
Blogel: A Block-Centric Framework for Distributed
Computation on Real-World Graphs

Da Yan∗1, James Cheng∗2, Yi Lu∗3, Wilfred Ng#4

∗ Department of Computer Science and Engineering, The Chinese University of Hong Kong
{1yanda, 2jcheng, 3ylu}@cse.cuhk.edu.hk

#Department of Computer Science and Engineering, The Hong Kong University of Science and Technology
4wilfred@cse.ust.hk

ABSTRACT
The rapid growth in the volume of many real-world graphs (e.g.,
social networks, web graphs, and spatial networks) has led to the
development of various vertex-centric distributed graph computing
systems in recent years. However, real-world graphs from differ-
ent domains have very different characteristics, which often create
bottlenecks in vertex-centric parallel graph computation. We iden-
tify three such important characteristics from a wide spectrum of
real-world graphs, namely (1)skewed degree distribution, (2)large
diameter, and (3)(relatively) high density. Among them, only (1)
has been studied by existing systems, but many real-world power-
law graphs also exhibit the characteristics of (2) and (3). In this
paper, we propose a block-centric framework, called Blogel, which
naturally handles all the three adverse graph characteristics. Blogel
programmers may think like a block and develop efficient algo-
rithms for various graph problems. We propose parallel algorithms
to partition an arbitrary graph into blocks efficiently, and block-
centric programs are then run over these blocks. Our experiments
on large real-world graphs verified that Blogel is able to achieve
orders of magnitude performance improvements over the state-of-
the-art distributed graph computing systems.

1. INTRODUCTION
Due to the growing need to deal with massive graphs in vari-

ous graph analytic and graph mining applications, many distributed
graph computing systems have emerged in recent years, including
Pregel [11], GraphLab [10], PowerGraph [4], Giraph [1], GPS [15],
and Mizan [8]. Most of these systems adopt the vertex-centric
model proposed in [11], which promotes the philosophy of “think-
ing like a vertex” that makes the design of distributed graph algo-
rithms more natural and easier. However, the vertex-centric model
has largely ignored the characteristics of real-world graphs in its
design and can hence suffer from severe performance problems.

We investigated a broad spectrum of real-world graphs and
identified three characteristics of large real-world graphs, namely
(1)skewed degree distribution (common for power-law and scale
free graphs such as social networks and web graphs), (2)(relatively)
high density (common for social networks, mobile phone networks,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

SMS networks, some web graphs, and the cores of most large graphs),
and (3)large diameter (common for road networks, terrain graphs,
and some large web graphs). These three characteristics are partic-
ularly adverse to vertex-centric parallelization as they are often the
major cause(s) to one or more of the following three performance
bottlenecks: skewed workload distribution, heavy message passing,
and impractically many rounds of computation.

Let us first examine the performance bottleneck created by skewed
degree distribution. The vertex-centric model assigns each vertex
together with its adjacency list to a machine, but neglects the dif-
ference in the number of neighbors among different vertices. As
a result, for graphs with skewed degree distribution, it creates un-
balanced workload distribution that leads to a long elapsed running
time due to waiting for the last worker to complete its job. For ex-
ample, the maximum degree of the BTC RDF graph used in our
experiments is 1,637,619, and thus a machine holding such a high-
degree vertex needs to process many incoming messages and send
out many outgoing messages to its neighbors, causing imbalanced
workload among different machines.

Some existing systems proposed techniques for better load bal-
ancing [4, 15], but they do not reduce the overall workload. How-
ever, for many real-world graphs including power-law graphs such
as social networks and mobile phone networks, the average vertex
degree is large. Also, most large real-world graphs have a high-
density core (e.g., the k-core [16] and k-truss [19] of these graphs).
Higher density implies heavier message passing for vertex-centric
systems. We show that heavy communication workload due to high
density can also be eliminated by our new computing model.

For processing graphs with a large diameter δ, the message (or
neighbor) propagation paradigm of the vertex-centric model often
leads to algorithms that require O(δ) rounds (also called super-
steps) of computation. For example, a single-source shortest path
algorithm in [11] takes 10,789 supersteps on a USA road network.
Apart from spatial networks, some large web graphs also have large
diameters (from a few hundred to thousands). For example, the
vertex-centric system in [14] takes 2,450 rounds for computing
strongly connected components on a web graph.

To address the performance bottlenecks created by real-world
graphs in vertex-centric systems, we propose a block-centric graph-
parallel abstraction, called Blogel. Blogel is conceptually as sim-
ple as Pregel but works in coarser-grained graph units called blocks.
Here, a block refers to a connected subgraph of the graph, and mes-
sage exchanges occur among blocks.

Blogel naturally addresses the problem of skewed degree distri-
bution since most (or all) of the neighbors of a high-degree ver-
tex v are inside v’s block, and they are processed by sequential
in-memory algorithms without any message passing. Blogel also
solves the heavy communication problem caused by high density,

1981

since the neighbors of many vertices are now within the same block,
and hence they do not need to send/receive messages to/from each
other. Finally, Blogel effectively handles large-diameter graphs,
since messages now propagate in the much larger unit of blocks
instead of single vertices, and thus the number of rounds is signifi-
cantly reduced. Also, since the number of blocks is usually orders
of magnitude smaller than the number of vertices, the workload of
a worker is significantly less than that of a vertex-centric algorithm.

A central issue to Blogel is whether we can partition an arbitrary
input graph into blocks efficiently. We propose a graph Voronoi
diagram based partitioner which is a fully distributed algorithm,
while we also develop more effective partitioners for graphs with
additional information available. Our experiments show that our
partitioning algorithms are efficient and effective.

We present a user-friendly and flexible programming interface
for Blogel, and illustrate that programming in Blogel is easy by
designing algorithms for a number of classic graph problems in
the Blogel framework. Our experiments on large real-world graphs
with up to hundreds of millions of vertices and billions of edges,
and with different characteristics, verify that our block-centric sys-
tem is orders of magnitude faster than the state-of-the-art vertex-
centric systems [1, 10, 4]. We also demonstrate that Blogel can ef-
fectively address the performance bottlenecks caused by the three
adverse characteristics of real-world graphs.

The rest of the paper is organized as follows. Section 2 reviews
related systems. Section 3 illustrates the merits of block-centric
computing. Section 4 gives an overview of the Blogel framework,
Section 5 presents Blogel’s programming interface, and Section 6
discusses algorithm design in Blogel. We describe our partitioners
in Section 7 and present performance results in Section 8. Finally,
we conclude our paper in Section 9.

2. BACKGROUND AND RELATED WORK
We first define some basic graph notations and discuss the stor-

age of a graph in distributed systems.
Notations. Given an undirect graph G = (V,E), we denote the
neighbors of a vertex v ∈ V by Γ(v); if G is directed, we denote
the in-neighbors (out-neighbors) of v by Γin(v) (Γout(v)). Each
v∈V has a unique integer ID, denoted by id(v). The diameter ofG
is denoted by δ(G), or simply δ when G is clear from the context.
Graph storage. We consider a shared-nothing architecture where
data is stored in a distributed file system (DFS), such as Hadoop’s
DFS (HDFS). We assume that a graph is stored as a distributed file
in HDFS, where each line records a vertex and its adjacency list. A
distributed graph computing system involves a cluster of k work-
ers, where each worker wi holds and processes a batch of vertices
in its main memory. Here, “worker” is a general term for a comput-
ing unit, and a machine can have multiple workers in the form of
threads/processes. A job is processed by a graph computing system
in three phases: (1)loading: each worker loads a portion of vertices
from HDFS into main-memory; the workers then exchange ver-
tices through the network (by hashing over vertex ID) so that each
worker wi finally holds all and only those vertices assigned to wi;
(2)iterative computing: in each iteration, each worker processes
its own portion of vertices sequentially, while different workers
run in parallel and exchange messages. (3)dumping: each worker
writes the output of all its processed vertices to HDFS. Most exist-
ing graph-parallel systems follow this procedure.
Pregel’s computing model. Pregel [11] is designed based on the
bulk synchronous parallel (BSP) model. It distributes vertices to
workers, where each vertex is associated with its adjacency list. A
program in Pregel implements the compute() function and proceeds

in iterations (called supersteps). In each superstep, the program
calls compute() for each active vertex. The compute() function per-
forms the user-specified task for a vertex v, such as processing v’s
incoming messages (sent in the previous superstep), sending mes-
sages to other vertices (for the next superstep), and making v vote
to halt. A halted vertex is reactivated if it receives a message in
a subsequent superstep. The program terminates when all vertices
vote to halt and there is no pending message for the next superstep.

Pregel also supports message combiner. For example, if there
are k numerical messages in worker wi to be sent to a vertex v in
worker wj and suppose that only the sum of the message values
matters, then user can implement a combine() function to sum up
the message values and deliver only the sum to v in wj , thus reduc-
ing the number of messages to be buffered and transmitted. Pregel
also supports aggregator, which is useful for global communica-
tion. Each vertex can provide a value to an aggregator in compute()
in a superstep. The system aggregates those values and makes the
aggregated result available to all vertices in the next superstep.

