
Fast Range Query Processing with
Strong Privacy Protection for Cloud Computing

Rui Li1,3 Alex X. Liu2,3 Ann L. Wang2 Bezawada Bruhadeshwar3

College of Computer Science and Electronic Engineering, Hunan university, ChangSha, China1

Dept. of Computer Science and Engineering, Michigan State University, East Lansing, MI, U.S.A2

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China3

Email: lirui@hnu.edu.cn, alexliu@msu.edu, liyanwan@cse.msu.edu, bru@nju.edu.cn

ABSTRACT

Privacy has been the key road block to cloud computing
as clouds may not be fully trusted. This paper concerns
the problem of privacy preserving range query processing on
clouds. Prior schemes are weak in privacy protection as they
cannot achieve index indistinguishability, and therefore al-
low the cloud to statistically estimate the values of data and
queries using domain knowledge and history query results.
In this paper, we propose the first range query process-
ing scheme that achieves index indistinguishability under
the indistinguishability against chosen keyword attack (IND-
CKA). Our key idea is to organize indexing elements in a
complete binary tree called PBtree, which satisfies structure
indistinguishability (i.e., two sets of data items have the
same PBtree structure if and only if the two sets have the
same number of data items) and node indistinguishability
(i.e., the values of PBtree nodes are completely random and
have no statistical meaning). We prove that our scheme is
secure under the widely adopted IND-CKA security model.
We propose two algorithms, namely PBtree traversal width
minimization and PBtree traversal depth minimization, to
improve query processing efficiency. We prove that the worse
case complexity of our query processing algorithm using PB-
tree is O(|R| log n), where n is the total number of data items
and R is the set of data items in the query result. We imple-
mented and evaluated our scheme on a real world data set
with 5 million items. For example, for a query whose results
contain ten data items, it takes only 0.17 milliseconds.

1. INTRODUCTION

1.1 Background and Motivation
Driven by lower cost, higher reliability, better perfor-

mance, and faster deployment, data and computing services
have been increasingly outsourced to clouds such as Ama-
zon EC2 and S3 [1], Microsoft Azure [3], and Google App
Engine [2]. However, privacy has been the key road block to
cloud computing. On one hand, to leverage the computing
and storage capability offered by clouds, we need to store

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 21508097/14/10.

data on clouds. On the other hand, due to many reasons,
we may not fully trust the clouds for data privacy. First,
clouds may have corrupted employees who do not follow
data privacy policies. For example, in 2010, a Google en-
gineer broke into the Gmail and Google Voice accounts of
several children [4]. Second, cloud computing systems may
be vulnerable to external malicious attacks, and when in-
trusions happen, cloud customers may not be fully informed
about the potential implications on the privacy of their data.
Third, clouds may base services on facilities in some foreign
countries where privacy regulations are difficult to enforce.

In this paper, we consider the following popular cloud
computing paradigm: a data owner stores data on a cloud,
and multiple data users query the data. For a simple exam-
ple, a user stores his own data and queries his own data on
the cloud. For another example, multiple doctors in a clinic
store and query patient medical records in a cloud. Figure
1 shows the three parties in our model: a data owner, a
cloud, and multiple data users. Among the three parties,
the data owner and data users are trusted, but the cloud
is not fully trusted. The problem addressed in this paper is
range query processing on clouds in a privacy preserving and
yet scalable manner. For a set of records where all records
have the same attribute A, which has numerical values or
can be represented as numerical values, given a range query
specified by an interval [a, b], the query result is the set
of records whose A attribute falls into the interval. Range
queries are fundamental operations for database SQL queries
and big data analytics. In database SQL queries, the where
clauses often contain predicates specified as ranges. For ex-
ample, SQl query select * from patients where 20 <=

age and age <= 30 means to find all records of the patients
whose age is in the range of [20, 30]. In big data analytics,
many analyses involve range queries along dimensions such
as time and human age.

Query

Cloud Server

Data Owner

Data User

Data User

Data User

Data

Results

Figure 1: Cloud Computing Model

Given data items d1, · · · , dn, the data owner encrypts
these data using a symmetric key K, which is shared be-
tween the data owner and data users, generates an in-
dex, and then sends both the encrypted data denoted
(d1)k, · · · , (dn)k and the index to the cloud. Given a query,

1953

the data user generates a trapdoor and then sends it to the
cloud. The index and the trapdoor should allow the cloud
to determine which data items satisfy the query. Yet, in this
process, the cloud should not be able to infer useful informa-
tion about the data and queries. The useful information in
this context includes the values of the data items, the con-
tent of the queries, and the statistical properties of the data
items. Other than encrypted data and encrypted queries, to-
gether with query results, the cloud may have information
obtained from other channels, such as domain knowledge
about the data (e.g., age distribution). However, even with
such information, a privacy preserving range query scheme
should not allow the cloud to infer additional information
about the data based on past query results.

Besides privacy guarantees, a privacy preserving range
query scheme should be efficient in terms of query process-
ing time, storage overhead, and communication overhead.
The query processing time needs to be small because many
applications require real-time queries. The storage overhead
refers to the data that cloud needs to store other than en-
crypted data items. It needs to be small because the volume
of data stored on the cloud is typically large. The commu-
nication overhead refers to the data transferred between the
data owner and the cloud, other than encrypted data items,
and the data transferred between data users and the cloud,
other than the precise query results. It needs to be small
due to bandwidth limitations and the extra time involved in
uploading and downloading.

1.2 Threat Model
For the cloud, we assume that the cloud is semi-honest

(also called honest-but-curious), which was proposed by
Canetti et al. in [13] and has been widely adopted includ-
ing prior privacy preserving range and keyword query work
[8–11,15–17,19,24–27,31,39]. A cloud is semi-honest means
that it does follow required communication protocols and ex-
ecute required algorithms correctly, but it may attempt to
obtain information about the values of data items and the
content of user queries with the help of domain knowledge
about the data items and the queries (such as the distribu-
tion of data items and queries). For the data owner and the
data users, we assume that they are trusted.

1.3 Security Model
We adopt the IND-CKA security model proposed in [19],

which has been widely accepted in prior privacy preserving
keyword query work. This model has two key requirements:
index indistinguishability (IND) and security under chosen
keyword attacks (CKA). Informally, a range query scheme is
secure under the IND-CKA model if an adversary A chooses
two different sets S1 and S2 of data items, where the two
sets have the same number of data items and they may or
may not overlap, lets an oracle simulating the data owner
to build indexes for S1 and S2, but A cannot distinguish
which index is for which data set. The rationale is that if
the problem is distinguishing the indexes for S1 and S2 is
hard, then deducing at least one data item that S1 and S2

do not have in common must also be hard. In other words,
if A cannot determine which data item is encoded in an in-
dex with probability non-negligibly different from 1/2, then
the index reveals nothing about the data items. Such in-
dexes are called secure indexes. The IND-CKA model aims
to prevent an adversary A from deducing the plaintext val-
ues of data items from the index, other than what it already

knows from previous query results or from other channels.
Note that secure indexes do not hide information such as
the number of data items. For applications that demand the
privacy of data item numbers, they can inject dummy data
items into small data sets to make all data sets to have equal
sizes. Also, note that we are not interested in hiding search
patterns, where a search pattern is defined as the set of trap-
doors corresponding to different user queries. So far there are
no searchable symmetric encryption schemes that can hide
the statistical patterns of user searches because trapdoors
are generated deterministically (i.e., the same trapdoor will
always be generated for the same keyword) [27].

1.4 Summary and Limitation of Prior Art
Prior privacy preserving query schemes fall into two cat-

egories according to their query types: range queries, which
query all data items that fall into a given range, and keyword
queries, which query all text documents that contain a given
keyword. Privacy preserving range query schemes can also
be called range searchable symmetric encryption schemes,
and privacy preserving keyword query schemes can also be
called keyword searchable symmetric encryption schemes.
Prior privacy preserving range query schemes for the single-
data-owner-multiple-data-user cloud paradigm fall into two
categories: bucketing schemes [24–26] and order preserving
schemes [9, 10, 31]. In bucketing schemes, the data owner
partitions the whole data domain (e.g., [0, 150] of human
ages) into multiple buckets of varying sizes (e.g., 4 buckets of
[0, 12], [13, 22], [23, 60], [61, 150]). The index consists of pairs
of a bucket ID and the encrypted data items in the bucket.
The trapdoor of a range query (e.g., [10, 20]) consists of the
IDs of the buckets that overlaps with the range (e.g., bucket
IDs 1 and 2). All data items in a bucket are included in the
query result as long as the bucket overlaps with the query.
Bucketing schemes have two key limitations: weak privacy
protection and high communication cost. Their privacy pro-
tection is weak because the cloud can statistically estimate
the actual value of both data items and queries using do-
main knowledge and historical query results, as pointed out
in [26]. Their communication cost is high because many data
items in the query result do not satisfy the query. Reducing
bucket sizes helps to reduce communication costs, but will
worsen privacy protection because the number of buckets
becomes closer to that of data items.

