
Faster Visual Analytics through Pixel-Perfect Aggregation

Uwe Jugel, Zbigniew Jerzak,
Gregor Hackenbroich

SAP SE
Chemnitzer Str. 48, 01187 Dresden, Germany

{firstname}.{lastname}@sap.com

Volker Markl
Technische Universität Berlin

Straße des 17. Juni 135
10623 Berlin, Germany

volker.markl@tu-berlin.de

ABSTRACT
State-of-the-art visual data analysis tools ignore bandwidth
limitations. They fetch millions of records of high-volume
time series data from an underlying RDBMS to eventually
draw only a few thousand pixels on the screen.

In this work, we demonstrate a pixel-aware big data visu-
alization system that dynamically adapts the number of data
points transmitted and thus the data rate, while preserving
pixel-perfect visualizations. We show how to carefully select
the data points to fetch for each pixel of a visualization, us-
ing a visualization-driven data aggregation that models the
visualization process. Defining all required data reduction
operators at the query level, our system trades off a few
milliseconds of query execution time for dozens of seconds
of data transfer time. The results are significantly reduced
response times and a near real-time visualization of millions
of data points.

Using our pixel-aware system, the audience will be able
to enjoy the speed and ease of big data visualizations and
learn about the scientific background of our system through
an interactive evaluation component, allowing the visitor to
measure, visualize, and compare competing visualization-
related data reduction techniques.

1. INTRODUCTION
High-volume time series data are ubiquitous in many do-
mains, such as finance, discrete manufacturing [6], or sports
analytics [8]. It is not uncommon that millions of readings
from high-frequency sensors are subsequently stored in rela-
tional database management systems (RDBMS), to be later
accessed using visual data analysis tools.

Modern data analysis tools must support a “fluent and
flexible use of visualizations”[4] and still be able to “squeeze
a billion records into a million pixels”[10]. In this regard, one
open issue for the database community is the development of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

“compact data structures that support algorithms for rapid
data filtering, aggregation, and display rendering”[10].

Unfortunately, these issues are yet unsolved for existing
RDBMS-based visual data analysis tools, such as Tableau
Desktop 8.1 (tableausoftware.com), SAP Lumira 1.13 (sap-

lumira.com), QlikView 11.20 (clickview.com), or Datawatch
Desktop 12.2 (datawatch.com). While they provide flexible
and direct access to relational data sources, they do not
consider an automatic, visualization-related data filtering
or aggregation and are not able to quickly and easily visual-
ize high-volume time series data, having 1 million records or
more. For example, as illustrated in Figure 1a, they redun-
dantly store copies of the raw data as tool-internal objects,
requiring significant amounts of system memory per record.
This causes long waiting times for the users, leaving them
with unresponsive tools or even impairing the user’s operat-
ing systems, in case the system memory is exhausted.

RDBMS Visualiz.hTool

data pixels
b) demonstratedhsolution
 (in-DB reduction) QReduce(DATA)

a) existinghsolutions
hhhh(withouthreduction) DATA pixels

big DATA transfer

small data

transfer

DATA

Figure 1: Data transfer in visual analytics tools.

However, the final visualization of any high-volume data set
is inherently restricted by a width × height pixel matrix.
Any visualization tool must eventually rescale and rasterize
the data to this limited amount of pixels. In previous work
[7], focusing on line charts, we showed how to model this
implicit data reduction as database queries, driven only by
the width of the line chart.

In this work, we extend this pixel-aware data aggregation
approach to other chart types and demonstrate it in an end-
to-end visualization system together with the data analytics
tool SAP Lumira. Driven by the type, width, and height of
a visualization, we model the data reduction by means of
query rewriting, using only the relational algebra and the
common aggregation functions: min, max, and avg. Con-
sequently, our system conducts all data reduction directly
inside the database, as illustrated in Figure 1b.