Since Google’s Pregel is proprietary, many open-source systems
have been developed based on Pregel’s computing model, such as
Giraph [1] and GPS [15]. In particular, GPS uses a technique called
large adjacency list partitioning to handle high-degree vertices.
Vertex placement. Vertex placement rules that are more sophisti-
cated than hashing were studied in [17], which aims at minimizing
the number of cross-worker edges while ensuring that workers hold
approximately the same number of vertices. However, their method
requires expensive preprocessing but the performance gain is lim-
ited (e.g., only a speed up of 18%–39% for running PageRank).
Giraph++. A recent system, Giraph++ [18], proposed a graph-
centric programming paradigm that opens up the block structure to
users. However, Giraph++’s programming paradigm is still vertex-
centric since it does not allow a block to have its own states like
a vertex. Instead, each block is treated as two sets of vertices,
internal ones and boundary ones. As such, Giraph++ does not
support block-level communication, i.e., message passing is still
from vertices to vertices, rather than from blocks to blocks which
is more efficient for solving some graph problems. For exam-
ple, an algorithm for computing connected components is used to
demonstrate Giraph++ programming in [18], in which vertex IDs
are passed among internal vertices and boundary vertices. We im-
plement an algorithm for the same problem in our block-centric
framework in Section 3, and show that it is much simpler and more
efficient to simply exchange block IDs between blocks directly.
Moreover, since Giraph++ is Java-based, the intra-block compu-
tation inevitably incurs (de)serialization cost for each vertex ac-
cessed; in contrast, the intra-block computation in Blogel is simply
a main-memory algorithm without any additional cost. Finally, Gi-
raph++ extends METIS [7] for graph partitioning, which is an ex-
pensive method. In Section 8, we will show that graph partitioning
and computing is much more efficient in Blogel than in Giraph++.
GRACE. Another recent system, GRACE [20], which works in a
single-machine environment, also applies graph partitioning to im-
prove performance. GRACE enhances vertex-centric computing
with a scheduler that controls the order of vertex computation in
a block. This can be regarded as a special case of block-centric
computing, where the intra-block computing logic is totally de-
fined by the scheduler. Although this model relieves users of the
burden of implementing the intra-block computing logic, it is not
as expressive as our block-centric paradigm. For example, GRACE
does not allow a block to have its own states and does not support
block-level communication. We remark that Blogel and GRACE
have different focuses: GRACE attempts to improve main memory
bandwidth utilization in a single-machine environment, while Blo-

1982

gel aims to reduce the computation and communication workload
in a distributed environment.
GraphLab. Unlike Pregel’s synchronous model and message pass-
ing paradigm, GraphLab [10] adopts a shared memory abstraction
and supports asynchronous execution. It hides the communication
details from programmers: when processing a vertex, users can di-
rectly access its own field as well as the fields of its adjacent edges
and vertices. GraphLab maintains a global scheduler, and workers
fetch vertices from the scheduler for processing, possibly adding
the neighbors of these vertices into the scheduler. Asynchronous
computing may decrease the workload for some algorithms but in-
curs extra cost due to data locking/unlocking. A recent version of
GraphLab, called PowerGraph [4], partitions the graph by edges
instead of by vertices, so that the edges of a high-degree vertex
are handled by multiple workers. Accordingly, an edge-centric
Gather-Apply-Scatter (GAS) computing model is used. However,
GraphLab is less expressive than Pregel, since a vertex cannot com-
municate with a non-neighbor, and graph mutation is not supported.

3. MERITS OF BLOCK-CENTRIC COMPUT-
ING: A FIRST EXAMPLE

We first use an example to illustrate the main differences in the
programming and performance between the block-centric model
and vertex-centric model, by considering the Hash-Min algorithm
of [13] for finding connected components (CCs). We will show the
merits of the block-centric model for processing large real-world
graphs with the three characteristics discussed in Section 1.

Given a CC C, we denote the set of vertices of C by V (C), and
define the ID of a CC C to be cc(v) = min{id(u) : u ∈ V (C)}.
Hash-Min computes cc(v) for each vertex v ∈ V . The idea is
to broadcast the smallest vertex ID seen so far by each vertex v,
denoted by min(v).

For the vertex-centric model, in superstep 1, each vertex v sets
min(v) to be the smallest ID among id(v) and id(u) of all u ∈
Γ(v), broadcasts min(v) to all its neighbors, and votes to halt.
In each later superstep, each vertex v receives messages from its
neighbors; letmin∗ be the smallest ID received, ifmin∗ < min(v),
v sets min(v) = min∗ and broadcasts min∗ to its neighbors. All
vertices vote to halt at the end of a superstep. When the process
converges, min(v) = cc(v) for all v.

Next we discuss the implementation of Hash-Min in the block-
centric framework. Let us assume that vertices are already grouped
into blocks by our partitioners (to be discussed in Section 7), which
guarantee that vertices in a block are connected. Each vertex be-
longs to a unique block, and let block(v) be the ID of the block
that v belongs to. Let B be the set of blocks, and for each block
B ∈ B, let V (B) be the set of vertices of B, and id(B) be the in-
teger ID of B. We define Γ(B)=

⋃
v∈V (B){block(u) : u∈Γ(v)}.

Thus, we obtain a block-level graph, G = (B,E), where E =
{(Bi, Bj) : Bi ∈ B, Bj ∈ Γ(Bi)}. We then simply run Hash-Min
on G where blocks in B broadcast the smallest block ID that they
have seen. Similar to the vertex-centric algorithm, each block B
maintains a field min(B), and when the algorithm converges, all
vertices v with the same min(block(v)) belong to one CC.

We now analyze why the block-centric model is more appealing
than the vertex-centric model. First, we consider the processing of
graphs with skewed degree distribution, where we compare G with
G. Most real-world graphs with skewed degree distribution con-
sists of a giant CC and many small CCs. In this case, our partitioner
computes a set of roughly even-sized blocks from the giant CC,
while each small CC forms a block. Let b be the average number
of vertices in a block and dmax be the maximum vertex degree in

Computing Time Total Msg # Superstep #

BTC
Vertex-Centric 28.48 s 1,188,832,712 30

Block-Centric 0.94 s 1,747,653 6

Friendster
Vertex-Centric 120.24 s 7,226,963,186 22

Block-Centric 2.52 s 19,410,865 5

USA Road
Vertex-Centric 510.98s 8,353,044,435 6,262

Block-Centric 1.94 s 270,257 26

Figure 1: Overall Performance of Hash-Min

G. The vertex-centric model works on G and hence a high-degree
vertex may send/receive O(dmax) messages each round, causing
skewed workload among the workers. On the contrary, the block-
centric model works on G and a high-degree vertex involves at most
O(n/b) messages each round, where n is the number of vertices in
the giant CC. For power-law graphs, dmax can approach n and n/b
can be a few orders of magnitude smaller than dmax for a reason-
able setting of b (e.g., b = 1000).

In addition, as long as the number of blocks is sufficiently larger
than the number of workers, the block-centric model can achieve a
rather balanced workload with a simple greedy algorithm for block-
to-worker assignment described in Section 4.

Figure 1 reports the overall performance (elapsed computing time,
total number of messages sent, and total number of supersteps) of
the vertex-centric and block-centric Hash-Min algorithms on three
graphs: an RDF graph BTC, a social network Friendster, and a USA
road network. The details of these graphs can be found in Section 8.
Figure 2 reports the performance (running time and number of mes-
sages) of Hash-Min for each superstep on BTC and Friendster.

BTC has skewed degree distribution, as a few vertices have de-
gree over a million but the average degree is only 4.69. The vertex-
centric program is severely affected by the skewed workload due to
high-degree vertices in the first few supersteps, and a large number
of messages are passed as shown in Figure 2(a). The number of
messages starts to drop significantly only in superstep 4 when the
few extremely high-degree vertices become inactive. The subse-
quent supersteps involve less and less messages since the smallest
vertex IDs have been seen by most vertices, and hence only a small
fraction of the vertices remain active. However, it still takes 30
supersteps to complete the job. On the contrary, our block-centric
program has balanced workload from the beginning and uses only
6 supersteps. Overall, as Figure 1 shows, the block-centric program
uses 680 times less messages and 30 times less computing time.

Next, we discuss the processing of graphs with high density.
Social networks and mobile phone networks often have relatively
higher average degree than other real-world graphs. For example,
Friendster has average degree of 55.06 while the USA road network
has average degree of only 2.44 (see Figure 7), which implies that
a vertex of Friendster can send/receive 22.57 times more messages
than that of the USA road network. The total number of messages
in each superstep of the vertex-centric Hash-Min is bounded by
O(|E|), while that of the block-centric Hash-Min is bounded by
O(|E|). Since |E| is generally significantly smaller than |E|, the
block-centric model is much cheaper.

As Figure 1 shows, the vertex-centric Hash-Min uses 372 times
more messages than the block-centric Hash-Min on Friendster, re-
sulting in 48 times longer computing time. Figure 2(b) further
shows that the number of messages and the elapsed computing time
per superstep of the vertex-centric program is significantly larger
than that of the block-centric program. Note that the more message
passing and longer computing time are not primarily due to skewed
workload because the maximum degree in Friendster is only 5214.

Let δ(G) and δ(G) be the diameter of G and G. The vertex-
centric Hash-Min takesO(δ(G)) supersteps, while the block-centric
Hash-Min takes only O(δ(G)) supersteps. For real-world graphs

1983

29 30

0.08 s 0.10 s

4 0

Superstep # 1 2 3 4 5 6 7 8 9

Vertex-Centric
Time 7.24 s 6.82 s 6.62 s 2.86 s 2.34 s 0.17 s 0.13 s 0.10 s 0.09s

Msg # 393,175,048 349,359,723 320,249,398 78,466,694 44,961,718 1,884,460 530,278 128,602 61,727

Block-Centric
Time 0.29 s 0.12 s 0.10 s 0.15 s 0.12 s 0.15 s

Msg # 1,394,408 294,582 55,775 2,848 40 0

…

(a) Per-Superstep Performance over BTC

21 22

0.18 s 0.15 s

1 0

Superstep # 1 2 3 4 5 6 7 8

Vertex-Centric
Time 26.86 s 27.64 s 27.86 s 26.97 s 8.96 s 0.43 s 0.15 s 0.11 s

Msg # 1,725,523,081 1,719,438,065 1,717,496,808 1,636,980,454 416,289,356 8,780,258 1,484,531 587,275

Block-Centric
Time 0.53 s 1.53 s 0.25 s 0.10 s 0.06 s

Msg # 6,893,957 6,892,723 5,620,051 4,134 0

…

(b) Per-Superstep Performance over Friendster

Figure 2: Performance of Hash-Min Per Superstep

with a large diameter, such as road networks, condensing a large
region (i.e., a block) of G into a single vertex in G allows distant
points to be reached within a much smaller number of hops. For ex-
ample, in the USA road network, there may be thousands of hops
between Washington and Florida; but if we condense each state into
a block, then the two states are just a few hops apart.

The adverse effect of large diameter on the vertex-centric model
can be clearly demonstrated by the USA road network. As shown
in Figure 1, the vertex-centric Hash-Min takes in 6,262 supersteps,
while the block-centric Hash-Min runs on a block-level graph with
a much small diameter and uses only 22 supersteps. The huge num-
ber of supersteps of the vertex-centric Hash-Min also results in 263
times longer computing time and 30,908 times more messages be-
ing passed than the block-centric algorithm.