Order preserving schemes use encryption functions that
preserve the relative ordering of data items even after en-
cryption. For any two data items a and b, and an order
preserving encryption function f , a ≤ b if and only if
f(a) ≤ f(b). In order preserving schemes, the index for data
items d1, · · · , dn are f(d1), · · · , f(dn), and the trapdoor for
query [a, b] is [f(a), f(b)]. Order preserving schemes have
weak privacy protection because they allow the cloud to
statistically estimate the actual values of both data items
and queries [5].

The fundamental reason that the privacy protection pro-
vided by the above prior schemes is weak is because their in-
dexes are distinguishable for the same number of data items
but with different distributions. In bucketing schemes, for
the same number of data items, different distributions in
data values will cause buckets to have different distributions
in sizes because they need to balance the number of items
among buckets. In order preserving schemes, for the same
number of data items, different distributions in data values

1954

will cause cipher-texts to have different distribution in the
projected space. Leveraging domain knowledge about data
distribution, both bucketing schemes and order preserving
schemes allow the cloud to statistically estimate the values
of data and queries.

1.5 Proposed Approach
In this paper, we propose the first privacy preserving range

query scheme that achieves index indistinguishability. Our
key idea for achieving index indistinguishability is to orga-
nize all indexing elements in a complete binary tree where
each node is represented using a Bloom filter, which we call
a PBtree (where “P” stands for privacy and “B” stands for
Bloom filter). PBtrees allow us to achieve index indistin-
guishability because it has two important properties. First,
a PBtree has the property of structure indistinguishability,
that is, two sets of data items have the same PBtree struc-
ture if and only if the two sets have the same number of data
items. The structure of the PBtree of a set of data items is
determined solely by the set cardinality, not the value of
data items. Second, a PBtree has the property of node in-
distinguishability, that is, for any two PBtrees constructed
from data sets of the same cardinality, which have the same
structure, and for any two corresponding nodes of the two
PBtrees, the values of the two nodes are not distinguishable.
Thus, our scheme prevents cloud from performing statistical
analysis on the index even with domain knowledge.

1.6 Technical Challenges and Solutions
There are two key technical challenges. The first chal-

lenge is the construction of PBtrees by data owners. We
address this challenge by first transforming less-than and
bigger-than comparisons into set membership testing (i.e.,
testing whether a number is in a set), which involves only
equal-to comparisons, and then organize all the sets hierar-
chically in a PBtree. This transformation helps us to achieve
node indistinguishability because the less-than or bigger-
than relationship among PBtree nodes is no longer statis-
tically meaningful. The second challenge is the optimiza-
tion of PBtrees for fast query processing on the cloud. We
address this challenge by two ideas: PBtree traversal width
minimization and PBtree traversal depth minimization. The
idea of PBtree traversal width minimization is to minimize
the number of paths that the cloud needs to traverse for pro-
cessing a query. We prove that the PBtree traversal width
minimization problem is NP-hard, and propose an efficient
approximation algorithm. The idea of PBtree traversal depth
minimization is to minimize the traversal depth of the paths
that the cloud needs to traverse for processing a query; in
other words, we want the traversal of many paths to termi-
nate as early as possible.

1.7 Key Contributions
We make three key contributions. First, we propose the

first privacy preserving range query scheme that is secure
under the widely adopted IND-CKA model. Second, we pro-
pose PBtrees, basic PBtree construction and query process-
ing algorithms, and two PBtree optimization algorithms.
Third, we implemented and evaluated our scheme on a large
real world data set with 5 million data items. Experimental
results show that our scheme is both fast and scalable. For
example, for a query whose results contain ten data items,
it takes only 0.17 milliseconds.

The rest of the paper proceeds as follows. We first review
related work in Section 2. In Sections 3 and 4, we present our

basic PBtree construction and query processing algorithms
and two PBtree optimization algorithms. In Section 5, we
prove that our scheme is secure under the IND-CKA security
model. In Section 6, we show our experimental results. We
conclude the paper in Section 7.

2. RELATED WORK
There are some privacy preserving range query work that

does not fit into our cloud computing paradigm and cannot
be used to solve the problem addressed in this paper. In
the public-key domain, the approach in [38] supports range
querying using identity based encryption primitives [12,37].
Their encryption scheme allows a network gateway to en-
crypt summaries of network flows before submitting them to
an untrusted repository; when a network operator suspects
that an intrusion happens, a trusted third party can release
a key to the operator to allow the operator to decrypt flows
whose attributes fall within specified ranges, but not other
flows. However, the user query privacy is not preserved.

A significant amount of work has been done in privacy
preserving keyword queries [7,8,11,14–19,21,22,27,28,36,39].
However, these solutions are not optimized for range queries.

Prior work on outsourced databases has addressed prob-
lems such as secure kNN processing [32,40,41], privacy pre-
serving data mining [6,35], and query result integrity verifi-
cation [30,34,42]. In [32,40,41], order preserving encryption
techniques were used to compute the k-nearest neighbors
of a given encrypted query point in an encrypted database.
For the privacy preserving clustering mechanisms in [6, 35],
certain confidential numerical attributes are perturbed in a
uniform manner so that preserve the distances between any
two points. Significant work has been done on query result
integrity verification [30,34,42]. The basic idea is to include
verifiable digital signatures for each returned tuple, which
allow the client to verify the integrity of query results.

3. PBTREE CONSTRUCTION AND TRAP

DOOR COMPUTATION
In this section, we first present our PBtree construction

algorithm, which is executed by the data owner. This algo-
rithm consists of three steps: prefix encoding, tree construc-
tion, and node randomization using Bloom filters. Second,
we present our algorithm for computing the trapdoor for a
given query, which is executed by the data users. With the
PBtree of n data items and the trapdoor for a given query,
the cloud is able to process the query on the PBtree without
knowing the value of the data items and the query.

3.1 Prefix Encoding
The key idea of this step is to convert the testing of

whether a data item falls into a range to the testing of
whether two sets have common elements, where the basic
step is testing whether two numbers are equal. To achieve
this, we adopt the prefix membership verification scheme
in [33]. Given a number x of w bits whose binary representa-
tion is b1b2 · · · bw, its prefix family denoted as F (x) is defined
as the set of w + 1 prefixes {b1b2 · · · bw, b1b2 · · · bw−1∗, · · · ,
b1∗· · · ∗, ∗∗...∗}, where the i-th prefix is b1b2 · · · bw−i+1∗· · · ∗.
For example, the prefix family of number 6 of 5 bits is
F (6) = F (00110) ={00110, 0011*, 001**, 00***, 0****,
*****}. Given a range [a, b], we first convert the range [a, b]
to a minimum set of prefixes, denoted S([a, b]), such that

1955

the union of the prefixes is equal to [a, b]. For example,
S([0, 8]) ={00***,1000}. Given a range [a, b], where a and b
are two numbers of w bits, the number of prefixes in S([a, b])
is at most 2w − 2 [23]. For any number x and range [a, b],
x ∈ [a, b] if and only if there exists prefix p ∈ S([a, b]) so
that x ∈ p holds. Furthermore, for any number x and prefix
p, x ∈ p if and only if p ∈ F (x). Thus, for any number x
and range [a, b], x ∈ [a, b] if and only if F (x)∩ S([a, b]) 6= ∅.
From the above examples, we can see that 6 ∈ [0, 8] and
F (6) ∩ S([0, 8]) = {00 ∗ ∗∗}. In this step, given n data
items d1, · · · , dn, the data owner computes the prefix fam-
ilies F (d1), · · · , F (dn); given a range [a, b], the data user
computes S([a, b]).

3.2 Tree Construction
To achieve sub-linear search efficiency, we organize F (d1),

· · · , F (dn) in a tree structure that we call PBtree. We cannot
use existing database indexing structures like B+ trees be-
cause of two reasons. First, searching on such trees (such
as B+ trees) requires the operation of testing which of
two numbers is bigger; however, PBtrees cannot support
such operations for the cloud because otherwise PBtrees
will share the same weaknesses with prior order preserving
schemes [24–26]. Second, their structures for different sets
of data items are often different even if the two sets have
equal sizes; however, for any two sets of the same size, their
PBtrees are required to have the same structure, i.e., the
two PBtrees are indistinguishable. In this paper, we orga-
nize F (d1), · · · , F (dn) using our PBtree structure.

Definition 3.1 (PBtree). A PBTree for n data items
is a full binary tree with n terminal nodes and n−1 nonter-
minal nodes, where all n terminal nodes form a linked list
from left to right and each node is represented using a Bloom
filter. Each terminal node contains one data item, and each
nonterminal node contains the union of its left and right
children. For any nonterminal node, the size of its left child
either equals to that of its right child or exceeds by one.

According to this definition, a PBtree is a highly bal-
anced binary search tree. The height of the PBtree for n
data items is ⌊log n⌋ + 1. We construct the PBtree from
F (d1), · · · , F (dn) in a top-down fashion. First, we construct
the root node, which is labeled with the n prefix families
{F (d1), · · · , F (dn)}. Second, we partition the set of n prefix
families {F (d1), · · · , F (dn)} into two subsets of prefix fam-
ilies Sleft and Sright such that |Sleft| = |Sright| if n is even
and |Sleft | = |Sright |+1 if n is odd, and then construct two
child nodes for the root, where the left child is labeled with
Sleft and the right child is labeled with Sright. We recur-
sively apply the above step to the left child and the right
child, respectively, until every terminal node contains only
one prefix family. At the end, we link all terminal nodes by
a linked list. Figure 2 shows the PBtree for the set of prefix
families S = {F (1), F (6), F (7), F (9), F (11), F (12), F (13),
F (16), F (20), F (25)}.

