
LogGP: A Log-based Dynamic Graph Partitioning Method

Ning Xu †, Lei Chen ‡, Bin Cui †

†Key Lab of High Confidence Software Technologies (MOE), School of EECS, Peking University, China
‡Hong Kong University of Science and Technology, Hong Kong, China

†{ning.xu, bin.cui}@pku.edu.cn, ‡leichen@cse.ust.hk

ABSTRACT
With the increasing availability and scale of graph data from
Web 2.0, graph partitioning becomes one of efficient pre-
processing techniques to balance the computing workload.
Since the cost of partitioning the entire graph is strictly
prohibitive, there are some recent tentative works towards
streaming graph partitioning which can run faster, be easily
paralleled, and be incrementally updated. Unfortunately,
the experiments show that the running time of each parti-
tioning is still unbalanced due to the variation of workload
access pattens during the supersteps. In addition, the one-
pass streaming partitioning result is not always satisfactory
for the algorithms’ local view of the graph.

In this paper, we present LogGP, a log-based graph parti-
tioning system that records, analyzes and reuses the histor-
ical statistical information to refine the partitioning result.
LogGP can be used as a middle-ware and deployed to many
state-of-the-art paralleled graph processing systems easily.
LogGP utilizes the historical partitioning results to gener-
ate a hyper-graph and uses a novel hyper-graph streaming
partitioning approach to generate a better initial streaming
graph partitioning result. During the execution, the sys-
tem uses running logs to optimize graph partitioning which
prevents performance degradation. Moreover, LogGP can
dynamically repartition the massive graphs in accordance
with the structural changes. Extensive experiments con-
ducted on a moderate size of computing cluster with real-
world graph datasets demonstrate the superiority of our ap-
proach against the state-of-the-art solutions.

1. INTRODUCTION
Data partitioning has been studied for decades. Recently,

with the scale of data from Internet becoming larger, data
partitioning, especially graph data partitioning has attracted
more and more attention. The unprecedented prolifera-
tion of data from web requires efficient processing meth-
ods to handle different workloads. Many parallelism frame-
works have been proposed to process large-scale graphs, e.g.,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th, 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

Pregel, GraphLab and PowerGraph [17, 15, 11]. As other
distributed systems, graph data partitioning is a key tech-
nology to scale out computational capabilities.

Pregel [17], as one of the representative systems, devel-
oped by Google, is based on the BSP (bulk-synchronous
parallel) model and adopts a vertex-centric concept in which
each vertex executes a user-defined function (UDF) in a se-
quence of supersteps. By default, Pregel uses hash func-
tion to distribute the vertices. Although hash partition-
ing generates a well-balanced number of vertices across dis-
tributed computing nodes, many messages have to be sent
across the nodes for updating which generates a huge com-
munication cost.

Thus, some partitioning methods on Pregel-like systems
were proposed, most of which are based on k-balanced graph
partitioning [10]. K-balanced graph partitioning aims to
minimize the total communication cost between computing
nodes and balance the vertices on each partition. Andreev
et al. [6] proved k-balanced graph partitioning is NP-Hard.
Several approximation algorithms and multi-level heuristic
algorithms have been proposed. However, as the size of
graph becomes larger, they all suffer from a significant in-
crease of the partitioning time. As shown in [25], multi-level
approach requires more than 8.5 hours to partition a graph
from Twitter with approximately 1.5 billion edges which
is sometimes longer than the time spent on processing the
workload. Therefore recently, some works focused on much
simpler streaming heuristics to get comparable result per-
formance to multi-level ones with much shorter partitioning
time [23, 25]. Although the partitioning result balances the
number of vertices among each node and reduces the com-
munication cost, for many graph workloads in which not all
vertices in every superstep will run the UDF, the stream-
ing or even multi-level graph partitioning algorithms still
encounter the skewed running time for some workloads.

To deal with this issue, several approaches were recently
proposed: Yang et al. [27] proposed a dynamic replication
based partitioning with adaption to workload change. Shang
et al. [21] investigated several graph algorithms and pro-
posed simple yet effective policies that can achieve dynamic
workload balance. However, these approaches need to repar-
tition the graph again whenever a new workload runs on it
and there is no improvement on the partitioning results.
In fact, the running statistics or historical partitioning logs
can provide us useful information to refine the partitioning
result. In this paper, we investigate how to record, ana-
lyze and reuse these statistics and logs to refine the graph
partitioning result. We settle the issue of the imbalance of

1917

running time and reduce the job running time by refining
the graph partitioning quality. We develop a novel graph
partitioning management method - LogGP that reuses the
previous and running statistical information to refine the
partitioning. LogGP has two novel log-based graph parti-
tioning techniques. LogGP first combines the graph and
historical partitioning results to generate a hyper graph and
uses a streaming based hyper graph approach to get a better
initial partitioning result. When the workload is executing,
LogGP then uses running statistics to estimate the running
time of each node and reassigns the workload for the next su-
perstep to reduce the superstep running time. To estimate
the running time of superstep, an innovative technique to
profile workload and graph is proposed. LogGP can be used
as a middle-ware and deployed to Pregel-like systems easily.

We implement LogGP on Giraph - an open source ver-
sion of Pregel. The performance of LogGP is validated with
several large graph datasets on different workloads. The ex-
perimental results show that the proposed graph partition-
ing approaches significantly outperform existing streaming
approaches and demonstrate superior scaling properties.

Our contributions in this paper can be summarized as
follows:

1. We identify an important running time imbalance prob-
lem in large-scale graph processing system.

2. We design and implement LogGP to reuse the previ-
ous and running statistics information for partitioning
refinement and propose Hyper Graph Repartitioning
and Superstep Repartitioning techniques.

3. We conduct extensive experimental study to exhibit
the advantages of our approach.

The remaining of this paper is organized as follows. In Sec-
tion 2, we review the problem of graph partitioning and rel-
evant performance issues. In Section 3 and 4, we present the
novel Hyper Graph Repartitioning and Superstep Reparti-
tioning techniques, followed by the architecture of LogGP
in Section 5. Section 6 reports the findings of an extensive
experimental study. Finally, we introduce the related work
and conclude this paper in Section 7 and 8.

2. BACKGROUND
In this section, we first introduce the Pregel system on

which our prototype system is built. We next introduce the
problem of graph partitioning and streaming graph parti-
tioning. Finally, we analyze the graph partitioning problem
in Pregel.

Pregel is a distributed graph processing system proposed
by Google, based on the BSP (bulk-synchronous parallel)
model [26]. In the BSP model, the graph processing job is
computed via a number of supersteps separated by syn-
chronization barriers. In each superstep, every worker, or
called node, executes a user-defined function against a sub-
set of the vertices on it in an asynchronous computing way.
These vertices are called active vertices. The rest of ver-
tices, which are not used in a superstep, are called inactive
vertices. Besides, the node sends the necessary messages
to its neighbors for the following superstep. Once the com-
munication and computation are finished, there is a global
synchronization barrier to guarantee that all the nodes are
ready for next superstep or the assigned job is finished.

Same as the other distributed systems, to get best perfor-
mance, workload should be assigned to each node equally
while minimizing the communication cost. Thus graph par-
titioning is an essential technology to get high scalability.

