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ABSTRACT
Studies show that a person is willing to join a social group activity if
the activity is interesting, and if some close friends also join the ac-
tivity as companions. The literature has demonstrated that the inter-
ests of a person and the social tightness among friends can be effec-
tively derived and mined from social networking websites. How-
ever, even with the above two kinds of information widely avail-
able, social group activities still need to be coordinated manually,
and the process is tedious and time-consuming for users, especially
for a large social group activity, due to complications of social con-
nectivity and the diversity of possible interests among friends. To
address the above important need, this paper proposes to automat-
ically select and recommend potential attendees of a social group
activity, which could be very useful for social networking websites
as a value-added service. We first formulate a new problem, named
Willingness mAximization for Social grOup (WASO). This paper
points out that the solution obtained by a greedy algorithm is likely
to be trapped in a local optimal solution. Thus, we design a new
randomized algorithm to effectively and efficiently solve the prob-
lem. Given the available computational budgets, the proposed algo-
rithm is able to optimally allocate the resources and find a solution
with an approximation ratio. We implement the proposed algorithm
in Facebook, and the user study demonstrates that social groups ob-
tained by the proposed algorithm significantly outperform the solu-
tions manually configured by users.
1. INTRODUCTION
Studies show that two important criteria are usually involved in

the decision of a person joining a group activity [7, 12] at her avail-
able time. First, the person is interested in the intrinsic properties
of the activity, which may be in line with her favorite hobby or
exercise. Second, other people who are important to the person,
such as her close friends, will join the activity as companions1.
For example, if a person who appreciates abstract art has compli-
mentary tickets for a modern art exhibition at MoMA, she would
1There are other criteria that are also important, e.g., activity time,
and activity location. However, to consider the above factors, a
promising way is to preprocess and filter out the people who are
not available, live too far, etc.
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probably want to invite her friends and friends of friends with this
shared interest. Nowadays, many people are accustomed to sharing
information with their friends on social networking websites, like
Facebook, Myspace, Meetup, MyYearbook, and LikeALittle, and a
recent line of studies [4, 15] has introduced effective algorithms to
quantify the interests of a person according to the interest attributes
in her personal profile and the contextual information in her interac-
tion with friends. Moreover, social connectivity models have been
widely studied [2] for evaluating the tightness between two friends
in the above websites. Nonetheless, even with the above knowl-
edge available, to date there has been neither published work nor
a real system explores how to leverage the above two crucial fac-
tors for automatic planning and recommending of a group activity,
which is potentially very useful for social networking websites as a
value-added service2. At present, many social networking websites
only act as a platform for information sharing and exchange in ac-
tivity planning. The attendees of a group activity still need to be
selected manually, and such manual coordination is usually tedious
and time-consuming, especially for a large social activity, given the
complicated social link structure and the diverse interests.
To solve this problem, this paper makes an initial attempt to in-

corporate the interests of people and their social tightness as two
key factors to find a group of attendees for automatic planning and
recommendation. It is desirable to choose more attendees who like
and enjoy the activity and to invite more friends with the shared in-
terest in the activity as companions. In fact, Psychology [7, 12] and
recent study in social networks [21, 22] have modeled the willing-
ness to attend an activity or a social event as the sum of the interest
of each attendee on the activity and the social tightness between
friends that are possible to join it. It is envisaged that the selected
attendees are more inclined to join the activity if the willingness of
the group increases.
With this objective in mind, we formulate a new fundamental

optimization problem, named Willingness mAximization for Social
grOup (WASO). The problem is given a social graphG, where each
node represents a candidate person and is associated with an inter-
est score of the person for the activity, and each edge has a social
tightness score to indicate the mutual familiarity between the two
persons. Let k denote the number of expected attendees. Given the
user-specified k, the goal of automatic activity planning is to max-
imize the willingness of the selected group F , while the induced
graph on F is a connected subgraph for each attendee to become

2The privacy of a person in automatic activity planning can fol-
low the current privacy setting policy in social networking web-
sites when the person subscribes the service. The details of privacy
setting are beyond the scope of this paper.

253



6

5

78
2

4

4

4v1 v2 v3

v4

Figure 1: Counterexample of greedy algorithm

acquainted with another attendee according to a social path3. For
the activities without an a priori fixed size, it is reasonable for a
user to specify a proper range for the group size, and our algorithm
can find the solution for each k within the range and return the so-
lutions for the user to decide the most suitable group size and the
corresponding attendees.4
Naturally, to incrementally construct the group, a greedy algo-

rithm sequentially chooses an attendee that leads to the largest in-
crement in the willingness at each iteration. For example, Figure
1 presents an illustrative example with k = 3. Node v1 is first se-
lected since its interest score is the maximum one among all nodes.
Afterward, node v2 is then extracted. Finally, v3, instead of v4, is
chosen because it generates the largest increment on willingness,
i.e., 10, and leads to a group with a willingness of 27. Note the
greedy algorithm, though simple, tends to be trapped in a local opti-
mal solution, since it facilitates the selection of nodes only suitable
at the corresponding iterations. In this simple example, the above
algorithm is not able to find the optimal solution because it makes
a greedy selection at each iteration and only chooses v1 as the start
node, who enjoys the activity the most at the first iteration, but the
optimal solution is {v2, v3, v4} with the total willingness being 30.
Another approach is to examine the willingness of every possible

combination of k attendees. However, this enumeration approach
needs to evaluate Cn

k candidate groups, where n is the number of
nodes in G. In current social networking websites, the number of
candidate groups is still huge even when we focus on only the can-
didates located in the same area, e.g., about ten thousand users in
British Virgin Islands5. When k = 50, the number of candidate
groups is in the order of 10135 . Thus, this approach is computa-
tionally intractable for a massive social network.
Indeed, we show that the problem is challenging and prove that it

is NP-hard. As shown in Figure 1, the greedy approach improperly
chooses v1 as the start node and explores only a single sequence of
nodes in the solution space. To increase the search space, random-
ized algorithms have been proposed as a simple but effective strat-
egy to solve the problems with large instances [16]. To avoid being
trapped in a local optimal solution, a simple randomized algorithm
for WASO is to randomly choose multiple start nodes. Each start
node is considered as partial solution, and a node neighboring the
partial solution is randomly chosen and added to the partial solu-
tion at each iteration afterward, until k nodes are included as a fi-
nal solution. This randomized algorithm is more efficient than the
greedy approach, because the computation of willingness is not in-
volved during the selection of a node. For the problem with a large
k, numerous candidate nodes neighboring the partial solution are
necessary to be examined in the greedy approach to sum up the
willingness, in order to find the one that generates the largest will-
ingness. In contrast, the randomized algorithm simply chooses one
neighboring node at random.