The key property of PBtrees is stated in Theorem 3.1,
which is straightforward to prove according to its construc-
tion algorithm. Note that the constraint 0 ≤ |Sleft| −
|Sright | ≤ 1 makes the structure of the PBtree for a set
of data items to solely depend on the number of data items.

Theorem 3.1 (Structure Indistinguishability).
For any two sets of data items S1 and S2, their PBtrees
have exactly the same structure if and only if |S1| = |S2|.

F(1), F(6), F(7), F(9) ,F(11), F(12), F(13), F(16), F(20), F(25)

F(1), F(6), F(7), F(16), F(20) F(9), F(11), F(12), F(13), F(25)

F(1), F(6), F(7) F(16), F(20) F(12), F(13), F(25)

F(6),F(7)

F(1) F(6) F(7) F(20) F(16)

F(12), F(13)

F(12) F(13) F(25) F(9) F(11)

F(9), F(11)

Figure 2: PBtree Example

We now describe the query processing algorithm on the
above tree. For a PBtree T , we use T.root to denote the root
node of T , T.left to denote the left subtree of T , and T.right
to denote the right subtree of T . For a node v, we use L(v)
to denote the label of v, which is a set of prefix families,
and U(v) to denote the union of all prefix families in L(v).
For example, if L(v) = {F (6), F (7)}, then U(v) = F (6) ∪
F (7). Given a range [a, b], starting from the root T.root
of a PBtree T , where L(T.root) = {F (d1), · · · , F (dn)}
and U(T.root) = F (d1) ∪ · · · ∪ F (dn), we check whether
U(T.root) ∩ S([a, b]) = ∅. If U(T.root) ∩ S([a, b]) = ∅, then
none of the n data items d1, · · · , dn falls into the range of
[a, b] and therefore we do not need to continue searching tree
T . If U(T.root)∩S([a, b]) 6= ∅, then there exists at least one
of the n data items d1, · · · , dn falls into the range of [a, b];
thus, we need to continue to recursively conduct the same
search on T.left and T.right, if they exist. The pseudocode
of the algorithm is in Algorithm 1.

Algorithm 1: PBtreeSearch(T, a, b)

Input: S
Output: PBtree nodes whose data item is in [a, b]

1 if U(T.root) ∩ S([a, b]) = ∅ then

2 return null ;

3 else

4 if T is leaf then

5 return L(T.root);

6 else

7 PBtreeSearch(T.left, [a, b]);
PBtreeSearch(T.right, [a, b]);

Now, we analyze the time complexity of our query process-
ing algorithm 1 and show that it is sub-linear in the number
of data items. Let n be the number of data items indexed by
the PBtree, [a, b] be the query, and R be the query result.
The average run-time of the search algorithm depends on
|R|, the number of data items in the query result. Theoreti-
cally, if |R| = 0, then only the root of the PBtree needs to be
checked and the time complexity is O(1); if |R| = n, then all
data items indexed by the PBtree need to be traversed via
the linked list and the time complexity is O(n). In reality,
we have |R| ≪ n as n is typically large. For each data item
in R, we need to traverse at most 2 log n − 1 nodes. Thus,
the time complexity is O(|R| log n)

3.3 Node Randomization Using Bloom Filters
Next, we present a solution based on secure keyed hash

functions (HMAC) and Bloom filters to make our PBtree
privacy preserving. For each node v, we use a Bloom filter
denoted by v.B to store the prefixes of a node’s prefix fam-
ilies. We assume that the data owner and the users share

1956

r secret keys, denoted k1, · · · , kr, other than the symmetric
key for encrypting and decrypting data items. Consider a
PBtree node v, where set L(v) consists of n prefix families
and set U(v) consists of m prefixes p1, · · · , pm. Let w be the
number of bits that each data item contains. Our node ran-
domization algorithm consists of the following three steps.

One-wayness: For each prefix pi, we use the r secret keys
to compte r hashes: HMAC(k1, pi), · · · , HMAC(kr, pi). The pur-
pose of this step is to achieve one-wayness, that is, given
prefix pi and the r secret keys, it is computationally effi-
cient to compute the r hashes; but given the r hashes, it is
computationally infeasible to compute the r secret keys and
pi; furthermore, even given the r hashes and pi, which is the
case in chosen plaintext attacks (CPA), it is still computa-
tionally infeasible to compute the r secret keys.

Decorrelation : For node v, we generate a random num-
ber v.R, which has the same number of bits as a secret key.
We use v.R to compute r hashes: HMAC(v.R, HMAC(k1, pi)),
· · · , HMAC(v.R, HMAC(kr, pi)). For each prefix pi and for each
1 ≤ j ≤ r, we let v.B[HMAC(v.R, HMAC(kj , pi)) mod M] := 1.
The purpose of the random number that is unique for each
node is to eliminate the correlation among different Bloom
filters for different nodes. For the same prefix p, this ran-
dom number allows us to hash p independently for different
Bloom filters. Without the use of this random number, if
prefix pi is shared by U(v1) and U(v2) of two different nodes
v1 and v2, then for all the r locations HMAC(k1, pi) mod M ,
· · · , HMAC(kr, pi) mod M , both Bloom filters have the value
1. Although two Bloom filters both having 1 for all these r
locations does not necessarily mean that U(v1) and U(v2)
share a common prefix, without the use of this random num-
ber, if two Bloom filters have more 1s at the same locations
than other pairs, then the probability that they share com-
mon prefixes is higher. Figure 3 shows the above hashing
process for Bloom filters.

Pi

HMAC(k1, Pi)

k1

HMAC(k2, Pi)
…… HMAC(kr, Pi)

k2 kr

HMAC(v.R, HMAC(k1, Pi))

HMAC(v.R, HMAC(k2, Pi))

HMAC(v.R, HMAC(kr, Pi))

v.R
v.R v.R

…… ……
0 M-1

mod M mod M mod M

Figure 3: Secure Hashing in Bloom filters

Padding : Ifm < (w+1)∗n, which means that some prefix
families share common prefixes, we generate ((w+1)∗n−m)∗
r random numbers and for each number x, v.B[x mod M] :=
1. At last, we use this Bloom filter together with the random
number v.R to replace the label of v. The purpose of this
step is to avoid a Bloom filter to expose the information how
much its prefix families share common prefixes. Without the
padding, some Bloom filters are inserted with less number
of elements than others, which will cause it to have less 1s
than others in the statistical sense.

By now the PBtree is fully constructed from data items
d1, · · · , dn by the data owner. The data owner sends the
encrypted data items and the PBtree to the cloud.

3.4 Trapdoor Computation
Given a query [a, b], suppose S([a, b]) consists of z pre-

fixes p1, · · · , pz, for each prefix pi, 1 ≤ i ≤ z, the data user

dj-1 dj dj+1 dj+2 dl

…

Figure 4: PBtree Example

computes r hashes: HMAC(k1, pi), · · · , HMAC(kr, pi). The trap-
door for query [a, b], denoted as M[a,b], is a matrix of z ∗ r
hashes: HMAC(k1, p1), · · · , HMAC(kr, p1), · · · , HMAC(k1, pz), · · · ,
HMAC(kr, pz). We organize these z ∗ r hashes in a matrix be-
cause the cloud needs to know which r hashes are all corre-
spond to the same prefix. The trapdoor of pi corresponds to
the ith row of the trapdoor matrix. After the computation,
the data user sends M[a,b] to the cloud.

3.5 Query Processing
After receiving a query represented as a trapdoor, the

cloud uses the trapdoor to search over the PBtree. The query
processing algorithm on PBtrees (i.e., Algorithm 1) still ap-
plies except that the checking of whether U(v)∩S([a, b]) 6= ∅
is implemented as checking whether there exists a row
i(1 ≤ i ≤ z) in matrix M[a,b] so that for every j (1 ≤ j ≤ r)
we have v.B[HMAC(v.R, HMAC(kj , pi)) mod M] = 1.

The straightforward implementation of the above query
processing algorithms requires to check each row of M[a,b] at
each visited PBTree node. Note that for a row i in M[a,b], if
there exists j (1 ≤ j ≤ r) so that v.B[HMAC(v.R, HMAC(kj , pi))
modM] = 0, then U(v)∩pi = ∅. If U(v)∩pi = ∅, then for any
descendent node v′ of node v, we have U(v′)∩pi = ∅ because
U(v′) ⊂ U(v). Based on this fact, when we take M[a,b] to
search over the PBtree, for any such row inM[a,b], we remove
it from M[a,b] when we continue to search the descendent
nodes of v. The searching process terminates when M[a,b]

becomes empty or we finish searching terminal nodes.