Our Lumira-based demonstrator not only provides the au-
dience with an end-to-end visualization system, gracefully
handling the interactive visualization of millions of rows of
time series data (cf. Figure 2), but also with an interactive
monitoring component to facilitate a live evaluation of our

1705

http://tableausoftware.com
http://saplumira.com
http://saplumira.com
http://clickview.com
http://datawatch.com

20.00

10.00

 0.00

-10.00

-20.00

value

va
lu
e

value 0.6166

time 4.7126

a) b)

import of raw data

(no manually defined aggregation required)

Figure 2: a) Displaying 5 Million rows in SAP Lumira. b) Import of high-volume time series data set.

approach. The monitor supports inspecting and compar-
ing data-reduced and original queries, depicting pixel-level
differences of the resulting visualizations, and displaying
extensive runtime information like query execution times.
Using our interactive demonstrator, the visitors can learn
how pixel-aware data aggregation provides pixel-perfect vi-
sualizations, as derivable from the original data, while still
achieving data reduction rates of up to several orders of
magnitude.

2. SOLUTION OVERVIEW
Figure 3 illustrates our system architecture. The visualiza-
tion client (Lumira UI) issues a visualization-related query
to a server-side query interface (Lumira Server). In our
enhanced version of Lumira, these queries are intercepted
and augmented by a query rewriter before being executed.
Depending on the type, the width w, and the height h of
the visualization, we rewrite the original query with addi-
tional aggregation-based data reduction operators (cf. Sec-
tion 2.2).

Visualization
Client

Query RewriterRDBMS

data-reduced query result

visualiz.
params

query

reduction query
data viewdata viewdata viewdata view

data

reduction

data flow

+

Lumira Server Lumira UI

Figure 3: Visualization-driven query rewriting.

2.1 Visualization Model
There exist dozens of ways to visualize numerical data. How-
ever, for visualizing high-volume time series data, we only
consider common visualizations that consume but a few pix-
els per data point [2], i.e., scatter plots and line charts, but
also bar charts that have a bar width of 1 pixel.

For these types of visualization, we consider a time series
as a relation T (t, v) with a timestamp t ∈ R and a value v ∈
R. A time series with multiple attributes can be represented
by two separate time series with a shared time axis in the
visualization, i.e., two aligned time series. A visualization-
related query must comply to this time series model, i.e.,
project two numerical attributes from the underlying data.
Therefore, Lumira allows selecting a numerical measure and
a dimension, to create a compatible analytical view on the
relational data (cf. Figure 3).

Other common chart types can be derived from the con-
sidered base types. For example, a bubble chart is in fact

a scatter plot with varying size of the marks (circles), used
for each data point, depending on an additional attribute.
The underlying data of a bubble chart can be represented
by two aligned time series relations. Similarly, stacked line
or bar charts can be modeled as combination of two aligned
line or bar charts. Focusing on time series visualizations,
we currently exclude chart types that do not have a distinct
time axis, e.g., tree maps, heat maps, pie charts, etc.

2.2 Pixel-Aware Data Aggregation
A time series visualization displays the relation of two nu-
merical attributes time t and value v in 2D space, using w×h
screen pixels. An appropriate data reduction for each type
of visualization depends on how each tuple (t, v) is presented
on the screen, i.e., which pixels it occupies. The considered
chart types have the following underlying rendering proper-
ties and resulting data reduction operators.

Scatter Plots use small markers placed in 2D space, oc-
cupying one or several neighboring pixels. To reconstruct all
pixels from a reduced data set, at least one data point per
pixel must be selected from the base data. A scatter plot
can display up to an upper bound of nmax = w · h distinct
data points. We can model a corresponding data reduction
by grouping the timestamps into w groups and the values
into h groups, resulting in one group per pixel. We then
compute the average time and value per group (cf. Figure
4c), yielding a time series relation with up to w · h average
tuples. We denote this data reduction as G2D – grouping
in 2D space.