3For some group activities, it is not necessary to ensure that the
solution group is a connected subgraph. Later in Section 2, we will
show that WASO without a connectivity constraint can be easily
solved by the proposed algorithm with simple modification.
4The parameter settings in WASO to fit varied scenarios in every-
day life will be introduced in more details in Section 2.2.
5http://www.socialbakers.com/facebook-statistics/.

With randomization, the aforementioned algorithm is able to ef-
fectively avoid being trapped in a local optimal solution. It suffers,
however, two disadvantages. Firstly, a start node that has the poten-
tial to generate final solutions with high willingness is not invested
with more computational budgets for randomization in the follow-
ing iterations. Each start node in the randomized algorithm is ex-
panded to only one final solution. Thus, a start node, which has the
potential to grow and become the solution with high willingness,
may fail to generate a final solution with high willingness because
only one solution is randomly expanded from the start node. The
second disadvantage is that the expansion of the partial solution
does not differentiate the selection of the neighboring nodes. Each
neighboring node is treated equally and chosen uniformly at ran-
dom for each iteration. In contrast, a simple way to remedy this is-
sue is to assign the probability to each neighboring node according
to its interest score and social tightness of incident edges. However,
this assignment is similar to the greedy algorithm in that it limits
the scope to the local information corresponding to each node and
is not expected to generate a solution with high willingness.
Keeping in mind the above observations in an effort to guide

an efficient search of the solution space, we propose two random-
ized algorithms, called CBAS (Computational Budget Allocation
for Start nodes) and CBAS-ND (Computation Budget Allocation
for Start nodes with Neighbor Differentiation), to address the above
two crucial factors in selecting start nodes and expanding the par-
tial solutions, respectively. This paper exploits the notion of Opti-
mal Computing Budget Allocation (OCBA) [3] in randomization,
in order to optimally invest more computational budgets in the start
nodes with the potential to generate the solutions with high will-
ingness. CBAS first selects m start nodes and then randomly adds
neighboring nodes to expand the partial solution stage-by-stage,
until k nodes are included as a final solution. Each start node in
CBAS is expanded to multiple final solutions. To properly invest
the computational budgets, CBAS at each stage identifies the start
nodes worth more computational budgets according to sampled re-
sults of the previous stages. Equipped with the allocation strat-
egy of computational resources, CBAS is enhanced to CBAS-ND to
adaptively assign the probability to each neighboring node during
the expansion of the partial solution according to the cross entropy
method. We prove that the allocation of computational budgets
for start nodes and the assignment of the probability to each node
are both optimal in CBAS and CBAS-ND, respectively. We further
show that CBAS can achieve an approximation ratio, while CBAS-
ND needs much smaller computational budgets than CBAS to ac-
quire the same solution quality.
The contributions of this paper can be summarized as follows.
• We formulate a new optimization problem, namely WASO,
to consider the topic interest of users and social tightness
among friends for automatic planning of activities. We prove
that WASO is NP-hard. To the best of the authors’ knowl-
edge, there is no real system or existing work in the literature
that addresses the issue of automatic activity planning based
on both topic interest and social relationship.

• We design Algorithm CBAS and CBAS-ND to find the so-
lution to WASO with an approximation ratio. Experimental
results demonstrate that the solution returned by CBAS-ND is
very close to the optimal solution obtained by IBM CPLEX,
which is widely regarded as the fastest general parallel opti-
mizer, and CBAS-ND is faster than CPLEX.

• We implement CBAS-ND in Facebook and conduct a user
study with 137 people. Currently, people are used to organiz-
ing an activity manually without being aware of the quality of
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the organized group, because there is no automatic group rec-
ommendation service available for comparison. Compared
with the manual solutions, we observe that the solutions ob-
tained by CBAS-ND are 50.6% better. In addition, 98.5% of
users conclude that the group recommended by CBAS-ND is
better or acceptable. Therefore, this research result has the
potential to be adopted in social networking websites as a
value-added service.

The rest of this paper is summarized as follows. Section 2 for-
mulates WASO and surveys the related works. Sections 3 and 4
explain CBAS and CBAS-ND and derive the approximation ratio.
User study and experimental results are presented in Section 5, and
we conclude this paper in Section 6.

2. PRELIMINARY
2.1 Problem Definition
Given a social network G = (V,E), where each node vi ∈ V

and each edge ei,j ∈ E are associated with an interest score ηi and
a social tightness score τi,j assigned according to the literature [2]
and [4] respectively, this paper studies a new optimization problem
WASO for finding a set F of vertices with size k to maximize the
willingnessW (F ), i.e.,

max
F

W (F ) = max
F

∑

vi∈F

(ηi +
∑

vj∈F :ei,j∈E

τi,j), (1)

where F is a connected subgraph in G to encourage each attendee
to be acquainted with another attendee according to a social path
in F . Notice that the social tightness between vi and vj is not nec-
essarily symmetric, i.e., τi,j can be different with τj,i. Therefore,
the willingness in Eq. (1) considers both τi,j and τj,i6. As demon-
strated in the previous works in Psychology and social networks
[21, 22] that jointly consider the social and interest domains, the
willingness of a group is represented as the sum of the topic inter-
est of nodes and social tightness between them7.
Notice that the network with η as 0 or τ as 0 is a special case of

WASO. Previous works [7, 12] demonstrated that both social tight-
ness and topic interest are intrinsic criteria involved in the decision
of a person to join a group activity, which is in line with the results
of our user study presented in Section 5. WASO is challenging due
to the tradeoff in interest and social tightness, while the constraint
that assures that the F is connected also complicates this problem
because it is no longer able to arbitrarily choose any nodes fromG.
Indeed, the following theorem shows that WASO is NP-hard.
THEOREM 1. WASO is NP-hard.

PROOF. We prove that WASO is NP-hard with the reduction
from Dense k-Subgraph (DkS) [8]. Given a graphGD = (VD, ED),
DkS finds a subgraph with k nodes FD to maximize the density of
the subgraph. In other words, the purpose of DkS is to maximize
the number of edges E(FD) in the subgraph induced by the se-
lected nodes. For each instance of DkS, we construct an instance
for WASO by letting G = GD, where ηi of each node vi ∈ V is
set as 0, and τi,j of each edge ei,j ∈ E is assigned as 1. We first
prove the sufficient condition. For each instance of DkS with solu-
tion node set FD, we let F = FD . If the number of edges E(FD)
in the subgraph of DkS is ϵ, the willingness of WASO W (F ) is
also ϵ because F = FD . We then prove the necessary condition.
6The illustrating examples are symmetric for simplicity.
7Different weights λ and (1-λ) can be assigned to the interest
scores and social tightness such thatW (F ) =

∑
vi∈F (λiηi+

(1 − λi)
∑

vj∈F :ei,j∈E τi,j). λi can be set directly by a user or
according to the existing model [22]. The impacts of different λ
will be studied later in Section 5.

For each instance of WASO with F , we select the same nodes for
FD , and the number of edges E(FD) must be the same asW (F ).
The theorem follows.