4. SYSTEM OVERVIEW
We first give an overview of the Blogel framework. Blogel sup-

ports three types of jobs: (1)vertex-centric graph computing, where
a worker is called a V-worker; (2)graph partitioning which groups
vertices into blocks, where a worker is called a partitioner; (3)block-
centric graph computing, where a worker is called a B-worker.

Figure 3 illustrates how the three types of workers operate. Fig-
ure 3(a) shows that each V-worker loads its own portion of ver-
tices, performs vertex-centric graph computation, and then dumps
the output of the processed vertices (marked as grey) to HDFS. Fig-
ure 3(b) shows block-centric graph computing, where we assume
that every block contains two vertices. Specifically, the vertices
are first grouped into blocks by the partitioners, which dump the
constructed blocks to HDFS. These blocks are then loaded by the
B-workers for block-centric computation.
Blocks and B-workers. In both vertex-centric graph computing
and graph partitioning, when a vertex v sends a message to a neigh-
bor u ∈ Γ(v), the worker to which the message is to be sent is iden-
tified by hashing id(u). We now consider block-centric graph com-
puting. Suppose that the vertex-to-block assignment and block-to-
worker assignment are already given, we define the block of a ver-
tex v by block(v) and the worker of a block B by worker(B).
We also define worker(v) = worker(block(v)). Then, the ID
of a vertex v in a B-worker is now given by a triplet trip(v) =
〈id(v), block(v), worker(v)〉. Thus, a B-worker can obtain the
worker and block of a vertex v by checking its ID trip(v).

Similar to a vertex in Pregel, a block in Blogel also has a com-
pute() function. We use B-compute() and V-compute() to denote the
compute() function of a block and a vertex, respectively. A block
has access to all its vertices, and can send messages to any block
B or vertex v as long as worker(B) or worker(v) is available.
Each B-worker maintains two message buffers, one for exchang-
ing vertex-level messages and the other for exchanging block-level
messages. A block also has a state indicating whether it is active,
and may vote to halt.

1

2

3

4

5

6

7

8

9

10

11

12

Partitioner1

Partitioner2

Partitioner3

B-worker1

B-worker2

B-worker3

1

5

2

6

3

11

4

12

7

8

9

10

1

5

2

6

3

11

4

12

7

8

9

10

(b) Partitioners and B-workers

1

2

3

4

5

6

7

8

9

10

11

12

V-worker1

V-worker2

V-worker3

1

2

3

4

5

6

7

8

9

10

11

12

(a) V-workers

Figure 3: Operating Logic of Different Types of Workers

Blogel computing modes. Blogel operates in one of the following
three computing modes, depending on the application:

• B-mode. In this mode, Blogel only calls B-compute() for
all its blocks, and only block-level message exchanges are
allowed. A job terminates when all blocks voted to halt and
there is no pending message for the next superstep.

• V-mode. In this mode, Blogel only calls V-compute() for
all its vertices, and only vertex-level message exchanges are
allowed. A job terminates when all vertices voted to halt and
there is no pending message for the next superstep.

• VB-mode. In this mode, in each superstep, a B-worker
first calls V-compute() for all its vertices, and then calls B-
compute() for all its blocks. If a vertex v receives a message
at the beginning of a superstep, v is activated along with its
block B = block(v), and B will call its B-compute() func-
tion. A job terminates only if all vertices and blocks voted to
halt and there is no pending message for the next superstep.

Partitioners. Blogel supports several types of pre-defined parti-
tioners. Users may also implement their own partitioners in Blo-
gel. A partitioner loads each vertex v together with Γ(v). If the
partitioning algorithm supports only undirected graphs but the in-
put graph G is directed, partitioners first transform G into an undi-
rected graph, by making each edge bi-directed. The partitioners
then compute the vertex-to-block assignment (details in Section 7).
Block assignment. After graph partitioning, block(v) is computed
for each vertex v. The partitioners then compute the block-to-
worker assignment. This is actually a load balancing problem:

DEFINITION 1 (LOAD BALANCING PROBLEM [9]). Given k
workers w1, . . ., wk, and n jobs, let J(i) be the set of jobs as-
signed to worker wi and cj be the cost of each job j. The load of
worker wi is defined as Li =

∑
j∈J(i) cj . The goal is to minimize

L = maxi Li.

In our setting, each job corresponds to a block B, whose cost is
given by the number of vertices inB. We use the 4/3-approximation

1984

BWorker::vertex_set

0 1 2 3 4 5 6 7 8
…

BWorker::block_set

size = 3 size = 4 size = 2
…

vertex = 0 vertex = 3 vertex = 7

Vertex <IDType, ValueType, MsgType>

Block <VertexType, BValueType, BMsgType>

Combiner <MsgType>

Aggregator <AValueType, PartialType, FinalType>

VWorker <VertexType>

BWorker <BlockType>

Predefined partitioner classes

(a) Base Classes

(b) Vertex Sets and Block Sets

Figure 4: Programming Interface of Blogel

algorithm given in [5], which first sorts the jobs by cost in non-
increasing order, and then scans through the sorted jobs and assigns
each job to the worker with the smallest load.

The block-to-worker assignment is computed as follows. (1)To
get the block sizes, each partitioner groups its vertices into blocks
and sends the number of vertices in each block to the master. The
master then aggregates the numbers sent by the partitioners to ob-
tain the global number of vertices for each block. (2)The master
then computes the block-to-worker assignment using the greedy
algorithm described earlier, and broadcasts the assignment to each
partitioner. (3)Each partitioner sets worker(v) for each of its ver-
tex v according to the received block-to-worker assignment (note
that block(v) is already computed).
Triplet ID of neighbors. So far we only compute trip(v) for each
vertex v. However, in block-centric computing, if a vertex v needs
to send a message to a neighbor u ∈ Γ(v), it needs to first obtain
the worker holding u from trip(u). Thus, we also compute Γ̂(v) =
{trip(u) : u ∈ Γ(v)} for each vertex v as follows. Each workerwi

constructs a look-up tableLTi→j locally for every workerwj in the
cluster: for each vertex v in wi, and for each neighbor u ∈ Γ(v),
trip(v) is added to LTi→j , where j = hash(id(u)), i.e., u is on
worker wj . Then, wi sends LTi→j to each wj , and each worker
merges the received look-up tables into one look-up table. Now, a
vertex u on workerwj can find trip(v) for each neighbor v ∈ Γ(u)

from the look-up table of wj to construct Γ̂(u).
Till now, each partitioner wi still holds only those vertices v

with hash(id(v)) = i. After Γ̂(v) is constructed for each ver-
tex v, the partitioners exchange vertices according to the block-to-
worker assignment. Each partitioner wi then dumps its vertices to
an HDFS file, which is later loaded by the corresponding B-worker
wi during block-centric computing. Each vertex v has an extra
field, content(v), that keeps additional information such as edge
weight and edge direction during data loading. It is used along with
trip(v) and Γ̂(v), to format v’s output line during data dumping.

5. PROGRAMMING INTERFACE
Similar to Pregel, writing a Blogel program involves subclassing

a group of predefined classes, with the template arguments of each
base class properly specified. Figure 4(a) shows the base classes of
Blogel. We illustrate their usage by showing how to implement the
Hash-Min algorithm described in Section 3.

5.1 Vertex-Centric Interface
In the vertex-centric model, each vertex v maintains an integer

ID id(v), an integer field cc(v) and a list of neighbors Γ(v). Thus,

in the Vertex class, we specify IDType as integer, ValueType as a
user-defined type for holding both cc(v) and Γ(v), and MsgType as
integer since Hash-Min sends messages in the form of vertex ID.
We then define a class CCVertex to inherit this class, and implement
the compute() function using the Hash-Min algorithm in Section 3.
The Vertex class also has another template argument (not shown in
Figure 4) for specifying the vertex-to-worker assignment function
over IDType, for which a hash function is specified by default.

To run the Hash-Min job, we inherit the VWorker<CCVertex>
class, and implement two functions: (1)load vertex(line), which
specifies how to parse a line from the input file into a vertex ob-
ject; (2)dump vertex(vertex, HDFSWriter), which specifies how to
dump a vertex object to the output file. VWorker’s run() function is
then called to start the job. BWorker and the partitioner classes also
have these three functions, though the logic of run() is different.

5.2 Block-Centric Interface
For the block-centric model, in the Vertex class, we specify ID-

Type as a triplet for holding trip(v), ValueType as a list for holding
Γ̂(v), while MsgType can be any type since the algorithm works in
B-mode and there is no vertex-level message exchange. We then
define a class CCVertex that inherits this class with an empty V-
compute() function. In the Block class, we specify VertexType as
CCVertex, BValueType as a block-level adjacency list (i.e., Γ(B)),
and BMsgType as integer since the algorithm sends messages in
the form of block ID. We then define a class CCBlock that inher-
its this Block class, and implement the B-compute() function us-
ing the logic of block-centric Hash-Min. Finally, we inherits the
BWorker<CCBlock> class, implement the vertex loading/dumping
functions, and call run() to start the job.

A Block object also has the following fields: (1)an integer block
ID, (2)an array of the block’s vertices, denoted by vertex, (3)and
the number of vertices in the block, denoted by size.

A BWorker object also contains an array of blocks, denoted by
block set, and an array of vertices, denoted by vertex set. As
shown in Figure 4(b), the vertices in a B-worker’s vertex set are
grouped by blocks; and for each blockB in the B-worker’s block set,
B’s vertex field is actually a pointer to the first vertex ofB’s group
in the B-worker’s vertex set. Thus, a block can access its vertices
in B-compute() as vertex[0], vertex[1], . . ., vertex[size− 1].

A subclass of BWorker also needs to implement an additional
function block init(), which specifies how to set the user-specified
field BValueType for each block. After a B-worker loads all its
vertices into vertex set, it scans vertex set to construct its block set,
where the fields vertex and size of each block are automatically
set. Then, before the block-centric computing begins, block init()
is called to set the user-specified block field. For our block-centric
Hash-Min algorithm, in block init(), each blockB constructs Γ(B)
from Γ(v) of all v ∈ V (B).