Graph Partitioning: We now formally describe the gen-
eral graph partitioning problem. We use G = (V,E) to rep-
resent the graph to be partitioned. V is a set of vertices,
and E is a set of edges in the graph. The graph may be
either directed or undirected. Let Pk = {V1,...,Vk} be a set
of k subsets of V . Pk is said to be a partition of G if: Vi 6=
∅, Vi ∩ Vj = ∅, and ∪Vi = V , for i, j = 1, ..., k, i 6= j. We
call the elements Vi of Pk the parts of the partition. The
number k is called the cardinality of the partition. In this
paper, we assume that each Vi is assigned to one computing
node, and use Vi denote the set of vertices in that node.

Graph partitioning problem is to find an optimal par-
tition Pk based on an objective function. It is a combinato-
rial optimization problem that can be defined as follows:

Definition 1. Graph partitioning problem can be defined
from a triplet (S, p, f) such that: S is a discrete set of all
the partitions of G. p is a predicate on S which creates a
subset of S called admissible solution set - Sp that all the
partitions in Sp is admissible for predicate p. f is the ob-
jective function. Graph partitioning problem aims to find a
partition P̄ that P̄ ∈ Sp and minimizes f(p):

f(P̄) = minP∈Spf(P) (1)

A simple policy is to partition the data with a hash func-
tion, which is the default strategy applied in Pregel [17].
However, this approach results in high communication cost
thus, degrades the performance. Some works use approx-
imation or multi-level approaches to partition the graph.
However as the graph becomes larger, the cost of partition-
ing is unacceptable [25]. Thus, some recent works [23, 25]
use streaming partitioning heuristics to partition the graph.

In particular, if the vertices of graph arrive in some order
with the set of its neighbors, and we partition the graph
based on the vertex stream, it is called a Streaming Graph
Partitioning Algorithm. Streaming graph partitioning
algorithm decides which part to assign for each incoming
vertex. Once the vertex is placed, it will not be removed.

a. SSSP b. BFS

Figure 1: Running Time of Supersteps on a Node

These k-balanced graph partitioning approaches balance
the vertex computation job while the communication time
of each part is not considered. Thus, the running time,
which contains both computation and communication time,
of each node may be skew for each node. A reason for the
imbalance is the Traversal-Style workload [21], e.g., SSSP
and BFS. These workloads explore different active vertices
on each node at different supersteps which is hard to pre-
dict at the initial partitioning stage. Thus the computation
time and communication time of each node on specific su-
persteps are imbalanced. Figure 1 shows the running time

1918

of a certain node for workloads SSSP and BFS with a multi-
level graph partitioning algorithm for initial partitions. We
can see that there is a significant running time imbalance for
each superstep. For the Always-Active workloads [21], there
is imbalance of running time as well, because the k-balanced
graph partitioning only balances the vertex computation job
while the communication time of each part is not considered.

The running imbalance of node for Pregel-like system af-
fects the overall job running time for graph processing work-
load and limits the scale out of the whole system. Thus,
using static initial partitioning result which is generated
without analyzing the workload behavior cannot balance the
running time of each node.

To alleviate the issues mentioned above, we propose a
graph partitioning scheme LogGP which exploits historical
graph information. LogGP uses two novel techniques, i.e.,
Hyper Graph Repartitioning and Superstep Repartitioning,
which will be introduced in next two sections.

3. HYPER GRAPH REPARTITIONING
We first introduce how to generate better initial partition-

ing result with the help of historical log. As mentioned in
Section 1, multi-level partitioning algorithms are too slow
for large graphs. Thus, we use streaming approach to gen-
erate initial partitioning result.

Let P t = V t
1 , ..., V

t
k be a partitioning result at time t,

where V t
i is the set of vertices in partition i at time t. A

streaming graph partitioning is sequentially presented a ver-
tex v and its neighbors N(v), and uses a streaming heuristic
to assign v to a partition i only utilizing the information
contained in the current partitioning P t. Although one-
pass streaming partitioning algorithm has shorter partition-
ing time, the partitioning result is not as good as multi-level
solutions because it only has the information of the assigned
vertices in the graph. In this paper, we use historical par-
titioning log to enlarge the vision when running streaming
graph partitioning and refine the initial partitioning result.

We use two kinds of useful information that are provided
by the historical partitioning result.

The first one is the last partitioning result of the same
graph or some parts of the graph. This result has divided
the graph into several partitions generated by the streaming
partitioning algorithm. Although not optimized, it provides
us a better initial input than random graph. We try to
appropriately use this last partitioning result to provide the
streaming graph partitioning more information than that of
the assigned vertices contained in the current partitioning.

The other information is the accessed active vertex set
during the execution of previous workloads which is called
Log Active Vertex Set(LAVS). A LAVS is an active
vertex set that a node accessed in continuous supersteps.
We find that the active vertices in successive supersteps
have some internal relationship with each other especially
when the accessed vertices of the workload have natural
connection, e.g., Semi-clustering [17], Maximal Independent
Sets [16] and N-hop Friends List [7]. These workloads nat-
urally gather the vertices with some kinds of internal rela-
tionships together. Take Semi-clustering as an example, a
semi-cluster in a social graph is a group of people who inter-
act frequently with each other and less frequently with the
rest. When running Semi-clustering on a graph, the LAVS
of this workload accesses the vertices (stand for people), who
have strong connections between each other. Thus, if we use

the LAVS as the additional information for graph partition-
ing, we will initially know this connection of the graph which
can help the streaming algorithm determine which vertices
should be placed together. To control the number of ver-
tices in a LAVS for different workloads and graphs, we use a
parameter k to determine how many continuous supersteps
a LAVS will be concerned. The detail of how to log and
compute LAVS will be discussed in Section 5.

3.1 Hyper Graph
To combine these two kinds of historical information with

the original graph, we use hyper graph to represent the
useful historical information and the original graph struc-
ture. A hypergraph H = (Vh, Eh) is a generalization of a
graph whose edges can connect more than two vertices called
hyper edges (also named nets). A hyper graph consists of a
vertex set Vh and a set of hyper edges Eh . Each hyper edge
is a subset of V. For example, as shown in Figure 2(a), there
are two hyper edges presented with dotted circles. The first
one (hyper edge 1) contains vertices V1, V2 and V3, and
the other one (hyper edge 2) contains vertices V3, V4, and
V5. Another way to present hyper edge is converting the
hyper edge to equivalent hyper edge labels and hyper
pins, as shown in Figure 2(b). The hyper pin and hyper
edge label can be treated as virtual vertex and virtual edge
of the plain graph. The cardinality |eh| of a hyper edge eh is
the number of vertices that it contains. A hyper graph H is
k-regular if every hyper edge has cardinality k. In fact, the
plain graph is a 2-regular hyper graph. Hyper graph nat-
urally represents the three layouts of our information: the
original graph, the last partitioning result and the LAVS.
We next proceed to introduce how to form it.

1

2

3
4

5

Hyper Edge 1

Hyper Edge 2

a. Hyper Edge

1

2

3
4

5

Hyper Pins

1

2

b. Hyper Pin

Figure 2: Two Ways to Represent Hyper Graph

How to form the hyper graph: Given the original
graph G = (Vo, Eo), we use the same vertex set Vo to form
the hyper graph vertices that Vh = Vo.

The edge set of the hyper graph Eh consists of 3 parts:
1. We use vs and ve to denote the two vertices of an

original graph edge in the edge set Eo. Then we add a
hyper edge he = {vs, ve} to Eh.

