
Combining User Interaction, Speculative Query Execution
and Sampling in the DICE System

Prasanth Jayachandran Karthik Tunga Niranjan Kamat Arnab Nandi
Computer Science & Engineering

The Ohio State University

{jayachan,tunga,kamatn,arnab}@cse.osu.edu

ABSTRACT
The interactive exploration of data cubes has become a popular ap-
plication, especially over large datasets. In this paper, we present
DICE, a combination of a novel frontend query interface and dis-
tributed aggregation backend that enables interactive cube explo-
ration. DICE provides a convenient, practical alternative to the
typical offline cube materialization strategy by allowing the user
to explore facets of the data cube, trading off accuracy for inter-
active response-times, by sampling the data. We consider the time
spent by the user perusing the results of their current query as an
opportunity to execute and cache the most likely followup queries.
The frontend presents a novel intuitive interface that allows for
sampling-aware aggregations, and encourages interaction via our
proposed faceted model. The design of our backend is tailored to-
wards the low-latency user interaction at the frontend, and vice-
versa. We discuss the synergistic design behind both the frontend
user experience and the backend architecture of DICE; and, present
a demonstration that allows the user to fluidly interact with billion-
tuple datasets within sub-second interactive response times.

1. INTRODUCTION
Extracting insights from data for applications such as business

intelligence have traditionally relied on batch-oriented materializa-
tion of multidimensional aggregates or full data cubes [7]. Lately,
there been a powerful trend towards providing analytics in real-time
or near-real-time. Prematerialization is extremely expensive from
both time and space perspectives due to the exponential space of
possible aggregations. The challenges are further exacerbated in
the case of ad-hoc analysis using data cubes. Due to the size and
dimensionality of the data, in spite of the availability of powerful
distributed infrastructure, it may not be possible to aggregate all of
the data within interactive response times.

Studies conducted in the Human-Computer Interaction domain [14,
21] have heavily motivated a sub-1000ms limit for query response
time: the minimum time for the system to respond with a result
without impeding the user’s interaction “flow”. Empirical tests
on our system have shown the same, along with an lower limit of
5000ms for a user to peruse the query results.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

We introduce the DICE frontend and backend, an integrated sys-
tem built for easy traversal over a data cube. DICE, expanded as
“Distributed and Interactive Cube Exploration” is based on four
core observations. First, we observe that ad-hoc data cube explo-
ration is always performed in sessions, comprising multiple queries
in succession, motivating our session-based query model, as op-
posed to dealing with queries as isolated one-off events. Such a user
behavior is common in the case of exploration of data cubes where
the user is trying to gain insights by inspecting various regions of
the data cube at varying resolutions. Second, due to challenges of
scale and expectations of query response time, it is necessary (and
sufficient) to aggregate over a sample of the data. As shown in Fig-
ure 4, the user can manipulate the slider to conveniently run queries
at different sampling rates, thereby allowing a user-specified trade-
off between accuracy and response time. Third, aggregations can
be performed in parallel in a distributed environment, further
reducing response times. DICE achieves latencies that enable a
fluid and interactive cube exploration experience, and provides the
corresponding error bounds on aggregated results. Further, it pro-
vides the user with an intuitive easy-to-use interface that aids in
the data cube exploration process. Fourth, as the user studies the
query results, the backend is often idle – we have an opportunity to
speculatively execute queries they might run next and cache them.

2. SYSTEM OVERVIEW

	 	 	 MASTER	
	

slave1	

DB	

slave3	

DB	

slaveN	

DB	

 Result
Cache

 Query
Federator

Network

slave2	

DB	

Workers

Table Shards
(Horizontally
Partitioned)

	
DICE	 	

FRONT-‐END	 UI	
	

Figure 1: System Architecture
Figure 1 presents an overview of the DICE system, detailed in

[11]. Our system employs a hierarchical master-slave architecture
backend, connected to the frontend UI. All queries are issued to the
master by the UI, and responded to by the master. The master in
turn distributes these queries amongst the slave nodes. Multiple ta-
ble shards are present at each slave node. The shards are atomic and
read-only. The master maintains the catalog of the shards which

1697

aids in distribution of the workload. Upon an update or deletion of
a shard, this information can be conveyed to the master, enabling
the handling of rapidly changing data. An in-memory LRU result
cache is maintained at the slaves. Previously executed queries can
be answered using a simple lookup, reducing response times.

