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ABSTRACT
Given a batch of human computation tasks, a commonly ignored
aspect is how the price (i.e., the reward paid to human workers) of
these tasks must be set or varied in order to meet latency or cost
constraints. Often, the price is set up-front and not modified, lead-
ing to either a much higher monetary cost than needed (if the price
is set too high), or to a much larger latency than expected (if the
price is set too low). Leveraging a pricing model from prior work,
we develop algorithms to optimally set and then vary price over
time in order to meet a (a) user-specified deadline while minimizing
total monetary cost (b) user-specified monetary budget constraint
while minimizing total elapsed time. We leverage techniques from
decision theory (specifically, Markov Decision Processes) for both
these problems, and demonstrate that our techniques lead to upto
30% reduction in cost over schemes proposed in prior work. Fur-
thermore, we develop techniques to speed-up the computation, en-
abling users to leverage the price setting algorithms on-the-fly.

1. INTRODUCTION
Crowdsourcing is often used to process and reason about un-

structured data such as images, videos, and text. The data thus
generated is typically used as training data for machine learning al-
gorithms in applications such as content moderation (i.e., determin-
ing if images are suitable to be viewed by a general audience), spam
detection, search relevance estimation, information extraction, and
entity resolution. In fact, all of the following companies employ
crowdsourcing frequently at a large scale to repeatedly process un-
structured data: Google [6], Ebay [2], Microsoft [5], LinkedIn [7],
Facebook [7], Yahoo! [9], Twitter [1], Cisco [6], and Yelp [46].

Even though crowdsourcing is often used in industry and academia,
and has been the subject of many academic papers studying trade-
offs between cost, latency and accuracy [16, 25, 36, 37, 38], there is
little to no work on task pricing and its impact on overall cost and
latency: that is, how the price of tasks (i.e., the monetary reward
paid to workers on completion) must be set or varied in order to
meet cost or latency constraints. Often, the price is set up-front and
not modified, leading to either a much higher monetary cost than
needed (if the price is set too high), or to a much larger latency
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than expected (if the price is set too low). As a result, anecdotally,
pricing is seen as somewhat of a “dark art”.

In this paper, we wish to address the following question: Given
that we have n fixed tasks, how should we vary their price or re-
ward over time so that they get completed by a certain deadline
at the least cost possible? Intuitively, it seems that we may want
to start with a low price initially, and then increase it gradually as
it gets closer to the deadline. However, there has been no work
demonstrating that such strategies will indeed yield good results in
practice. Furthermore, there are a number of additional complica-
tions, even given this very simple scheme:

• What should we price tasks initially?
• How can we adapt our price setting to the rate at which tasks

are picked up? What if tasks get picked up very quickly at the
initial price; should we lower the price, should we keep it same,
or should we increase it? What if the opposite happens — that
is, tasks get picked up very slowly at the initial price?

• At what time points should we increase the price? Increasing
it too frequently may lead to computationally more expensive
decision making (as we will see subsequently), but increasing
it too infrequently may result in much higher costs.

• At what granularities do we increase the price, and how much
does this affect overall cost?

• Should we price all the tasks the same, or should we price tasks
differently?

• What if we had a fixed budget, and instead wanted to reduce to-
tal latency. Would similar techniques apply then? Would vary-
ing price help at all?

• How do we ensure that our pricing schemes can be computed
within a reasonable time, and how can we speed them up?

• How are our algorithms impacted by inaccuracies in estimates
of the marketplace dynamics?

In prior work, Faridani et al. [15] develop a model for latency in
crowdsourcing applications based on Non-Homogeneous Poisson
Processes. They then use this model to describe a simple scheme
based on binary search for pricing tasks to complete by a dead-
line. However, their scheme is not optimal, that is, it wastes far too
much monetary cost. In this paper, we leverage their model and in-
stead focus on the optimization problem of minimizing cost while
meeting the deadline with high probability. Overall, our techniques
yield rich dividends — we get up to a 30% reduction in cost as
compared to their scheme on realistic crowdsourcing workloads.
This represents a significant reduction in cost especially for users
who run large crowdsourcing workloads with strict deadlines.

In this paper, we develop algorithms for two optimization prob-
lems, given a set of tasks: one, minimizing cost while meeting time
requirements, and second, minimizing latency while meeting mon-
etary budget requirements. For the first, we develop an algorithm
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based on decision theory that gives us near-optimal results. For the
second, we develop a solution that uses linear programming, that
can be shown to be optimal under some assumptions. A crucial
concern for us is that the computation is as little as possible, and
we propose various speed-up techniques for this purpose.

The contributions of this paper are as follows:
• We describe the two problems that we study in this paper for-

mally in Section 2.
• We develop optimized pricing algorithms that meet a fixed time

deadline in Section 3. Since these algorithms could be compu-
tationally expensive, we describe techniques to reduce the com-
plexity of these algorithms.

• We develop optimized pricing algorithms that meet a fixed mon-
etary cost budget in Section 4.

• We demonstrate that our pricing algorithms achieve a reduction
in cost of up to 30% over prior work on simulations with real
data from a crowdsourcing marketplace, as well as live experi-
ments on the same marketplace in Section 5. Furthermore, we
demonstrate that the algorithms are remarkably robust to errors
in the estimates of parameters of the tasks and the marketplace.

We cover related work in Section 6 and conclude in Section 7.

2. PRELIMINARIES
In this section, we describe the basic model that we will leverage

to design optimized pricing algorithms.
We operate on a crowdsourcing marketplace, such as Mechanical

Turk [3]. In any crowdsourcing marketplace, users (or requesters)
post tasks, often many at a time, and set a monetary price or re-
ward for them. At any point, there are many tasks on offer in the
marketplace. Human workers arrive at the marketplace at any time,
and can leave at any time. When on the marketplace, workers can
choose to work on any of the available tasks. They are allowed to
work on a single task at a time. Once they complete a task, they will
receive the reward or price assigned for the task by the requester.

In a marketplace, the reward of each task is positively correlated
with the completion rate: the higher the reward, the shorter the
completion time. However, in order to determine the best trade-
off between cost and completion time, this relationship must be
precisely quantified. For example, we must be able to answer ques-
tions like: if we adjust the reward per task from $0.25 to $0.3,
how much do we gain in terms of task completion rate? To answer
these questions, we need a formal model for reasoning about the
crowdsourcing marketplace.

In previous work, Faridani et al. [15] studied the problem of
modeling crowdsourcing marketplace dynamics; the dynamics is
modeled using two independent processes: A Non-Homogeneous
Poisson Process is used to model the worker arrivals in the market,
and a Discrete Choice Model is used to model how workers choose
between tasks in the marketplace. We adopt the same model in this
paper, and focus instead on the optimal pricing problem. To en-
able this paper to be self-contained, we describe the worker arrival
model in Section 2.1, and the task choice model in Section 2.2.
These mathematical models will be used to define the pricing prob-
lem formally in Section 2.3.

2.1 Worker Arrival Model
Faridani et al. [15] show that the arrival of workers in a crowd-

sourcing marketplace follows a Non-Homogeneous Poisson Pro-
cess(NHPP). Note that the standard Poisson process is commonly
used to characterize the counting process of stochastically occur-
ring events. The Poisson process has a fixed rate λ. NHPP is a
generalization of the Poisson process, with a rate parameter λ(t), a

function of time [43]. In a NHPP, the number of events that occur
during any period of time [S, T ] follows a Poisson distribution:

N[S, T ] ∼ Pois(·|λ =

∫ T

t=S

λ(t)) (1)

where Pois(·|λ) refers to a Poisson distribution with mean λ.
Estimating the arrival-rate function λ(t) of a NHPP is more dif-

ficult than that for a Homogeneous Poisson Process because of the
infinite dimensionality of the arrival-rate parameter λ(t). There-
fore, a common approach is to assume a parametric form for λ(t).
For instance, Massey et al. [31] used a piece-wise linear function
to approximate the traffic of telecommunication systems.