2. We use Plast = (P 1
last, ..., P

n
last) to denote the last par-

titioning result of the graph. P i
last denotes the i-th parts of

the partitioning result. We add hyper edge he = Pn
last to

Eh.
3. We use LAV Si = LAV S1

i , ..., LAV S
i
m to denote the

LAVS sets of node i with total number of m, and we add
each hyper edge he = LAV Si

m to Eh.
Figure 3 shows an example of how to generate a hyper

graph. We first transform the original graph (Figure 3a)
to hyper graph edges (Figure 3b). These hyper edges he =
{vs, ve} are marked as hyper pin “1”. Then we include the
latest partitioning result of the graph (Figure 3c). These
hyper edges Plast = (P 1

last, ..., P
n
last) are marked as hyper

1919

11

2

3

4

5

6

7

8

a.

11

2

3

4

5

6

7

8

1

1

1

1

1

1

1

1

1

1

b.

2

11

2

3

4

5

6

7

8

2

c.

3

11

2

3

4

5

6

7

8

d.

Figure 3: Example of Hyper Graph Generation

pin “2”. At last, we add the LAVS to get the final hyper
graph (Figure 3d) which is marked as hyper pin “3”.

After generating the hyper graph, we design a novel hyper-
graph streaming graph partitioning approach called Hyper
Streaming Partitioning(HSP). We firstly convert the hyper
edge to equivalent hyper edge labels and hyper pins. A
hyper graph H = (V,Eh) can also be defined as a triplet
H=(V, H̄, P̄), where V is the set of original vertices, H̄ is
the set of hyper edge labels, and P̄ represents the set of
edges connecting an element of V to an element of H̄. As
shown in Figure 2, we can use hyper edge labels and hyper
pins (Figure 2(b)) to represent hyper edges (Figure 2(a)).
After such conversion, we can now treat the hyper edges as
vertices (hyper pins) and use them for one-pass streaming
graph partitioning. Note that we only generate hyper pin
for the hyper edge whose cardinality is more then 2. Thus
the original edge is not represented as hyper pin. In this
way, the hyper pins and hyper edge labels provide vertex
connection information of both previous partitioning result
and active vertex logs.

3.2 Hyper Graph Repartitioning
Our hyper graph repartitioning approach consists of two

parts. We first assign the hyper pins to different partitions,
and then assign the original vertices to these partitions. The
hyper edge label is treated as an edge which will be used
by streaming partitioning algorithms as an additional edge.
When a hyper pin is assigned to a partition, the vertices in
the same hyper edge would have a higher probability to be
assigned to that partition. The hyper pins, in fact, provide
the streaming algorithms some sort of global vision of the
graph and the hyper edge can present some kinds of internal
connections between the vertices.

The streaming graph partitioning algorithms make deci-
sions based on incomplete information, and the order in
which data is streamed will significantly affect the perfor-
mance [23]. The order of vertices varies in several ways, i.e.,
random, BFS/DFS from a starting vertex or adversarial or-
der. Isabelle [22] proved that the BFS and DFS produce
nearly the same result as the random way. Of these orders,
a random ordering is the simplest to guarantee in large-scale
streaming data scenarios, and so we restrict our hyper graph
repartitioning to only consider random node orders for sim-
plicity. Thus we randomly assign hyper pins followed by the
original vertex assignment.

We use a streaming loader to read vertices from hyper
graph. The loader then sends vertices with their neighbors
to the partitioning program which executes streaming graph
partitioning as shown in Algorithm 1. The heuristic function
determines the assignment of incoming vertices based on the
current Partition state, vertex information and input graph.

Algorithm 1 Hyper Graph Repartitioning

1: Input: Hyper Graph H
2: Let Pk = V1, V2, ..., Vk be the current partitioning result

sets.
3: S ← streamingloader(H)
4: generate random order to S
5: for each hyper graph pins p̄ in S do
6: index ← HeuristicFunc(Pk, p̄);
7: Insert hyper graph pins p̄ into Vindex;
8: end for
9: for each vertex v in S do

10: index ← HeuristicFunc(Pk, v);
11: Insert vertex v into Vindex;
12: end for

In [23, 25], some recent works on a broad range of heuris-
tics for performing streaming node assignment were pro-
posed. In this paper, we do not focus on proposing new
streaming heuristics. In fact, our approach can be adapted
to any of these heuristics. Here we take Linear Deterministic
Greedy (LDG) as a representative, since LDG has the best
performance among these heuristics. In LDG, each vertex v
is assigned to the partition based on:

index = argmax|Vi ∩N(v)|
(

1− |Vi|
Ci

)
(2)

where Ci is the maximum capacity of partition i and N(v)
is the set of neighbors of vertex v.

As we mentioned above, the graph may be expected to
change slightly each time it is used. In fact, graph datasets
are typically dynamic, i.e., the graph structure changes over
time. For example, the Twitter graph may have millions of
vertices and edges changed per second at peak rate. Thus it
is important to consider the ability of our system to accom-
modate incremental graphs. One advantage of hyper graph
repartitioning is that it does not require any modification:
our approach can repartition the new graph using the his-
torical information, and the new vertices can be assigned by
hyper graph repartitioning as the original vertices.

4. SUPERSTEP REPARTITIONING
In this section, we analyze the imbalance of running time

on each node during supersteps and propose a novel reparti-
tioning strategy based on collected statistics during the job
execution.

4.1 Job Running Time
In order to improve the performance of graph processing

job, we first try to investigate and model the job running
time of Pregel systems. We will analyze the algorithms and
model the influence of each superstep. Apart from dividing
the algorithms into different categories [21], we want to find
a general way to model these algorithms on graphs.

In the BSP model, a job is divided into a sequence of
supersteps as shown in Figure 4. In each superstep, nodes

1920

Worker 1

Superstep NSuperstep N-1

Worker 1

Worker 2

Worker 3

Synchronization

Computation

Worker 2

Worker 3

Communication

Computation

Communication

Computation

Communication

Figure 4: Abstraction of the BSP Model

generally communicate with each other, i.e., send/receive
information to/from its neighbors. After all the nodes finish
computing and communication jobs, there is a barrier to
make sure nodes are ready for next superstep. The execution
of a graph algorithm stops when all sets of the active vertices
are empty or the maximal number of supersteps is reached.