2.2 Scenarios
In the following, we present the parameter settings of WASO to

fit the need of different scenarios.
Couple and Foe: For any two people required to be selected to-

gether, such as a couple, the two corresponding nodes vi and vj in
G are merged into one node va with the interest score ηa = ηi+ηj
and social tightness score τa,b = τi,b + τj,b for each neighboring
node vb of vi or vj . Similarly, more people can be merged as well,
but the group size k is required to be adjusted accordingly. On the
other hand, if vi is a foe of vj , their social tightness score τj,i is
assigned a large negative value, such that any group consisting of
the two nodes leads to a negative willingness and thereby will not
be selected. The relationship of foes can be discovered by black-
lists and learnt from historical records. Similarly, ηi is allowed to
be assigned a negative value.
Invitation: A piano player plans to hold a small concert. In this

case, the player might prefer inviting people that are very good
friends with him/her, but it is not necessary for them to be pair-wise
acquainted. For this scenario, the activity candidates are the neigh-
boring nodes of vi, which is denoted asN(vi), where vi represents
the inviter (piano player), and we set λj as 1 for every j ∈ N(vi)
since the social tightness among the friends may not be important
in this scenario.
Exhibition and House-Warming Party: The BritishMuseum plans

to hold an exhibition of Van Gogh and would like to send e-mails
to potential visitors. In this scenario, the topic interest is expected
to play a crucial role, and λi is suitable to set as 1 for all i ∈ V . On
the other hand, for social activities such as a house-warming party,
λi is 0 for all i ∈ V , and only social tightness is considered.
Separate Groups: The government plans to organize a camp-

ing trip on Big Bear Lake to promote environmental protection. In
this case, the group does not need to be connected, and a simple
way is to add a virtual node v to V with the interest score of v
as ηv=ϵ+

∑
vi∈V (ηi +

∑
vj∈V :ei,j∈E τi,j), where ϵ is any posi-

tive real number. In addition, v is connected to every other node
vj ∈ V with the social tightness score τv,j=0, and the set of new
edges incident to v is denoted as Ev. It is necessary to choose v so
that v will connect to multiple disconnected subgraphs to support
the above group activities. In this case, k + 1 nodes need to be
included in the final solution.
Now let WASO-dis denote the counterpart of WASO without the

connectivity constraint. Indeed, WASO-dis is simpler than WASO
because the constraint is not incorporated. In the following, we
prove that WASO can be reduced from WASO-dis. In other words,
any algorithm for WASO can also solve WASO-dis.

THEOREM 2. F ∗
d is the k-node optimal solution of any WASO-

dis instanceGd if and only if F ∗ is the k+1-node optimal solution
of WASO instance G, where F∗ = F ∗

d

⋃
v.

PROOF. We first prove the sufficient condition. Since the opti-
mal solution of WASO must include v, if F ∗

d

⋃
v is not optimal to

WASO, there exists a better solution F withW (F ) > W (F ∗
d

⋃
v),

which implies thatW (F−v) > W (F ∗
d ). Because F−v can act as

a feasible solution to WASO-dis,W (F −v) > W (F ∗
d ) contradicts

that F ∗
d is optimal to WASO-dis. Therefore, F ∗ = F ∗

d

⋃
v is the

optimal solution to WASO.
We then prove the necessary condition. Since the optimal solu-

tion of WASO must include v, if F ∗ − v is not optimal to WASO-
dis, there exists a better solution Fd withW (F d) > W (F ∗ − v),
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implying thatW (Fd+v) > W (F ∗), contradicting that F ∗ is opti-
mal to WASO because F d + v is also a feasible solution to WASO.
The theorem follows.

2.3 Related Works
Given the growing importance of varied social networking appli-

cations, there has been a recent push on the study of user interest
scores and social tightness scores from real social networking data.
It has been demonstrated that unknown user interest attributes can
be effectively inferred from a social network according to the re-
vealed attributes of the friends [15]. On the other hand, Wilson et
al. [20] derived a new model to quantify the social tightness be-
tween any two friends in Facebook. The number of wall postings
is also demonstrated to be an effective indicator for social tight-
ness [9]. Thus, the above studies provide a sound foundation to
quantify the user interest and social tightness scores in social net-
works. Moreover, Yang [21] and Lee [22] sum up the two factors as
willingness for marketing and recommendation. Nevertheless, the
above factors crucial in social networks have not been leveraged for
automatic activity planning explored in this paper.
Expert team formation in social networks has attracted extensive

research interests. The problem of constructing an expert team is to
find a set of people owning the specified skills, while the commu-
nications cost among the chosen friends is minimized to ensure the
rapport among the team members for an efficient operation. Two
communications costs, diameter and minimum spanning tree, were
evaluated. Several extended models have been studied. For exam-
ple, each skill i needs to contain at least ki people in order to form
a strong team [14], while all-pair shortest paths are incorporated to
describe the communications costs more precisely [13]. Moreover,
a skill leader is selected for each skill with the goal to minimize the
social distance from the skill members to each skill leader.
In addition to expert team formation, community detection as

well as graph clustering and graph partitioning has been explored
to find groups of nodes mostly based on the graph structure [1].
The quality of an obtained community is usually measured accord-
ing to the structure inside the community, together with the con-
nectivity within the community and between the rest of the nodes
in the graph, such as the density of local edges, deviance from a
random null model, and conductance [10]. Sozio et al. [19], for
example, detected community by minimizing the total degree of a
community with specified nodes. However, the objective function
of WASO is different from community detection. Each node and
each edge in WASO are associated with an interest score and so-
cial tightness score in the problem studied in this paper, in order to
maximize the willingness of the attendees with a specified group
size, which can be very useful for social networking websites as a
value-added service.
3. ALGORITHM DESIGN FOR WASO
To solve WASO, a greedy approach incrementally constructs the

solution by sequentially choosing an attendee that leads to the largest
increment in the willingness at each iteration. However, while this
approach is simple, it tends to be trapped in a local optimal solu-
tion. The search space of the greedy algorithm is limited because
only a single sequence of nodes is explored. To address the above
issues, this paper first proposes a randomized algorithm CBAS to
randomly choose m start nodes. Each start node acts as a seed to
be expanded to multiple final solutions. At each iteration, a partial
solution, which consists of only a start node at the first iteration or
a connected set of nodes at any iteration afterward, is expanded by
uniformly selecting at random a node neighboring the partial solu-
tion, until k nodes are included. We leverage the notion of Optimal
Computing Budget Allocation (OCBA) [3] to randomly generate

Table 1: Parameter Summary
Notation Description Impact

τi,j social tightness score
between node vi and vj

set to be a negative
value if vi and vj are
foes

ηi interest score of node vi set to be a negative
value if vi does not like
the topic