3.6 False Positive Analysis
As each node in a PBtree is represented by a Bloom filter,

which inherently has false positives, the query result on a
PBtree may contain false positives. For simplicity, consider
a PBtree with n = 2h leaf nodes, where the height of the
PBtree is h+1. Let R be the query result, which is a set of
data items. We color all the terminal and nonterminal nodes
on the path from a data item in R to the root of the PBtree
to be grey and others to be white. Figure 4 shows such a
marked PBtree where dj ∈ R. Let f be the false positive
rate of a Bloom filter in the PBtree. Note that although
nodes of different levels in a PBtree may have a Bloom filter
of different length, we always choose the number of hash
functions r to be m

n
× ln 2 to minimize the false positive rate

to be (1− (1− 1
m

rn
)r ≈ (1− e−rn/m)r = 2−r ≈ 0.6185m/n ;

thus, by choosing the same m/n value for each node, the
false positive of the Bloom filter at each node is the same.
For any node di /∈ R, let len(di, R) be the number of white
nodes on the path from di to the root, the probability that di
is a false positive is flen(di,R). Thus, the expected number of
false positives is Σdi /∈Rf

len(di,R). Among all possible query
result sets R of the same size a, we use Ma be denote the
maximum expected number of false positives. Thus,

Ma = max
∀R

(
∑

di /∈R

flen(di,R)) (3.1)

1957

For a = 0, we have

M0 = 2h × ph+1 (3.2)

For a = 1, say dj ∈ R as illustrated by Figure 4, the values
of len(di, R) for di /∈ R are 1, 2, 2, 3, 3, 3, 3, · · · . Thus, we
have:

M1 = f + 2f2 + · · ·+ 2h−1fh = f
1− (2f)h

1− 2f
(3.3)

For 1 < a ≤ n, according to Equation 3.1, Ma corre-
sponds to the case where in the (⌈log a⌉+ 1)-th layer there
are a nodes colored grey and for each subtree rooted at
these a nodes, there is one and only one terminal node is
colored grey. Considering the 2⌈log a⌉ subtrees rooted at the
(⌈log a⌉+1)-th layer, the a subtrees have only one grey ter-

minal node each and the rest 2⌈log a⌉ − a subtrees have no
grey terminal nodes. For each of the a subtrees, we can calcu-
late the maximum expected number of false positives based
on Equation 3.3; similarly, for each of the rest 2⌈log a⌉ − a
subtrees, we can calculate that based on Equation 3.2. Thus,
Ma can be calculated as follows:

Ma = af ×
1− (2f)h−⌈log a⌉

1− 2f
+ (2⌈log a⌉ − a)f(2f)h−⌈log a⌉

Figure 5 shows the relation between Ma and a, where we
choose f = 0.05 and h = 13.

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

Value of a (*1000)

V
a
lu

e
 o

f
M

a

Figure 5: Relation between Ma and a

4. PBTREE SEARCH OPTIMIZATION
In this section, we optimize PBtree searching efficiency

by minimizing the number of nodes that a query needs to
traverse both horizontally and vertically.

4.1 Traversal Width Optimization
Recall that in the PBtree construction algorithm in Sec-

tion 3.2, for a nonterminal node with prefix family set S,
we partition this node into two child nodes S1, S2 so that
0 ≤ |S1| − |S2| ≤ 1. This partition is critical for the perfor-
mance of query processing on the PBtree because querying
the common prefixes that both S1 and S2 share will lead to
the traversal of both subtrees. Thus, in partitioning S into
S1, S2, besides satisfying the condition 0 ≤ |S1| − |S2| ≤ 1,
we want to minimize Max{Fi ∩Fj |Fi ∈ S1, Fj ∈ S2}, which
is the maximum number of prefixes in the intersection of two
prefix families that one from S1 and the other from S2. This
condition is to let those prefix families that share more pre-
fixes to be partitioned in the same set. We call this problem
Equal Size Prefix Family Partition. We next formally define
this problem and prove that it is NP-hard.

Definition 4.1 (Equal Size Prefix Family Partition).
Given a set S of prefix families, we want to partition S into
S1, S2, such that the following two conditions are satisfied:

1. 0 ≤ ||S1| − |S2|| ≤ 1;

2. Max{Fi ∩ Fj |Fi ∈ S1, Fj ∈ S2} is minimized.

Theorem 4.1. The Equal Size Prefix Family Partition
problem is NP-hard.

Proof. The decision version of the Equal Size Prefix
Family Partition Problem is the following: “Is it possible
to partition a set S of prefix families into S1 and S2 such
that 0 ≤ ||S1| − |S2|| ≤ 1 and Max{Fi ∩ Fj |Fi ∈ S1, Fj ∈
S2} < k?” We reduce the Set Partition Problem, a known
NP-Complete problem, to the decision version of Equal
Size Prefix Family Partition Problem. The Set Partition
Problem is as follows: “For a multiset of positive numbers
A = {a1, a2, · · · , an}, is it possible to partition A into A1

and A2 such that
∑

ai∈A1
ai =

∑
aj∈A2

aj”.

Given an instance of the set partition problem with pos-
itive number multiset A = {a1, a2, · · · , an}, we convert it
to an instance of our Equal Size Prefix Family Partition
Problem with prefix family set S as follows. Let amax be
the largest number in A. For each number ai in A, we first
generate ai data items d1, d2, · · · , dai

where each data item
has ⌈log n⌉ + ⌈log amax⌉ bits, and for each data item dj
(1 ≤ j ≤ ai), the value of the first ⌈log n⌉ bits is i and
the value of the last ⌈log amax⌉ bits is j − 1. For example,
suppose A = {2, 3, 4}, for number 2 in A, we generate 2
data items 0000 and 0001 in their binary representation.
Second, for each data item dj (1 ≤ j ≤ ai), we generate its
prefix family F (dj). Finally, we map each number ai in A
to ai prefix families F (d1), F (d2), · · · , F (dai

) in S, and let
k = ⌈log n⌉.

Suppose the prefix family set S constructed above has
an equal size prefix family partition solution S1 and S2

with Max{Fi ∩ Fj |Fi ∈ S1, Fj ∈ S2} ≤ k = ⌈log n⌉. We
next prove that A has a set partition solution. Note that if∑

ai∈A ai is odd, then the set partition problem has no solu-

tion. Thus, we only need to consider cases where
∑

ai∈A ai

is even, which means that |S1| = |S2|. A notable property of
the ai prefix families F (d1), F (d2), · · · , F (dai

) constructed
above is that any two of these prefix families share at least
⌈log n⌉ prefixes. For example, F (0001) and F (0001) share 3
prefixes. Thus, Max{Fi∩Fj |Fi ∈ S1, Fj ∈ S2} ≤ k = ⌈log n⌉
implies that for any ai in A, the constructed ai prefix fam-
ilies F (d1), F (d2), · · · , F (dai

) are either all in S1 or all in
S2. Otherwise, suppose F (d1) ∈ S1 and F (d2) ∈ S2, then
|F (d1) ∩ F (d2)| ≥ ⌈log n⌉ = k. Thus, |S1| is equal to the
sum of some numbers in A and |S1| is equal to the sum
of the remaining numbers in A. Finally, |S1| = |S2| implies
that A has a set partition solution. Thus, the Set Partition
Problem ≤p the decision version of Equal Size Prefix Family
Partition Problem, which means that the Equal Size Prefix
Family Partition Problem is NP-hard.

Next, we present our approximation algorithm to the
equal size prefix family partition problem. Our algorithm
consists of two phases: partition phase and re-organization
phase. In the partition phase, we partition the input prefix
family set into two or three subsets so that the size of each
subset is no larger than ⌈n

2
⌉, where n is the size of the pre-

fix family set. In the re-organization phase, if the first phase
outputs two subsets, then we do nothing because the two
subsets must satisfy the condition of 0 ≤ ||S1| − |S2|| ≤ 1; if
the first phase outputs three subsets, then we first choose one
subset to split into multiple smaller subsets, and then merge

1958

these new subsets with the two other subsets to obtain two
subsets that satisfy the condition of 0 ≤ ||S1| − |S2|| ≤ 1.

To help to present the details of these two phases, we
first define two concepts: longest common prefix and child
prefixes. The longest common prefix of a set of prefix families
S = {F1, F2, · · · , Fn}, denoted by LCP (S), is the longest
prefix in F1∩F2∩· · ·∩Fn. For example, the longest common
prefix of {F (1101), F (1100)} is 110∗. Note that for any set
of prefix families, it has only one longest common prefix
because no prefix family consists of two prefixes of the same
length. For any prefix b1b2 · · · bw−i+1 ∗ · · · ∗, it has two child
prefixes b1b2 · · · bw−i+10 ∗ · · · ∗ and b1b2 · · · bw−i+11 ∗ · · · ∗,
which are obtained by replacing the first ∗ by 0 and 1 and
called child-0 and child-1 prefixes, respectively. For example,
prefix 11 ∗ ∗ has two child prefixes 110∗ and 111∗. For any
prefix p, we use p0 and p1 to denote p’s child-0 and child-1
prefixes, respectively.