The running time of each superstep is determined by the
slowest node. Let STn

i be the time that Nodei spends at
the n-th superstep. The time cost of the synchronization
barrier is constant for every superstep, and often negligible
when compared to the costs of the computation and com-
munication, so we ignore it in this paper. Then, the total
running time of the graph algorithm, JobT ime, can be cal-
culated as:

JobT ime =
∑

(max(STn
i)) (3)

Graph partitioning technique helps graph processing sys-
tem to get minimized JobT ime. As mentioned in Section 2,
time spent in a superstep is determined by both communi-
cation time and computing time:

STn
i = f(Tcompni , T comm

n
i) (4)

Here Tcompni and Tcommn
i denote the computing time

and communication time used by Nodei at the n-th super-
step, respectively. The function f(x, y) is determined by the
system implementation. If the system adopts an I/O block-
ing model in which CPU and I/O are operated serially, we
can add up the time which means f(x, y) = x + y. If the
system parallelly processes I/O operations, the superstep’s
running time STn

i is determined by the slower one, thus
f(x, y) = max(x, y). Our system is based on the I/O block-
ing model, while the same result can be obtained when using
a system where I/O is paralleled. In our system, the running
time of n-th superstep and JobT ime can be presented as:

STn = Max(Tcompni + Tcommn
i) (5)

JobT ime =
∑

Max(Tcompni + Tcommn
i) (6)

Since Tcompni and Tcommn
i depend on graph algorithm

and hardware, it is hard to get these information in the ini-
tial graph partitioning phase. Figure 5(a) shows an exper-
iment on two workloads Statistical Inference and Two-
hop Friend List. We record the average percentage of time
used for computing UDF function and sending/receiving
data when executing them in Giraph. As we can see, the

running time of Statistical Inference is dominated by com-
puting jobs while Two-hop Friend List is dominated by I/O
data transmission. The traditional graph partitioning algo-
rithms target at minimizing edge cuts not the running time,
and thus ignore these factors. As a consequence, the running
time of each node may be skew for a superstep. As shown
in Figure 5(b), we record the running time of the first 4 it-
erations of a Pagerank workload on a 20-nodes cluster. The
running time varies significantly.

a. Workloads b. Nodes

Figure 5: Running Time of Superstep on Different Nodes
and Workloads

4.2 Repartitioning Heuristic
The traditional database systems use collected historical

statistics to estimate running time for query optimization.
For parallel graph processing systems, to solve the imbal-
ance problem, we collect useful information to optimize the
workload balance between nodes by estimating the near-
future running time of each node and reassign the vertices
dynamically during algorithm execution. We first discuss
how to estimate the running time.

We collect statistics information to estimate the running
time of each partition. First of all, we discuss how to esti-
mate superstep running time. As mentioned in Section 4.1,
running time of a superstep equals to the running time of
computing part plus the running time of communication
part.

STn
i = Tcompni + Tcommn

i (7)

The computing time Tcompni is determined by the whole
active vertex set, denoted as An

i , and the user-defined func-
tion. This is because all the active vertices will execute the
UDF. Communication time, however, is caused by parts of
the active vertex set. As shown in Figure 6, we divide the
vertices in a partition into three types. The dotted lines
denote the connections of two vertices in different partitions
and the solid lines denote vertices in the same partition.

2

1

3

4

6

7 8

10

12

9

11

5

11

13

12
14

Figure 6: Three Types of Vertices in a Partition

1921

Type1: Vertices and their neighbors are adjacent to ver-
tices in the same partition. For example, vertices 5, 11, 12,
13 and 14 are of this type. We use αn

i to denote the vertices
belonging to this type in n-th superstep on nodei.
Type2: Vertices that are adjacent to vertices from other

partition. For example, vertices 1, 2 and 4 are of this type.
We use βn

i to denote the vertices belonging to this type in
n-th superstep on nodei.
Type3: Vertices that are adjacent to only vertices in the

same partition while their neighbors are adjacent to vertices
from other partitions. We use γn

i to denote the vertices be-
longing to this type in n-th superstep on nodei. The vertices
3, 7 and 10 belong to this type.

The first type vertices generate only local messages. In
parallel graph processing system, producing and processing
local messages are extremely faster than non-local messages,
so we ignore the time cost for dealing with local messages.
Thus vertices in Type1 do not generate communication time.

The second type vertices send and receive messages from
their adjacent partition(s). The total communication time
in this superstep is caused by this subset of active vertices.
We can now denote the superstep running time as:

STn
i = tComp ∗ |An

i |+ tComm ∗ |βn
i | (8)

tComp and tComm are the average computing time and
communication time used by each vertex. LogGP uses run-
ning logs to get these two parameters during the job execu-
tion. Detailed information will be discussed in Section 5.

As same as Type1, the vertices of Type3 do not generate
communication cost, because there is no non-local vertices
adjacent to it. However, these vertices may activate the ver-
tices of Type2 to generate communication cost in the next
superstep. Thus we can use these vertices of Type3 to esti-
mate the communication time in the next superstep.

Another problem is that how can we get the number of
vertex set βn+1

i with the information of γn
i . Here we in-

troduce a new metric, active ratio, denoted as λ. Active
ratio denotes the probability of an active vertex v in super-
step N that causes the neighbors of that vertex to be active
in superstep N + 1. For example, the active ratio of algo-
rithm Pagerank is always 100% because the active vertex
will always activate its neighbors in next superstep. These
parameters can be obtained by the historical log as well.

Then, we can calculate |βn+1
i | and |An+1

i | with λ:

|βn+1
i | = |γn

i | ∗ λ (9)

|An+1
i | = |An

i | ∗ λ (10)

The running time of (n+1)-th superstep can be estimated:

STn+1
i = (tComp ∗ |An

i |+ tComm ∗ |γn
i |) ∗ λ (11)

After estimating the running time of the next superstep,
we collect the estimated running time of each node, and
reassign the vertices to rebalance the running time of the
next superstep.

However, vertex reassignment (repartitioning) is still dif-
ficult because:

1) Finding the optimal repartitioning is an NP problem, as
the size-balanced graph partition problem is NP-complete [6]
which is the static setting of our problem.

2) The computational overhead from the repartitioning
cost must be low. As the objective is to improve application

performance, the selected technique must be lightweight and
can be scalable to work on large graphs.

3) Synchronizing distributed states of different partitions
dynamically is impossible. Propagating global information
across the network incurs a significant overhead, which must
be considered for our repartitioning technique. Thus the
repartitioning approach can only use a local view of the
graph.

The basic idea is to reassign the vertex from partitions
with long estimated time to short ones before the next su-
perstep. We use a threshold θn+1 to determine whether the
estimated time is long in the total running time.

θn+1 = ϑ ∗
∑
STn+1

i

i
(12)

Here ϑ is the percentage which we will discuss below. We
move vertices from the partitions that STn+1

i are larger than
θn+1 to the other partitions and try to minimize the longest
running time.

In this paper, we propose a novel heuristic that moves
the vertex which will generate communication cost in the
next superstep to an appropriate partition. The movement
will reduce the total communication cost in the future and
balance the running time of each node in next superstep.
For a vertex vi in nodei, LogGP logs the times of the vertex
communicating to other partitions and denotes it as C(vi).
If a vertex repartitioning is needed on nodei, we first choose
the vertices that may generate remote communication in
the next n+1 superstep, denoted as Γi

n+1. Let N(v) be the
neighbor set of vertex v.

Γi
n+1 =

⋂
N(v), v ∈ γn

i (13)

We then sort the remote communication times, C(vi), for
each of the vertex in Γi

n+1 in a non-descending order and
greedily reassign the vertex with the max C(Vt) to the par-
tition that the vertex has the most neighbors. When a vertex
is removed, the estimated running time will be decreased by
tComp + tComm. The reassignment stops when Γi

n+1 is
empty or the estimated running time of the next superstep
is equal to the average. The whole processing is illustrated
in Algorithm 2.