λi weighting between in-
terest score and tight-
ness score of node vi

set to be zero if vi only
considers social tight-
ness and one if vi only
concerns topic interest

T total computation bud-
get

trade-off between solu-
tion quality and compu-
tation time

m number of start nodes sampling coverage

more final solutions from each start node that has more potential
to generate the final solutions with high willingness. Later we will
prove that the number of final solutions generated from each start
node is optimally assigned.
After this, we enhance CBAS to CBAS-ND by differentiating the

selection of the nodes neighboring each partial solution. During
each iteration of CBAS, each neighboring node is treated equally
and chosen uniformly at random. A simple way to improve CBAS
is to associate each neighboring node with a different probability
according to its interest score and social tightness scores of inci-
dent edges. Yet, this assignment is similar to the greedy algorithm
insofar as it limits the scope to only the local information associ-
ated with each node thereby making it difficult to generate a final
solution with high willingness. To prevent the generation of only a
local optimal solution, CBAS-ND deploys the cross entropy method
according to results at the previous stages in order to optimally as-
sign a probability to each neighboring node.
One advantage of the proposed randomized algorithms is that

the tradeoff between the solution quality and execution time can
be easily controlled by assigning different T , which denotes the
number of randomly generated final solutions. Under a given T ,
ifm start nodes are generated, the above algorithms can optimally
divide T into m parts for the m start nodes to find final solutions
with high willingness. Moreover, we prove thatCBAS is able to find
a solution with an approximation ratio. Compared with CBAS, we
further prove that the solution quality of CBAS-ND is better under
the same computation budget T 8. The detailed settings of T andm
will be analyzed in Section 5. In addition, the parameter summary
with their impacts on the solution are shown in Table 1.
In the following, we first present CBAS to optimally allocate

the computational budgets to different start nodes (Section 3.1)
and then derive the approximation ratio in Section 3.2. Algorithm
CBAS-ND will be presented in Section 4.

3.1 Allocation of Computational Budget for
Start Nodes

Given the total computational budgets T specified by users, a
simple approach first randomly selects m start nodes and then ex-
pands each start node to T

m final solutions. However, this homoge-
neous approach does not give priority to the start nodes that have
more potential to generate final solutions with high willingness.

8It is worth noting that randomization is performed only in expand-
ing a start node to a final solution, not in the selection of a start
node. This is because the approximation ratio is not able to be
achieved if a start node is decided randomly.
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In contrast, CBAS optimally allocates more resources to the start
nodes with high willingness with the following phases.
1. Selection and Evaluation of Start Nodes: This phase first se-
lectsm start nodes according to the interest scores and social
tightness scores. Afterward, each start node is randomly ex-
panded to a few final solutions. We iteratively select and add
a neighboring node uniformly at random to a partial solu-
tion, until k nodes are selected. The willingness of each final
solution is evaluated for the next phase to allocate different
computational budgets to different start nodes.

2. Allocation of Computational Budgets: This phase derives
the computational resources optimally allocated to each start
node according to the previous sampled willingness.

To optimally allocate the computational budgets for each start node,
we first define the solution quality as follows.
Definition 1. The solution quality, denoted by Q, is defined as

the maximum willingness among all maximal sampled results of
the m start nodes,

Q = max{J∗
1 , J

∗
2 , ..., J

∗
i , ..., J

∗
m},

where J∗
i is a random variable representing the maximal willing-

ness sampled from a final solution expanded from start node vi.
Since the maximal sampled result J∗

i of start node vi is related
to the number of sampling times Ni, i.e., the number of final solu-
tions randomly generated from vi, the mathematical formulation to
optimize the computational budget allocation is defined as

max
N1,N2,...,Nm

Q,

s.t. N1 +N2 + ...+Nm = T.

Let vb denote the start node that are able to generate the solution
with the highest willingness. Obviously, the optimal solution in the
above maximization problem is to allocate all the computational
budgets to vb. However, since vb is not given a priori, CBAS di-
vides the resource allocation into r stages, and each stage adjusts
the allocation of computational budgets T

r to different start nodes
according to the sampled willingness from the partial solutions in
previous stages.
For each node, phase 1 of CBAS first adds the interest score and

the social tightness scores of incident edges and then chooses the
m nodes with the largest sums as the m start nodes. On the other
hand, allocating more computational budgets to the start node with
a larger sum, similar to the greedy algorithm, does not tend to gen-
erate a final solution with high willingness. For this reason, phase
2 evaluates the sampled willingness to allocate different computa-
tional budgets to each start node.
In stage t of phase 2, let Ni,t denote the computational budgets

allocated to start node vi at the t-th stage. The ratio of computa-
tional budgetsNi,t andNj,t allocated to any two start nodes vi and
vj is

Ni,t

Nj,t
= (

di − cb
dj − cb

)Nb ,

where di denotes the best sampled willingness of the partial solu-
tions expanded from start node vi in the previous stages 1, ..., t−1.
Notice that vb here is the start node that enjoys the highest willing-
ness sampled in the previous stages, Nb is the overall computa-
tional budgets allocated to vb in the previous stages, and cb denotes
the worst sampled willingness of the partial solution expanded from
start node vb in the previous stages. Later, we will prove that the
above budgets allocation in each stage is optimal. However, if the
allocated computational budgets for a start node is 0 at the t-th
stage, we prune off the start node in the following (t+ 1)-th stage.
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Figure 2: An illustrative example for CBAS and CBAS-ND

EXAMPLE 1. Figure 2 presents an illustrative example for CBAS
with n = 10, k = 5, and m = 2. Phase 1 first chooses two start
nodes by summing up the topic interest score and the social tight-
ness scores for every node. Therefore, v3 with 0.8 + 0.6 + 0.5 +
0.9+1+0.4 = 4.2 and v10 with 0.9+0.6+1+0.9+0.8 = 4.2 are
selected. Next, let T = 20, Pb = 0.7 and α = 0.9 in this example,
and the number of stages is thus r ≤ Tk lnα

n ln(
2(1−Pb)

n
k −1

)
= 20·5 ln 0.9

10 ln(0.6) ≈

2. Each start node generates 5 samples at the first stage. In the be-
ginning, the node selection probability of start node v3, i.e., −→p 3,1,
is set to be ⟨ 49 ,