Figure 1 depicts the number of tasks completed every 6 hours
for a time range of 4 weeks in Mechanical Turk. The figure de-
picts that the variation of worker arrivals follows a process that ap-
proximately repeats every week. In this paper, we assume that the
arrival-rate function λ(t) is periodic, and the variations in the num-
ber of worker arrivals are all due to the randomness of the Poisson
process. Given historical data, the arrival-rate function λ(t) can be
estimated and used to predict arrival rates in the future. Faridani
et al. [15] provide techniques for learning the λ(t) function, and
demonstrate the accuracy of these techniques. In this paper, we
leverage these techniques, and assume that λ(t) is known. As we
will see in our experimental results in Section 5, our pricing strate-
gies are not very sensitive to mistakes in the estimation of λ(t).

Figure 1: The total number of tasks completed each day from January 1st, 2014 to
January 28th, 2014. Retrieved from http://www.mturk-tracker.com

Note that the NHPP models the arrival of workers to the entire
marketplace, and does not capture whether those workers decide to
work on our specific task. An independent Bernoulli process can
be used to model whether each worker (who arrives at the market-
place) will decide to work on our task. In other words, we assume
that each arrived worker has an independent probability p of pick-
ing our task. Therefore if in any period of time the number of work-
ers arrived at marketplace is X , then, assuming there are adequate
tasks on offer, the number of workers from those who choose to
work on our tasks will follow a Binomial distribution Bin(X, p).
The value of p, the task acceptance probability, is not directly ob-
servable. We describe how it is related to the price or reward for
the task, and how it can be estimated in Section 2.2.

The task completion process is then a composition of NHPP and
an independent Bernoulli process. In Statistics literature, such a
process is called a Thinned Non-Homogeneous Poisson Process [43].
A Thinned NHPP is also a NHPP with a modified arrival-rate func-
tion λ′(t) = λ(t)p.

2.2 Task Acceptance Probability Estimation
Faridani et al. [15] used a Discrete Choice Model to character-

ize how workers select tasks from the marketplace. In economics,
Discrete Choice Models are used to estimate the probability of
consumers choosing a specific product among a range of alterna-
tives [32]. Discrete Choice Models can be explained by utility the-
ory: each worker chooses the task in the marketplace to maximize
the utility (or net benefit) obtained. Workers may have different
perceptions of his/her utility: it could depends on various factors
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such as hourly wage, number of tasks, task type, easiness of the
tasks, or the knowledge gain during the process of finishing a task.
Utility can not be directly observed, the only aspect that can be
observed is the worker’s behavior in the marketplace.

Under this model, the task acceptance probability parameter p is
simply the probability that the utility of our task exceeds the util-
ity of every other task in the marketplace. Let Ui be the utility
of task i in the marketplace based on some worker’s perception,
and without loss of generality we assume the utility of our task is
U1. Then p = Pr(U1 > maxi6=1 Ui). In the Conditional Logit
Model [32] [15], the utility Ui of ith task has the following expres-
sion: Ui = βT zi + εi, where zi are all observable attributes that
may affect the utility of the task, and εi accounts for all unobserved
factors that may affect the utility. In the model, the utility Ui is
assumed to be linearly correlated with all observed attributes with
the shared coefficient vector β. The parameters εi are assumed to
be independent with each other and follow the Gumbel distribution.
Based on these assumptions, it can be derived that the probability
of choosing each task follows a Multinomial Logit Distribution:

p = Pr(U1 > max
i6=1

Ui) =
exp(βT z1)∑
i exp(β

T zi)

Now if we are able to change our task reward c, then the attribute
vector of our task z1 and the task acceptance probability p will also
change accordingly:

p(c) =
exp(βT z1(c))

exp(βT z1(c)) +
∑
i 6=1 exp(β

T zi)
(2)

Equation (2) captures how task acceptance probability is related
to task price or reward. Faridani et al. [15] suggest using this equa-
tion directly in order to calculate the task acceptance probability,
with parameters β estimated from historical marketplace data us-
ing logistic regression. Another approach is to assume a parametric
form of task acceptance probability function, and estimate param-
eters during a separate training phase. If we assume that the utility
of our task is a linear function of task reward c, and that the sum
of exponentials of the utilities of the other tasks is a fixed constant,
then Equation (2) can be rewritten as:

p(c) =
exp{ c

s
− b}

exp{ c
s
− b}+M

(3)

Hence if we have some training data (e.g., estimated value of p(c)
for different task reward c), then parameters s, b,M can be esti-
mated by statistical regression methods.

However, note that the inference of the mapping function p(c) is
not the focus of our paper. Here, we will assume that the expres-
sion of p(c) is already known. We will then use this expression to
determine the optimal reward for each task in various scenarios.

2.3 Problem Statement
Our goal is to design pricing algorithms for batch of N identical

crowdsourcing tasks. The user may specify either a monetary bud-
get restriction (that is, the algorithm must ensure that all tasks are
completed within a certain expected cost), or a time deadline (that
is, the algorithm must ensure that all tasks are completed within a
certain time). The unconstrained variable (monetary cost or overall
time) is minimized.

Following our discussion in the previous section, we model worker
arrivals to the marketplace as a Non-Homogeneous Poisson Process
with a known arrival-rate parameter λ(t). Each worker will pick up
our task and complete it with probability p(c), where the value of
p depends on the reward c (typically in cents or dollars) for each

task in our batch of tasks. The form of the mapping function p(c)
from task reward c to task acceptance probability p is assumed to
be known: thus, we expect our techniques to be leveraged when the
user ends up repeating similar tasks many times over a long period
so that such history is available. This is not a drastic assumption
to make: many companies, including Google, Ebay, Yahoo!, and
Microsoft, repeatedly use human workers for tasks such as content
moderation, categorization, spam detection, and search relevance.

At any time, we can monitor the number of remaining uncom-
pleted tasks n. The task reward c can be changed at any time, and
the task acceptance probability p will change accordingly. Note
that some marketplaces may impose a minimum time only after
which the task reward may be changed, and our algorithms adapt
to that scenario as well. Overall, at any time t, the completion of
tasks follows a NHPP with rate λ(t)p(c), and for each completed
task, c units of monetary compensation are paid based on the task
reward at that time.

Then, the problem is to determine and dynamically vary the re-
wards for each as yet unsolved task, such that the total monetary
cost expended and the total time used for completing N tasks are
minimized. We focus on two scenarios:

• Fixed Deadline Pricing (Section 3): In this scenario, the total
time used to complete all N tasks must be less than a deadline
T . The goal is then to minimize the expected total expenditure.

• Fixed Budget Pricing (Section 4): In this scenario, the total
monetary budget B for tasks is fixed upfront. The goal is then
to minimize the expected total time to complete all tasks.

In our extended technical report [17], we describe a number of
straightforward generalizations, including optimizing combinations
of deadline and budget, capturing multiple task types, and incor-
porating accuracy and difficulty. In short, optimizing for combi-
nations of deadline and budget is actually a simplification of the
techniques described in the paper; capturing multiple tasks types is
a straightforward generalization of the results of [36]; and incor-
porating accuracy and difficulty involves using results from [36]
to first optimize for accuracy, then using that information while
developing our techniques—we develop one exact, but intractable
technique and two approximations for this case.

3. FIXED DEADLINE PRICING STRATEGY
It is common for task requesters in a crowdsourcing marketplace

to require their tasks to be completed before a certain deadline.
Under this scenario, the reward for each task in the batch of tasks
should be as low as possible while making sure that all tasks can be
completed before deadline.

In Faridani’s work [15], a binary search process is used to find
the smallest fixed task reward such that the total expected com-
pletion time is before the deadline. However, as implied by the
NHPP worker-arrival model and also demonstrated in Figure 1, the
task completion process is highly non-deterministic. Therefore, a
dynamic pricing strategy should perform much better in terms of
overall cost in this scenario: If the rate at which tasks are picked
up by workers is faster than expected, we could decrease the re-
ward for the remaining tasks to save money; on the other hand, if
the tasks are picked up slower than expected, we could increase the
reward to attract more workers to our tasks.