5.3 Global Interface
In Blogel, each worker is a computer process. We now look at

a number of fields and functions that are global to each process.
They can be accessed in both V-compute() and B-compute().
Message buffers and combiners. Each worker maintains two
message buffers, one for exchanging vertex-level messages and the
other for exchanging block-level messages. A combiner is associ-
ated with each message buffer, and it is not defined by default. To
use a combiner, we inherit the Combiner class and implement the
combine() function, which specifies the combiner logic. When a
vertex or a block calls the send msg(target, msg) function of the
message buffer, combine() is called if the combiner is defined.

1985

Aggregator. An aggregator works as follows. In each superstep, a
vertex/block’s V-compute()/B-compute() function may call aggre-
gate(value), where value is of type AValueType. After a worker
calls V-compute()/B-compute() for all vertices/blocks, the aggre-
gated object maintained by its local aggregator (of type Partial-
Type) is sent to the master. When the master obtains the locally
aggregated objects from all workers, it calls master compute() to
aggregate them to a global object of type FinalType. This global
object is then broadcast to all the workers so that it is available to
every vertex/block in the next superstep.

To define an aggregator, we subclass the Aggregator class to in-
clude a field recording the aggregated values, denoted by agg, and
implement aggregate(value) and master compute(). An object of
this class is then assigned to the worker.

Blogel also supports other useful global functions such as graph
mutation (which are user-defined functions to add/delete vertices/edges),
and the terminate() function which can be called to terminate the
job immediately. In addition, Blogel maintains the following global
fields which are useful for implementing the computing logic: (1)the
ID of the current superstep, which also indicates the number of su-
persteps executed so far; (2)the total number of vertices among all
workers at the beginning of the current superstep, whose value may
change due to graph mutation; (3)the total number of active vertices
among all workers at the beginning of the current superstep.

6. APPLICATIONS
We apply Blogel to solve four classic graph problems: Con-

nected Components (CCs), Single-Source Shortest Path (SSSP), Reach-
ability, and PageRank. In Sections 3 and 5, we have discussed how
Blogel computes CCs with the Hash-Min logic in both the vertex-
centric model, and B-mode of the block-centric model. We now
discuss the solutions to the other three problems in Blogel.

6.1 Single-Source Shortest Path
Given a graph G = (V,E), where each edge (u, v) ∈ E has

length `(u, v), and a source s ∈ V , SSSP computes a shortest path
from s to every other vertex v ∈ V , denoted by SP (s, v).
Vertex-centric algorithm. We first discuss the vertex-centric al-
gorithm, which is similar to Pregel’s SSSP algorithm [11]. Each
vertex v has two fields: 〈prev(v), dist(v)〉 and Γout(v), where
prev(v) is the vertex preceding v on SP (s, v) and dist(v) is the
length of SP (s, v). Each u ∈ Γout(v) is associated with `(v, u).

Initially, only s is active with dist(s)=0, while dist(v)=∞ for
any other vertex v. In superstep 1, s sends a message 〈s, dist(s) +
`(s, u)〉 to each u∈Γout(s), and votes to halt. In superstep i (i>1),
if a vertex v receives messages 〈w, d(w)〉 from any of v’s in-neighbor
w, then v finds the in-neighbor w∗ such that d(w∗) is the small-
est among all d(w) received. If d(w∗) < dist(v), v updates
〈prev(v), dist(v)〉=〈w∗, d(w∗)〉, and sends a message 〈v, dist(v)+
`(v, u)〉 to each out-neighbor u ∈ Γout(v). Finally, v votes to halt.

Let hop(s, v) be the number of hops of SP (s, v), and L =
maxv∈V hop(s, v). The vertex-centric algorithm runs for O(L)
supersteps and in each superstep, at most one message is sent along
each edge. Thus, the total workload is O(L(|V |+ |E|)).
Block-centric algorithm. Our block-centric solution operates in
VB-mode. Each vertex maintains the same fields as in the vertex-
centric algorithm, and blocks do not maintain any information. In
each superstep, V-compute() is first executed for all vertices, where
a vertex v finds w∗ from the incoming messages as in the vertex-
centric algorithm. However, now v votes to halt only if d(w∗) ≥
dist(v). Otherwise, v updates 〈prev(v), dist(v)〉 = 〈w∗, d(w∗)〉
but stays active. Then, B-compute() is executed, where each block

B collects all its active vertices v into a priority queue Q (with
dist(v) as the key), and makes these vertices vote to halt. B-
compute() then runs Dijkstra’s algorithm on B using Q, which re-
moves the vertex v ∈ Q with the smallest value of dist(v) from Q
for processing each time. The out-neighbors u ∈ Γ(v) are updated
as follows. For each u ∈ V (B), if dist(v)+`(v, u) < dist(u), we
update 〈prev(u), dist(u)〉 to be 〈v, dist(v)+`(v, u)〉, and insert u
into Q with key dist(u) if u /∈ Q, or update dist(u) if u is already
in Q. For each u 6∈ V (B), a message 〈v, dist(v) + `(v, u)〉 is sent
to u. B votes to halt whenQ becomes empty. In the next superstep,
if a vertex u receives a message, u is activated along with its block,
and the block-centric computation repeats.

Compared with the vertex-centric algorithm, this algorithm saves
a significant amount of communication cost since there is no mes-
sage passing among vertices within each block. In addition, mes-
sages propagate from s in the unit of blocks, and thus, the algorithm
requires much less than supersteps than O(L).

For both the vertex-centric and block-centric algorithms, we ap-
ply a combiner as follows. Given a set of messages from a worker,
{〈w1, d(w1)〉, 〈w2, d(w2)〉, . . ., 〈wk, d(wk)〉}, to be sent to a ver-
tex u, the combiner combines them into a single message 〈w∗, d(w∗)〉
such that d(w∗) is the smallest among all d(wi) for 1 ≤ i ≤ k.

6.2 Reachability
Given a directed graph G = (V,E), a source vertex s and a

destination vertex t, the problem is to decide whether there is a
directed path from s to t in G. We can perform a bidirectional
breadth-first search (BFS) from s and t, and check whether the two
BFSs meet at some vertex. We assign each vertex v a 2-bit field
tag(v), where the first bit indicates whether s can reach v and the
second bit indicates whether v can reach t.
Vertex-centric algorithm. We first set tag(s) = 10, tag(t) =
01; and for any other vertex v, tag(v) = 00. Only s and t are
active initially. In superstep 1, s sends its tag 10 to all v ∈ Γout(s),
and t sends its tag 01 to all v ∈ Γin(t). They then vote to halt.
In superstep i (i > 1), a vertex v computes the bitwise-OR of all
messages it receives, which results in tag∗. If tag∗ = 11, or if
the bitwise-OR of tag∗ and tag(v) is 11, v sets tag(v) = 11 and
calls terminate() to end the program since the two BFSs now meet
at v; otherwise, if tag(v) = 00, v sets tag(v) = tag∗ and, either
sends tag∗ to all u ∈ Γout(v) if tag∗ = 10, or sends tag∗ to all
u ∈ Γin(v) if tag∗ = 01. Finally, v votes to halt.

Note that if we set t to be a non-existent vertex ID (e.g.,−1), the
algorithm becomes BFS from s. We now analyze the cost of doing
BFS. Let Vh be the set of vertices that are h hops away from s.
We can prove by induction that, in superstep i, only those vertices
in Vi both receive messages (from the vertices in Vi−1) and send
messages to their out-neighbors. If a vertex in Vj (j < i) receives
a message, it simply votes to halt without sending messages; while
all vertices in Vj (j > i) remain inactive as they are not reached
yet. Thus, the total workload is O(|E|+ |V |).
Block-centric algorithm. This algorithm operates in VB-mode.
In each superstep, V-compute() is first called where each vertex v
receives messages and updates tag(v) as in the vertex-centric algo-
rithm. If tag(v) is updated, v remains active; otherwise, v votes to
halt. Then, B-compute() is called, where each block B collects all
its active vertices with tag 10 (01) into a queueQs (Qt). If an active
vertex with tag 11 is found, B calls terminate(). Otherwise, B per-
forms a forward BFS using Qs as follows. A vertex v is dequeued
fromQs each time, and the out-neighbors u ∈ Γout(v) are updated
as follows. For each out-neighbor u ∈ V (B), if tag(u) = 00,
tag(u) is set to 10 and u is enqueued; if tag(u) = 01 or 11,
tag(u) is set to 11 and terminate() is called. For each out-neighbor

1986

|V| |E| Kendall Tau Distance

BerkStan 685,230 7,600,595 834,804,094

Google 875,713 5,105,039 2,185,214,827

NotreDame 325,729 1,497,134 1,008,151,095

Stanford 281,903 2,312,497 486,171,631

Figure 5: Impact of PageRank Loss

u 6∈ V (B), a message 10 is sent to u. Then a backward BFS us-
ing Qt is performed in a similar way. Finally, B votes to halt. In
the next superstep, if a vertex u receives a message, u is activated
along with its block, and the block-centric computation repeats.

6.3 PageRank
Given a directed graph G = (V,E), the problem is to compute

the PageRank of each vertex v ∈ V . Let pr(v) be the PageRank
of v. Pregel’s PageRank algorithm [11] works as follows. In su-
perstep 1, each vertex v initializes pr(v) = 1/|V | and distributes
pr(v) to the out-neighbors by sending each one pr(v)/|Γout(v)|.
In superstep i (i > 1), each vertex v sums up the received PageR-
ank values, denoted by sum, and computes pr(v) = 0.15/|V | +
0.85×sum. It then distributes pr(v)/|Γout(v)| to each out-neighbor.
A combiner is used, which aggregates the messages to be sent to the
same destination vertex into a single message that equals their sum.
PageRank loss. Conceptually, the total amount of PageRank val-
ues remain to be 1, with 15% held evenly by the vertices, and 85%
redistributed among the vertices by propagating along the edges.
However, if there exists a sink page v (i.e., Γout(v) = ∅), pr(v)
is not distributed to any other vertex in the next superstep and the
value simply gets lost. Therefore, in [11]’s PageRank algorithm,
the total amount of PageRank values decreases as the number of
supersteps increases.