Given a user query, DICE enumerates possible speculative queries
using the faceted exploration model (described in Section 3) and
calculates their corresponding likelihood from the query logs. Due
to the scale of the data and the number of speculative queries, it
is not possible to execute all the speculative queries at the highest
sampling rate. Hence, we choose a subset of queries to execute,
and cache their results to maximize the probability of the next user
query being present in the query cache.

UI MASTER SLAVE

 QUERY
QUERY

RESULT
RESULT

 ACCURACY

 ACCURACY
 ACCURACY

 SPEC QUERIES

QUERY

 NEXT QUERY

Figure 2: The user query is distributed by the master and ex-
ecuted on the slave nodes, followed by query for estimation of
accuracy, followed by a set of speculative queries that populate
the cache to reduce latency for the next query.

Query Flow: Figure 2 describes the overall query flow of DICE
in terms of the sequence in which the user query, accuracy queries,
and the speculative queries are run. The user query is run as soon
as the user requests for it. After receiving the query result, the ac-
curacy queries are run with the additional measures of count, sum,
and variance which are needed to estimate the combined sampling
accuracy for the measures mean and sum. Upon execution of the
accuracy queries, the speculative queries are scheduled.

Speculative queries are run greedily: the order is based on a com-
bination of the likelihood of the query occurring (derived using a
query log), and the estimated gain in accuracy from that query re-
sult. Queries are run until the slave query caches are filled or the
user enters their next query.

3. FACETED EXPLORATION MODEL
For any aggregation in the data cube, the number of possible

follow-up queries is extremely large (number of groups in the cube
- 1). This creates a challenge for our speculative execution tech-
nique – which queries do we pick? Thus, we present a model
where the user explores the cube in a series of faceted traversals,
thereby, restricting the space of queries. The faceted cube explo-
ration model is used to guide user exploration at the frontend, and
also to speculate and execute a subset of the next possible queries
at different sampling rates so as to maximize the probability of the
next query being present in the query cache at a high sampling rate.
This synergistic model enables us to design an intuitive and easy to
use interface to explore the data cube and, at the same time, reduce
response time using speculative execution.

In the faceted exploration model, a facet of a cube region consists
of a subset of groups obtained as a result of a query consisting
of a GROUP BY on a single dimension and being bound on the

remaining dimensions of the region, using a conjunction of WHERE
clauses. The successive facet will be of type parent in the case
of a rollup, child in the case of a drilldown, sibling in the case of
change of a single dimension value and pivot for a change in the
inspected dimension [11]. Prior work has used traversals such as
roll-up, drill-down, and pivot in the context of exploration of data
cube regions [7, 19, 20].

a,b	

b	 a	

*	

sibling

pivot

parent

child

Figure 3: Faceted Cube
Exploration Traversals

Faceted exploration builds upon this,
providing a simple yet complete access
to common query traversals over the
data cube. Using faceted exploration,
a user is able to fully explore the data
cube – all cube groups can be explored
using facets, and it is possible to tra-
verse from any facet to another [11].

4. USER EXPERIENCE
4.1 System Design Principles:

We built the frontend and the backend of the DICE system based
on the following design principles. Unlike typical systems, the
query model assumes query sessions, interactivity, sampling, and
speculation as key concepts.