4
9 , 1,

4
9 ,

4
9 ,

4
9 ,

4
9 ,

4
9 ,

4
9 ,

4
9 ⟩. The intermediate solution

obtained so far is denoted as VS , and the candidate attendees ex-
tracted so far is denoted as VA. Therefore, the total willingness
of VS = {v3} is 0.8, and VA = {v1, v2, v4, v5, v6}. Since the
node selection probability is homogeneous in the first stage, we
randomly select v6 from VA to expand VS . Now the total will-
ingness of VS = {v3, v6} is W (VS) = 0.8 + 0.4 + 0.9 = 2.1,
and VA = {v1, v2, v4, v5, v7, v8, v10}. The process of expanding
VS continues until the cardinality of VS reaches 5, and we record
the first sample result X3,1 = ⟨1, 0, 1, 1, 1, 1, 0, 0, 0, 0⟩ with the
total willingness 8.9, the worst result of v3 (c3 = 8.9), and the
best result of v3 (d3 = 8.9). The other sample results from start
node v3 are X3,2 = ⟨1, 1, 1, 1, 1, 0, 0, 0, 0, 0⟩ with the total will-
ingness 8.9, X3,3 = ⟨0, 1, 1, 0, 1, 1, 0, 1, 0, 0⟩ with the total will-
ingness 5.9, X3,4 = ⟨0, 1, 1, 1, 1, 0, 1, 0, 0, 0⟩ with the total will-
ingness 7.9, and X3,5 = ⟨0, 0, 1, 0, 1, 1, 1, 0, 0, 1⟩ with the total
willingness 9.2. The worst and the best results of v3 are updated to
c3 = 5.9 and d3 = 9.2, respectively. After sampling from node v3,
we repeat the above process for start node v10. The worst result is
c10 = 6.9, and the best result is d10 = 8.9.
To allocate the computational budgets for the second stage, i.e.,

r = 2, we first find the allocation ratio r3 : r10=1 : ( 8.8−5.9
9.2−5.9 )

5=1 :
0.524. Therefore, the allocated computational budgets for start
nodes v3 and v10 are 10

1.524 ≈ 7 and 5.24
1.524 ≈ 3, respectively. At

the second stage, the best results of v3 and v10 are 9.2 and 8.9,
respectively. Finally, we obtain the solution {v3, v5, v6, v7, v10}
with the total willingness 9.2.

3.2 Theoretical Result of CBAS
To correctly allocate the computational budgets T to m start

nodes, we first derive the optimal ratio of computational budgets
for any two start nodes. Afterward, we find the probability Pb that
node vb is actually the start node which is able to generate the high-
est willingness in each stage. Finally, we derive the approximation
ratio and analyze the complexity of CBAS.

Definition 2. A random variable, denoted as Ji, is defined to be
the sampled value in start node vi.

The literature of OCBA indicates that the distribution of random
variable Ji in most applications is a normal distribution, but the
allocation results are very close to the one with the uniform dis-
tribution [3, 6]. Therefore, given space constraints, Ji here is first
handled as the uniform distribution in [ci, di], and the derivation for
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the normal distribution is presented in [18]. The probability density
function and cumulative distribution function are formulated as

pJi(x) =

⎧
⎨

⎩

1
di − ci

if ci ≤ x ≤ di

0 otherwise.

PJi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ ci.

x− ci
di − ci

if ci ≤ x ≤ di.

1 otherwise.
Therefore, the probability density function of the maximal value J∗

i

is NiPJi(x)
Ni−1pJi(x). Moreover, the cumulative density func-

tion of the maximal value J∗
i is PJi(x)

Ni . As proved in [18], given
the best start node vb, the probability that J∗

i exceeds J∗
b is at most

1
2 (

di−cb
db−cb

)Nb , i.e.,
p(J∗

b ≤ J∗
i ) ≤

1
2
(
di − cb
db − cb

)Nb (2)

With the result above, we allocate the computational budgets by
Ni

Nj
=

P (J∗
i ≥ J∗

b )
P (J∗

j ≥ J∗
b )

= (
di − cb
dj − cb

)Nb . (3)

Since it is impossible to enumerate every final solution expanded
from a start node, the ratio of the computational budget allocation
is optimal in OCBA [3] if the first equality in Eq. (3) holds. Thus,
it is optimal to allocate the computational budgets to Ni and Nj

according to the ratio ( di−cb
dj−cb

)Nb . Notice that if di is smaller than
cb, the probability that J∗

b is smaller than J∗
i is zero.

Intuitively, the above result indicates that if the best random sam-
ple, i.e., di, from a start node is small, it is unnecessary to repeat
the sampling process too many times since the users nearby the
start node are not really interested in the activity or they have an
estranged friendship. On the other hand, as the number of sam-
ple times increases, it is expected that the identified best start node
enjoys the highest willingness.
We first analyze the probability Pb that vb, as decided accord-

ing to the samples in the previous stages, is actually the start node
that generates the highest willingness. Let α denote the close-
ness ratio between the maximum of the start node with the high-
est willingness and the maximum of other start nodes, i.e., α =
(da− cb)/(db− cb), where va generates the maximum willingness
among other start nodes. For WASOwith parameter (m,T ), where
m is the number of start nodes and T is the total computational bud-
gets, the probability Pb that vb selected according to the previous
stages is actually the start node with the highest willingness is at
least 1− 1

2 (m− 1)α
T
mr as proved in [18].

Given the total budgets T , the following theorem derives a lower
bound of the solution obtained by CBAS.
THEOREM 3. For a WASO optimization problem with r-stage

computational budget allocation, the maximum willingness E[Q]

from the solution of CBAS is at least Nb( 1
Nb+1 )

Nb+1
Nb ·Q∗, where

Nb after r stages is 4+m(r−1)
4rm T , and Q∗ is the optimal solution.

PROOF. We first derive the lower bound of E[Q] as follows.
The random variable Q is denoted as max{J∗

1 , ..., J
∗
m}. The cu-

mulative density function is

FQ(Q ≤ ∆) = F (max{J∗
1 , ..., J

∗
m} ≤ ∆)

= F (J∗
1 ≤ ∆, J∗

2 ≤ ∆, ..., J∗
m ≤ ∆)

= (
∆− c1
d1 − c1

)N1(
∆− c2
d2 − c2

)N2 ...(
∆− cm
dm − cm

)Nm ,

where FJ∗
i
(∆) = 1, for ∆ ≥ di. After exploiting Markov’s In-

equality,

FQ(Q ≥ ∆) ≤ E[Q]
∆

.

E[Q] ≥ ∆(1− (
∆− cb
db − cb

)Nb).

We normalize the lower bound and upper bound with cb = 0
and db = 1. Let ∆ be the top-ρ percentile solution value, i.e.
∆ = cb + (1− ρ)(db − cb). Therefore,

E[Q̃] ≥ (1− ρ)(1− (1− ρ)Nb).

To find the maximum (1− ρ)(1− (1− ρ)Nb), we let

∂(1− ρ)(1− (1− ρ)
Nb )

∂ρ
= 0.

Therefore,

E[Q] ≥ Nb(
1

Nb + 1
)
Nb+1
Nb ·Q∗.

If the computational budget allocation is r−stages with T ≥
mr ln(m−1)

ln( 1
α )

,Nb is T
r /m+ 1

2
r−1
2r T , which is 4+m(r−1)

4rm T .