In this section, we design a pricing algorithm to determine how
to set the reward for each task at each time point to minimize the
expected total monetary cost, while meeting time constraints. We
begin by modeling our decision process as a Markov process and
use the model to present our basic pricing algorithm in Section 3.1.
Since these algorithms may be expensive to compute, we present
techniques that can help speed up the computation in Section 3.2.
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3.1 Markov Decision Process-based Solution
Discretization: Although in principle we may be able to change
the task reward c at any time, utilizing this freedom while design-
ing pricing strategies would result in an intractable number of time
points at which decisions need to be made. Instead, we discretize
the total time before the deadline (i.e., the time between when the
tasks were submitted to the marketplace and the deadline) into a
number of equal-sized intervals. As we will see later on, beyond
a point, discretization does not help, and therefore restricting our
pricing algorithms to make decisions only at discrete time inter-
vals does not affect the overall monetary cost, while significantly
reducing the computation involved.

We partition all available time (from t = 0, i.e., start time, to t =
T , i.e., the deadline) [0, T ] into NT small intervals: [0, T/NT ),
[T/NT , 2T/NT ), . . . , [T −T/NT , T ) and further enforce that the
reward c for tasks may only be changed at the start of an interval.

State Space: After discretization, we can represent the state of
processing of the batch of tasks at any time interval using a finite
Markov chain. The states in this Markov chain are represented by
a pair (n, t), where n is the remaining unsolved tasks and t is the
index of current time interval. The initial state is (N, 0) and all
states in the form of (n,NT ) are final states (Recall that NT is the
total number of time intervals).

An illustration of the state diagram is shown in Figure 2. The
states are represented on a grid, where the number of unsolved tasks
increases along the y-axis, and the number of time intervals elapsed
increases along the x-axis. Our goal is then to set the prices cn,t
upfront for all n, t, such that we have as few unsolved tasks as
possible when t = NT .

Transitions: Based on Equation (1), Xt, the number of tasks com-
pleted during the tth time interval follows a Poisson distribution:
Xi ∼ Pois(·|λ = λtp(ct)) where ct is the task reward in ith
time interval, and λt is the total expected number of workers who
arrived at marketplace during the tth time interval:

λt =

∫ tT/NT

s=(t−1)T/NT

λ(s)ds (4)

At state (n, t), say the task reward is set to be cn,t; then, the transi-
tion probability between states is:

Pr{(n, t)→ (n− s, t+ 1)|cn,t} = Pois(s|λ = λtp(cn,t)) (5)

= e
−λtp(cn,t) (λtp(cn,t))

s

s!
(6)

where λi is defined in Equation (4) and p(cn,t) is the task accep-
tance probability for the task reward cn,t. The transition probability
is slightly different when we are close to completion:

Pr{(n, t)→ (0, t+1)|cn,t} = Pr(Pois(·|λ = λtp(cn,t)) ≥ n)

Figure 2: State diagram of Markov Decision Process. Some possible transitions are
omitted in the figure for clarity.

Costs: In our problem, the transition cost between states is the total
rewards paid for tasks completed in each time interval:

cost{(n, t)→ (n− s, t+ 1)|cn,t} = scn,t (7)

For the final states (n,NT ), we assign a fixed penalty for each of
the remaining unsolved tasks: cost{(n,NT )} = n × Penalty,
where the value of the parameter Penalty could be based on ac-
tual expenses needed to complete them post deadline (possibly by
the task requester themselves), or simply be set large enough to
ensure that with high probability no task will remain uncompleted.

In the above formulation, we have combined the number of un-
solved tasks by the deadline and the monetary cost incurred into
one objective. In our extended technical report [17], we consider a
range of other constraints and objectives, including:

• Optimizing monetary cost while enforcing a constraint on the
probability that there are additional tasks left after the deadline

• Optimizing monetary cost while enforcing a constraint on the
expected number of tasks left after the deadline

The techniques for these formulations are straightforward modifi-
cations of the techniques for the current formulation.

Markov Decision Processes: The problem of determining optimal
task reward cn,t in tth time interval for state (n, t) can be viewed
as a Markov Decision Process (MDP). MDPs are commonly used
to model optimization and decision making problems in a discrete
time stochastic environment. The goal is of MDP optimization to
determine the policy for every state to minimize the expected over-
all cost (in our problem it corresponds to determining the optimal
task reward cn,t for each state).

Dynamic Programming: The above MDP optimization problem
can be solved by Dynamic Programming (DP). Let Opt(n, t) de-
note the minimum expected total cost for all remaining n tasks for
the state (n, t), and Price(n, t) denote the corresponding optimal
reward for each task. Then Opt(n, t) and Price(n, t) satisfy the
following equations.

Opt(n, t) = min
c

n∑
s=0

[Opt(n− s, t+ 1) + sc]

×Pr{(n, t)→ (n− s, t+ 1)|c}

Price(n, t) = argmin
c

n∑
s=0

[Opt(n− s, t+ 1) + sc]

×Pr{(n, t)→ (n− s, t+ 1)|c}

The values of Opt(n, t) and Price(n, t) can be sequentially de-
termined. That is, we start at (·, NT ), and work our way backwards
using the equations above. Once we have computed the optimal
Opt and Price for all (·, t + 1), we can use the equations above
to compute it for all (·, t) — the optimal cn,t can be found by con-
sidering all possible price values since it needs to be an integral
multiples of a minimal unit of price (In Amazon Mechanical Turk
it is 1 cent). The pseudocode for the DP algorithm can be found in
the extended technical report [17].

3.2 Speed-up Techniques
The DP algorithm has a time complexity of O(N2NTC), where

C is the number of price choices we want to consider, which is
intractable when N is large or when NT or C are fine-grained.
Here we discuss some techniques to speed up the algorithm.

Poisson Distribution Truncation: Notice that while making pric-
ing decisions, the DP algorithm enumerates all possible number of
tasks s that can be picked up by workers during each time inter-
val. However, for large s, the probability that more than s tasks are
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completed in one time interval:

Pr(Pois(·|λ) ≥ s) =
∑
k≥s

e−λ
λk

k!
≤ e−λ λ

s

s!

s

s− λ

becomes negligible, and thus the contribution of those terms in DP
update formulas will also become negligible.

In practice, we could set a threshold ε for the probability Pr
(Pois(·|λ) ≥ s). If for some s0, Pr(Pois(·|λ) ≥ s0) is less than
the threshold ε, all the terms s > s0 can be ignored safely. Table 1
shows the value of s0 for ε = 10−9 and different values of λ.

Threshold ε Poisson mean λ s0
10−9 10 35
10−9 20 53
10−9 50 99

Table 1: The value of s0 for different thresholds ε and Poisson distribution means

The next theorem provides an upper bound of error produced by
Poisson Distribution Truncation:

THEOREM 1. The exact optimal total cost Opt(n, t) and es-
timated value of optimal total cost Esttrunc(n, t) using Poisson
Distribution Truncation and the exact total cost Costtrunc(n, t)
based on the optimal policy obtained using Poisson Distribution
Truncation satisfies the following inequality:

Esttrunc(n, t) ≤ Opt(n, t) ≤ Costtrunc(n, t)

≤ Esttrunc(n, t) + εn(NT − t)C

where C is the upper bound of task reward in any state. In partic-
ular, |Opt(N, 0)−Costtrunc(N, 0)| ≤ εNNTC

The proof of this and subsequent theorems are omitted due to space
considerations and can be found in our technical report [17].

Monotonicity of Pricing Decision: Another speed-up technique
relies on the following natural conjecture:

CONJECTURE 1. The optimal reward Price(n, t) for each task
is non-decreasing with respect to n for any fixed value of t.