Bar Charts use rectangles, starting at the bottom of
the chart and reaching to the maximum value of the cor-
responding time span. A simple bar chart can display at
most nmax = w distinct data points in 2D space. Multi-
ple values per pixel column (per time span) are overplotted
by the maximum bar. The corresponding data reduction
requires grouping the time into w groups, i.e., grouping by
pixel columns, and selecting the tuple with the maximum
value per group.

Line Charts use straight line segments, connecting each
two consecutive tuples of the underlying time series relation.
As illustrated in Figure 4b, line charts can display up to
four distinctly visible, non-ambiguous data points per pixel
column (per time span). As a result, line charts can at most
display nmax = 4 · w distinct data points. A corresponding
data reduction requires selecting the first, last, min, and
max tuples per pixel column (cf. Figure 4b). Note that –
contrary to common practice – only selecting the min and
max tuples per pixel column is not sufficient to produce a
correct line visualization, as derivable from the original data.

1706

pmax

pmin

plast

pfirst

group
by-pixel-
column

pavg1

pavg2

pavg3

pavg4
pavg5

group-by-pixel

Max

Operator Group By nmax

1*w

2*w

4*w

pixel
columns
pixel
columns
pixel
columns

G2D

M4-(min,
max,first,last)

b)-M4,-Min+Max c)-G2D

Min+Max

each
pixel

w*h

a)-Aggregation Operators
Chart

scatter
plot

bar-chart

line-chart
(with-errors)

line-chart
(error-free) Pixel-level interpretation of operators

Figure 4: Visualization-driven data aggregation.

We denote this pixel-column-wise selection of the first, last,
min, and max tuples as M4 aggregation [7].

Figure 4a lists the properties of the described visualization-
driven aggregation operators, including their maximum num-
ber of records nmax that needs to be transferred from the
database to the visualization client to ensure a correct vi-
sualization of the original data. Being able to determine an
nmax and an appropriate data reduction operator for any
considered type of visualization, our system can automati-
cally define data reduction queries, without additional user
interaction. In contemporary data analytics tools, the user
has to manually configure presentation-related, time-based
aggregations to come up with reasonably small number of
records to be displayed.

2.3 Query Rewriting
In many data analytics tools, the user can hover over the
geometric primitives to examine detailed information of the
underlying data sets. Therefore, line charts are often over-
laid with the corresponding scatter plots, so that all data
points underlying a line can be inspected. Consequently, our
query rewriter composes a query that jointly performs the
G2D and the M4 aggregation. This allows drawing pixel-
perfect line charts and the inspection of the underlying data,
while at most fetching nmax = w · (h + 4) tuples from the
RDBMS. Figure 5 shows the corresponding SQL query, as
a UNION of a G2D query and an M4 query. To define
a grouping in 2D space, the G2D query scales time t and
value v from the original time series relation Q to the visu-
alization’s coordinate system and then rounds the rescaled
real-valued data to discrete pixels. The M4 query computes
the four extrema and a horizontal group key k per group.
The result QA is joined with the original time series Q on
the group key and the corresponding aggregated timestamps
and values. From the result of this equi-join, the M4 query
then projects the matched tuples (t, v). The final result will
then contain up to w ·h average tuples from G2D and up to
4 · w extremum tuples from M4.

Our query rewriter intercepts all queries that are used for
scatter plots, line charts, bar charts, and other chart types,
derivable from these three base types. The considered data
reduction is applied to any query that would yield a high-
cardinality result. The system behavior of our prototype
is as follows. First, we analyze an original query using the
EXPLAIN functionality, provided by most RDBMS. If the
query would produce a too large result set, i.e., |Q| > nmax,
we wrap it with a data reduction operator. Internally, the
actual user query is not changed. We then either execute the
original user query or the new data reduction query. The