Time Complexity of CBAS. The time complexity of CBAS con-
tains two parts. The first phase selects m start nodes with O(E +
n+ m log n) time, where O(E) is to sum up the interest and so-
cial tightness scores, O(n + m log n) is to build a heap and ex-
tractm nodes with the largest sum. Afterward, the second phase of
CBAS includes r stages, and each stage allocates the computation
resources with O(m) time and generates O(Tr ) new partial solu-
tions with k nodes for all start nodes. Therefore, the time complex-
ity of the second phase is O

(
r(m+ T

r k)
)
= O(kT ), and CBAS

therefore needs O(E +m log n+ kT ) running time.

4. NEIGHBOR DIFFERENTIATION IN
RANDOMIZATION

4.1 Greedy Neighbor Differentiation
In Section 3.1, CBAS includes two phases. The first phase initi-

ates the start nodes, while the second phase allocates different com-
putational budgets to each start node to generate different numbers
of final solutions. During the growth of a partial solution, CBAS
chooses a neighboring node uniformly at random at each iteration.
In other words, each neighboring node of the partial solution is
treated equally. It is expected that this homogeneous strategy needs
more computational budgets, because a neighboring node inclined
to generate a final solution with high willingness is not associated
with a higher probability.
To remedy this issue, a simple algorithm RGreedy (randomized

greedy) associates each neighboring node with a different prob-
ability according to its interest score and social tightness scores
of the edges incident to the partial solution St−1 obtained in the
previous stage, which is similar to the concept in the greedy al-
gorithm. Given St−1, the ratio of the probabilities that RGreedy
selects nodes vi and vj at iteration t is

P (vi|St−1)
P (vj |St−1)

=
W ({vi} ∪ St−1)
W ({vj} ∪ St−1)

,

where W ({vi} ∪ St−1) denotes the willingness of the node set
{{vi}∪St−1}. At each iteration, RGreedy randomly selects a ver-
tex in accordance withW ({vj}∪St−1), until k nodes are included.
Intuitively, RGreedy can be regarded as a randomized version of

the greedy algorithm with m start nodes, while the greedy algo-
rithm is a deterministic algorithm with only one start node. Thus,
similar to the greedy algorithm, the assignment of the probabil-
ity limits the scope to only the local information associated with
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Figure 3: Flowchart of CBAS-ND
each node and incident edges. It is envisaged that RGreedy is dif-
ficult to generate a final solution with high willingness, which is
also demonstrated in Section 5. In contrast, we propose CBAS-ND
by exploiting the cross entropy method according to the sampling
partial solutions in previous stages, in order to optimally assign a
probability to each neighboring node.

4.2 Neighbor Differentiation with Cross En-
tropy

We enhance CBAS to CBAS-ND to differentiate the selection of
a node neighboring each partial solution. Algorithm CBAS is di-
vided into r stages. In each stage, it optimally adjusts the compu-
tational budgets allocated to each start node according to the sam-
pled maximum and minimum willingness in previous stages. To
effectively improve CBAS, CBAS-ND takes advantage of the cross
entropy method [17] to achieve importance sampling by adaptively
assigning a different probability to each neighboring node from the
sampled results in previous stages. In contrast to RGreedy with a
greedy-based probability vector assigned to the neighboring nodes,
it is expected that CBAS-ND is able to obtain final solutions with
better quality. Indeed, later in Section 4.3, we prove that the solu-
tion quality of CBAS-ND is better than CBAS with the same com-
putation budget T .
The flowchart of CBAS-ND is shown in Figure 3. We first define

the node selection probability vector in CBAS-ND, which specifies
the probability to add a node in G to the current partial solution
expanded from a start node.

Definition 3. Let−→p i,t denote the node selection probability vec-
tor for start node vi in stage t.−→p i,t= ⟨pi,t,1,...,pi,t,j,..., pi,t,n⟩,
where pi,t,j is the probability of selecting node vj for start node vi
in the t-th stage.

In the first stage, the node selection probability vector −→p i,1 for
each start node vi is initialized homogeneously for every node, i.e.−→p i,1,j = (k − 1)/|V |, ∀vj ∈ G, vj ̸= vi. That is, computa-
tional budgets T1

m are identically assigned to each start node, and
the probability associated with every node is also the same. How-
ever, different from CBAS and RGreedy, CBAS-ND here examines
the top-ρ samples for each start node vi to generate −→p i,2, so that
the node probability will be differentiated according to sampled re-
sult in stage 1.

Definition 4. ABernoulli sample vector which is denoted asXi,q

= ⟨xi,q,1, ..., xi,q,j , ..., xi,q,n⟩, is defined to be the q-th sample
vector from start node vi, where xi,q,j is 1 if node vj is selected in
the q-th sample and 0 otherwise.

Definition 5. γi,t is denoted as the top-ρ sample quantile of the
performances in the t-th stage of start node vi, i.e., γi,t=
W(⌈ρNi,t⌉).

Specifically, after collectingNi,1 samplesXi,1, Xi,2, ..., Xi,q , ...,
Xi,Ni,1 generated from

−→p i,1 for start node vi, Node Selection
Probability Update in Figure 3 calculates the total willingness
W (Xi,q) for each sample, and sorts them in the descending order,
W(1) ≥ ... ≥ W(Ni,1), while γi,1 denotes the willingness of the
top-ρ performance sample, i.e. γi,1 = W(⌈ρNi,1⌉) . With those
sampled results, the selection probability pi,2,j of every node vj in
the second stage is derived according to the following equation,

pi,t+1,j =

∑Ni,t
q=1 I{W (Xi,q)≥γi,t}xi,q,j
∑Ni,r

q=1 I{W (Xi,q)≥γi,t}
, (4)

where the indicator function I{W (Xi,q)≥γi,t} is defined on the fea-
sible solution space χ such that I{W (Xi,q)≥γi,t} is 1 if the willing-
ness of sampleXi,q exceeds a threshold γi,t ∈ R, and 0 otherwise.
Eq. (4) derives the node selection probability vector by fitting the
distribution of top-ρ performance samples. Intuitively, if node vj is
included in most top-ρ performance samples in t-th stage, pi,t+1,j

will approach 1 and be selected in (t+ 1)-th stage.
Later in Section 4.3, we prove that the above probability assign-

ment scheme is optimal from the perspective of cross entropy. Eq.
(4) minimizes the Kullback-Leibler cross entropy (KL) distance
[17] between node selection probability−→p i,t and the distribution of
top-ρ performance samples, such that the performance of random
samples in t+1 is guaranteed to be closest to the top-ρ performance
samples in t. Therefore, by picking the top-ρ performance samples
to generate the partial solutions in the next stage, the performance
of random samples is expected to be improved after multiple stages.
Most importantly, by minimizing the KL distance, the convergence
rate is maximized.
Moreover, it is worth noting that a smoothing technique is nec-

essary to be included in adjusting the selection probability vector,

−→p i,t+1 = w−→p i,t+1 + (1− w)−→p i,t,

to avoid setting 0 or 1 in the selection probability for any node vj ,
because vj will no longer appear or always appear in this case. An
example illustrating CBAS-ND is provided as follows. As demon-
strated in Section 4.3, the solution quality of CBAS-ND is better
than CBAS with the same computation budget.