Intuitively, this conjecture says that with a fixed deadline, the more
remaining tasks we have, the higher reward we should set for each
task. Over repeated trials with many different values of λ,N,NT ,
we tried generating optimal strategies (using the basic DP algo-
rithm described in the previous section), and the optimal strategies
never violate the preceding conjecture.

If we assume this conjecture to be correct, then the following
can be used to speed up the DP process. The main idea is to
reduce the search range of optimal reward c for each state: sup-
pose Price(a, t) and Price(c, t) are already known, then for any
a < b < c, Price(b, t) lies in range [Price(a, t),Price(c, t)].
For time interval t, we first search for the optimal reward for state
(N

2
, t), then states (N

4
, t) and ( 3N

4
, t), then states ( kN

8
, t) for k =

1, 3, 5, 7. This process continues until the optimal reward for ev-
ery state has been found. Thus, the optimal reward searching pro-
cess can be represented using a binary tree, where each node rep-
resents the optimal reward search range of certain state, and the
search range of optimal reward is bounded by optimal reward al-
ready found in upper level nodes. Further, the search range of nodes
in each level sum up to C, the pre-specified upper bound of task re-
ward, while the number of levels is bounded by O(logn). Our
technical report [17] has a diagram depicting these relationships.
Therefore, the algorithm (which can be found in the extended tech-
nical report [17]) has a time complexity ofO(NTN(N+C logN)).

Finally, although not improving time complexity, the monotonic-
ity of task rewards Price(n, t) with respect to t for fixed n (i.e.,

when the number of remaining tasks are fixed, the rewards increase
as we get closer to the deadline), can also be used to improve algo-
rithm efficiency by reducing the optimal reward search range.

4. FIXED BUDGET PRICING STRATEGY
In this section we focus on another version of pricing problem:

given a total monetary budget for all tasks, our objective is to min-
imize the expected total time when all tasks are completed.

Although, like in the previous section, we may still change the
task reward dynamically, we will demonstrate that exercising this
freedom does not help much in this scenario. In fact, we will prove
that a static pricing strategy is nearly optimal.

4.1 Static Pricing Strategy
We first define what we mean to be a Static Pricing Strategy:

Definition 1. A static pricing strategy assigns a reward to each
of the N tasks up-front (i.e., at the time the tasks are submitted to
the marketplace), and then does not change this price subsequently.
Note that the rewards need not be the same for all tasks.

Even though for a static pricing strategy tasks are submitted to
the marketplace at the beginning with possibly different rewards, at
any time, only the tasks with the highest reward will be picked up
by workers. Thus, the rate at which tasks are picked up by work-
ers will depend solely on the highest reward among all tasks (This
property can be shown by Utility Theory in Section 2.2). Later on,
when the tasks with the highest reward are exhausted, workers will
start to pick up tasks with a lower reward; as a result the task ac-
ceptance rate will drop accordingly.

Note that static pricing strategies are a strict restriction of gen-
eral dynamic pricing strategies. To see this, observe that for every
static pricing strategy, there is an equivalent dynamic pricing strat-
egy which changes the task reward for all tasks right after each task
is completed. Therefore, the optimal static pricing strategy cannot
have a lower total latency than the optimal dynamic pricing strat-
egy. However we will show that in fact, the former can have as low
expected total latency as the latter.

4.2 Optimality of Static Pricing Strategy
We now show that the optimal static pricing strategy has the min-

imum expected total latency for completing a given batch of tasks
among all possible pricing strategies. Our main result will be The-
orem 2, described in Section 4.2.1. Subsequent sections will focus
on the proof and describe the algorithms.

4.2.1 Worker-Arrival Quantity
Recall that from Section 2, the workers arrive at the marketplace

following a NHPP, and decide whether to work on our task follow-
ing an independent Bernoulli process. Let T be the random variable
denoting the total time elapsed before all tasks are completed, and
W be the random variable denoting the total number of workers
that have arrived at the marketplace before all the tasks are com-
pleted. Based on our model, the distribution of T conditioned on
W depends only on the arrival-rate parameter λ(t), and is indepen-
dent of the pricing strategy. Suppose we use a pricing strategy S,
then the expected value of T can be expressed as:

E[T |S] =
∫
W

E[T |W ]Pr(W |S)dW

Therefore our goal is to choose the optimal pricing strategy such
that its induced distribution Pr(W |S) minimizes E[T |S].
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Now if E[T |W ] is linear in W , then we have:

E[T |S] =
∫
W

kWPr(W |S)dW = kE[W |S]

which means that minimizing E[T |S] is equivalent to minimizing
E[W |S]. Minimizing the latter quantity is much more straight-
forward as we will show in next few sections. The justification for
this linearity assumption is omitted due to space limitations, and
can be found in the extended technical report [17].

The next theorem states that static pricing strategy is optimal
in terms of minimizing the expected number of worker-arrivals
E[W |S] and therefore expected latency E[T |S]. We will prove the
theorem in the next section.

THEOREM 2. There exists a static pricing strategy S that min-
imizes the expected number of total worker-arrivals E[W |S], and
therefore minimizes the expected total latency E[T |S] among all
possible pricing strategies.

4.2.2 Optimality of Static Pricing Strategy
The proof of Theorem 2 relies on another type of pricing strat-

egy: Semi-Static Pricing Strategy. Semi-static pricing strategies
serve as a bridge to connect static pricing strategies and dynamic
pricing strategies in the proof of Theorem 2:

Definition 2. A Semi-Static Pricing Strategy generates a sequence
of prices c1, c2, . . . , cN at the time the tasks are posted to the mar-
ketplace. The strategy starts off by assigning c1 to all tasks, and
once one task is picked up by a worker, the price for all remain-
ing tasks changes to c2, and so on, until all the tasks are picked up
by workers and completed. Unlike the static pricing strategy, the
sequence of ci’s need not be monotonically decreasing.

We next show that the best dynamic pricing strategy is as good
(i.e., has as low an expected completion time or latency) as the best
semi-static pricing strategy.

THEOREM 3. The optimal dynamic pricing strategy to mini-
mize the expected number of worker-arrivals E[W ] is in the form
of a semi-static pricing strategy.

The proof of this theorem can be found in the extended technical
report [17]. Intuitively, the proof uses decision theory to demon-
strate that, for a dynamic strategy, only the decisions made when
a task gets completed matter — otherwise the state of the Markov
process stays the same, and need not be changed.

The next theorem states that the effectiveness of any semi-static
pricing strategy is not affected by the order of the ci.

THEOREM 4. For any semi-static pricing strategy S with price
sequence c1, c2, . . . , cN , then the expected number of worker-arrivals
E[W ] is equal to

∑N
i=1

1
p(ci)

.

The proof of this theorem can also be found in the extended tech-
nical report [17] as well. The proof sketch is as follows: We de-
compose W into sum of n independent random variables each rep-
resenting the number of worker-arrivals between successive tasks.
In doing so, we can rewrite the expected value of W as the sum of
expected value of each of those n random variables. Finally the ex-
pected value of each individual random variable can be calculated
directly.

Thus, by reordering the prices of a semi-static strategy (to en-
sure a descending order), we can change it into a static strategy
with equal total expected completion time or latency. This result
together with Theorem 3 demonstrates that the static pricing strate-
gies are near-optimal.

4.3 Nearly Optimal Solution via LPs
In this section, we will address the problem of finding the op-

timal static pricing strategy. Suppose in the optimal static pric-
ing strategy, the rewards for tasks are c1, c2, . . . , cN . Using Theo-
rem 4, we know that the expected total number of worker-arrivals
E[W ] equals the sum of 1

p(ci)
(since any static pricing strategy is

also a semi-static pricing strategy with the reward sequence mono-
tonically non-increasing):

E[W ] =

N∑
i=1

1

p(ci)
(8)

Let nc be the number of tasks with reward c, i.e., nc = |{i : ci =
c}|. Then, Equation (8) can be rewritten as: E[W ] =

∑
c nc

1
p(c)

.
The nc values satisfy the following constraints:∑

c

nc = N ;
∑
c

nc × c ≤ B; nc ≥ 0; nc ∈ N (9)

where the first constraint is about the total number of tasks, the
second constraint is about the total monetary budget (B denotes
the total budget for all tasks).