Given a set of prefix families S = {F1, F2, · · · , Fn}, the
partition phase of our approximation algorithm works as
follows. First, we compute LCP (S), the longest common
prefix of S. Second, we partition S into two subsets, one
subset whose each prefix family contains LCP (S)0 and one
subset whose each prefix family contains LCP (S)1. If any
of the two subsets has a larger size than ⌈n

2
⌉, then we recur-

sively apply the above two partition process to that subset.
This process terminates when all subsets have a smaller size
than ⌈n

2
⌉. Third, for any two subsets whose union has a

size smaller than ⌈n
2
⌉, we call them mergeable and we merge

them (i.e., union them into one set). This process terminates
when no two subsets are mergeable. Thus, we result in ei-
ther two subsets or three subsets. It is impossible to result
in four subsets or more because otherwise there are at least
two subsets can be merged.

If the partition phase results in two subsets, then the re-
organization phase does nothing. Let S1 and S2 be the two
subsets. Because |S1|+|S2| = n, |S1| ≤ ⌈n

2
⌉, and |S2| ≤ ⌈n

2
⌉,

we have 0 ≤ ||S1|− |S2|| ≤ 1. Thus, S1 and S2 represent the
final partition result.

If the partition phase results in three subsets, then the
re-organization phase chooses one subset to split into multi-
ple smaller subsets, and then union these new subsets with
the two other subsets to obtain two subsets S1 and S2 that
satisfy the condition of 0 ≤ ||S1|− |S2|| ≤ 1. Let S1, S2, and
S3 be the three subsets. We choose the subset whose longest
common prefix is the smallest, that is, the subset whose
prefix families share the least number of prefixes. Let S3

be the subset that we choose. We first compute its longest
common prefix LCP (S3). Note that for any prefix family
in S3, it contains either LCP (S3)

0 or LCP (S3)
1. Second,

we split S3 into two subsets S31, whose each prefix fam-
ily contains LCP (S3)

0, and S32, whose each prefix family
contains LCP (S3)

1. Without loss of generality, we suppose
|S31| ≤ |S32|. Thus, either S1 or S2 can be merged with S31.
Otherwise, if both |S1|+ |S31| > ⌈n

2
⌉ and |S2|+ |S31| > ⌈n

2
⌉,

then |S1|+|S2|+|S3| = |S1|+|S2|+|S31|+|S32| ≥ |S1|+|S2|+
|S31|+ |S31| = (|S1|+ |S31|)+(|S2|+ |S31|) > ⌈n

2
⌉+⌈n

2
⌉ ≥ n.

Again, suppose |S1| ≥ |S2| and S1 can be merged with S31,
we merge S1 with S31. After merging S1 with S31, we check
whether S2 can be merged with S32. If they can, we merge
them and output the partition result S1 ∪S31 and S2 ∪ S32.
If S2 and S32 can not be merged, we further split S32, and
repeat the above process. If S1 can not be merged with S31,
we merge S31 with S2 and split S32, and then repeat the

above process. The pseudocode of this algorithm is shown
in Algorithm 2.

We now analyze the worst case computational complexity
of Algorithm 2. Let n be the size of the input set of pre-
fix families and T (n) be the corresponding time complex-
ity. Each set partition operation takes O(n) time and each
subset merging takes O(1) time. The worse case time com-
plexity is when each set partition operation produces two
subsets where the size of one subset is one. Thus, we have:
T (n) = T (n− 1) +O(n). The computational complexity of
Algorithm 2 is therefore O(n2) in the worst case.

Algorithm 2: EqualSizePrefixFamilyPartition(S)

Input: S = {F1, F2, · · · , Fn}
Output: S1 and S2 where S1 ⊂ S, S2 ⊂ S, and

0 ≤ ||S1| − |S2|| ≤ 1

1 Initiate an empty partition subset list L.
2 while (|S| > ⌈n

2
⌉) do

3 Compute pS for S. Parition S into

S1 = {∀Fi|LCP (S)0 ∈ Fi, Fi ∈ S}, and
S2 = {∀Fi|LCP (S)1 ∈ Fi, Fi ∈ S}.

4 if (|S1| ≥ |S2|) then

5 Inserte S2 into L; S := S1.

6 else

7 Insert S1 into L; S := S2.

8 Insert S into L.
9 while (subsets Si and Sj are mergable in L) do

10 Merge Si and Sj into one subset Sij . Replace Si

and Sj with Sij in L.

11 if L contains only two subsets S1 and S2 then

12 return S1 and S2.

13 else

14 Let S3 be the subset that has | ∩Fi∈S3
| ≤ | ∩Fi∈S1

|,
and | ∩Fi∈S3

| ≤ | ∩Fi∈S2
| holds.

15 while L has 3 subsets denoted by S1, S2, and S3 do

16 Remove S3 from L. Split S3 into S31, and S32.
Let |S1| ≥ |S2|, and |S31| ≤ |S32|.

17 if (|S1|+ |S31| ≤ ⌈n
2
⌉) then

18 Merge S31 with S1.
19 if (|S2|+ |S32| ≤ ⌈n

2
⌉) then

20 Merge S32 with S2.

21 else

22 S3 := S32. Insert S3 into L.

23 else

24 Merge S31 with S2.
25 S3 := S32. Insert S3 into L.

26 return Labels of the two subsets in L.

4.2 Traversal Depth Optimization
Our idea for optimizing searching depth is based on the

following observation: for any internal node v with label
{F (d1), F (d2), · · · , F (dm)} that a query prefix p traverses,
if p ∈ F (d1) ∩ F (d2) ∩ · · · ∩ F (dm), then all terminal nodes
of the subtree rooted at v satisfy the query; thus, we can
directly jump to the left most terminal node of this subtree
and collect all terminal nodes using the linked list, skipping

1959

the traversal of all nonterminal node under v in this sub-
tree. This optimization opportunity is the motivation that
we chain the terminal nodes in PBtrees. Note that here
F (d1) ∩ F (d2) ∩ · · · ∩ F (dm) 6= ∅ because it must contain
the prefix of w *s. Furthermore, our searching width op-
timization technique significantly increases the probability
that the prefix families in a nonterminal node share more
than one common prefix.

For a node v labeled with {F (d1), F (d2), · · · , F (dm)},
we split

⋃m
i=1 F (di) into two sets: the common set C =⋂m

i=1 F (di) and the uncommon set N =
⋃m

i=1 F (di) −⋂m
i=1 F (di). With this splitting, query processing at node

v is modified to be the following. First, we check whether
p ∈ N. If p ∈ N, then we continue to use the query processing
algorithm in 3.5 to search p on v’s left and right child nodes.
If p /∈ N, then we further check p ∈ C; if p /∈ N but p ∈ C,
then we directly jump to the bottom to collect all terminal
nodes in the subtree rooted at v; if p is in neither set, then
we skip the subtree rooted at v.

The key technical challenge in searching depth optimiza-
tion is how to store the common set C and the uncommon
set N for each nonterminal node using Bloom filters. The
straightforward solution is to use two Bloom filters, stor-
ing C and N, respectively. However, this will not be space
efficient as we need two bit vectors. In this paper, we pro-
pose an space efficient way to represent two Bloom filters
using two sets of k hash functions {hc1, hc2, · · · , hcr} and
{hn1, hn2, · · · , hnr} but only one bit vector B of m bits.
In the PBtree construction phase, for a prefix p ∈ C ∪ N,
if p ∈ C, we set B[hc1(p)], B[hc2(p)], · · · , B[hcr(p)] to be 1;
if p ∈ N, we set B[hn1(p)], B[hn2(p)], · · · , B[hnr(p)] to be
1. Thus, we check whether a p ∈ C by checking whether
∧r

i=1(B[hci(p)] == 1) holds and check whether p ∈ N by
checking whether ∧r

i=1(B[hni(p)] == 1) holds.
Next, we analyze the false positives of this Bloom filter

with two sets of r hash functions and a bit vector B of m
bits. Suppose we have inserted n elements (i.e., |C|+ |N| =
n) into this bloom filter. Recall that our query processing
algorithm conducts two times of set membership testing of
a query prefix p at node v: first, we test whether p ∈ N;
second, on the condition that p /∈ N, we test whether p ∈
C. Let fN be the probability of a false positive occurs at
the first membership testing, and fC be the probability of
a false positive occurs at the second membership testing.
As the n elements are randomly and independently inserted
into the bit vector B, the false positive probability at the
first membership testing is the same as the false positive
probability of the standard Bloom filter. Thus, we have

fN = (1− (1−
1

m
)rn)r = (1− e−

rn
m)r (4.1)

As the second testing is only performed on the condition
that p /∈ N, and similarly, when the condition p /∈ N holds,
the false positive probability at testing whether p ∈ C is the
same as that at testing whether p ∈ N, we have

fC = (1−fN)×(1−(1−
1

m
)rn)r = (1−(1−e−

rn
m)r)×(1−e−

rn
m)r

(4.2)
To further reduce the false positive probability in testing

p ∈ C at node v, when we collect the leaves of the subtree
rooted at v, we can randomly choose x leaf nodes to test
whether they indeed match p; if any of the leaf nodes does
not match p, which means that p /∈ C, then we exclude
all leaves of the subtree rooted at v from the query result.