EXAMPLE 2. Take Figure 2 as an illustrating example of CBAS-
ND. Since CBAS-ND is different from CBAS in the second phase
to obtain the node selection probability vector, we continue from
the result of the first phase in Section 3, i.e., the allocated compu-
tational budgets for start node v3 and v10 are 7 and 3 respectively,
and illustrate the second phase of CBAS-ND with Figure 2.
By sorting the willingness samplesX3 toW = ⟨9.2, 8.9, 8.9, 7.9,

5.9⟩, γ1 is equal toW(⌈ 1
2 5⌉) = 8.9. Therefore, the samples with the

total willingness exceeding 8.9 includeX1,X2, andX5, which are
used to update the node selection probability−→p 3,2 to ⟨ 23 ,

1
3 , 1,

2
3 ,

1, 2
3 ,

1
3 , 0, 0, 0⟩. Then, the smoothing technique is adopted with

w = 0.6, and the node selection probability−→p 3,2 becomes

p̂ 3,2 = 0.6⟨2
3
,1
3
, 1,

2
3
, 1,

2
3
,
1
3
, 0, 0, 0⟩

+0.4⟨4
9
,4
9
,1,4

9
,4
9
,4
9
,4
9
,4
9
,4
9
,4
9
⟩

= ⟨5.2
9
,3.4
9

, 1,
5.2
9

,
7
9
,
5.2
9

,
3.4
9

,
1.6
9

,
1.6
9

,
1.6
9

⟩.

After sampling from node v3, we repeat the above process for start
node v10. The worst result is c10 = 6.9, the best result is d10 =
8.9, and the node selection probability is−→p 10,2 = ⟨ 1.69 , 1.6

9 , 1.6
9 , 3.4

9 ,
5.2
9 , 5.2

9 , 7
9 ,

5.2
9 , 5.2

9 , 1⟩. At the second stage, the best results of v3
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and v10 are 9.7 and 8.9, respectively. Finally, we obtain the solu-
tion {v3, v4, v5, v6, v7} with the total willingness 9.7, which is also
the optimal solution in this example and outperforms the solution
obtained from CBAS.

4.3 Theoretical Result of CBAS-ND
In the following, we prove that the probability assignment with

the cross-entropy method [17] in Eq. (4) is optimal. The idea of
cross-entropy method originates from importance sampling9, i.e.,
by changing the distribution of sampling on different neighbors
such that the neighbors having the potential to boost the willingness
are able to be identified and included. Therefore, we first derive the
probability of a random sample according to the sampling results
in previous stages. After this, we introduce importance sampling
and derive the node selection probability vector in the WASO prob-
lem to replace the original sampling vector such that the Kullback-
Leibler cross entropy (KL) distance between the sampling vector
and the optimal importance sampling vector is minimized. Intu-
itively, a small KL distance ensures that two distributions are very
close and implies that the node selection probability vector is op-
timal because the KL distance between the node selection proba-
bility vector in CBAS-ND and optimal node selection probability
vector is minimized. Equipped with importance sampling vector,
later in this section we prove that the expected solution quality of
CBAS-ND is better than CBAS.
More specifically, let χ denote the feasible solution space, and

X is a feasible solution in χ, i.e.,X ∈ χ. WASO chooses a group
of attendee X∗ to find the maximum willingness γ∗,

W (X∗) = γ∗ = max
X∈χ

W (X).

To derive the probability that the willingness of a random sampleX
exceeds a large value γ, i.e. W (X) ≥ γ, it is necessary for CBAS
to generate many samples given that it uniformly selects a neigh-
boring node at random. In contrast, CBAS-ND leverages the notion
of importance sampling to change the distribution of sampling on
different neighbors. In the following, we first derive the optimal
distribution of sampling. First, for the initial partial solution with
one start node, let f(X;−→p ) denote the probability density function
of generating a sample X according a real-valued vector −→p , and
f(·;−→p ) is a family of probability density functions on χ, i.e.,

f(·;−→p ) = {f(X;−→p )|X ∈ χ}.

CBAS can be regarded as a special case of CBAS-ND with the ho-
mogeneous assignment on the above vector. A random sample
X(−→p ) for −→p = {p1,...,pj,...,pn} is generated with probability
f(X(−→p );−→p ), where pj denotes the probability of selecting node
vj and is the same for all j in CBAS. The probability P−→p (γ) that
the willingness ofX(−→p ) exceeds the threshold γ is

P−→p (γ) = P−→p (W (X(−→p )) ≥ γ)

=
∑

X∈χ

I{W (X(−→p ))≥γ}f(X(−→p );−→p ).

However, the above equation is impractical and inefficient for
a large solution space, because it is necessary to scan the whole
solution space χ and sum up the probability f(X(−→p );−→p ) of every
sample X with W (X(−→p )) ≥ γ. To more efficiently address this
issue, a direct way to derive the estimator P̂−→p (γ) of P−→p (γ) is by
9Importance sampling [17] is used to estimate the properties of a
target distribution by using the observations from a different distri-
bution. By changing the distribution, the ”important” values can be
effectively extracted and emphasized by sampling more frequently
to reduce the sample variance.

employing a crude Monte-Carlo simulation and drawingN random
samples X1(

−→p ),...,XN (−→p ) by f(·,−→p ) to find P−→p (γ),

P̂−→p (γ) =
1
N

N∑

i=1

I{W (Xi(
−→p ))≥γ}.

However, the crude Monte-Carlo simulation poses a serious prob-
lem when {W (X(−→p )) ≥ γ} is a rare event since rare events are
difficult to be sampled, and thus a large sample number N is nec-
essary to estimate P−→p (γ) correctly.
Based on the above observations, CBAS-ND attempts to find the

distribution f(X(−→p );−→p ) based on another importance sampling
pdf f(X(−→pg);−→pg) to reduce the required sample number. For in-
stance, consider a network with 3 nodes, i.e. V = {v1, v2, v3}, and
the 2-node group where the maximum willingness γ∗ is {v1, v2}.
The expected number of samples with node selection vector {2

3 ,
2
3 ,

2
3}

in CBAS is larger than the node selection vector of {1, 1, 0} in
CBAS-ND. In finer detail, let Xi(

−→pg) denote the i-th random sam-
ple generated by f(X(−→pg);−→pg). CBAS-ND first creates random
samples X1(

−→pg),..., XN (−→pg) generated by −→pg on χ and then es-
timates P̂−→p (γ) according to the likelihood ratio (LR) estimator
f(Xi(

−→pg);−→p )

f(Xi(
−→pg);−→pg)