Algorithm 2 Superstep Repartitioning

1: STn+1
i ← estimated running time of N + 1 superstep

2: if STn+1
i > ϑ ∗

∑
STn+1

i
i

then

3: Γi
n+1 ←

⋂
N(v), v ∈ γn

i //N(v) is the neighbor vertex
set of v

4: List ← C(v), v ∈ Γi
n+1 //List records the C(v) of

vertex in Γi
n+1

5: List ← Sort List in non-descending order

6: while Γi
n+1 6= ∅ and STn+1

i <
∑

STn+1
i

m
do

7: // m is the number of partitions
8: vt ← pop(List)
9: Reassign vt to the partition that the vt has the most

neighbors
10: Γi

n+1 ← Γi
n+1 − (tComp+ tComm)

11: end while
12: end if

1922

5. THE LogGP ARCHITECTURE
In this section, we present an overview of LogGP to show

how the proposed techniques can be seamlessly integrated
into the system to improve the performance. We first pro-
vide the system architecture, and then present the key com-
ponents of the system. Finally, we discuss how we manage
the vertex migration.

System Architecture: We first describe the basic ar-
chitecture and operations of LogGP. Figure 7 depicts how
LogGP is integrated into Giraph (open source version of
Pregel) as a middle-ware. Our system can be easily mi-
grated to any other BSP-based graph processing systems as
well. In the Giraph system, there are two types of process-
ing nodes: master node and worker node. There is only
one master node which manages to assign and coordinate
jobs, and there are multiple worker nodes which execute
user defined function against each vertex assigned to them.
The components of LogGP are running on the correspond-
ing nodes of Giraph nodes. There is a LogGP partitioning
manager (PM) running on the master node that provides
partitioning meta data for the master node. A LogGP par-
titioning agency (PA) is running on each of the worker nodes
to record, collect and report log information of that worker
node to PM. The initial graph data is partitioned on PM
and assigned to each worker.

Partitioning
Manager

Master Node

Worker
Node #1

Worker
Node #2

Worker
Node #3

Worker
Node #4

Partitioning
Agency

Partitioning
Agency

Partitioning
Agency

...

Partitioning
Agency

Hadoop Distributed File System (HDFS)

LogGP
Middle-ware

Figure 7: Architecture of LogGP Integrated on Giraph

Both PM and PA share the communication framework
of Giraph to communicate with each other. The persistent
data, such as historical partitioning result, is stored in the
HDFS [4] shared with Giraph as well. The detailed discus-
sion of the key components is as follows:

LogGP Partitioning Manager: Partitioning Manager
(PM) is a process running on the master node. It stores
the meta data of graphs and historical partitioning results.
There is a unique GraphID for each graph in LogGP , which
represents a certain graph. The meta data stores the link of
the graph’s historical information, such as the latest parti-
tioning result or the LAVS of that graph. The actual data is
stored on HDFS and PM can access that file by the link of
meta data. When a job is to run on a graph, the master node
will ask PM to generate the Hyper Graph with the original
graph, if existed, the latest partitioning result and LAVS
of the that graph. After that, PM partitions the graph to
generate the initial partitioning. Then, PM checks the meta
data and fetches the historical information to generate the
initial partitioning result for this graph. The master node

then uses this partitioning result to assign vertices of the
graph from HDFS to worker nodes.

During the job execution, when each worker finishes a
superstep, it sends the estimated running time of that par-
tition to PM. PM then gathers and analyzes the information
from worker nodes and applies the repartitioning strategy to
optimize the running time of the next superstep. If a repar-
titioning is needed for a partition on a node, PM will send a
repartitioning trigger along with the necessary information
to the PA of that node and a repartitioning procedure will
be started on that node.

LogGP Partitioning Agency: Partitioning Agency (PA)
is running on each worker node in the Giraph system to col-
lect running time information and manage to repartition the
graph when there will be a running time skew in the next su-
perstep. PA uses the same communication module in Giraph
to communicate with PM or other PA(s). PA collects the
information when the superstep is running, such as tComp,
tComm and C(v), then uses this information to compute
the estimated running time for the next superstep. In fact,
when a vertex is executing a user defined function, such as
Pagerank, PA will check the type of vertex and record the
time used for computing. When data is sent to the other
partitions, PA records the vertex sets and the time spent
on the communication. This running log will be analyzed
after each superstep finishes and generates statistical logs
for that superstep. tComp, tComm, C(v) and other param-
eters used for superstep repartitioning are obtained from
these logs. When a superstep is finished, in synchronization
step, PA will send the estimated time of next superstep to
PM and wait for the response from PM. If a repartition is
necessary, PM will run the repartitioning heuristic to rebal-
ance the running time. PA also writes running logs of active
sets of each superstep. When the workload is finished, LAVS
is generated from the running logs. When all the LAVSs of
continuous k supersteps are generated, the results are up-
loaded to HDFS for PM to generate Hyper Graph for next
workload. This process is fast and does not take much re-
source in that node.

Vertex Migration: For Superstep Repartitioning, when
the dynamic partitioning scheme decides to reassign vertices
from one partition to another, three types of data need to
be sent: (1) latest value of vertices; (2) adjacency list of
vertices; (3) messages for the next superstep. One solution
is to add a new stage for vertex reassign between the end of
superstep n and beginning of superstep n+1. LogGP uses
another option that combines vertex moving within the Syn-
chronization stage. We combine the messages sent from one
partition to another to reduce the times of communication.
In addition, the number of vertexes which need to be moved
is small. Thus, the reassignment cost is slight compared with
other operations. We will further discuss the time used for
vertexes reassignment in experiment studies.

When a vertex gets reassigned to a new worker, every
worker in the cluster must obtain and store this information
in order to deliver future messages to the vertex. An obvious
option for each worker is to store an in-memory map consist-
ing of < V ertexid,Workerid > pairs. However, using this
solution, a vertex u must broadcast to all its neighbors when
it is moved from one node to another. To reduce the cost, we
implement an high-efficient lookup table service mentioned
in [24] to provide a lookup table that reduces the broadcast
cost when reassigning vertices.

1923

6. EVALUATION
In this section, we evaluate the performance of our pro-

posed partitioning refinement approaches. We implemented
LogGP on Giraph [1], and the lookup table service [24] for
vertex migration solution.

6.1 Experimental Settings
We first briefly introduce the experimental settings for the

evaluation, including datasets, evaluation metrics and com-
parative approaches. All the experiments were conducted on
a cluster with 28 nodes with an AMD Opteron 4180 2.6Ghz
CPU, 48GB memory and a 10TB RAID disk. All the nodes
were connected by 1Gbt bandwidth routers.

6.1.1 Data Sets
We used 5 real-world datasets: Live-Journal, Wiki-Pedia,

Wiki-Talk, Twitter and Web-Google; and one Synthetic graph
which is generated following the Erdös-Rényi random graph
model. Those real-world datasets are publicly available on
the Web [5], and the statistics of the datasets are shown
in Table 1. We transformed them into undirected graphs,
added reciprocal edges and eliminated loop circles from the
original release.

Dataset Nodes Edges Type Size
Wiki-pedia 2,935,762 35,046,792 Web 401MB
Wiki-Talk 2,388,953 4,656,682 Web 64MB

Web-Google 875,713 8,644,106 Web 72MB
Live-Journal 4,843,953 42,845,684 Socia 479MB

Twitter 41,652,230 1,468,365,182 Social 20GB
Synthetic 5,000,000 100,000,000 Synthetic 930MB

Table 1: Graph Dataset Statistics

6.1.2 Evaluation Metrics
We use two metrics to systematically evaluate the result

of our experiment. For both of the two metrics, a lower
value represents the better performance.

Edge Cut Percentage(ECP): It indicates the percentage of
cut edges between partitions in the graph, defined as ECP =
ec/|E|, where ec denotes the number of cut edges between
partitions, and |E| denotes the total number of edges in the
graph. This is the basic metric to evaluate the quality of
partitioning result.