Let V0 = {v ∈ V : Γout(v) = ∅} be the set of sink vertices,
i.e., vertices with out-degree 0. We ran [11]’s PageRank algorithm
on two web graphs (listed in Figure 7) and computed the PageRank
loss: (1)WebUK which has 9.08% of the vertices being sink ver-
tices, and (2)WebBase which has 23.41% of the vertices being sink
vertices. We found that the algorithm converges in 88 supersteps
with 17% PageRank loss on WebUK, and in 79 supersteps with
34% PageRank loss on WebBase. As we shall see shortly, such a
large PageRank loss reveals a problem that must be addressed.
Vertex-centric algorithm. A common solution to the PageRank
loss problem is to make each sink vertex v ∈ V0 link to all the
vertices in the graph1, i.e. to distribute pr(v)/|V | to each vertex.
Intuitively, this models the behavior of a random surfer: if the surfer
arrives at a sink page, it picks another URL at random and continues
surfing again. Since |V | is usually large, pr(v)/|V | is small and the
impact of v to the PageRank of other vertices is negligible.

Compared with the standard PageRank definition above, Pregel’s
PageRank algorithm [11] changes the relative importance order of
the vertices. To illustrate, we compute PageRank on the four web
graphs from the SNAP database2 using the algorithm in [11] and
the standard PageRank definition, and compare the ordered vertex
lists obtained. The results in Figure 5 show that the two vertex lists
have a large Kendall tau distance. For example, the graph Google
has over 2 million vertex pairs whose order of PageRank magnitude
is reversed from the standard definition.

Obviously, materializing Γout(v) = V for each v ∈ V0 is un-
acceptable both in space and in communication cost. We propose
an aggregator-based solution. In compute(), if v’s out-degree is 0, v
provides pr(v) to an aggregator that computes agg =

∑
v∈V0

pr(v).

1http://www.google.com/patents/US20080075014
2http://snap.stanford.edu/data/

v

(b) 2D Partitioner(a) Graph Voronoi Diagram

Figure 6: Partitioners (Best Viewed in Colors)

The PageRank of v is now updated by pr(v) = 0.15/|V |+ 0.85×
(sum + agg/|V |), where sum is compensated with agg/|V | =∑

v∈V0

pr(v)
|V | .

Let pri(v) be the PageRank of v in superstep i. Then, PageRank
computation stops if |pri(v) − pri−1(v)| < ε/|V | for all v ∈ V
(note that the average PageRank is 1/|V |). We set ε to be 0.01
throughout this paper.

We also implement this stop condition using an aggregator that
performs logic AND. In compute(), each vertex v provides ‘true’ to
the aggregator if |pri(v) − pri−1(v)| < ε/|V |, and ‘false’ other-
wise. Moreover, if v finds that the aggregated value of the previous
superstep is ‘true’, it votes to halt directly without doing PageRank
computation.
Block-centric algorithm. In a web graph, each vertex is a web
page with a URL (e.g., cs.stanford.edu/admissions), and
we can naturally group all vertices with the same host name (e.g.,
cs.stanford.edu) into a block. Kamvar et al. [6] proposed to
initialize the PageRank values by exploiting this block structure, so
that PageRank computation can converge faster. Note that though
a different initialization is used, the PageRank values still converge
to a unique stable state according to the Perron-Frobenius theorem.

The implementation of the algorithm of [6] in the Blogel frame-
work consists of two jobs. The first job operates in B-mode. Before
computation, in block init(), each block B first computes the local
PageRank of each v ∈ V (B), denoted by lpr(v), by a single-
machine PageRank algorithm with B as input. Block B then con-
structs Γ(B) from Γ(v) of all v ∈ V (B) using [6]’s approach,
which assigns a weight to each out-edge. Finally, B-compute()
computes the BlockRank of each block B ∈ B, denoted by br(B),
on G = (B,E) using a logic similar to the vertex-centric PageR-
ank, except that BlockRank is distributed to out-neighbors propor-
tionally to the edge weights. The second job operates in V-mode,
which initializes pr(v) = lpr(v) · br(block(v)) [6], and performs
the standard PageRank computation on G.

7. PARTITIONERS
Efficient computation of blocks that give balanced workload is

crucial to the performance of Blogel. We have discussed the logic
of partitioners such as the computation of the block-to-worker as-
signment in Section 4. We have also seen a URL-based partitioner
for web graphs in Section 6.3, where the vertex-to-block assign-
ment is determined by the host names extracted from URLs. In
this section, we introduce two other types of partitioners, with an
emphasis on computing the vertex-to-block assignment.

7.1 Graph Voronoi Diagram Partitioner
We first review the Graph Voronoi Diagram (GVD) [3] of an

undirected unweighted graph G = (V,E). Given a set of source
vertices s1, s2, . . . , sk ∈ V , we define a partition of V : {V C(s1),
V C(s2), . . ., V C(sk)}, where a vertex v is in V C(si) only if si is
closer to v (in terms of the number of hops) than any other source.

1987

Ties are broken arbitrarily. The set V C(si) is called the Voronoi
cell of si, and the Voronoi cells of all sources form the GVD of G.

Figure 6(a) illustrates the concept of GVD, where source vertices
are marked with solid circles. Consider vertex v in Figure 6(a), it is
at least 2, 3 and 5 hops from the red, green and blue sources. Since
the red source is closer to v, v is assigned to the Voronoi cell of the
red source. All the vertices in Figure 6(a) are partitioned into three
Voronoi cells, where the vertices with the same color belong to the
same Voronoi cell.

The GVD computation can be easily implemented in the vertex-
centric computing model, by performing multi-source BFS. Specif-
ically, in superstep 1, each source s sets block(s) = s and broad-
casts it to the neighbors; for each non-source vertex v, block(v) is
unassigned. Finally, the vertex votes to halt. In superstep i (i > 1),
if block(v) is unassigned, v sets block(v) to an arbitrary source
received, and broadcasts block(v) to its neighbors before voting to
halt. Otherwise, v votes to halt directly. When the process con-
verges, we have block(v) = si for each v ∈ V C(si).

The multi-source BFS has linear workload since each vertex only
broadcasts a message to its neighbors when block(v) is assigned,
and thus the total messages exchanged by all vertices is bounded
by O(|E|). However, we may obtain some huge Voronoi cells (or
blocks), which are undesirable for load balancing. We remark that
block sizes can be aggregated at the master in a similar manner as
when we compute the block-to-worker assignment in Section 4.

Our GVD partitioner works as follows, where we use a param-
eter bmax to limit the maximum block size. Initially, each vertex
v samples itself as a source with probability psamp. Then, multi-
source BFS is performed to partition the vertices into blocks. If
the size of a block is larger than bmax, we set block(v) unassigned
for any vertex v in the block (and reactivate v). We then perform
another round of source sampling and multi-source BFS on those
vertices v with block(v) unassigned, using a higher sampling prob-
ability. Here, we increase psamp by a factor of f (f ≥ 1) after each
round in order to decrease the chance of obtaining an over-sized
block. This process is repeated until the stop condition is met.

We check two stop conditions, and the process described above
stops as long as one condition is met: (1)let A(i) be the number
of active vertices at the beginning of the i-th round of multi-source
BFS, then the process stops if A(i)/A(i − 1) > γ. Here, γ ≤ 1
is a parameter determining when multi-source BFS is no longer
effective in assigning blocks; or (2)the process stops if psamp >
pmax, where pmax is the maximum allowed sampling rate (recall
that psamp = f · psamp after each round).

Moreover, to prevent multi-source BFS from running too many
supersteps, which may happen if graph diameter δ is large and the
sampling rate psamp is small, we include a user-specified param-
eter δmax to bound the maximum number of supersteps, i.e., each
vertex votes to halt in superstep δmax during multi-source BFS.

When the above process terminates, there may still be some ver-
tices not assigned to any block. This could happen since multi-
source BFS works well on large CCs, as a larger CC tends to con-
tain more sampled sources, but the sampling is ineffective for han-
dling small CCs. For example, consider the extreme case where the
graph is composed of isolated vertices. Since each round of multi-
source BFS assigns block ID to only around psamp|V | vertices, it
takes around 1/psamp (which is 1000 if psamp = 0.1%) rounds to
assign block ID to all vertices, which is inefficient.

Our solution to assigning blocks for small CCs is by the Hash-
Min algorithm, which marks each small CC as a block using only a
small number of supersteps. Specifically, after the rounds of multi-
source BFS terminate, if there still exists any unassigned vertex,
we run Hash-Min on the subgraph induced by these unassigned

vertices. We call this step as subgraph Hash-Min.
There are six parameters, (psamp, δmax, bmax, f , γ, pmax),

that need to be specified for the partitioner. We show that these
parameters are intuitively easy to set. In particular, we found that
the following setting of the parameters work well for most large
real-world graphs. The sampling rate psamp decides the number of
blocks, and usually a small value as 0.1% is a good choice. Note
that psamp cannot be too small in order not to create very large
blocks. As for the stopping parameters, γ is usually set as 90%,
and pmax as 10% with f = 2, so that there will not be too many
rounds of multi-source BFS. The bound on the number of super-
steps, δmax, is set to be a tolerable number such as 50, but for
small-diameter graphs (e.g., social networks) we can set a smaller
δmax such as 10 since the number of supersteps needed for such
graphs is small. We set bmax to be 100 times that of the expected
block size (e.g., bmax = 100, 000 when psamp = 0.1%) for most
graphs, except that for spatial networks the block size is limited by
δmax already and hence we just set it to∞. We will further demon-
strate in our experiments that the above settings work effectively for
different types of real-world graphs.

7.2 2D Partitioner
In many spatial networks, vertices are associated with (x, y)-

coordinates. Blogel provides a 2D partitioner to partition such
graphs. A 2D partitioner associates each vertex v with an addi-
tional field (x, y), and it consists of two jobs.

The first job is vertex-centric and works as follows: (1)each
worker samples a subset of its vertices with probability psamp and
sends the sample to the master; (2)the master first partitions the
sampled vertices into nx slots by the x-coordinates, and then each
slot is further partitioned into ny slots by the y-coordinates. Each
resulting slot is a super-block. Figure 6(b) shows a 2D partitioning
with nx=ny=3. This partitioning is broadcast to the workers, and
each worker assigns each of its vertices to a super-block according
to the vertex coordinates. Finally, vertices are exchanged according
to the superblock-to-worker assignment computed by master, with
Γ̂(v) constructed for each vertex v as described in Section 4.