WITH Q as <time series T(t,v) based on arbitrary query>
SELECT avg(t) as t, avg(v) as v FROM Q --avg. tuple
GROUP BY round($w*(t-$t1)/($t2-$t1)), --horiz. grouping

round($h*(v-$v1)/($v2-$v1)) --vert. grouping
UNION SELECT t,v FROM Q JOIN --union G2D + M4
(SELECT round($w*(t-$t1)/($t2-$t1)) as k, --horiz. key

min(t) as t_min, max(t) as t_max --get 1st,last
min(v) as v_min, max(v) as v_max, --get min,max
FROM Q GROUP BY k) as QA --group by k

ON k = round($w*(t-$t1)/($t2-$t1)) --join on k
AND (t = t_min OR t = t_max OR --&(1st|last

v = v_min OR v = v_max) -- |min|max)

Figure 5: Aggregation-based data reduction query
to obtain combined scatter plot and line chart data.

result will always have a predictable cardinality and thus
predictable bandwidth requirements. In case we execute the
data reduction query, we also indicate that to the user in the
Lumira user interface.

3. RELATED WORK
There are many different approaches for time series dimen-
sionality reduction [3], ranging from simple measures such
as piece-wise aggregate approximation (averaging), over ran-
dom and systematic sampling, to more complex measures,
based on line simplification [9, 5, 11]. However, existing
techniques drive the data reduction process using geomet-
ric measures defined in R × R, e.g., using the Euclidean
distance of a removed point from an approximating line seg-
ment. These generic measures in R×R, are not able to catch
the rasterization effects caused by the discontinuities at the
intersections of pixel rows and pixel columns. What matters
for the user is the final visualization having set the correct
discrete pixels on the screen. Therefore, our approach uses
an aggregation-based data reduction, parametrized by the
width and height of the visualization to emulate the process
of rendering real-valued data to discrete screen pixels.

Visualization-Driven Data Reduction has previously
been proposed by Burtini et al. [1]. However, in our so-
lution, we further extend the idea towards a really data-
centric approach, conducting all data reduction inside the
database. We also more precisely incorporate the semantics
of line rendering [7], since the common practice of selecting
only 1 · width tuples is not sufficient to draw error-free line
charts (cf. Section 2.2).

4. DEMONSTRATION
In our demonstration, we show how our system automati-
cally and quickly renders visualizations of millions of records.
For example, we allow the audience to import millions of
sensor data records and visualize them as a line chart, as
illustrated by Figure 2. Several such high-volume data sets
[6, 8] are preconfigured and available to the audience for
exploration and visualization. We also allow the import of
custom data sets, via Lumira Cloud (cloud.saplumira.com) or
locally via CSV files.

Our demonstrator provides an insight into the technical
aspects of our solution. Therefore, we include an interactive
query monitor (cf. Figure 6) that allows the audience to

1707

http://cloud.saplumira.com

Query Monitor

raw data
Rows:

Pixel Error:

Exec. time:

Total time:

10k
172 px
4.3 s
5.1 s

avg
10k
27k px
3.7 s
4.6 s

10k
0px
4.5 s
5.4 s

m4

sql

5M
0 px
0.1 s
87 s

Rows:

Pixel Error:

Exec. time:

Total time:

Rows:

Pixel Error:

Exec. time:

Total time:

Rows:

Pixel Error:

Exec. time:

Total time:

minmax vs. raw data

drag&drop

compare

Query Plan: m4

explain

sql explain sql explain

sql explain

explain or show query

Q0
Q1

Q3
Q2

difference

image

runtime

metrics

Figure 6: Interactive query monitor.

quickly inspect visualization-related queries and easily com-
pare the visualizations of different query results, based on
different data reduction techniques. The monitoring com-
ponent also shows the corresponding query execution and
total response times, query execution plans, measured pixel
errors, and the measured structural similarity of a resulting
image to the corresponding original image [12]. All derived
and original visualizations can be inspected pixel by pixel
and compared (via drag & drop) using difference images to
let the audience pass their own verdict on the visualization
quality.