Thus, with the testing of the x leaf nodes, the false positive
probability in testing whether p ∈ C becomes the following:

fC×(1−e−
rn
m)rx = (1−(1−e−

rn
m)r)×(1−e−

rn
m)rx+r (4.3)

Note that we test p ∈ N first and only when p /∈ N we test
p ∈ C. Otherwise, if we use the above mentioned leaf testing
method to further reduce the false positive probability in
testing p ∈ C, we may introduce false negatives, which is
not allowed in our scheme. Suppose we first test p ∈ C first
and only when p /∈ C we test p ∈ N. For a query prefix
p, if p ∈ N and p /∈ C, but false positive occurs in testing
p /∈ C, when we collect the leaves of the subtree rooted at
v, if we test a leaf node and find it is not in C, according
to the above leaf testing method, we exclude all leaves of
the subtree rooted at v from the query result; however, as
p ∈ N, some of these excluded leaves should be included in
the query result, which are false negatives.

5. SECURITY ANALYSIS

5.1 Security Model
To achieve IND-CKA security, our PBtree uses pseudo-

random functions, which are keyed functions and cannot
be distinguished from a truly random function with non-
negligible probability [29]. Let g : {0, 1}n×{0, 1}s → {0, 1}m

be a keyed function which takes as input n-bit strings and
s-bit keys and maps to m-bit strings. Let G : {0, 1}n →
{0, 1}m be a random function which maps n-bit strings tom-
bit strings. Now, g is a pseudo-random function if, for a fixed
value k ∈ {0, 1}s, the function g(x, k), where x ∈ {0, 1}n,
can be computed efficiently and if a probabilistic polyno-
mial time adversary A with access to r chosen evaluations
of g, i.e., (xi, g(xi, k)) where i ∈ [1, r], cannot distinguish
the value g(xr+1, k) from the output of a random function
G with non-negligible probability. We have used HMAC for
our scheme as the pseudo-random function. From the re-
sults in [17, 29], a searchable symmetric encryption scheme
is secure if a probabilistic polynomial time adversary cannot
distinguish between the output of a real index, which uses
pseudo-random functions, and a simulated index, which uses
random functions, with non-negligible probability. We show
the construction of such a simulator for our scheme and
thereby, prove its security under the IND-CKA model.

5.2 Security Proof
Without loss of generality, we view the PBtree as a list of

Bloom filters, where each Bloom filter stores a distinct set of
prefixes and answers user queries. Therefore, we note that,
that the proof of security of PBtree is equivalent to proving
that any given Bloom filter is IND-CKA secure satisfying
the following properties: (a) the contents of the data items
are not revealed from the structure of the Bloom filter in
which they are stored or from the contents of other Bloom
filters, and (b) given any two Bloom filters, with different
number of data items, they are indistinguishable to an ad-
versary. We consider a non-adaptive adversary, which has
a one-time finite trace of the search history consisting of a
finite set of secure trapdoors and their corresponding search
results. To complete the proof, we demonstrate the construc-
tion of a probabilistic polynomial time simulator S , which
can simulate the secure index using only this finite trace of
the search history. The adversary interacts with the simula-
tor as well as the real index and is challenged to distinguish
between the results of the two indexes with non-negligible

1960

probability. We consider the length of the key s as the secu-
rity parameter in the following definitions:

History: Hq. Let D = {D1, D2, · · · , Dn} denote the set of
data items where Di denotes the ith data item. Let R1:q =
{R1, R2, · · · , Rq}, denote a sequence of q range queries
where each range query is of the form, Ri = {ai, bi} for
ai, bi, q ∈ N. The history Hq is defined as Hq = {D,R1:q},
where the set D consists of data items, which match one
or more of the range queries in R1:q. An important require-
ment is that q must be polynomial in the security parameter
s, the key size, in order for the adversary to be polynomially
bounded.

Adversary View: Av. This is the view of the adversary
of a history Hq. Each range query, Ri = {ai, bi} gener-
ates a set of ri trapdoors, Ti = {ti,1, ti,2, · · · , ti,ri} which
are secure under an encryption key K. Now, the adversary
view consists of: the set of trapdoors corresponding to the
range queries T, the secure index I for D and, set of the
encrypted data items, EncK(D)={EncK(D1), EncK(D2),
· · · , EncK(Dn)}. Formally, Av(Hq) = {T; I;EncK(D)}. In
addition, the adversary may also know the size of the en-
crypted data items.

Result Trace This is defined as the access and search pat-
terns observed by the adversary after T is matched against
the encrypted index I. The access pattern is the set of
matching data items, M(T)={ m(t1), m(t2) · · · , m(tq)},
where m(ti) denotes the set of matching data item iden-
tifiers for trapdoor ti. The search pattern is a symmetric
binary matrix ΠT defined over T , such that, ΠT [p, q] = 1 if

tp = tq, for, 1 ≤ p, q ≤ σ|Ti|. We denote the matching result
trace over Hq as: M(Hq) = {M(R1:q),ΠT [p, q]}. The adver-
sary can only see a set of matching data items for each trap-
door, which is captured using these two patterns. Therefore,
each Bloom filter can be viewed as a match for a distinct,
but not necessarily unique when viewed along the PBtree,
set of trapdoors. The uniqueness is not possible since each
range query can match multiple distinct trapdoors.

Theorem 1. The PBtree scheme is IND-CKA secure
under the pseudo-random function f and the encryption al-
gorithm Enc.

Proof. We consider a sample adversary view Av(Hq) and
show that, given a real matching result traceM(Hq), it is pos-
sible to construct a polynomial time simulator S = {S0, Sq}
that can simulate this view with non-negligible probability.
We denote the simulated adversary view as A∗

v(Hq), the sim-
ulated index as I∗, the simulated encrypted documents as
EncK(D∗), and the trapdoors as T∗. By definition, each
Bloom filter matches a distinct set of trapdoors, which are
visible in the result trace of the query. Let IDj denote the
unique identifier of a Bloom filter. The final result of the
simulator is to output trapdoors based on the chosen range
query history submitted by the adversary; given that the
adversary is not allowed to see the index or the trapdoors
prior to submitting the history.

Step 1. Index Simulation To simulate the index I∗, given
that the size and number of Bloom filters is known from I,
we generate same sized bit-arrays, B∗, where random bits
are set to 1 while ensuring that each Bloom filter at the
same layer has approximately equal number of bits. Next,
we generate random EncK(D∗), such that each simulated
data item has same size as an original encrypted data item
in EncK(D) and |EncK(D∗)| = |EncK(D)|.

Now, for the first Bloom filter, which represents the root

of PBtree, in I∗, we associate the entire set EncK(D∗),
i.e., this filter points to the entire data item set. For the
next two Bloom filters, corresponding to the child sub-
sets, we consider each data item and probabilistically, where
Prob[Assign] = 1/2 with a fair coin toss, and assign it to
one of the Bloom filters. Finally, if there are any left over
data items, we randomly assign them to the filters such that
both the child sub-sets differ by at most one item.

Step 2. Simulator State S0 For Hq, where q = 0, we
denote the simulator state by S0. We construct the adver-
sary view as follows: A∗

v(H0) = {EncK(D∗), I∗, T ∗}, where
T ∗ denotes the set of trapdoors. To generate T ∗, we first
note that, each data item in EncK(D∗) corresponds to a
set of matching trapdoors. The length of each trapdoor is
given by the pseudo-random function g, and the maximum
possible size of trapdoors matching the data item is given
by the length of the prefix family of the data item: n + 1
where, n is the length of the data items. Therefore, we gen-
erate (n+1)∗|EncK(D∗)| random trapdoors of length |g(.)|
each and, with a uniform probability defined over these trap-
doors, we associate at most n + 1 trapdoors for each data
item in EncK(D∗). Note that, some trapdoors might re-
peat, which is desirable as two data items might match
the same trapdoor. The distribution of trapdoors is now
straightforward; for each Bloom filter in I∗, we consider the
data items and perform a union of the trapdoors. This dis-
tribution is consistent with the trapdoor distribution in the
original index I, i.e., this simulated index satisfies all the
structural properties of a real PBtree index. Now, given that
g is pseudo-random, and the probability of trapdoor distri-
bution is consistent, this distribution is indistinguishable by
any probabilistic polynomial time adversary.

Step 3. Simulator State Sq ForHq where q ≥ 1, we denote
the simulator state by Sq. The simulator constructs the ad-
versary view as follows: A∗

v(Hq) = {EncK(D∗), I∗, T ∗, Tq}
where Tq are trapdoors corresponding to the query trace. To
construct, I∗, given M(R1:q), consider the set of matching
data items for each trapdoor, M(Ti)={m(ti,1), m(ti,2), · · · ,
m(ti,ri) } where 1 ≤ i ≤ q. Let M(R1:q) contain p unique
data items. For each data item in the trace, EncK(Dp),
the simulator associates the corresponding trapdoor from
M(Ti) and if more than one trapdoor matches the data item,
then the simulator generates a union of the trapdoors. Since
p < |D|, the simulator generates 1 ≤ i ≤ |D|− q+1 random
strings, Enc∗K(Di) of size |EncK(D)| each and associates
up to n + 1 trapdoors uniformly, as done in Step 2, ensur-
ing that these strings do not match any strings from M(Ti).
The simulator maintains an auxiliary state ST q to remem-
ber the association between the trapdoors and the matching
data items. Now, for the first Bloom filter, we map all the
data item identifiers : EncK(D∗) = M(R1:q) ∪ Enc∗K(Di)
where 1 ≤ i ≤ |D − q| + 1. The child Bloom filters are
constructed in a similar manner as before. The simulator
outputs: {EncK(D∗), I∗, T ∗, Tq}. Note that, all the steps
performed by the simulator are polynomial and hence, the
simulator runs in polynomial time complexity.