Our objective is to find values of nc that minimizes E[W ] while
simultaneously satisfying Constraints (9). For arbitrary functions
p(c), it is easy to show that the optimization problem is NP-HARD.
Furthermore, we can show that the optimal static pricing strat-
egy solution can be generated using a dynamic-programming based
pseudo-polynomial time algorithm:

THEOREM 5. The ci for the optimal static pricing strategy can
be discovered in PTIME (B,N).

In short, the idea is to consider all optimal allocations of up to B to
the first i tasks, for all i ∈ 1 . . . n.

Our approach will instead be to approximately solve the opti-
mization problem. We begin by casting the problem as an Integer
Program (IP). Then, we will relax the IP to a Linear Program (LP)
where the variables no longer have to be integers, i.e., the nc ∈ N
constraints are excluded. Lastly, we will round up variables in the
solution to the LP to make them integers. The relaxed LP version
of the problem is as follows:

Minimize
∑
c

nc
1

p(c)
s.t.

∑
c

nc = N ;
∑
c

nc × c ≤ B;nc ≥ 0

Instead of applying an LP solver and then performing rounding,
next, we will describe an even faster approach, that leverages a
special property of the LP above:

THEOREM 6. There exists an optimal solution for the LP above
which satisfies the following:
• ∃c1 < c2, ∀c 6= c1, c 6= c2, nc = 0

• ∀c = tc1 +(1− t)c2, t ∈ R: 1
p(c)
≥ t 1

p(c1)
+(1− t) 1

p(c2)

Theorem 6 can be intuitively explained using Figure 3. We first
plot all the pairs (c, 1

p(c)
) in the plane. The first property of The-

orem 6 states that there are at most two ci’s with non-zero nci ;
i.e., there are at most two distinct prices c1, c2 that tasks are set
at. Then, the second property of Theorem 6 states that for c1 and
c2, there is no other point (c, 1

p(c)
) below the straight line con-

necting (c1,
1

p(c1)
) and (c2,

1
p(c2)

). In other words, (c1,
1

p(c1)
)

and (c2,
1

p(c2)
) can only be segments on the convex hull of points

(ci,
1

p(ci)
).

The proof of Theorem 6 can be found in the extended technical
report [17]. The key idea is to show that given any optimal solution,
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Figure 3: Illustration of Theorem 6, which implies that c1 and c2 can only be on the
convex hull

it can be transformed to satisfy the first property while maintaining
its optimality. The second property can be derived from the first
property and Karush-Kuhn-Tucker conditions [10] of the LP.

Using Theorem 6, we can derive an algorithm (Algorithm 1) to
find a nearly optimal pricing strategy. The algorithm generates the
convex hull using all possible prices, and then picks the two most
suitable prices to assign to tasks.

Theorem 7 provides an upper bound of the difference between
rounded-LP solution (i.e., the solution provided by Algorithm 1)
and optimal solution of original IP problem.

Algorithm 1 Find Optimal Static Pricing Strategy
function FINDOPTIMALSTATICSTRATEGY

for c = 0 to C do
Calculate the value of task acceptance probability p(c).

end for
CH ← Convex hull of points (c, 1

p(c)
)

c1 ← max{c ∈ CH : c ≤ B
N }

c2 ← min{c ∈ CH : c > B
N }

n1 ← d c2N−B
c2−c1

e, n2 ← N − n1

return n1 tasks priced at reward c1; n2 tasks at reward c2.
end function

THEOREM 7. Let {n∗} denote the optimal solution that mini-
mizes E[W ] under the Constraint (9), and {n̂} denote the rounded-
LP solution from Algorithm 1, then the expected total latency dif-
ference between two solutions is bounded by:∑

c

n̂c
1

p(c)
≤

∑
c

n
∗
c

1

p(c)
+ (

1

p(c1)
−

1

p(c2)
)

5. EXPERIMENTS
The goals of our experimental evaluation are two-fold: (a) to val-

idate the pricing model assumptions we made in the previous sec-
tions, and (b) to compare our techniques versus others on simula-
tions based on real crowdsourcing marketplace data, as well as real
experiments deployed on a crowdsourcing marketplace. In Sec-
tion 5.1, we examine the validity of the task acceptance probability
equation (Equation (2)) and estimate the typical task acceptance
probability values for real tasks. In Section 5.2, we examine the
effectiveness (in terms of total monetary cost) of our techniques for
the fixed deadline problem from Section 3 as compared to other
schemes under simulations based on real workloads from Ama-
zon’s Mechanical Turk Marketplace via the mturk-tracker web-
site [4]. We also study the sensitivity of our techniques with re-
spect to (a) the algorithm parameters, (b) the estimation error of
arrival-rate, and (c) the task acceptance probability mapping func-
tion, since many of these parameters may only be estimated ap-
proximately. In Section 5.3, we deploy our pricing technique for
the fixed deadline problem from Section 3 on Mechanical Turk and
report effectiveness in practice. (In the extended technical report,
we present some data analysis of the data collected as a result.) In
the extended technical report, we additionally examine the com-
pletion times of our techniques for the fixed budget problem from
Section 4 under simulations based on real workloads.

5.1 Task Acceptance Probability
In Section 2.2, we used Equation (2) to map task rewards to task

acceptance probabilities. In this section, we experimentally vali-
date Equation (2) using utility theory (Section 5.1.1) and estimate
the parameters in Equation (3) for real tasks (Section 5.1.2).

5.1.1 Utitity-based Simulation
As described in Section 2.2, workers choose tasks to work on

by maximizing their gain in utility. In this section we simulate a
specific workers’ choice based on utility theory to justify the form
of Equation (2).

The experiment settings are the following:
• The total number of tasks on the marketplace is set to be 100.
• The worker’s utility estimate Ui for task Ti(i > 1) follows a

normal distributionN (µi, σ
2
i ), where µi are sampled indepen-

dently from the normal distribution N (0, 1), and σi are sam-
pled independently from the uniform distribution U [0, 1].

• The worker’s utility estimate U1 for our target task T1 follows
a normal distributionN (µ1 = c

50
− 1, σ2

1) where c denotes the
task reward of our task T1 and σ1 is sampled from the uniform
distribution U [0, 1].

For a given c (i.e., the reward for our task), we repeatedly sample
the utility estimates for each of the 100 tasks as described above,
and assume that the worker will choose our task if and only if our
task has the highest utility among all the tasks in the marketplace.
This sampling process gives us an estimate of the task acceptance
probability p for a fixed reward c. We then repeat this process for
different values of c, and plot the simulated acceptance probability
p over different values of c in Figure 4. In the figure, we also de-
pict the corresponding regression curve based on Equation (2) for
comparison (the value of β is learned by fitting the simulated task
acceptance probability value). As can be seen in Figure 4, the sim-
ulated acceptance probability p is well predicted by Equation (2).
This justifies the model assumption that p is proportional to the
exponential of the task utility Ui.

Figure 4: Simulated task acceptance probability p with reward c ranging from 0 to
100. Blue dots are simulation results and red curve is the regression function based
on Equation (2) with zi = µi and β = 2.6.

5.1.2 Real World Data
In Section 2.2, we use Equation (3) as parametric form of task

acceptance probability function. In this section, we aim to estimate
the typical values of parameters s, b, M in Equation (3) for tasks
on a real marketplace.

We retrieved the snapshots of Amazon Mechanical Turk [3] from
mturk-tracker [4]. The snapshots of the marketplace are taken ev-
ery 20 minutes; we estimate the number of tasks that are completed
every 20 minutes by subtracting the number of remaining tasks in
each task group (note that in Mechanical Turk a task is called a HIT
and a group or batch of tasks is called a HIT group). If the num-
ber of remaining tasks increased during the 20 minute window(i.e.,
the task requester added new tasks to this task group), we simply
assume no tasks was completed during that 20 minutes.