Since a super-block may not be connected, we perform a second
block-centric job, where workers run BFS over their super-blocks
to break them into connected blocks. Each worker marks the blocks
it obtains with IDs 0, 1, · · · . To get the global block ID, each
workerwi sends the number of blocks it has, denoted by |Bi|, to the
master which computes for each worker wj a prefix sum sumj =∑

i<j |Bi|, and sends sumj to wj . Each worker wj then adds
sumj to the block IDs of its blocks, and hence each block obtains
a unique block ID. Finally, Γ̂(v) are updated for each vertex v.

The 2D partitioner has parameters (psamp, nx, ny). The setting
of psamp is similar to the GVD partitioner. To set nx and ny , we
use δ(G) ≈ O(

√
max{nx, ny}) as a guideline, since the diameter

of G is critical to the performance of block-centric algorithms.

8. EXPERIMENTS
We compare the performance of Blogel and with Giraph 1.0.0,

Giraph++3 and GraphLab 2.2 (which includes the features of Pow-
erGraph [4]). We ran our experiments on a cluster of 16 machines,
each with 24 processors (two Intel Xeon E5-2620 CPU) and 48GB
RAM. One machine is used as the master that runs only one worker,
while the other 15 machines act as slaves running multiple workers.
The connectivity between any pair of nodes in the cluster is 1Gbps.

3https://issues.apache.org/jira/browse/GIRAPH-818

1988

Data Type |V| |E| AVG Deg Max Deg

Web

Graphs

WebUK directed 133,633,040 5,507,679,822 41.21 22,429

WebBase directed 118,142,155 1,019,903,190 8.63 3,841

Social

Networks

Friendster undirected 65,608,366 3,612,134,270 55.06 5,214

LiveJournal directed 10,690,276 224,614,770 21.01 1,053,676

RDF BTC undirected 164,732,473 772,822,094 4.69 1,637,619

Spatial

Networks

USA Road undirected 23,947,347 58,333,344 2.44 9

Euro Road undirected 18,029,721 44,826,904 2.49 12

Figure 7: Datasets

For the experiments of Giraph, we use the multi-threading fea-
ture added by Facebook, and thus each worker refers to a comput-
ing thread. However, Giraph++ is built on top of an earlier Giraph
version by Yahoo!, which does not support multi-threading. We
therefore run multiple workers (mapper tasks) per machine. We
make all Giraph++ codes used in our experiments public4.

We used seven large real-world datasets, which are from four
different domains as shown in Figure 7: (1)web graphs: WebUK5

and WebBase6; (2)social networks: Friendster7 and LiveJournal8;
(3)RDF graph: BTC9 (a graph converted from the Billion Triple
Challenge 2009 RDF dataset [2]); (4)road networks: USA and Euro10.

Among them, WebUK, LiveJournal and BTC have skewed degree
distribution; WebUK, Friendster and LiveJournal have average de-
gree relatively higher than other large real-world graphs; USA and
Euro, as well as WebUK, have a large diameter.

For a graph of certain size, we need a certain amount of comput-
ing resources (i.e., workers) to achieve good performance. How-
ever, the performance does not further improve if we increase the
number of workers per slave machine beyond that amount, since the
increased overhead of inter-machine communication outweighs the
increased computing power. In the experiments, we run 10 workers
for WebUK and WebBase, 8 for Friendster, 2 for LiveJournal, 4 for
BTC, USA and Euro, which exhibit good performance.

8.1 Blogel Implementation
We make Blogel open-source. All the system source codes, as

well as the source codes of the applications discussed in this paper,
can be found in http://www.cse.cuhk.edu.hk/blogel.

Blogel is implemented in C++ as a group of header files, and
users only need to include the necessary base classes and imple-
ment the application logic in their subclasses. Blogel communi-
cates with HDFS through libhdfs, a JNI based C API for HDFS.
Each worker is simply an MPI process and communications are im-
plemented using MPI communication primitives. While one may
deploy Blogel with any Hadoop and MPI version, we use Hadoop
1.2.1 and MPICH 3.0.4 in our experiments. All programs are com-
piled using GCC 4.4.7 with -O2 option enabled.

Blogel makes the master a worker, and fault recovery can be im-
plemented by a script as follows. The script loops a Blogel job,
which runs for at most ∆ supersteps before dumping the interme-
diate results to HDFS. Meanwhile, the script also monitors the clus-
ter condition. If a machine is down, the script kills the current job
and restarts another job loading the latest intermediate results from
HDFS. Fault tolerance is achieved by the data replication in HDFS.

8.2 Performance of Partitioners
We first report the performance of Blogel’s partitioners.

4https://issues.apache.org/jira/browse/GIRAPH-902
5http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05
6http://law.di.unimi.it/webdata/webbase-2001
7http://snap.stanford.edu/data/com-Friendster.html
8http://konect.uni-koblenz.de/networks/livejournal-groupmemberships
9http://km.aifb.kit.edu/projects/btc-2009/

10http://www.dis.uniroma1.it/challenge9/download.shtml

Performance of GVD partitioners. Figure 8 shows the perfor-
mance of the GVD partitioners, along with the parameters we used.
The web graphs can be partitioned simply based on URLs, but we
also apply GVD partitioners to them for the purpose of comparison.

The partitioning parameters are set according to the heuristics
given in Section 7, but if there exists a giant block in the result
which is usually obtained in the phase when Hash-Min is run, we
check why the multi-source BFS phase terminates. If it terminates
because the sampling rate increases beyond pmax, we decrease f
and increase pmax and γ to allow more rounds of multi-source BFS
to be run in order to break the giant block into smaller ones. We
also increase bmax to relax the maximum block size constraint dur-
ing multi-source BFS, which may generate some relatively larger
blocks (still bounded by bmax) but reduce the chance of producing
a giant block (not bounded by bmax). We slightly adjusted the pa-
rameters for WebUK, WebBase and BTC in this way, while all other
datasets work well with the default setting described in Section 7.

Recall from Section 4 that besides block-to-worker assignment,
partitioners also compute vertex-to-block assignment (denoted by
“Block Assign.” in Figure 8), construct Γ̂(v) (denoted by “Triplet
ID Neighbors”), and exchange vertices according to the block-to-
worker assignment (denoted by “Vertex Exchange”). We report
the computing time for “Block Assign.”, “Triplet ID Neighbors”,
and “Vertex Exchange” in Figure 8. We also report the data load-
ing/dumping time and the total computation time of the GVD par-
titioners in the gray columns. As for vertex-to-block assignment,
(1)for multi-source BFS, we report the number of rounds, the to-
tal number of supersteps taken by all these rounds, and the average
time of a superstep; (2)for running Hash-Min on the subgraphs, we
report the number of supersteps and the average time of a superstep.

As Figure 8 shows, the partitioning is very efficient as the com-
puting time is comparable to graph loading/dumping time. In fact,
within the overall computing time, a significant amount of time is
spent on constructing Γ̂(v) and vertex exchange, and the vertex-to-
block assignment computation is highly efficient.

Figure 9 shows the number of blocks and vertices assigned to
each worker, for example, WebUK is partitioned over workers 0
to 150 and each worker contains x blocks and y vertices, where
16, 781 ≤ x ≤ 16, 791 and 884, 987 ≤ y ≤ 884, 988. Thus, we
can see that the GVD partitioners achieves very balanced block-
to-worker assignment, and it also shows that the greedy algorithm
described in Section 4 is effective. The workload is relatively less
balanced only for BTC, where we have 13 larger blocks distributed
over workers 0 to 12. This is mainly caused by the few vertices in
BTC with very high degree (the max degree is 1.6M). We remark
that probably no general-purpose partitioning algorithm is effective
on BTC, if there exists a balanced partitioning for BTC at all.
Performance of 2D partitioners. Since the vertices in USA and
Euro have 2D coordinates, we also run 2D partitioners on them,
with (psamp, nx, ny) = (1%, 20, 20). Figure 10(a) shows the
quality of 2D partitioning, which reports the number of super-blocks,
blocks and vertices in each worker. The number of blocks/vertices
per worker obtained by 2D partitioning is not as even as that by
GVD partitioning. However, the shape of the super-blocks are very
regular, resulting in fewer number of edges crossing super-blocks
and a smaller diameter for the block-level graph, and thus block-
centric algorithms can run faster.

Figures 10(b) and 10(c) further show that 2D partitioning is also
more efficient than GVD partitioning. For example, for USA, job 1
of 2D partitioning takes 26.92 seconds (58% spent on loading and
dumping) and job 2 takes 13.29 seconds (93.5% spent on loading
and dumping), which is still much shorter than the time taken by
the GVD partitioner (9.06 + 38.56 + 7.77 = 55.39 seconds).

1989

Data
Parameters

Performance

Load

Computation

DumpMulti-Source BFS
Subgraph

Hash-Min
Block

Assign.

Triplet ID

Neighbors

Vertex

Exchange
Total

psamp max bmax f pmax Round # Step # AVG Step # AVG

WebUK 0.1% 30 500,000 1.6 100% 20% 135.28 s 12 291 0.71 s 8 0.22 s 8.31 s 111.00 s 200.62 s 714.68 s 403.63 s

WebBase 0.1% 30 500,000 2 100% 10% 36.20 s 6 180 0.50 s 70 0.16 s 9.24 s 40.49 s 43.76 s 248.31 s 50.43 s

Friendster 0.1% 10 100,000 2 90% 10% 71.89 s 2 13 4.14 s 12 0.14 s 2.38 s 55.09 s 70.45 s 204.36 s 223.93 s

LiveJournal 0.1% 10 100,000 2 90% 10% 35.08 s 7 64 0.23 s 9 0.20 s 0.87 s 6.14 s 8.56 s 36.19 s 13.71 s

BTC 0.1% 20 500,000 2 95% 10% 29.08 s 3 60 0.60 s 31 0.80 s 2.47 s 12.52 s 25.92 s 112.53 s 39.54 s

USA Road 0.1% 50 2 90% 10% 9.06 s 4 166 0.07 s 19 0.04 s 3.08 s 3.35 s 6.23 s 38.56 s 7.77 s

Euro Road 0.1% 50 2 90% 10% 7.17 s 4 171 0.07 s 17 0.04 s 1.90 s 2.78 s 4.88 s 30.96 s 5.84 s

Figure 8: Performance of Graph Voronoi Diagram Partitioners

(a) Per-Worker Statistics (c) Job 2 Performance(b) Job 1 Performance

Super-

Block #
Block # Vertex #

USA 6 – 7 247 – 606
374,440 –

409,255

Euro 6 – 7 466 – 872
283,695 –

304,775

Load

Partitioning

Dump Compute

Slots

Block

Assign.