Faceted Exploration: User interaction is strongly aligned with
the faceted model. Exposing faceted traversals as UI elements has
been shown to be effective in data cube traversal [11]. Faceted
exploration helps inform the user about their location in the data
cube and helps enumerate the neighboring facets which make up
the set of speculative queries. While this aids the user in cube
traversal, it also allows us to execute a subset of the speculative
queries during the result perusal time, thus reducing the latency of
the user query, and enhancing the synergy between user guidance
and query latency reduction. For our backend, we draw inspira-
tion from the HCI work on mixed initiative models [10], executing
the most likely followup queries resulting into reduced expected
latency for the user query.
Latency vs Accuracy: Users should be able to interactively ad-
just sampling rates based on their needs, resulting in lower latency
but higher errors. This is key for interactive cube exploration since
depending on the number of sampled data points, skew of the data,
selectivity of the WHERE predicate and the user desired accuracy,
the rate of sampling should be allowed to vary, giving greater con-
trol over analysis to the user.
Results First: The results of a query should be prioritized and
shown first, over the estimation of errors. Running the accuracy
queries which consists of additional measures added to the user
query results into an additional time expense of around 20%. As is
evident from the query flow, we give greater importance to faster
results compared to the accuracy estimation and hence, run the ac-
curacy queries after the initial user query is executed. On the user
interface, this is presented as large circles in the scatter plot, which
later resolve into smaller points with error bars.

4.2 User Interface:
We now describe various parts of the DICE frontend user inter-

face, as shown in Fig. 4. As described in the design principles, the
query interface is inspired by the redefined sampling-aware query
paradigm and the speculative execution capabilities of the backend.

Configuration: In the top left corner of the UI, a user can specify
the sampling rate, the choice of whether to use speculative execu-
tion (Algorithm: DICE) or not (NOSPEC).

1698

Figure 4: DICE User Interface that allows for interactive, intuitive cube exploration.

Lattice Explorer: As the user inputs the dimensions and schema,
the hierarchy-aware lattice is computed on the fly and displayed,
allowing the user to get a feel for the data cube. Hovering over a
region highlights the possible faceted traversals in the lattice, sur-
facing followup queries that are likely to be speculated.

Interactive Query Editor: One way to use the query editor is sim-
ply to enter the SQL query in the text box. Another more intuitive,
easy-to-use option is provided below it in the form of the Traversal
button. Clicking on it provides options to add a dimension resulting
in a child traversal; remove a WHERE predicate causing a parent
traversal; change the value of a WHERE predicate, thereby, induc-
ing a sibling traversal; or swap a dimension in the case of a pivot
traversal. In the case that the WHERE predicate is to be changed,
the system will prompt the user with the range of values for the di-
mension. This allows the user to edit the query without advanced
knowledge of the query language or schema. After the changes
have been made to the SQL query, the query is automatically ex-
ecuted. Thus, the Interactive Query Editor allows the user to per-
form a full faceted cube exploration by providing different traversal
options in a visual manner without having to type any part of the
SQL query, enabling the user to navigate the entire data cube in a
series of clicks. It is up to the user to use the more visual nature
of the Interactive Query Editor or participate in a more hands-on
fashion by entering the query themselves.

Execute: Below the editor is an Execute button which will need
to be clicked in case the query is manually entered into the Query
Editor. In case the interactive features of the Editor are used, there
is no need for the Execute button to be clicked.

Timing Statistics: As a diagnostic aid, DICE also shows the re-
sponse time, latency, cache hit rate, and a breakdown of the exe-
cution time between the backend execution, network transfer, and
result aggregation. This helps provide feedback to the user about
split up of the execution costs as well as how well the system is
able to model user behavior.

Histogram Viewer: Result of the aggregation are presented at the

bottom. The viewer displays a scatter plot as soon as possible to the
user, maximizing utility. As discussed in Section 2, since queries
are typically performed over sampled data, the system then issues
a secondary set of queries (accuracy queries) to infer the error esti-
mates, which it overlays as the next step, by adding error bars. The
user views the result and then performs the next set of actions as
part of the cube traversal.