We sampled 100 task groups that had at least 50 tasks com-
pleted (we enforced this threshold to filter out spam tasks) from
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1/1/2014—1/28/2014, and for each task group we manually esti-
mated the approximate average time usage for completing one task.
Figure 5 shows for the two most popular task types, the wage per
second versus average completed workload per hour, defined as:

workload per hour = average # of completed tasks per hour

× average time usage of each task

We use these two values as axes because we want to make sure that
our figure is invariant under task bundling. (In Mechanical Turk,
requesters often group several tasks into one larger task.)

(a) Categorization (b) Data Collection

Figure 5: The plot of tasks in Amazon Mechanical Turk, x axis represents the wage per
second($/sec), y axis represents the average completed workload per hour(sec/h)

In order to estimate the value of parameters s, b, M in Equa-
tion (3), we assume that the utility of each task equals the logarithm
of workload per hour, as implied by Equation (2) if we assume the
sum of the exponential of the utilities of all tasks is a constant. We
further assume that the utility of each task is linearly correlated
with the wage per second attribute:

logworkload/hour = utility = α× wage/sec + b+ ε

where b is task-type bias term and ε accounts for all other factors
affecting utility. We then apply Least Square Regression to estimate
the linear coefficient α and the bias term b for each task type.

Table 2 shows the result of Least Square Regression. The two
linear coefficients are approximately the same, implying that the
linear coefficient of the wage per second attribute is the same for
all task types. The bias term of Data Collection tasks is significantly
higher than Categorization tasks, implying that workers in Mechan-
ical Turk prefer Data Collection tasks to Categorization tasks.

Linear coefficient Bias
Categorization 748 3.66
Data Collection 809 6.28

Table 2: Linear coefficients and bias terms generated using Least Square Regression
Using the results in Table 2, we can then estimate the parameters

s, b, M in Equation (3). Say our task is a Data Collection task and
the average completion time of our task is 120 seconds, then based
on Table 2, we have (task reward c is in cents):

workload per hr. = exp{809×
c

100
×

1

120
+ 6.28} = total× p(c)× 120

where total denotes the total number of tasks completed per hour
in the crowdsourcing marketplace (including all other tasks). In
Mechanical Turk we have total ≈ 6000 (as seen in mturk-tracker
data). Using this fact we derive the following expression for p(c):

p(c) ≈
exp{ c

15
+ 0.39}

exp{ c
15

+ 0.39}+ 2000
(10)

5.2 Fixed Deadline Pricing Simulation
In this section, we examine the effectiveness of the dynamic pric-

ing strategy in Section 3. We compare our dynamic pricing strategy
against the binary-search-based fixed pricing strategy in Faridani’s
work [15]. We first compare the two pricing strategies under a re-
alistic crowdsourcing workload in Section 5.2.1. We then study the

trend of relative reduction in cost of our dynamic pricing strategy
compared to Faridani’s fixed pricing strategy under different prob-
lem settings in Section 5.2.2. We further examine the sensitivity of
dynamic pricing strategy to the granularity of time discretization in
Section 5.2.3. The sensitivity of both pricing strategies to the esti-
mations of task acceptance probability function and future arrival-
rates are examined in Section 5.2.4 and Section 5.2.5 respectively.

In the following experiments, we assume the following default
settings unless explicitly stated:

• The total number of tasks N = 200.
• The total time before deadline T = 24 hours.
• We retrieved the number of tasks completed during every 20

minutes interval for the time period from 1/1/2014 to 1/28/2014
from mturk-tracker as described in Section 5.1.2. The worker
arrival rate λ(t) is set to be piecewise constant on every such
20 minute time interval, i.e., for each time interval, λ(t) is set
to match the retrieved arrival data.

• Our target task is assumed to be a Data Collection task with an
average completion time of 2 minutes. The mapping function
between task reward c and task acceptance probability p can be
derived as in Equation 10 in Section 5.1.2.

• The dynamic pricing model is trained using a time interval of
length 20-minutes.

5.2.1 Effectiveness under a Realistic Workload
In this section we examine the effectiveness of our dynamic pric-

ing strategy under a realistic workload derived from mturk-tracker.
We compare our dynamic pricing strategy with fixed price strate-

gies which assigns a fixed reward to all tasks in advance, deter-
mined using binary search, and does not change the reward after-
wards. Figure 6(a) shows the results of our experiment: for various
values of the average reward (y axis), we plotted the expected num-
ber of tasks that remain unsolved at the deadline (x axis)—the total
reward can be estimated by multiplying the average reward with the
number of tasks. The Penalty parameter (see Section 3.1) is set
in our dynamic pricing strategy such that the expected number of
remaining tasks matches those of the fixed pricing strategy.

Figure 6: (a) Simulated average task reward c of our dynamic pricing strategy with re-
spect to different threshold for the expected number of remaining tasks after deadline.
(b) Percentage Cost Reduction with various settings ofN and T

From Figure 6(a), we see that with low expected number of re-
maining tasks after deadline (less than 1 remaining tasks on aver-
age), the dynamic pricing strategy achieves an average task reward
between 12 and 12.5. In fact, we can show that this average reward
is very close to the theoretical lower bound of average task reward
c0 for any pricing strategy, which satisfies the following equation:
p(c0) =

N∫ T
0 λ(t)dt

. In our experiment, c0 ≈ 12.
The task reward c0 has the following intuitive meaning: Sup-

pose that we have an infinite number of tasks that can be picked
up by workers. Let X denotes the number of tasks completed
before deadline. Then c0 is the minimum task reward such that:
E[X] ≥ N . However, in practice we want to complete all N tasks
before deadline, which is equivalent to: Pr(X ≥ N) ≈ 1. Note
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that any pricing strategy satisfying the second constraint will auto-
matically satisfy the first constraint. Therefore, in order to achieve
a high probability guarantee, the average task reward will necessar-
ily be higher than c0 (since c0 is the minimal possible task reward
to satisfy the first constraint of E[X] ≥ N ).

Figure 6(a) shows that our dynamic pricing strategy can finish all
tasks by the deadline with very high probability (99.9%) and only
3% overhead (as compared to c0). On the other hand, for the fixed
reward pricing strategy from [15], the task reward needs to be set at
16 to achieve the same guarantee, resulting in a 33% increase over
our dynamic pricing strategy, a significant difference in cost.

5.2.2 Trends of Effectiveness
In this section, we examine the relative gain of the dynamic pric-

ing strategy compared to a fixed pricing strategy under various set-
tings. We compute the cost reduction achieved by using the dy-
namic pricing strategy instead of the fixed pricing strategy (in per-
centage), and study how the reduction changes when the parameters
are varied. The experiment settings are listed below:

• We study the relative effectiveness of dynamic pricing strategy
with respect to the above five parameters of the experiment: N ,
T , and three parameters s, b, M in Equation (3).

• Each time we vary only one experiment parameter (N , T , s,
b, M ) while keeping other parameters fixed. The default value
of these experiment parameters are: N = 200, T = 24 hours,
s = 15, b = −0.39, M = 2000 (same as before).

• We will compute the total cost of all tasks using both pricing
strategies. Let cd and cf be the total cost of the dynamic pricing
strategy and the fixed pricing strategy respectively, the percent-
age cost reduction r is defined as: r =

cf−cd
cf

. The percentage
cost reduction r serves as a measure of the effectiveness of the
dynamic pricing strategy as compared to the fixed pricing one.

• For both the dynamic pricing strategy and the fixed pricing
strategy, the task reward is chosen such that all tasks are fin-
ished by the deadline with 99.9% confidence. This will be the
default setting for the following experiments.

