-
rent DPCopula is implemented in Matlab. The web interface
is still a work in progress. A preliminary version can be ac-
cessed at http://www.mathcs.emory.edu/aims/DPSynthesizer.

Our demo mainly includes two scenarios: 1) data synthe-
sization using DPCopula with visualization of the original,
intermediate, and released DP synthetic data, 2) utility
analysis and comparison of different data synthesization
methods.

3.1 Data sets
We prepared two real datasets for the demonstration pur-

poses: Brazil Census dataset (https://international.ipums.org)
and US census dataset (http://www.ipums.org). The Brazil
census dataset has 188,846 records after filtering out records
with missing values and eight attributes: age, gender, dis-
ability, nativity, working hours per week, education, number
of years residing in the current location, and annual income.
We generalized the domain of income to 586. The US
Census dataset has a randomly selected 100,000 records
from the original 10 million records and four attributes: age,
occupation, income and gender. For nominal attributes, we
converted them to numeric attributes by imposing a total
order on the domain of the attribute.

In order to show the impact of other factors on the utility
and scalability of DPCopula and other methods in DPSyn-
thesizer to the audience, such as distribution, dimensionality
of the datasets, we also prepared synthetic datasets with
50000 records. The default attribute domain size is 1000 and
each margin follows the Gaussian distribution by default.
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3.2 Basic Data Synthesization Functionalities
DPSynthesizer is an easy-to-use web system that guides

users to accomplish their data synthesization tasks under
differential privacy. The DPSynthesizer interface allows
users to select and load original datasets, to enter different
parameters, to choose different types of methods according
to their data needs, and to examine intermediate as well
as final results. It also allows audience to visualize the
original data and private released synthetic data, generate
the synthetic data to a user-defined file format, and issue
queries to the synthetic data for evaluating the utility.

We will start by guiding the audience through the set-
tings of DPCopula. The users will have an opportunity
to specify values for some parameters such as the overall
privacy guarantee, i.e. ε, and the sampling rate in compute
Kendall’ τ correlation matrix, while these and the remaining
parameters can be also automatically computed or set to
default values. The system will then generate and write
the released data into a file with different formats, such as
“.csv”. Users can select their own file path and preferred
file format.

3.3 Data Visualization
DPSynthesizer provides an interface for visualization of

the original and private synthetic data through histograms.
For original or released synthetic data with one or two
dimensions, it directly visualizes them through one or two
dimensional histograms. For data with more than two
dimensions, it visualizes the marginal histograms for each
dimension and the correlation matrix among all dimensions.
Future development of the system includes integration of
visualization techniques for high-dimensional data. During
the running process of DPCopula, all intermediate results,
such as private marginal histograms and correlation ma-
trix, can be also visualized. Figure 3 shows examples of
the visualized marginal histograms of the attribute “Age”,
“Hours/week”, and “Income” using the US census data,
correlation matrix, and dependence structures.

3.4 Utility Analysis and Comparison
DPSynthesizer also includes the implementations of the

state-of-the-art histogram methods, such as PSD (Private
Spatial Decomposition), KD-hybrid methods [3], Privelet+
[11], Filter Priority (FP) with consistency checks [4], and P-
HP [1]. Users can select one or more methods and compare
their utility and efficiency on selected datasets and directly
observe differences in results and performance.

For utility analysis, we issue random range-count queries
with random query predicates on both original data and
the synthesized data. The queries are defined as: Select
COUNT(*) from D Where A1 ∈ I1 and A2 ∈ I2 and . . . and
Am ∈ Im. For each attribute Ai, Ii is a random interval
generated from the domain of Ai.

The query accuracy is primarily measured by the relative
error. For a query q, Aact(q) is the true answer to q on the
original data. Anoisy(q) denotes the answer to q when using
DP synthetic data generated from DPCopula or the DP
histogram constructed by other methods. Then the relative
error is defined as:

RE(q) =
|Anoisy(q)−Aact(q)|
max{Aact(q), s}

where s is a sanity bound to mitigate the effects of queries
with extremely small query answers (a commonly used
evaluation method from existing literatures, e.g. [11]).
While we primarily use relative error, we also use absolute
error when it is more appropriate and clear to show the
results for extremely sparse data, in which case, the true
answers are extremely small. The absolute error is defined
as ABS(q) = |Anoisy(q)−Aact(q)|.

Through the user interface, the audience can freely issue
predicate queries using different parameter settings and
observe the result. Figure 4 provides a visualization example
for the error comparison result between DPCopula and other
methods. The released synthetic data can be also used
for learning tasks such as construction of decision tree and
regression analysis. We will use classification and linear
regression analysis as examples to illustrate the utility of
the released synthetic data.
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Figure 4: Comparison with other methods
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