5. DEMONSTRATION
During the demonstration, we will be running DICE on a dis-

tributed system in a single master, multiple slave configuration.
The generated dataset will comprise of 1 billion rows with 7 columns
of type long, sharded uniformly across all nodes with a default ta-
ble shard size of 1M rows. The data consists of cardinalities rang-
ing from tens to a few thousands. We have shown [11] that DICE
scales up to a billion tuples providing sub-second latencies using
an Amazon EC2 configuration of 1 master and 50 slaves of the
c1.xlarge type. The goal of the set-up is not to emphasize the
size of the dataset but the distributed nature of the system necessary
for scaling out, the benefits of speculative caching, and the ease in
usability of the system at scale.

Scenario: Interactive cube exploration has applications in a a va-
riety of fields, including business intelligence and data-driven sci-
ence. Another popular scenario for interactive cube exploration is
the management of cloud infrastructure. Tools such as VScope [23]
have been developed for datacenter monitoring. For each setup, a
handful of operations personnel manage tens of thousands of nodes,
each with multiple virtual machines. Each instance produces a
plethora of events which are logged to track performance, detect
failures, and investigate systems issues. Each event item can be
understood as a tuple with several fields, and each analytical task
can be considered as the exploration of a cube over the logged data.
Queries are ad-hoc, and due to the time-critical nature of the task, a
system that allows for fast, interactive aggregations are highly de-
sirable. During our demonstration we will walk through this use
case with a query session. The queries will be logged and their

1699

execution will be repeated without speculation to demonstrate the
difference. A query session including the following queries will be
executed:

SELECT rack, AVG(iops) FROM events

WHERE datacenter = "EU" AND hour = 6 GROUP BY rack;

Such a query can be used to identify problematic I/O rates across
racks which could cause failures in a datacenter over time. Next,
the user changes the value of hour to 7 resulting in a sibling query.
Then, the user wants to GROUP BY on hour and choose a particular
rack to investigate how it is behaving over time which would equate
to a pivot traversal:

SELECT hour, AVG(iops) FROM events

WHERE datacenter = "EU" AND rack = "r1"

GROUP BY hour;

Next, they wish to generalize on rack to get an idea of how well
a datacenter is behaving over time, resulting in a parent query:

SELECT hour, AVG(iops) FROM events

WHERE datacenter = "EU" GROUP BY hour;

They then choose to generalize on the location dimension which
would run a parent query. Following that, they choose another dat-
acenter, giving a child query:

SELECT hour, AVG(iops) FROM events

WHERE datacenter = "ASIA" GROUP BY hour;

Above set of queries form a query session that the operations
personnel might use to identify the problematic I/O rates across
different racks spread across multiple data centers over time.

6. USER STUDY
We studied the impact of response times using a blind “taste

test”. Users were asked to explore the cube using the faceted model
over 10 queries: they were not told if the speculation was turned on
or off. After the session, the same session was repeated in the other
mode (speculation was turned on if it off before, and vice-versa).
For each user, we recorded time taken for the session and asked
them about user satisfaction. The results were unanimous: Every
user was able to discern the speedup and preferred DICE, and users
saved an average of 7s over the mean session time of 54s.

7. RELATED WORK
Numerous business intelligence tools [2, 6, 12, 24, 8] provide

visualization and interactive interfaces to large multidimensional
datasets. Ad-hoc analysis over large datasets has been made popu-
lar with the availability of languages such as SCOPE [5], Pig [16]
and Hive [22], which translate to MapReduce-oriented flows that
are not ideal for interactive workloads. Work by Sarawagi et al.
in the mining of interesting cube regions [19], exposing operators
that further enable exploration [20] and that of Rizzi et al. in query
personalization [18] are complementary to the ad-hoc exploration
our work focuses on. Cetintemel et al. [4] provide a vision for a
system to guide the user in interactive querying. Olston et al. [15]
propose means for interactive analysis of web-scale data with the
help of query templates. Techniques in online aggregation [9] have
similar motivations to ours, but do not consider the influence of
the interaction on system design. BlinkDB [1] considers only sin-
gle queries (as opposed to query sessions) and computes an offline
sample of numerous column combinations at multiple resolutions.
DICE, on the other hand, uses an online sampling approach to get
the query results and accuracy specifically targeted towards faceted
cube exploration and as such is complementary to it.