Execution Time: We utilize two time costs to evaluate the
system performance. The first one is Job Execution Time
(JET) which presents the elapsed time from submitting a
graph workload till its completion. We use JET to eval-
uate the actual effectiveness of the partitioning. After we
partition the graph, we run the workload on the partitioned
graph and record the time. The second one is Total Running
Time which includes the workload execution time, as well
as the graph loading and partitioning time.

6.1.3 Comparative Methods
In this experimental study, we select several state-of-the-

art partitioning methods for comparison to demonstrate the
advantage of our proposed method.

• The proposed LogGP method uses two techniques,
Hyper Graph Repartitioning (HGR) and Superstep

Repartitioning (SR), to reduce the overall job execu-
tion time of graph system. To better examine the ef-
fectiveness of our approach, we also study the perfor-
mance of HGR and SR individually.

• Linear Deterministic Greedy (LDG) approach [23] is
considered as one of best static streaming method, and
Restreaming LDG (reLDG) approach [19] is extended
to generate initial graph partitioning using the last
streaming partitioning result.

• CatchW [21] is a dynamic graph workload balancing
approach for random initial partitioning, which is a
comparative approach for SR, as both of them try to
adjust the partitions in the supersteps.

• We also use Hashing as one competitor because of
its simplicity and popularity, e.g., Pregel uses hash
function to partition the vertices by default.

6.2 Effect of Hyper Graph Repartitioning
We first evaluate the performance of Hyper Graph Repar-

titioning (HGR). The state-of-the-art streaming algorithm
LDG [23], reLDG [19] and Hashing are used as the base
line. We run the experiment against all the graph datasets
shown in Table 1. Here we mainly present the results on
Live-Journal, Web-Google and Synthetic dataset as repre-
sentative of Social Graph, Web Graph and Random Graph
respectively.

Figure 8 shows the ECP of partitioning results on these
three types of datasets. Each partitioning algorithm is ex-
ecuted 10 times, and HGR and reLDG use the last parti-
tioning result for repartitioning. To generate the LAVS for
the hyper graph, we execute a Semi-clustering workload af-
ter the partitioning. As we can see, HGR works well on all
the graphs, especially on the Social Graph. This is mainly
because that these social graphs representing real relation-
ships of social network have significantly higher average lo-
cal clustering coefficient. After running the Semi-clustering
workload, LogGP records the LAVS of Semi-clustering that
represent the internal relationships of these vertices. Then
HGR generates Hyper Graph with this additional informa-
tion to repartition the graph. With the help of Hyper Graph,
streaming algorithm HGR can use more useful vertex rela-
tion to get better partitioning result. Thus, our approach
outperforms reLDG which only uses the partitioning result
while our approach uses additional LAVS information for
initial partition. For Web Graph, known as seriously power-
law skewed, our approach is still the best. Though in Syn-
thetic Random Graph, our approach gets the smallest im-
provement, there is still about 15% reduction of ECP com-
paring with LDG. For Random Graph, there is no internal
connection between vertices, thus, LAVS cannot fetch the
relationships resulting in less improvement. However the
previous partitioning result is shown to be helpful for these
random graph as well.

In addition, we evaluate the running time of these par-
titioning results after 10 times repartitioning. We run a
10-iteration of Pagerank and Semi-Clustering workloads on
Live-Journal dataset. We compare the running time of HGR
with Hashing, reLDG and LDG. As shown in Figure 9(a),
HGR significantly reduces the running time on these two
workloads, which confirms that our approach can refine the
streaming partitioning result with the Hyper Graph.

1924

a. ECP Results of 10 Iterations on Live-Journal

b. ECP Results of 10 Iterations on Web-Google

c. ECP Results of 10 Iterations on Random Graph

Figure 8: ECP of 10 Iterations on 3 Types of Datasets

In real-world, the workload and graphs are changing time
by time. To simulate the graph changing, we evaluate our
method using graph that changes dynamically between dif-
ferent workload iterations. We used 75% vertices in the
graph for the first workload and then added 5% vertices
each time. At last, when the workload is running for the
5 times, all the vertices is used. We evaluate the running
time of HGR compared with other partitioning algorithms
after 5 times repartitioning, and the results shown in Fig-
ure 9(b) demonstrate the efficiency and robustness of our
approach with respect to graph updates. We also design
an experiment to evaluate the situation when workload is
changing during different iterations. We use 5 workloads:
Semi-Clustering, Two-hop Friendship, Single Source Short-
est Path, Breadth First Search and Pagerank for workload
1, 2, 3, 4 and 5 iterations separately. We execute these 5
workloads in sequence with HGR and other partitioning al-
gorithms, and present the result of the last workload Pager-
ank in the paper. Figure 9(b) reports the superiority of our
method.

Parameter tunning of HGR: As we mentioned in Sec-
tion 3, we use a parameter k to determine the size of vertices
in a LAVS. We conduct a series of experiments to investi-
gate the selection of k. Due to the space limit, we only show
the result of ECP on Live-Journal dataset using Pagerank

Semi-Clustering Pagerank

E
xe

cu
tio

n
T

im
e

(s
)

0

100

200

300

400
LDG
reLDG
HGR
Hashing

a.

Dynamic Graph Mixed Workload

E
xe

cu
tio

n
T

im
e

(s
)

0

100

200

300

400
LDG
reLDG
HGR
Hashing

b.

Figure 9: Job Execution Time on Live-Journal Dataset

for LAVS, in Figure 10. We find that when k = 2 or k = 3,
HGR achieves the best performance for most of the work-
loads. This is because when k is small (k = 1), the size
of LAVS is too small to present the connections between
vertices. When the size of LAVS becomes larger (k > 3),
the LAVS contains too much vertices which may not have
strong relationships. Thus we use k = 3 as the number of
supersteps to form LAVS in the experiment.

0 1 2 3 4 5 6 7 8 9 10

E
dg

e
C

ut
 P

er
ce

nt
ag

e

20

30

40

50

60
Parameter K

Figure 10: Parameter of LAVS Tuning

6.3 Effect of Superstep Repartitioning
We next present the performance of Superstep Reparti-

tioning (SR). We use a representative communication-intensive
workload, Pagerank, for the evaluation. The parameter ϑ
used for the percentage number that determines the thresh-
old in Formula 12 is set as 2% which shows better result
than other values. For Superstep Repartitioning which bal-
ances the running time of each partition during the execu-
tion, JET is a more important performance metric than
ECP. Notice that the JET of SR contains the time of vertex
reassignment.

To better understand how Superstep Repartitioning bal-
ances the running time of each workload, we show the time
of a sample node on Live-Journal dataset in the first itera-
tion of Pagerank workload in Figure 11(a) and the running
time of the same node in the 4th superstep in Figure 11(b).
We can observe that after three times of vertex refinement,
the running time of each node is balanced with even shorter
running time as well. In our experiment, the JET contains
the repartitioning time which is marked as grey bars in Fig-
ure 11(b). These results also confirm the efficiency of mi-
grating and locating the reassigned vertices in LogGP .