Now, if a probabilistic polynomial time adversary issues a
range query over any data item matching the set M(R1:q),
the simulator gives the correct trapdoors. For any other data
item, the trapdoors given by simulator are indistinguishable
due to pseudo-random function g. Finally, since each Bloom
filter contains sufficient blinding, our scheme is proven secure
under the IND-CKA model.

1961

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2000

4000

6000

8000

10000

12000

14000

Number of Data Items (million)

A
v
e

.
C

o
n

s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

PB_B

PB_W

PB_WD

(a) Con. Time

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

Number of Data Items(million)

In
d

e
x
 S

iz
e

(G
B

)

(b) Index Size
Figure 6: Time & Size

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Ave. Query Result Size

A
v
e

.
Q

u
e

ry
 T

im
e

 (
m

s
) PB_B

PB_W

PB_WD

(a) Query Time

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Ave. Query Result Size

A
v
e
.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

(%
)

PB_B

PB_W

PB_WD

(b) FP Rate
Figure 7: Optimization Evaluation

10 20 30 40 50 60 70 80 90
10

−4

10
−2

10
0

10
2

10
4

Ave. Query Result Size

A
v
e

.
Q

u
e

ry
 T

im
e

(m
s
) PB_WD

Binary Search

Linear Search

(a) Query Time

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Ave. Query Result Size

A
v
e

.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

(%
)

PB_WD
Bucket_10

Bucket_50
Bucket_90

(b) FP Rate
Figure 8: PBtree Evaluation

6. EXPERIMENTAL EVALUATION

6.1 Experimental Methodology
To evaluate the performance of PBtree, we considered

three factors and generated the various experimental con-
figurations. The metrics considered are: the data sets, the
type of PBtree construction, and the type of the queries.
Based on these metrics, we have comprehensively evaluated
the construction cost of the PBtree, the query evaluation
time and the observed false positive rates.

6.1.1 Data Sets

We chose the Gowalla [20] data set, which consists of
6,442,890 check-in records of users, over the period of Feb.
2009 to Oct. 2010, and extracted the time stamps. Now,
given that each time stamp is represented as a tuple :
〈year,month, date, hour,minute, second〉, we performed a
binary encoding for each of these attributes and treated the
concatenation of the respective binary strings as a 32-bit
integer value, while ignoring the unused bit positions. We
perform our experiments on 10 fixed size data sets varying
from 0.5 to 5 million records with a scaling factor of 0.5 mil-
lion records, respectively, chosen uniformly at random from
the 6 million-plus total records in the Gowalla data set.

6.1.2 PBtree Types

We performed experiments with three variants of the PB-
tree: the basic PBtree without any optimizations, denoted
as PB B, the PBtree with width optimization, denoted as
PB W , and the PBtree with both depth and width opti-
mizations, denoted as PB WD. We have not performed ex-
periments for the case of the PBtree with only depth opti-
mization due to the following reasoning: when searching on
a Bloom filter we may need to perform two checks, which is
twice the effort. If a query prefix is not found in the Bloom
filter, then we need to perform a second check, using a differ-
ent set of hash functions, to check if the prefix is a common
prefix in the Bloom filter. As a result, depth optimization is
more effective when combined with width optimization be-
cause width optimization aggregates the common prefixes
in a systematic manner. Therefore, we focus only on the
performance evaluation of PB B, PB W and PB WD.

6.1.3 Query Types

The performance evaluation of PBtree is dependent on
two factors: query types and query results size. We consider
two query types: prefix and range queries. A prefix query
is a query specified as a single binary prefix , whereas, a
range query is specified as a numerical range and is likely to
generate more than one binary prefixes. The prefix queries
are effective in evaluating the performance of PBtree under
the two types of optimizations we have described, and the
range queries are effective to evaluate the performance of
PBtree against other known approaches in literature. For

each data set, we generate a distinct collection of 10 prefix
query sets, where each prefix set contains 1000 prefixes, and
similarly, we generate 10 distinct range query sets, where
each set contains 1000 range queries. The average number
of prefixes for denoting a range in our range query sets vary
from 5.93 to 9.6 prefixes, respectively.

The query result size is another important factor since the
worst-case run-time search complexity of PBtree is given by
O(r. logN) where r is the query result size. But the chal-
lenge is that, since the data values are not in any particular
sequence, it is difficult to know which range queries can gen-
erate the desired query result sizes after the PBtree is built.
To handle this issue, prior to the PBtree construction, we
sort the data items and determine the appropriate range
queries, which will result in the desired query result sizes
and use these queries in our experiments. For our experi-
ments, we chose query ranges which result in query result
sizes varying from 10 to 90 data items.

6.1.4 Implementation Details

We conducted our experiments on desktop PC running
Windows 7 Professional with 32GB memory and 3.5GHz
Intel(R) Core(TM) i7-4770k processor. We used HMAC −
SHA1 as the pseudo-random function for the Bloom fil-
ter encoding and implemented the PBtree using C++. We
set the Bloom filter parameter, m/n = 10, where m is the
Bloom filter size and n is the number of elements, and the
number of Bloom filter hash functions as 7. Although we
have also experimented with other values of m/n, because
of the limited space, we only show the results for m/n = 10.

6.2 Evaluation of PBtree Construction
Our experimental results show that, the cost of PBtree con-

struction is reasonable, both in terms of time and space. For
the chosen datasets, Figure 6(a) shows that, the average
time for generating, the PB B is 276 to 3443 seconds, the
PB W is 338 to 7500 seconds, and the PB WD is 357 to
14027 seconds, respectively. The average time required for
the PB WD construction is higher due to the equal-size par-
tition algorithm and common prefix computation overhead
involved. However, as we show later, the query processing
time for PB WD is smaller compared to the other two vari-
ants of the PBtree, and the false positive rate is lower as well.
Figure 6(b) shows that, the PBtree sizes range from 1.598GB
to 18.494GB for the data sets, and also, for a specific data
set size, the PB B, PB W , and PB WD index structures
are of the same size, respectively. Finally, the PBtree con-
struction incurs a one-time off-line construction overhead.

6.3 Query Evaluation Performance

6.3.1 Prefix Query Evaluation

Our experimental results show that, the width and the
depth optimizations are highly effective in reducing the query

1962

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Data Items (million)

A
v
e
.
Q

u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
(m

s
)

PB_B

PB_W

PB_WD

(a) R. size = 10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

Number of Data Items (million)

A
v
e
.
Q

u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
(m

s
)

PB_B
PB_W
PB_WD

(b) R. Size =50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Number of Data Items (million)

A
v
e
.
Q

u
e
ry

 P
ro

c
e
s
s
in

g
 T

im
e
(m

s
)

PB_B

PB_W

PB_WD

(c) R. Size =90
Figure 9: Ave. Query Time of Prefix Queries

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Number of Data Items (million)

A
v
e
.
F

a
ls

e
 p

o
s
it
iv

e
 R

a
te

 (
%

)

PB_B
PB_W
PB_WD

(a) R. Size=10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Number of Data Items (million)

A
v
e
.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

PB_B
PB_W
PB_WD

(b) R. Size =50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Number of Data Items (million)

A
v
e
.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
%

) PB_B
PB_W
PB_WD

(c) R. Size =90
Figure 10: Ave. False Positive Rate of Prefix Queries

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−2

10
0

10
2

10
4

Number of Data Items (million)

A
v
e

.
Q

u
e

ry
 T

im
e

 (
m

s
)

PB_WD

Binary Search

Linear Search

(a) R. size = 10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−2

10
0

10
2

10
4

Number of Data Items (million)

A
v
e

.
Q

u
e

ry
 T

im
e

 (
m

s
) PB_WD

Binary Search
Linear Search

(b) R. Size =50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−2

10
0

10
2

10
4

Number of Data Items (million)

A
v
e

.
Q

u
e

ry
 T

im
e

 (
m

s
) PB_WD

Binary Search

Linear Search

(c) R. Size =90
Figure 11: Ave. Query Time of Range Queries

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Number of Data Items (million)

A
v
e
.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

(%
)

PB_WD

Bucket_10

Bucket_50

Bucket_90

(a) R. Size=10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Number of Data Items (million)

A
v
e

.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

(%
)

PB_WD

Bucket_10

Bucket_50

Bucket_90

(b) R. Size =50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Number of Data Items (million)

A
v
e
.
F

a
ls

e
 P

o
s
it
iv

e
 R

a
te

(%
)

PB_WD
Bucket_10

Bucket_50
Bucket_90

(c) R. Size =90
Figure 12: Ave. False Positive Rate of Range Queries

processing time and the false positive rates. We denote the
average query result size as “R.Size” in the figures. Fig-
ure 9 and Figure 10 show the average prefix query processing
times and false positive rates, respectively, on different data
sets, for prefix queries issued on the corresponding PB B,
PB W and PB WD structures. Figure 7(a) and Figure 7(b)
show the average query processing time and false positive
rates, respectively, for different prefix query result sizes, on
the PB B, PB W and PB WD structures, which are built
on 5 million data items.