Figure 6(b) shows the percentage cost reduction under various set-
tings of N and T . The experiment shows that the percentage cost
reduction decreases as N increases and increases as T increases.
Therefore, if we have less number of tasks and time before deadline
is longer, then the gain of the dynamic pricing strategy is higher. On
the other hand, the gain of the dynamic pricing strategy is lower if
we want to complete more tasks in a shorter period of time. The
intuitive explanation for this behavior is that with a longer period
of time we have the ability to plan ahead and vary the price over
time to get additional monetary cost savings.

Figure 7(a)–(c) shows the trend of percentage cost reduction when
the parameter value of s, b, M changes. The implications can be
summarized as follows:

• The gain of the dynamic pricing strategy is stable no matter
how much the task acceptance probability p is sensitive to task
reward c (Figure 7(a));

• The gain is lower if the task content is intrinsically more attrac-
tive compared to other tasks (Figure 7(b));

• The gain is higher if there are less tasks in the crowdsourcing
marketplace than average (Figure 7(c)).

5.2.3 Granularity of Time Interval
In this section, we examine the effects of different time interval

granularities. We train our dynamic pricing strategy using differ-
ent time interval lengths, and examine the corresponding trade-off
between effectiveness of pricing strategy and training time. The

(a) Cost Reduction w.r.t. s (b) Cost Reduction w.r.t. b

(c) Cost Reduction w.r.t. M (d) Average Task Price for Time Granular-
ities

Figure 7: (a – c) Percentage Cost Reduction on varying s, b, M (d) Task price varia-
tion with Granularity

length of time interval used for training the dynamic pricing strat-
egy ranges from 20 minutes to 2 hours.

Intuitively, the average task price should increase as the length
of time interval increases since the strategy space is reduced; our
experiment results in Figure 7(d) depict the expected behavior: The
average task price increases steadily (but not by too much) as the
length of time interval increases. On the other hand, the algorithm
running time is rather stable and is not affected by the length of
time interval (the algorithm running time is between 4 seconds
and 5 seconds for all experiments, by executing Python code on
a laptop with an Intel i7 processor). The stable behavior of run-
ning time is probably because of the Poisson truncation technique
in Section 3.2: the expected number of workers arriving into the
marketplace during each time interval will decrease as the length
of time interval decreases, and the corresponding Poisson trunca-
tion threshold will also decrease. These results argue for using as
small a time interval for which we can reliably obtain λ(t) data.

5.2.4 Sensitivity of Parameter Estimation
Our dynamic pricing strategy (as well as Faridani’s fixed pricing

strategy [15]) requires estimation about the task acceptance prob-
ability mapping function p(c) as input. However, these estimates
may sometimes not be perfectly accurate. In this section, we exam-
ine the sensitivity of our pricing strategy to the estimation accuracy.

We train our dynamic pricing strategy under an inaccurate es-
timate of p(c), and test it using the real value of p(c). The task
acceptance probability function is as Equation 10. For each ex-
periment, we vary one parameter of the real p(c) to examine the
robustness of our dynamic pricing strategy. The estimation of other
parameters are assumed to be accurate.

Figure 8 shows the average number of remaining tasks (left fig-
ures) and average task reward (right figures) for our dynamic pric-
ing strategy with respect to different values of parameters s, b, M
for the real p(c). We focus first on the left figures, indicating the
average number of remaining tasks. The data for the fixed pric-
ing strategy (for various values of fixed price — 12 . . . 16) is also
added for comparison. Here, unlike the fixed price strategies that all
have non-zero remaining tasks, the dynamic pricing strategy curve
is not visible because the number of remaining tasks is very close
to zero. Thus, we see that our dynamic pricing strategy is much
more robust under inaccurate parameter estimation compared to
fixed pricing strategy: it returns 0 remaining tasks with very high
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(a) Remaining # of tasks w.r.t. s (b) Average task reward w.r.t. s

(c) Remaining # of tasks w.r.t. b (d) Average task reward w.r.t. b

(e) Remaining # of tasks w.r.t. M (f) Average task reward w.r.t. M

Figure 8: Simulated average number of remaining tasks under inaccurate parameter
estimation of p(c) for dynamic pricing strategy and fixed pricing strategy(left) and
average task reward for dynamic pricing strategy(right)

probability, while the fixed pricing strategy completely fails to finish
all the tasks on time. The right figures (depicting only the dynamic
pricing strategy) show how the dynamic pricing stays robust: as the
parameters are increased, even though the dynamic pricing strategy
has been learned on incorrect parameters, it automatically increases
the task reward as necessary.

5.2.5 Sensitivity of Arrival-Rate Prediction
Our dynamic pricing strategy and the fixed pricing strategy [15]

both require the prediction of future worker arrival rate. There will
be some inevitable discrepancy between the predicted and actual
arrival-rates because of the intrinsic variations in arrival-rate. In
this section, we examine the stability of our dynamic pricing strat-
egy against such discrepancies.

We divide the historical arrival-rate data retrieved from mturk-
tracker into two separate parts: one for training and the other for
testing. We train our pricing strategy using the training arrival-
rate data, but apply it on the test arrival-rate data. This way, we
allow the algorithms to predict the general trend of the arrival-rate;
however the algorithms will not be aware of the actual arrival-rate.
We test our pricing strategies on 4 different days in year 2014: 1/1,
1/8, 1/15, 1/22. The training arrival-rate is the average arrival-rate
of the other 3 days.

Figure 9(a) and 9(b) show the experiment results of the aver-
age number of remaining tasks and the average task reward respec-
tively. As can be seen in the figures, both pricing strategies are
relatively stable except for 1/1.

The surprising results for 1/1 can be explained by comparing Fig-
ure 9(c) and 9(d). Figure 9(d) shows the training arrival-rate and
testing arrival-rate for 1/22: the training data is mostly in accor-
dance with testing data, except that there are several random spikes
in the testing data. The experiment results show that both pricing

(a) Average remaining # of tasks for dif-
ferent testing days

(b) Average task reward for different test-
ing days

(c) The actual arrival rate and training
arrival rate for 1/1/2014

(d) The actual arrival rate and training
arrival rate for 1/22/2014

Figure 9: Testing Sensitivity of Arrival Rates

strategies are relatively stable to this kind of prediction error. On
the other hand, Figure 9(c) depicts a consistent deviation between
training data and testing data on 1/1, in which case both pricing
strategies performs poorly. Such a consistent deviation is probably
due to the special date of 1/1, so these deviations shouldn’t occur
very frequently in practice. Naturally, the prediction of arrival-rate
on special days is hard to do because it does not follow a normal
weekday pattern. As a result, adaptive prediction techniques such
as predicting the arrival-rate in next few hours based on arrival-rate
in last few hours could be useful in such cases. We leave explo-
ration of such adaptive schemes for future work.

5.3 Live Experiments on Mechanical Turk
In this section, we conduct experiments on Mechanical Turk to

examine the effectiveness of our dynamic pricing strategy from
Section 3 in practice. In Section 5.3.1 we first deploy the fixed
pricing strategy on Mechanical Turk to collect data about worker
arrival rate λ(t) and task acceptance probability function p(c). In
Section 5.3.2 we deploy our dynamic pricing strategy based on col-
lected data, and experiment results are compared to the fixed pric-
ing strategies. Common experiment settings are listed below:

• We use an entity resolution task dataset from Joglekar et al. [22].
Each task in the dataset consists of two photos (each with one
athlete), and the worker is asked whether they contain the same
person. In all experiments, we have 5,000 pairs of photos that
we want workers to label.

• In all experiments, we post tasks on weekdays at 8 a.m. PST,
with the deadline as 14 hours after start time (i.e., 10 p.m. PST).

• The worker qualifications are: worker must have at least 90%
approval rate in history and live in United States.