We next evaluate the effect of SR with different datasets.
Figure 12(a) shows the result of JET of a 10-iteration Pager-
ank workload on different graphs using LDG streaming par-
titioning as the initial partitioning. Note that, the initial
partitioning method is orthogonal to superstep repartition-
ing, and we will next show results on different initial par-
titioning results. We compare SR with CatchW discussed
in [21] which is a dynamic graph workload balancing ap-
proach. The original method denotes running the experi-

1925

a. Execution Time of 1st Superstep

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
up

er
st

ep
 E

xe
cu

tio
n

T
im

e
(s

)

0

10

20

30

40

b. Execution Time of 4th Superstep

Figure 11: JET of One Sample Node in Different Supersteps

ment without repartitioning approach during supersteps. As
we can see, there is a significant decrease on JET compar-
ing with the approaches without Superstep Repartitioning,
with a reduction of 11.9% to 27% JET on these datasets.
SR runs faster than CatchW on all of the 3 datasets.

a. Performance of Pagerank b. Comparing with CatchW

Figure 12: Performance of Superstep Repartitioning

We further evaluate the influence of different initial par-
tition results to SR. We use the results of HGR, LDG and
Hashing approaches as initial partition results. Figure 12(b)
summarizes the JET cost of these three repartitioning ap-
proaches. We run the experiment on Live-Journal dataset
for 10-iteration Pagerank workload. As shown in Figure 12(b),
our repartitioning approach yields impressive performance
on HGR and LDG while there is no significant improvement
on Hashing initial partition. The reason is that our algo-
rithm focuses on balancing the execution time of each node
during superstep. The hashing partition is actually more
balanced, although running slower, than LDG. For LDG as
initial partition, our approach outperforms CatchW, while
CatchW is better on LiveJournal dataset with Hashing as
initial partitioning. CatchW is primarily designed for start-
ing from an initial random graph partitioning and reassign-
ing the vertices to reduce the communication cost, while
our approach focuses on how to balance the running time
of each node according to the running log from a streaming
initial partitioning. Clearly, our approach is more efficient
for practical situation.

This experiment indicates our Superstep Repartitioning
approach can balance the running time during execution
and reduce the total execution time of graph processing job.

6.4 The Superiority of LogGP
From the previous experiments, we can see that Hyper

Graph Repartitioning (HGR) and Superstep Repartition-
ing (SR) yield promising results in initial graph partition-
ing and superstep graph adjustment respectively. In this ex-
periment, we investigate the overall performance of LogGP
which can take the both advantages of HGR and SR.

Figure 13: Overall Performance of logGP

Figure 13 illustrates the Running time of 10-iteration Pager-
ank and Semi-clustering workload on Twitter dataset. We
compare with all the approaches mentioned above: LDG,
reLDG, and CatchW. As we can observe, comparing to LDG,
there are about 49.1% running time reduction on Semi-
clustering and 39.2% improvement on Pagerank. The re-
sult of LogGP outperforms the CatchW and reLDG as well.
These results confirm that LogGP with the help of log infor-
mation can significantly reduce the job execution time when
comparing with other approaches.

Maximal Independent Sets Two-hop Friendship

E
xe

cu
tio

n
T

im
e

(s
)

0

100

200

300

400

500
LDG
reLDG
LogGP
CatchW
Hashing

a. Wiki-Pedia

Maximal Independent Sets Two-hop Friendship

E
xe

cu
tio

n
T

im
e

(s
)

0

50

100

150

200

250

300
LDG
reLDG
LogGP
CatchW
Hashing

b. Wiki-Talk

Figure 14: Performance on Other Datasets

Besides Twitter dataset, we also evaluate the systems on
Wiki-Pedia and Wiki-Talk dataset with workloads Maximal

1926

Independent Sets and Two-hop Friendship. As shown in
Figure 14, LogGP outperforms all the other methods on
all these datasets and workloads. These results here also
reveal the generality of the proposed approach and its wide
application to various domains.

We next conduct the experiments to further study the to-
tal runing time of the graph processing job. We run the
Pagerank 10-iteration workload on Live-Journal data, and
Figure 15 shows the results of total running time includ-
ing graph loading time (grey bar), partitioning time (white
bar), and JET (black bar). The overall performance of our
method is the best, though it introduces slightly more par-
titioning overhead.

LDG reLDG LogGP CatchW Hashing

T
ot

al
 R

un
ni

ng
 T

im
e

(s
)

0

100

200

300

400

JET
Graph Loading
Partitioning

Figure 15: Study of Total Running Time

Number of Workers

10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

(s
)

0

100

200

300

400

500
LogGP
Ideal

a. Different Workers

Number of Nodes

1 2 3 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

0

200

400

600

LogGP

b. Different Nodes

Figure 16: Performance of Scalability

Scalability Study: Scalability is an important feature
for parallel graph processing system. We further evaluated
the scalability of LogGP with 1) fixed number of 28 nodes
cluster and increasing number of workers; 2) fixed number
of 100 workers and increasing number of nodes.

Figure 16(a) shows the performance of running 50-iteration
of Pagerank on the Live-Journal with the number of workers
increasing from 10 to 100. We use an ideal curve to denote
the ideal execution time which assumes the performance is
linear to the worker number for comparison. As expected, as
the number of workers increases, the improvement decreases
slightly and the performance of LogGP is close to the ideal.
This result confirms that LogGP has a graceful scalability.

We also conduct an experiment by varying the number of
nodes from 1 to 25 with fixed 100 workers, and the results are
shown in Figure 16(b). Not surprisingly, the performance on
one node outperforms that of two and three nodes, because
the cluster with multiple nodes introduce extra communica-
tion cost between nodes. However, it is clear that LogGP
performs better if we further increase the number of nodes,
e.g., ≥ 5, as the gain from the computation capacity of clus-
ter overcomes the communication overhead.

To summarize, based on our experimental results, we con-
clude that LogGP can take advantage of historical log infor-
mation for partitioning refinement and provide an effective
partitioning solution for large graph processing system.

7. RELATED WORK
The graph partition problem discussed in this paper is

related to several fields such as graph computing systems
and graph partitioning.

Large-Scale Graph Computing: To meet the current
prohibitive requirements of processing large-scale graphs,
many distributed methods and frameworks have been pro-
posed and become appealing. Pregel [17] and GraphLab [15]
both use a vertex-centric computing model, and run a user
defined program at each worker node in parallel. Hama [2]
and Giraph [1] are open source projects, which adopt Pregel
programming model, and adjust for HDFS. In these par-
allel graph processing systems, it is important to partition
large graph into several balanced sub-graphs, so that paral-
lel workers can coordinately process them. However, most
of the current systems usually choose simple hash method.

Graph partitioning: Graph partitioning is a combi-
natorial optimization problem which has been studied for
decades. The k-balanced graph partitioning aims to mini-
mize the number of edge cut between partitions while bal-
ance the number of vertices. Though the k-balanced graph
partitioning problem is an NP-Complete problem [10], sev-
eral solutions have been proposed to tackle this challenge.

Andreev et al. [6] presented an approximation algorithm
which guarantees polynomial running time with an approxi-
mation ratio of O(logn). Another solution was proposed by
Even et al. [9] who gave an LP solution based on spreading
metrics which also gets an O(logn) approximation. Besides
approximated solution, Karypis et al. [14] proposed a par-
allel multi-level graph partitioning algorithm to minimize
bisection on each level. There are some heuristics imple-
mentations like METIS [13], parallel version of METIS [20]
and Chaco [12] which are widely used in many existing sys-
tems. Although they cannot provide precise performance
guarantee, these heuristics are quite effective. More heuris-
tic approaches were summarized in [3].