Triplet ID

Neighbors

Vertex

Exchange
Total

USA 7.49 s 1.75 s 0.03 s 3.70 s 5.82 s 11.31 s 8.12 s

Euro 6.02 s 1.43 s 0.03 s 3.21 s 4.73 s 9.40 s 5.69 s

Load

Partitioning

Dump Compute

Blocks

Triplet ID

Neighbors
Total

USA 1.37 s 0.50 s 0.37 s 0.87 s 11.05 s

Euro 1.08 s 0.30 s 0.38 s 0.69 s 5.98 s

Figure 10: Performance of 2D Partitioners

Worker Block # Vertex #

WebUK 0 – 150 16,781 – 16,791 884,987 – 884,988

WebBase 0 – 150 19,329 – 19,341 782,398 – 782,399

Friendster 0 – 120 614 – 618 542,217 – 542,218

LiveJournal
0 5,066 344,848

1 – 30 5,181 – 5,182 344,847 – 344,848

BTC

0 1 2,673,201

1 – 12 1 1,337,773 – 1,588,121

13 – 120 5,902 – 5,928 1,337,679 – 1,337,680

USA Road 0 – 60 4,762 – 4,763 392,579 – 392,580

Eagle Peak 0 – 60 3,564 – 3,569 295,569 – 295,570

Figure 9: # of Blocks/Vertices Per Worker (GVD Partitioner)

Comparison with existing partitioning methods. One of the widely
used graph partitioning algorithms is METIS [7] (e.g., GRACE [20]
uses METIS to partition the input graph). However, METIS ran out
of memory on those large graphs in Figure 7 on our platform. To
solve the scalability problem of METIS, Giraph++ [18] proposed
a graph coarsening method to reduce the size of the input graph
so that METIS can run on the smaller graph. Here, a vertex in
the coarsened graph corresponds to a set of connected vertices in
the original graph. The partitioning algorithm of Giraph++ con-
sists of 4 phases: (1)graph coarsening, (2)graph partitioning (using
METIS), (3)graph uncoarsening, which projects the block informa-
tion back to the original graph, and (4)ID recoding, which relabels
the vertex IDs so that the worker of a vertex v can be obtained by
hashing v’s new ID. Note that ID recoding is not required in Blo-
gel since the worker ID of each vertex v is stored in its triplet ID
trip(v). This approach retains the original vertex IDs so that Blo-
gel’s graph computing results require no ID re-projection. Blogel’s
graph partitioning is also more user-friendly, since it requires only
one partitioner job, while Giraph++’s graph partitioning consists of
a sequence of over 10 Giraph/MapReduce/METIS jobs.

Figure 11 shows the partitioning performance of Giraph++, where
we ran as many workers per machine as possible (without running
out of memory). We did not obtain result for WebUK and Friend-
ster, since graph coarsening ran out of memory even when each
slave machine runs only one worker. Figure 11 shows that the parti-
tioning time of Giraph++ is much longer than that of our GVD par-
titioner. For example, while our GVD partitioner partitions Web-
Base in 334.94 seconds (see the breakdown time in Figure 8), Gi-
raph++ uses 5450 seconds. In general, our GVD partitioner is tens
of times faster than Giraph++’s METIS partitioning algorithm.

Recently, Stanton and Kliot [17] proposed a group of algorithms
to partition large graphs, and the best one is a semi-streaming algo-

WebBase LiveJournal BTC USA Euro

Coarsen 3547 s 1234 s 4463 s 228 s 184 s

Partition 395 s 836 s 2360 s 8 s 5 s

Uncoarsen 1414 s 205 s 1064 s 171 s 156 s

IdRecode 94 s 24 s 107 s 25 s 24 s

Total 5450 s 2299 s 7994 s 432 s 369 s

Figure 11: Partitioning Performance of Giraph++

WebUK WebBase Friendster LiveJournal BTC USA Euro

Runtime 4863 s 1373 s 3547 s 205 s 1394 s 127 s 92s

Figure 12: Partitioning Performance of LDG

rithm called Linear (Weighted) Deterministic Greedy (LDG). We
also ran LDG and the results are presented in Figure 12. We can
see that LDG is many times slower than our GVD partitioner (re-
ported in Figure 8), though LDG is much faster than Giraph++’s
new METIS partitioning algorithm.

8.3 Partitioner Scalability
We now study the scalability of our GVD partitioner. We first

test the partitioning scalability using two real graphs: BTC with
skewed degree distribution, and USA with a large graph diameter.
We partition both graphs using varying number of slave machines
(i.e., 6, 9, 12 and 15), and study how the partitioning performance
scales with the amount of computing resources. We report the re-
sults in Figure 13. For the larger graph BTC, we need a certain
amount of computing resources to achieve good performance. For
example, when the number of slave machines increases from 6 to
9, the partitioning time of BTC improves by 25.7%, from 189.2
seconds to 140.52 seconds. However, the performance does not
further improve if we increase the number of machines beyond 12.
This is because the increased overhead of inter-machine communi-
cation outweighs the increased computing power. For the relatively
smaller graph USA, the performance does not change much with
varying number of slave machines, since the computing power is
sufficient even with only 6 slaves.

To test the scalability of our GVD partitioner as the graph size in-
creases, we generate random graphs using PreZER algorithm [12].
We set the average degree as 20 and vary |V | to be 25M, 50M,
75M and 100M. Figure 14 shows the scalability results, where all
the 16 machines in our cluster are used. The partitioning time in-
creases almost linearly with |V |, which verifies that our GVD par-
titioner scales well with graph size. Moreover, even for a graph
with |V | = 100M (i.e., |E| ≈ 2B), the partitioning is done in

1990

Machine #

6 9 12 15

BTC

Load 60.35 s 38.50 s 32.00 s 28.71 s

Compute 189.20 s 140.52 s 119.53 s 115.52 s

Dump 59.13 s 52.96 s 49.65 s 53.66 s

Total 308.69 s 231.98 s 201.18 s 197.90 s

USA

Load 15.40 s 13.01 s 10.37 s 6.57 s

Compute 40.05 s 41.32 s 40.40 s 44.74 s

Dump 6.46 s 4.66 s 4.46 s 3.95 s

Total 61.91 s 58.99 s 55.23 s 55.26 s

Figure 13: GVD Partitioner Scalability on Real Graphs

|V| (avg deg = 20)

25M 50M 75M 100M

Load 11.44 s 29.05 s 42.10 s 74.31 s

Compute 45.32 s 88.76 s 127.32 s 164.13 s

Dump 22.26 s 41.64 s 58.86 s 76.84 s

Total 79.02 s 159.45 s 228.29 s 315.28 s

Figure 14: GVD Partitioner Scalability on Random Graphs

only 164.13 seconds. In contrast, even for the smallest graph with
|V | = 25M , Giraph++’s new METIS partitioning algorithm can-
not finish in 24 hours.

8.4 Performance of Graph Computing
We now report the performance of various graph computing sys-

tems for computing CC, SSSP, reachability, and PageRank. We run
the vertex-centric algorithms of Blogel (denoted by V-centric), as
well as the block-centric algorithm of Blogel (denoted by B-GVD,
B-2D or B-URL depending on which partitioner is used). Note that
B-2D applies to road networks only, B-URL applies to web graphs
only, while B-GVD applies to general graphs. We compare with
Giraph, GraphLab, and the graph-centric system Giraph++. For
GraphLab, we use its synchronous mode since this paper focuses
on synchronous computing model. For Giraph++, we do not re-
port the results for WebUK and Friendster since Giraph++ failed to
partition these large graphs.

Figure 15(a) shows the results of CC computation on three rep-
resentative graphs: BTC (skewed degree distribution), Friendster
(relatively high average degree), and USA (large diameter). We ob-
tain the following observations. First, V-centric is generally faster
than Giraph and GraphLab, which shows that Blogel is more ef-
ficient than existing systems even for vertex-centric computing.
Second, B-GVD (or B-2D) is tens of times faster than V-centric,
which shows the superiority of our block-centric computing. Fi-
nally, B-GVD (or B-2D) is 1–2 orders of magnitude faster than
Giraph++; this is because Blogel’s block-centric algorithm works
in B-mode where blocks communicates with each other directly,
while Giraph++’s graph-centric paradigm does not support B-mode
and communication still occurs between vertices.

Figure 15(b) shows the results of SSSP computation on two weighted
road network graphs. We see that both B-GVD and B-2D are orders
of magnitude faster than V-Centric, which can be explained by the
huge difference in the number of supersteps taken by the differ-
ent models. Giraph++ is also significantly faster than V-Centric,
but it is still much slower than our B-2D. This result verifies that
our block-centric model can effectively deal with graphs with large
diameter. The result also shows that 2D partitioner allows more
efficient block-centric parallel computing than GVD partitioner for
spatial networks.

Figure 15(c) shows the results of reachability computation on the
small-diameter graph, LiveJoural, and the large-diameter graphs,
WebUK and USA. We set the source s to be a vertex that can reach
most of the vertices in the input graph and set t = −1, which means
that the actual computation is BFS from s. As Figure 15(c) shows,

our block-centric system, B-GVD or B-2D, is one to two orders of
magnitude faster than the vertex-centric systems, V-Centric, Giraph
and GraphLab, for processing the large-diameter graphs. But the
improvement is limited for the small-diameter graph, since Live-
Joural is not very large and the vertex-centric systems are already
very fast on a small-diameter graph of medium size. Compared
with Giraph++, B-GVD is significantly more efficient for process-
ing LiveJoural and B-2D is much faster for processing USA, while
Giraph++ failed to run on WebUK.

For PageRank, we use the two web graphs WebUK and Web-
Base. We use both the URL-based partitioner and the GVD par-
titioner for graph partitioning. Figure 16(d) shows the number of
blocks/vertices per worker using URL partitioning, where we see
that URL partitioning achieves more balanced workload and less
number of blocks than GVD partitioning (cf. Figure 9). This shows
that background knowledge about the graph data can usually offer
a higher quality partitioning than a general method.