8. CONCLUSION AND FUTURE WORK
We introduced the idea of simultaneously designing interaction

and database architecture in DICE, a distributed, interactive cube
exploration system. DICE provides a natural and intuitive way of
faceted exploration of data cubes. The visually enhanced and easy
point-and-click interface provided by DICE’s frontend helps not
only novice users but also expert users by guiding them through
the complexities of the data cube in a faceted exploration model.
While typical data warehouses are designed around improving la-
tencies for the user query, using the fact that in OLAP scenarios,
queries usually don’t exist in isolation but as part of sessions, we
can provide improved latencies by using speculative execution.

9. ACKNOWLEDGEMENTS
We thank Amazon, NEC Labs America, and Yahoo! Labs for

supporting parts of this work.

10. REFERENCES
[1] S. Agarwal, A. Panda, S. Madden, B. Mozafari, et al. Blink and It’s

Done: Interactive Queries on Very Large Data. VLDB, 2012.
[2] A. Buja, D. Cook, and D. F. Swayne. Interactive High-Dimensional

Data Visualization. Computational and Graphical Statistics, 1996.
[3] Y. Cao, C. Chen, F. Guo, D. Jiang, et al. Es 2: A cloud data storage

system for supporting both oltp and olap. ICDE, 2011.
[4] U. Çetintemel, M. Cherniack, J. DeBrabant, Y. Diao, et al. Query

Steering for Interactive Data Exploration. CIDR, 2013.
[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, et al. SCOPE: Easy

and Efficient Parallel Processing of Massive Data Sets. VLDB, 2008.
[6] A. Dubrawski, M. Sabhnani, et al. Interactive Manipulation,

Visualization Analysis of Large Sets of Multidimensional Time
Series in Health Informatics. INFORMS, 2008.

[7] J. Gray et al. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining
and Knowledge Discovery, 1997.

[8] P. Hanrahan. VizQL: A Language for Query, Analysis and
Visualization. SIGMOD, 2006.

[9] J. Hellerstein et al. Online Aggregation. SIGMOD, 1997.
[10] E. Horvitz. Principles of mixed-initiative user interfaces. CHI, 1999.
[11] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed

Interactive Cube Exploration. ICDE, 2014.
[12] D. Keim, F. Mansmann, et al. Visual Analytics: Scope and

Challenges. Visual Data Mining, 2008.
[13] A. Kemper et al. HyPer: A Hybrid OLTP&OLAP Main Memory

Database System. ICDE, 2011.
[14] R. Miller. Response Time in Man-Computer Conversational

Transactions. FJCC, 1968.
[15] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and B. Reed.

Interactive Analysis of Web-Scale Data. CIDR, 2009.
[16] C. Olston, B. Reed, et al. Pig Latin: A Not-So-Foreign Language for

Data Processing. SIGMOD, 2008.
[17] H. Plattner. A common database approach for oltp and olap using an

in-memory column database. SIGMOD, 2009.
[18] S. Rizzi. New frontiers in business intelligence: distribution and

personalization. Springer-Verlag, 2011.
[19] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven

Exploration of OLAP Data Cubes. EDBT, 1998.
[20] S. Sarawagi and G. Sathe. i3: Intelligent, Interactive Investigation of

OLAP Data Cubes. SIGMOD, 2000.
[21] B. Shneiderman. Response Time and Display Rate in Human

Performance with Computers. CSUR, 1984.
[22] A. Thusoo, J. Sarma, N. Jain, et al. Hive-A Petabyte Scale Data

Warehouse using Hadoop. ICDE, 2010.
[23] C. Wang et al. Vscope: middleware for troubleshooting

time-sensitive data center applications. Middleware, 2012.
[24] J. Yi et al. Toward a Deeper Understanding of the Role of Interaction

in Information Visualization. VCG, 2007.

1700