Note that in Mechanical Turk, HITs (i.e., the unit of work in Me-
chanical Turk) with different price are grouped differently, even if
they are issued by the same requester. Thus, workers looking for
our specific HITs may not be able to know how many there are in
total. So, in our experiments, we considered two options to vary
price: (a) per HIT, keep the base price and number of tasks fixed,
and vary the amount of bonus provided to the worker, or (b) per
HIT, keep the base price fixed, and vary the number of tasks. We
decided to go with the second option. In our experiments, the price
of each task group (i.e., HIT in Mechanical Turk) is fixed at $0.02,
and the price difference is expressed by the number of tasks (i.e.,
number of photo pairs to be labeled) in each HIT.
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5.3.1 Fixed Pricing Experiment
The fixed pricing experiment consists of five trials, where each

HIT contains 10/20/30/40/50 tasks respectively. Given the total
number of tasks in the trials is fixed at 5,000, the actual number
of HITs posted to the marketplace is 500/250/167/125/100 respec-
tively. In other words, in the five trials, the price for each task
is implicitly $0.002/0.001/0.00066/0.0005/0.0004 respectively. We
stopped at 50 tasks per HIT, to limit worker fatigue. Figure 10(a)
shows the number of HITs completed during the whole time period.

As can be seen from the figure, the HIT completion rate is posi-
tively correlated with the price of each task in general: for instance,
when the elapsed time is 6 hours, the trial with 10 tasks per HIT
has more than double the number of HITs completed than that with
20 tasks, and more than four times the number of HITs completed
than that with 30, 40 or 50 tasks. When the number of tasks in each
HIT is below 20, the task completion rate becomes high enough to
have all tasks completed before the deadline (i.e., 14 hours). The
task completion rates are very close for trials with grouping size
30/40/50, which can be explained by the small difference between
unit task prices ($0.00066 / $0.0005 / $0.0004).

However, the actual work completion rates (in terms of percent-
age of total work completed) are quite different when we take the
difference of number of tasks in each HIT into account, as shown
in Figure 10(b). Perhaps somewhat surprisingly, we see that after
multiplying the number of tasks in each HIT to the quantities in
Figure 10(a), the curve of the trial with grouping size 50 becomes
significantly higher than the curves of the trials with grouping size
30 and 40. This phenomenon suggest that grouping size per HIT
has considerable effect on work completion rate: while workers
choose HITs based on unit time wage, grouping more tasks into
single HIT tends to force workers to stay on the same HIT for a
longer time. (Note that in Mechanical Turk, workers do not earn
any reward until they have completed all tasks in a HIT.)

5.3.2 Dynamic Pricing Experiment
To make experiment results comparable, the basic settings set-

tings of the dynamic pricing experiment are the same as Section 5.3.1
(i.e., start time, deadline, total number of tasks), except that the
grouping size is changed every hour based on our dynamic pricing
strategy. The grouping size is chosen from 10/20/30/40/50, and the
corresponding HIT acceptance rates are estimated from the fixed
pricing experiment in the previous section. The worker arrival rates
are estimated by averaging normalized worker arrival data in the
five fixed pricing trials.

Figure 10(c) depicts work completion rate of the five trials (one
on each day) in our experiment. As can be seen in the figure, the dy-
namic pricing strategy ends up completing all the tasks well before
the deadline (6 hours instead of 14 hours). Furthermore, we find
that the average total cost for the five trials is $3.2, which is much
less (≈ 36% less) than the total cost of $5 for the fixed pricing
strategy with grouping size 20; in fact, note that the fixed pricing
strategy with grouping size 20 had an elapsed time of 8, two hours
more than the elapsed time of any of the trials for our strategies.

In our extended technical report [17], we analyze the data col-
lected via both experiments to shed light on two aspects of worker
behavior: the accuracy of submitted answers and the number of
tasks completed by each worker under different pricing settings.
Our experimental results suggest that the quality of answers are
reasonably good (with average accuracy > 90%) regardless of task
price. While we refer the reader to the technical report for the de-
tails, Table 3 and 4 depict the average accuracy for different group
sizes for the fixed pricing experiment, and the average accuracy for
different trials in the dynamic pricing experiment. Overall, there

doesn’t seem to be a distinct pattern governing how pricing affects
accuracy, and we suspect the differences are all due to random vari-
ations. Our results also show that the average number of tasks com-
pleted by each worker growing approximately exponentially with
respect to task price. However, note that these results are prelim-
inary, and that comprehensive experiments are necessary to draw
further conclusions.

Group Size 10 20 30 40 50

Average Accuracy 92.7 90.4 91.6 90.0 89.5

Table 3: The average accuracy of answers in the fixed pricing experiment
Trial 1 2 3 4 5

Overall Ave. Accuracy 90.7 91.7 88.2 95.0 90.9

Table 4: The average accuracy of answers in dynamic pricing experiment

6. RELATED WORK
The prior work related to ours can be placed in a few categories;

we describe each of them in turn:
Pricing Schemes: Faridani [15] develop models for marketplace
dynamics that we leverage in this paper. They also develop static
pricing strategies that we compare against. To the best of our knowl-
edge, there has been no work on optimizing price apart from [15].
Control Theory: Recent work has leveraged decision theory for
improving cost and quality in simple crowdsourcing workflows,
typically using POMDPs (Partially Observable MDPs): Dan Weld’s
group has designed strategies to dynamically choose the best deci-
sion to make at any step in the workflow (refine, improve, vote, or
stop), and also to dynamically switch between workflows to im-
prove the overall “utility” [11, 12, 26, 27]. Kamar et al. [23] use
POMDPs to study how to best utilize participation in voluntary
crowdsourcing systems, specifically, Galaxy Zoo, an astronomical
data set verified by human workers. The papers mentioned above
do not provide theoretical guarantees. Our prior work also uses
decision theory for getting guarantees on cost and accuracy for fil-
tering [35, 36]. None of these prior papers study the problem of
determining optimal pricing for tasks over time: all of them as-
sume that each task has a fixed price or reward, and optimize the
set of tasks to meet accuracy guarantees.
Crowd Algorithms: There has been a lot of recent activity cen-
tered around designing data processing algorithms where the unit
operations are performed by human workers, such as filtering [36],
sorting and joins [20, 30], top-k [14], deduplication and cluster-
ing [19, 47] and categorization [39]. None of these papers explore
the problem of pricing tasks to complete on time.

Of these papers, just categorization [39] and filtering [35, 36]
consider the aspect of latency, and there too, they use number of
round-trips as a proxy for latency rather than the true elapsed time.
Error Estimation: There has been significant work on simultane-
ous estimation of answers to tasks and errors of workers using the
EM algorithm or other local optimization techniques. There have
been a number of papers studying increasingly expressive models
for this problem, including difficulty of tasks and worker exper-
tise [28, 44, 49], adversarial behavior [42], and online evaluation
of workers [29, 41, 48]. There has also been work on choosing
workers for evaluating different items so as to reduce overall error
rate [34, 45]. Recent work has also tried to obtain theoretical guar-
antees for both worker error estimates as well as correct labels for
items [13, 18, 21, 24]. Our work on pricing tasks is orthogonal to
this line of work, and can be combined with any of these schemes
to better price a batch of tasks to complete by a given deadline.
Applications: There are a number of useful applications of crowd-
sourcing, such as sentiment analysis [40], identifying spam [33],
determining search relevance [8], and translation [50].
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Figure 10: Experiments on Mechanical Turk (a) The HIT completion rate for fixed pricing strategy (b) The percentage work completion rate for fixed pricing strategy (c) The
percentage work completion rate for dynamic pricing strategy

7. CONCLUSIONS
In this paper, we developed algorithms to optimally set and vary

the price for human computation tasks in a crowdsourcing market-
place to meet latency and cost constraints. For a monetary bud-
get scenario, we demonstrated that static pricing strategies lead to
optimal completion times, and developed efficient algorithms to
find near-optimal pricing strategies. For a fixed deadline scenario,
we demonstrated that our techniques, based on MDPs, outperform
fixed pricing strategies by up to 30% on simulations based on real-
world crowdsourcing marketplace data and live experiments, and
are more robust to errors in estimates of marketplace parameters
and predictions of future trends. Our techniques can be profitably
employed in scenarios demanding the repeated use of crowdsourc-
ing on a large scale, wherein the cost savings will be massive.
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