We report the time of computing local PageRank and BlockRank
by Blogel’s B-mode in Figure 16(a). We present the average time of
a superstep and the total number of supersteps of computing PageR-
ank using different systems in Figure 16(b). We also run Blogel’s
block-centric V-mode with the input graph partitioned by LDG par-
titioning [17], denoted by B-LDG in Figure 16(b). We remark that
LDG cannot be used in Blogel’s VB-mode and B-mode, since a
partition obtained by LDG is not guaranteed to be connected.

The results show that though running V-mode, block-centric com-
puting is still significantly faster than vertex-centric computing (i.e.,
V-Centric, Giraph and GraphLab). Note that B-GVD and B-URL
are also running block-centric V-mode in Figure 16(b). Thus, the
result also reveals that our GVD partitioner leads to more efficient
distributed computing than LDG. B-URL is comparable with B-
LDG on WebUK, but is significantly faster than B-LDG on Web-
Base. The superior performance of B-GVD and B-URL is mainly
because the GVD and URL partitioners achieve greater reduction
in the number of cross-worker edges than LDG, which results in
less number of messages exchanged through the network.

We also notice that the number of supersteps of the block-centric
algorithm is more than that of the vertex-centric algorithm, which
is mainly due to the fact that the PageRank initialization formula
of [6], i.e., pr(v) = lpr(v) ·br(block(v)), is not effective. We may
improve the algorithm by specifying another initialization formula,
but this is not the focus of this paper.

Another kind of PageRank algorithm is adopted in Giraph++’s
paper [18], which is based on the accumulative iterative update ap-
proach of [22]. To make a fair comparison with Giraph++, we
also developed a Blogel vertex-centric counterpart, and a block-
centric counterpart that runs in VB-mode. As Figure 16(c) shows,
Blogel’s block-centric computing (i.e., B-GVD or B-URL) is sig-
nificantly faster than its vertex-centric counterpart (i.e., V-Centric)
when accumulative iterative update is applied. We can only com-
pare with Giraph++ on WebBase since Giraph++ failed to partition
WebUK. Figure 16(c) shows that while Giraph++ is twice faster
than V-Centric, it is still much slower than B-GVD and B-URL.

9. CONCLUSIONS
We presented a block-centric framework, called Blogel, and showed

that Blogel is significantly faster than existing distributed graph
computing systems [1, 10, 4, 18], for processing large graphs with
adverse graph characteristics such as skewed degree distribution,
high average degree, and large diameter. We also showed that Blo-
gel’s partitioners generate high-quality blocks and are much faster
than the state-of-the-art graph partitioning methods [17, 18].

1991

Load Compute Step # Dump

WebUK

V-Centric 71.89 s 144.29 s 664 0.89 s

B-GVD 100.72 s 41.58 s 71 2.64 s

Giraph 530.78 s 1078.06 s 664 13.75 s

GraphLab 435.95 s 424.2 s 664 15.12 s

Live-

Journal

V-Centric 8.93 s 6.87 s 19 0.37 s

B-GVD 5.54 s 4.84 s 6 0.65 s

Giraph 37.77 s 17.89 s 19 1.6 s

Giraph++ 17.50 s 29.12 s 4 16.13 s

GraphLab 16.46 s 8.9 s 19 2.15 s

USA

Road

V-Centric 5.18 s 389.37 s 6263 0.45 s

B-GVD 2.31 s 33.31 s 246 0.73 s

B-2D 1.51 s 4.02 s 26 1.40 s

Giraph 16.27 s 5866.19 s 6263 2.64 s

Giraph++ 18.43 s 34.43 s 18 2.51 s

GraphLab 18.86 s 1558.6 s 6263 3.56 s

(c) Performance of Reachability

Load Compute Step # Dump

USA

Road

V-Centric 7.21 s 2832.26 s 10789 1.81 s

B-GVD 1.87 s 118.75 s 751 2.46 s

B-2D 1.65 s 11.29 s 59 2.58 s

Giraph 16.68 s 11116.90 s 10789 4.54 s

Giraph++ 18.29 s 80.53 s 39 2.88 s

GraphLab 19.38 s 9293 s 10789 4.02 s

Euro

Road

V-Centric 5.47 s 708.56 s 6210 1.01 s

B-GVD 1.61 s 68.56 s 440 1.74 s

B-2D 1.26 s 8.86 s 55 1.85 s

Giraph 12.51 s 12712.06 s 6210 0.05 s

Giraph++ 18.57 s 87.73 s 30 3.59 s

GraphLab 16.48 s 3231.3 s 6210 3.17 s

(b) Performance of SSSP

Load Compute Step # Dump

BTC

V-Centric 24.22 s 28.48 s 30 8.36 s

B-GVD 7.58 s 0.94 s 6 6.16 s

Giraph 70.26 s 94.54 s 30 17.14 s

Giraph++ 102.01 s 101.29 s 5 25.64 s

GraphLab 105.48 s 83.1 s 30 19.03 s

Friendster

V-Centric 82.68 s 120.24 s 22 1.55 s

B-GVD 16.08 s 2.52 s 6 2.31 s

Giraph 95.88 s 248.29 s 22 6.37 s

GraphLab 188.59 s 77.0 s 22 7.57 s

USA Road

V-Centric 5.98 s 510.98 s 6262 0.57 s

B-GVD 1.47 s 13.95 s 164 1.00 s

B-2D 1.41 s 1.94 s 26 1.07 s

Giraph 14.07 s 9518.99 s 6262 2.14 s

Giraph++ 16.81 s 24.00 s 12 2.54 s

GraphLab 18.27 s 2982.3 s 6262 3.41 s

(a) Performance of Hash-Min

Figure 15: Performance of CC, SSSP and Reachability Computation

(a) Performance of BlockRank Computation

Load Step # Per-Step Time Dump

WebUK

V-Centric 71.37 s 89 29.99 s 4.16 s

B-LDG 104.59 s 89 24.65 s 2.04 s

B-GVD 47.21 s 95 18.63 s 6.59 s

B-URL 64.62 s 93 25.96 s 7.08 s

Giraph 163.99 s 89 53.74 s 22.35 s

GraphLab 245.62 s 89 48.43 s 16.34 s

WebBase

V-Centric 20.81 s 80 16.23 s 2.77 s

B-LDG 28.30 s 80 9.64 s 3.62 s

B-GVD 11.51 s 90 4.99 s 6.92 s

B-URL 6.39 s 84 2.86 s 5.15 s

Giraph 61.41 s 80 12.67 s 16.30 s

GraphLab 79.91 s 80 20.04 s 14.92 s

Load
Compute

lpr(v) & br(b)
Dump

WebUK
B-GVD 105.10 s 44.98 s 385.45 s

B-URL 124.52 s 17.39 s 395.93 s

WebBase
B-GVD 23.93 s 16.68 s 53.79 s

B-URL 20.27 s 40.32 s 45.36 s

(b) Performance of PageRank Computation

Load Step #
Per-step

Time
Dump

WebUK

V-Centric 111.45 s 92 31.16 s 1.99 s

B-GVD 113.63 s 92 16.89 s 4.94 s

B-URL 120.74 s 92 9.30 s 4.87 s

WebBase

V-Centric 30.74 s 92 16.53 s 2.54 s

B-GVD 25.38 s 92 4.00 s 4.61 s

B-URL 25.83 s 92 1.20 s 4.93 s

Giraph++ 149.49 s 92 7.02 s 26.47 s

(c) Performance of Giraph++’s Version

Worker Block # Vertex #

WebUK 0 – 150 1,693 – 1697 884,987 – 884,988

WebBase 0 – 150 4,930 – 4,931 782,398 – 782,399

(d) # of Blocks/Vertices Per Worker (URL Partitioning)

Figure 16: Performance of PageRank Computation

For future work, we plan to define a class of algorithms similar
to PPA [21] for the block-centric computing model.
Acknowledgments. We thank the reviewers for giving us many
constructive comments, with which we have significantly improved
our paper. This work was partially done when the first author was
at HKUST. This research is supported in part by SHIAE Grant
No. 8115048 and HKUST Grant No. FSGRF14EG31.

10. REFERENCES
[1] C. Avery. Giraph: Large-scale graph processing infrastructure on

hadoop. Proceedings of the Hadoop Summit. Santa Clara, 2011.
[2] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of

distance queries in large graphs: a vertex cover approach. In
SIGMOD Conference, pages 457–468, 2012.

[3] M. Erwig and F. Hagen. The graph voronoi diagram with
applications. Networks, 36(3):156–163, 2000.

[4] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

[5] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17(2):416–429, 1969.

[6] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the
block structure of the web for computing pagerank. Stanford
University Technical Report, 2003.

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[8] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In EuroSys, pages 169–182, 2013.

[9] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[10] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
in the cloud. PVLDB, 5(8):716–727, 2012.

[11] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD Conference, pages 135–146, 2010.

[12] S. Nobari, X. Lu, P. Karras, and S. Bressan. Fast random graph
generation. In EDBT, pages 331–342, 2011.

[13] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. D. Sarma.
Finding connected components in map-reduce in logarithmic rounds.
In ICDE, pages 50–61, 2013.

[14] S. Salihoglu and J. Widom. Computing strongly connected
components in pregel-like systems. Stanford University Tech. Report.

[15] S. Salihoglu and J. Widom. Gps: a graph processing system. In
SSDBM, page 22, 2013.

[16] S. B. Seidman. Network structure and minimum degree. Social
Networks, 5:269–287, 1983.

[17] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD, pages 1222–1230, 2012.

[18] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson.
From ”think like a vertex” to ”think like a graph”. PVLDB,
7(3):193–204, 2013.

[19] J. Wang and J. Cheng. Truss decomposition in massive networks.
PVLDB, 5(9):812–823, 2012.

[20] W. Xie, G. Wang, D. Bindel, A. J. Demers, and J. Gehrke. Fast
iterative graph computation with block updates. PVLDB,
6(14):2014–2025, 2013.

[21] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel
algorithms for graph connectivity problems with performance
guarantees. PVLDB, 7(14), 2014.

[22] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Accelerate large-scale
iterative computation through asynchronous accumulative updates. In
Workshop on Scientific Cloud Computing, pages 13–22. ACM, 2012.

1992