The PB WD structure exhibits higher query processing
efficiency and records lower false positive among all PBtree
structures. From the figures, we note that, for the same the
query result sizes, PB WD executes, 2.153, 2.309, and 2.533
times faster than PB B, respectively; and the corresponding
false positive rates in PB WD are, 0.88, 0.8, and 0.83 times,
smaller than in PB B. In comparison, for the same query
result sizes, PB W executes 0.516, 0.406, and 0.444 times
faster than PB B, respectively; and the corresponding false
positive rates in PB W are, 0.25, 0.186, and 0.21 times,
smaller than PB B.

6.3.2 Range Query Evaluation

Compared with existing schemes, our experimental results
show that PB WD has smaller range query processing times
and lower false positive rates. We compared the speed of
PB WD with two plain text schemes: linear search, in which
we examine each item from the unsorted data set to match
the range query, and binary search, in which we execute the
range query over the sorted data using the binary search
algorithm. To evaluate the accuracy of PB WD, we com-
pared the recorded false positive rates with those observed
in the bucket scheme of [26]. In our experiments, both the
data items and the queries follow uniform distribution and
hence, each bucket contains same number of data items with
bucket sizes ranging from 10 to 90.

Figure 11 and Figure 12 show the average range query
processing time and the false positive rates, respectively for
different query result sizes on the experimental data sets. We
observed that, for the three query result sizes, the plan-text
binary search is, respectively, 116, 113, and 110 times, faster
than the corresponding search results on the PB WD struc-
ture. On the other hand, PB WD performs, 14.8, 3.3, and
1.748 times, faster query processing than the linear search
scheme. Note, we use logarithmic coordinates in Figure 11

and Figure 8(a).
In terms of accuracy PB WD outperforms the bucket

scheme [26] by orders of magnitude. For instance, for the
maximum query result size of 90 in our experiments, the
false positive rates recorded by PB WD are, 2.12, 21.38,
and 39.96 times lesser than the bucket scheme with respec-
tive bucket sizes being 10, 50, and 90.

Finally, Figure 8(a) and Figure 8(b) show the average
range query processing time and false positive rates, respec-
tively, for different query result sizes, where the correspond-
ing indexes, PB WD, linear, binary and bucket, are built
on a data set of 5 million data items.

7. CONCLUSIONS
In this paper, we propose the first range query processing

scheme that achieves index indistinguishability, under the
IND-CKA [19], which provides strong privacy guarantees.
The key novelty of this paper is in proposing the PBtree data
structure and associate algorithms for PBtree construction,
searching, and optimization. We implemented and evaluated
our scheme on a real world data set. The experimental re-
sults show that our scheme can efficiently support real time
range queries with strong privacy protection.

8. ACKNOWLEDGEMENTS
This work is supported in part by the National Natural

Science Foundation of China under Grant Numbers 61370226,
61472184, 61321491, 61272546, Young Teacher Growth Plan
of Hunan University, China Postdoctoral Science Founda-
tion, and the National Science Foundation under Grant Num-
bers CNS-1017598. We would like to thank our anonymous
reviewers for their valuable suggestions and feedback for
improving our paper significantly. We also like to thank
Mustafa Canim and Murat Kantarcioglu for providing us
the source code of their work in [26].

9. REFERENCES

[1] Amazon web services, aws.amazon.com.

[2] Google app engine, code.google.com/appengine.

[3] Microsoft azure, www.microsoft.com/azure.

[4] Google fires engineer for privacy breach.
http://www.cnet.com/news/google fired engineer for
privacy breach/, 2010.

1963

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Proceedings
of the ACM SIGMOD, pages 563–574. ACM, 2004.

[6] R. Agrawal and R. Srikant. Privacy-preserving data
mining. In Proceedings of the ACM SIGMOD, pages
439–450. ACM, 2000.

[7] L. Ballard, S. Kamara, and F. Monrose. Achieving
efficient conjunctive keyword searches over encrypted
data. In Information and Communications Security,
pages 414–426. 2005.

[8] M. Bellare, A. Boldyreva, and A. ONeill.
Deterministic and efficiently searchable encryption. In
Proceedings of the CRYPTO, 2007.

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-preserving symmetric encryption. In
EUROCRYPT, pages 224–241, 2009.

[10] A. Boldyreva, N. Chenette, and A. O’Neill.
Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In
CRYPTO, 2011.

[11] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and
G. Persiano. Public key encryption with keyword
search. In EUROCRYPT, 2004.

[12] X. Boyen and B. Waters. Anonymous hierarchical
identity-based encryption (without random oracles).
In CRYPTO, 2006.

[13] R. Canetti, U. Feige, O. Goldreich, and M. Naor.
Adaptively secure multi-party computation. In
Proceedings of the 28th ACM symposium on Theory of
computing (STOC), pages 639–648. ACM, 1996.

[14] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou.
Privacy-preserving multi-keyword ranked search over
encrypted cloud data. In IEEE INFOCOM, 2011.

[15] Y.-C. Chang and M. Mitzenmacher. Privacy
preserving keyword searches on remote encrypted
data. In Third International Conference on Applied
Cryptography and Network Security (ACNS), 2005.

[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved
definitions and efficient constructions. In ACM CCS,
2006.

[17] R. Curtmola, G. A. J., S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: Improved
definitions and efficient constructions. Journal of
Computer Security, 19:895–934, 2011.

[18] E. Damiani, S. C. Vimercati, S. Jajodia,
S. Paraboschi, and P. Samarati. Balancing
confidentiality and efficiency in untrusted relational
dbmss. In CCS, pages 93–102, 2003.

[19] Eujin-Goh. Secure indexes. Stanford University
Technical Report, 2004.

[20] S. A. Eunjoon Cho and J. Leskovec. Friendship and
mobility: User movement in location-based social
networks. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining(KDD), pages 1082–1090. ACM, 2011.

[21] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. Journal of ACM,
43(3):431–473, May 1996.

[22] P. Golle, J. Staddon, and B. Waters. Secure
conjunctive keyword search over encrypted data. In
Applied Cryptography and Network Security. 2004.

[23] P. Gupta and N. McKeown. Algorithms for packet
classification. IEEE Network, 15(2):24–32, 2001.

[24] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra.
Executing sql over encrypted data in the
database-service-provider model. In SIGMOD, 2002.

[25] B. Hore, S. Mehrotra, M. Canim, and
M. Kantarcioglu. Secure multidimensional range
queries over outsourced data. The VLDB Journal,
21(3):333–358, June 2012.

[26] B. Hore, S. Mehrotra, and G. Tsudik. A
privacy-preserving index for range queries. In VLDB,
pages 720–731, 2004.

[27] S. Kamara, C. Papamanthou, and T. Roeder.
Dynamic searchable symmetric encryption. In ACM
CCS, 2012.

[28] M. Kantarcioglu and C. Clifton. Security issues in
querying encrypted data. In DBSec, 2005.

[29] J. Katz and Y. Lindell. Introduction to Modern
Cryptography. Chapman & Hall/CRC Press, 2007.

[30] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated index structures for outsourced
databases. In Handbook of Database Security, pages
115–136. 2008.

[31] J. Li and E. R. Omiecinski. Efficiency and security
trade-off in supporting range queries on encrypted
databases. In 19th DBSec, 2005.

[32] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In Data
Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 106–115, April
2007.

[33] A. X. Liu and F. Chen. Collaborative enforcement of
firewall policies in virtual private networks. In Proc.
ACM PODC, 2008.

[34] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and integrity in outsourced databases.
Trans. Storage, 2(2):107–138, May 2006.

[35] S. R. M. Oliveira and O. R. Zäıane. Privacy
preserving clustering by data transformation. JIDM,
1(1):37–52, 2010.

[36] D. Park, K. Kim, and P. Lee. Public key encryption
with conjunctive field keyword search. In Information
Security Applications, pages 73–86. 2005.

[37] A. Shamir. Identity-based cryptosystems and
signature schemes. In CRYPTO 84, pages 47–53, 1985.

[38] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and
A. Perrig. Multi-dimensional range query over
encrypted data. In IEEE S&P Symposium, 2007.

[39] D. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In IEEE
S&P Symposium, 2000.

[40] L. Sweeney. K-anonymity: A model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 10(5):557–570, Oct. 2002.

[41] W. K. Wong, D. W.-L. Cheung, B. Kao, and
N. Mamoulis. Secure knn computation on encrypted
databases. In SIGMOD, pages 139–152, July 2009.

[42] Q. Zheng, S. Xu, and G. Ateniese. Efficient query
integrity for outsourced dynamic databases. In
Proceedings of the 2012 ACM Workshop on Cloud
Computing Security Workshop, CCSW ’12, 2012.

1964