The methods mentioned above are offline and require long
processing time generally. Recently, Stanton and Kliot [23]
proposed a series of online streaming partitioning method
using heuristics. Fennel [25] extended this work by propos-
ing a streaming partitioning framework which combines other
heuristic methods. Joel Nishimura and Johan Ugander [19]
futher proposed Restreaming LDG and Restreaming Fen-
nel that generated initial graph partitioning using the last
streaming partitioning result. Restreaming LDG and Re-
streaming Fennel exploits the similar strategy as HGR. How-
ever, HGR further uses the Log Active Vertex Set to get the
internal relationship between vertices and combines the orig-
inal graph, last streaming partitioning result and Log Active
Vertex Set into a Hyper Graph. HGR then uses a novel Hy-
per Graph Streaming Repartitioning algorithm to partition
the graph with global information.

Beyond these static graph partitioning technologies, [18]
theoretically studies how to adapt graph structure chang-
ing without the overhead of reloading or repartitioning the
graph. Some of the recent works [27, 8] can cope with the
changes in graph structure. However, these approaches han-
dle the changing in high cost. Shang et al. [21] investigated
several graph algorithms and proposed simple yet effective
policies that can achieve dynamic workload balance, while
this approach uses hashing partitioning as the initial input.
Compared to our repartitioning approach SR, CatchW tries
to minimize the total communication cost. SR focuses on

1927

reducing the total JET of the systems which is more effec-
tive. In addition, SR uses the running statistical information
during the execution and predicts the running time of each
node in the next superstep. Base on the prediction, SR can
accurately move the proper vertices.

8. CONCLUSION
In this paper, we systematically investigated the imbal-

ance of running time on BSP model. We designed a novel
log-based graph partitioning system to reuse the previous
and running log information for partitioning refinement. We
proposed Hyper Graph Partitioning which combines the graph
and historical partitioning results to generate a hyper graph
to improve the initial partitioning result. When the work-
load is executing, we use the running logs to estimate the
running time of each node and design a novel heuristic to
reassign the vertices from skew nodes to balance the run-
ning time. Prototype and experimental results confirmed
the improvements of our new approaches.

There are several promising directions for our future work.
First, a further theoretical analysis of streaming algorithm
for Hyper Graph is preferred for better cost estimation. Sec-
ond, other heuristics for vertex reassignment during the ex-
ecution is an interesting topic.

9. ACKNOWLEDGEMENT
The research is supported by the National Natural Science

Foundation of China under Grant No. 61272155 and 973
program under No. 2014CB340405.

10. REFERENCES
[1] Apache Giraph.

https://github.com/apache/giraph/.

[2] Apache Hama. http://hama.apache.org/.

[3] Graph Archive Dataset.
http://staffweb.cms.gre.ac.uk/~wc06/partition/.

[4] HDFS. http://hadoop.apache.org/common/docs/
current/hdfs/design.

[5] Snap Dataset.
http://snap.stanford.edu/data/index.html.

[6] Konstantin Andreev and Harald Racke. Balanced
graph partitioning. Theor. Comp. Sys., 39(6).

[7] Rishan Chen, Mao Yang, Xuetian Weng, Byron Choi,
Bingsheng He, and Xiaoming Li. Improving large
graph processing on partitioned graphs in the cloud.
In Proc. of SOCC Conference, pages 1–13, 2012.

[8] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan
Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong
Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected
world. In Proc. of EuroSys, pages 85–98, 2012.

[9] Guy Even, Joseph (Seffi) Naor, Satish Rao, and
Baruch Schieber. Fast approximate graph partitioning
algorithms. SIAM Journal on Computing,
28(6):2187–2214, 1999.

[10] Michael R Garey, David S Johnson, and Larry
Stockmeyer. Some simplified np-complete problems. In
Proc. of STOC Conference, pages 47–63, 1974.

[11] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph:
distributed graph-parallel computation on natural

graphs. In Proc. of OSDI Conference, pages 17–30,
2012.

[12] Bruce Hendrickson and Robert W Leland. A
multi-level algorithm for partitioning graphs. SC,
95:28, 1995.

[13] George Karypis and Vipin Kumar. Multilevel graph
partitioning schemes. In Proc. of ICPP Conference,
pages 113–122, 1995.

[14] George Karypis and Vipin Kumar. A parallel
algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed
Computing, 48(1):71–95, 1998.

[15] Yucheng Low, Danny Bickson, Joseph Gonzalez,
Carlos Guestrin, Aapo Kyrola, and Joseph M
Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proc.
of VLDB Endow., 5(8):716–727, April 2012.

[16] Michael Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM journal on
computing, 15(4):1036–1053, 1986.

[17] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proc. of SIGMOD Conference,
pages 135–146, 2010.

[18] Vincenzo Nicosia, John Tang, Mirco Musolesi,
Giovanni Russo, Cecilia Mascolo, and Vito Latora.
Components in time-varying graphs. Chaos: An
Interdisciplinary Journal of Nonlinear Science,
22(2):1–12, 2012.

[19] Joel Nishimura and Johan Ugander. Restreaming
graph partitioning: Simple versatile algorithms for
advanced balancing. In Proc. of SIGKDD conference,
pages 1106–1114, 2013.

[20] Kirk Schloegel, George Karypis, and Vipin Kumar.
Parallel static and dynamic multi-constraint graph
partitioning. Concurrency and Computation: Practice
and Experience, 14(3):219–240, 2002.

[21] Zechao Shang and Jeffrey Xu Yu. Catch the wind:
Graph workload balancing on cloud. In Proc. of ICDE
Conference, pages 553–564, 2013.

[22] Isabelle Stanton. Streaming balanced graph
partitioning for random graphs. arXiv preprint
arXiv:1212.1121, 2012.

[23] Isabelle Stanton and Gabriel Kliot. Streaming graph
partitioning for large distributed graphs. In Proc. of
KDD Conference, pages 1222–1230, 2012.

[24] Aubrey L Tatarowicz, Carlo Curino, Evan PC Jones,
and Sam Madden. Lookup tables: Fine-grained
partitioning for distributed databases. In Proc. of
ICDE Conference, pages 102–113, 2012.

[25] Charalampos E. Tsourakakis, Christos Gkantsidis,
Božidar Radunović, and Milan Vojnović. Fennel:
Streaming graph partitioning for massive scale graphs.
Technical report, Microsoft, 2012.

[26] Leslie G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[27] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan.
Towards effective partition management for large
graphs. In Proc. of SIGMOD Conference, pages
517–528, 2012.

1928

https://github.com/apache/giraph/
http://hama.apache.org/
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://hadoop.apache.org/common/docs/current/hdfs/design
http://hadoop.apache.org/common/docs/current/hdfs/design
http://snap.stanford.edu/data/index.html

	Introduction
	Background
	Hyper Graph Repartitioning
	Hyper Graph
	Hyper Graph Repartitioning

	Superstep Repartitioning
	Job Running Time
	Repartitioning Heuristic

	The LogGP Architecture
	Evaluation
	Experimental Settings
	Data Sets
	Evaluation Metrics
	Comparative Methods

	Effect of Hyper Graph Repartitioning
	Effect of Superstep Repartitioning
	The Superiority of LogGP

	Related Work
	Conclusion
	ACKNOWLEDGEMENT
	References