Using our demonstrator, the audience can observe how
visualization-driven data aggregation can provide high qual-
ity visualizations at high data reduction rates. For example,
the user may select three different pixel-column-wise data
aggregations techniques Q1 to Q3 (cf. Figure 6). The user
can then compare the performance and visual results of each
data reduction technique with the unreduced baseline case
(Q0). In this example, all three techniques provide a high
data reduction from 5 million to 10k rows, but may produce
notable pixel errors. For example, the pixel-column-wise av-
eraging (Q1) flattens the important (vertical) extrema of a
time series, resulting in a significantly distorted visualiza-
tion. The selection of the min and max tuples per pixel-
column (Q2) provides better visual results, but still suffers
from pixel errors (depicted by the difference image for Q2
in Figure 6). The viewers can observe that the visual result
of our described M4 aggregation (Q3) always matches per-
fectly with the baseline visualization (Q0), while requiring
only a fraction of the original data to be fetched from the
database. Also note that the total time, for the user to wait
for a query result, is decreased by one order of magnitude,
from 87 seconds to only 5.4 seconds.

In summary, our Lumira-based demonstrator allows the
audience to analyze preconfigured or custom high-volume
time series data sets and evaluate different data reduction

approaches, based on the following techniques: averaging,
random and systematic sampling, single aggregation (min,
max, avg), composite aggregations (combinations of min,
max, first, last, avg), and finally line simplification algo-
rithms [9, 5, 11]. The latter are the most competitive time
series dimensionality reduction approaches, though they are
still subject to a measurable error, while our aggregation-
based technique provides error-free visualizations.

5. CONCLUSION
This paper presented a proof-of-concept version of SAP Lu-
mira that leverages a data-centric and visualization-driven
time series dimensionality reduction to facilitate the visu-
alizations of millions of records of time series data. Our
demonstrated approach relies only on the relational alge-
bra and conducts any data reduction directly inside the
database. Respecting the rendering semantics of the visual-
izations, specifically of line charts, we demonstrated how our
pixel-aware, aggregation-based technique surpasses existing
sampling, averaging and line simplification approaches, pro-
viding higher visualization quality at competitive data re-
duction rates.

6. REFERENCES
[1] G. Burtini, S. Fazackerley, and R. Lawrence. Time

series compression for adaptive chart generation. In
CCECE, pages 1–6. IEEE, 2013.

[2] S. G. Eick and A. F. Karr. Visual scalability. Journal
of Computational and Graphical Statistics,
11(1):22–43, 2002.

[3] T. Fu. A review on time series data mining. EAAI
Journal, 24(1):164–181, 2011.

[4] J. Heer and B. Shneiderman. Interactive dynamics for
visual analysis. ACM Queue, 10(2):30, 2012.

[5] J. Hershberger and J. Snoeyink. Speeding up the
Douglas-Peucker line-simplification algorithm.
University of British Columbia, Department of
Computer Science, 1992.

[6] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung,
and N. Stojanovic. The DEBS 2012 Grand Challenge.
In DEBS, pages 393–398. ACM, 2012.

[7] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl.
M4: A visualization-oriented time series data
aggregation. In VLDB. VLDB Endowment, 2014.
(submitted, review pending).

[8] C. Mutschler, H. Ziekow, and Z. Jerzak. The DEBS
2013 Grand Challenge. In DEBS, pages 289–294.
ACM, 2013.

[9] W. Shi and C. Cheung. Performance evaluation of line
simplification algorithms for vector generalization.
The Cartographic Journal, 43(1):27–44, 2006.

[10] B. Shneiderman. Extreme visualization: squeezing a
billion records into a million pixels. In SIGMOD,
pages 3–12. ACM, 2008.

[11] M. Visvalingam and J. Whyatt. Line generalisation by
repeated elimination of points. The Cartographic
Journal, 30(1):46–51, 1993.

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004.

1708