,

P̂−→p (γ) =
1
N

N∑

i=1

I{W (Xi(
−→p ))≥γ}

=
1
N

N∑

i=1

{I{W (Xi(
−→pg))≥γ}

f(Xi(
−→pg);−→p )

f(Xi(
−→pg);−→pg)

. (5)

Notice that the above equation holds whenN is infinity, but in most
cases N only needs to be sufficiently large in practical implemen-
tation [5]. Now the question becomes how to derive−→pg for impor-
tance sampling pdf f(X(−→pg);−→pg) to reduce the number of samples.
The optimal importance sampling pdf f∗(Xi(

−→pg);−→pg) to correctly
estimate P−→p (γ) thus becomes

f∗(Xi(
−→pg);−→pg) =

I{W (Xi(
−→pg))≥γ}f(Xi(

−→pg);−→p )

P−→p (γ)
. (6)

In other words, by substituting f(Xi(
−→pg);−→pg)with f∗(Xi(

−→pg);−→pg)

in Eq. (5), P̂−→p (γ) = 1
N

N∑
i=1

P−→p (γ) holds, implying that only 1

sample is required to estimate the correct P−→p (γ), i.e., N = 1.
However, it is difficult to find the optimal f∗(X(−→pg);−→pg) since it
depends on P−→p (γ), which is unknown a priori and is therefore not
practical for WASO.
Based on the above observations, CBAS-ND optimally finds −→pg

and the importance sampling pdf f(X(−→pg);−→pg) to minimize the
Kullback-Leibler cross entropy (KL) distance between f(X(−→pg);−→pg)
and optimal importance sampling pdf f∗(X(−→pg);−→pg), where the
KL distance measures two densities f∗ and f as

D(f∗, f) =
∑

X∈χ

f∗(X) ln f∗(X) −
∑

X∈χ

f∗(X) ln f(X). (7)

The first term in the above equation is related to f∗ and is fixed,
and minimizing D(f∗, f) is equivalent to maximizing the second
term, i.e.,

∑
X∈χ f∗(X) ln f(X). It is worth noting that the im-

portance sampling pdf f(X(−→pg);−→pg) is referenced to a vector −→pg .
Thus, after substituting f∗(Xi(

−→pg);−→pg) in Eq. (6) into the Eq. (7),
the reference vector −→pg of importance sampling pdf f(X(−→pg);−→pg)
that maximizes the second term of Eq. (7) is the optimal reference
vector −→pg∗ with the minimum KL distance,
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−→pg∗ = argmax−→pg

∑

X∈χ

I{W (X(−→pg))≥γ}f(X(−→pg);−→p )

P−→p (γ)
ln f(X(−→pg);−→pg).

(8)
Since P−→p (γ) is not related to−→pg . Eq. (8) is equivalent to

argmax−→pg
E−→pgI{W (X(−→pg))≥γ} ln f(X(−→pg);−→pg),

Because it is computationally intensive to generate and compare
every feasible −→pg , we estimate E−→pgI{W (X(−→pg))≥γ} by drawing N
samples as

argmax−→pg

1
N

N∑

i=1

I{W (Xi(
−→pg))≥γ} ln f(Xi(

−→pg);−→pg).

Specifically, CBAS-ND first generates random samplesX1,...,Xi,...,
XN , where Xi is the i-th sample and is a Bernoulli vector gener-
ated by a node selection probability vector−→pg , i.e.,Xi = (xi,1, ...,
xi,n)∼Ber(−→pg), where−→pg = {p1,...,pj,...,pn} and pj denotes the
probability of selecting node vj . The pdf f(Xi(

−→pg);−→pg) is

f(Xi(
−→pg);−→pg) =

N∏

j=1

p
xi,j
j (1− pj)

1−xi,j .

To find the optimal reference vector −→p ∗ with Eq. (8), we first
calculate the first derivative w.r.t. pj ,

∂
∂pj

ln f(Xi(
−→pg);−→pg) =

∂
∂pj

ln p
xi,j
j (1− pj)

1−xi,j . (9)

Since xi,j can be either 0 or 1, Eq. (9) is simplified to
∂
∂pj

ln f(Xi(
−→pg);−→pg) =

1
(1− pj)pj

(xi,j − pj).

The optimal reference vector −→p ∗ is obtained by setting the first
derivative of Eq. (8) to zero.

∂
∂pj

N∑

i=1

I{W (Xi,j)≥γ} ln f(Xi(
−→pg);−→pg)

=
1

(1− pj)pj

N∑

i=1

I{W (Xi)≥γ}(xi,j − pj) = 0.

Finally, the optimal pj assigned to each node vj is

pj =

∑N
i=1 I{W (Xi)≥γ}xi,j
∑N

i=1 I{W (Xi)≥γ}
.

We prove that CBAS-ND outperforms CBAS in solution quality
in the extended version [18].

THEOREM 4. The solution quality of CBAS-ND is better than
CBAS under the same computation budget T .

Time Complexity of CBAS-ND. CBAS-ND is different from
CBAS in the second phase to find the node selection probability
vector, which needs O(r(mnρT

r + T
r k)) = O(mnρT ). There-

fore, the time complexity ofCBAS-ND isO(E+m log n+mnρT ).
However, in reality we can directly set the probability to 0 for every
node not neighboring a partial solution of a start node. Therefore,
as shown in Section 5, the experimental result manifests that the
execution time of CBAS-ND is not far from CBAS, and both CBAS
and CBAS-ND are much faster than RGreedy.

4.4 Extension
In the following, we briefly discuss two basic extensions for deal-

ing with the dynamic situation and improving the solution quality
of CBAS-ND.

4.4.1 Online computation
In the process of social activity planning, some candidate atten-

dees may not accept the invitations, and an online algorithm to ad-
just the solution according to user responses can help us handle
the dynamic situation. If the online decision of multiple attendees
are dependent, the situation is similar to the entangled transactions
[11] in databases, in which it is necessary that transactions be pro-
cessed coordinately in multiple entangled queries. Therefore, we
extend CBAS-ND to cope with the dynamic situation as follows. If
a user can not attend the activity, it is necessary to invite new at-
tendees. Nevertheless, we have already sent invitation, and some
of them have already confirmed to attend. Therefore, CBAS-ND re-
gards those confirmed attendees as the initial solution in the second
phase and removes the nodes that can not attend the activity from
G. Therefore, the node selection probability vector −→p i,t will be
updated to identify the new neighbors leading to better solutions
according to the confirmed attendees. It is worth noting that the
above online computation is fast since the start nodes in the first
phase have been decided.

4.4.2 Backtracking
In addition to online computation, we extend CBAS-ND for back-

tracking to further improve the solution quality as follows. As
shown in the previous work [5, 17], the criterion of convergence for
Cross-Entropy method is that the node selection probability vec-
tor does not change over a number of iterations. Motivated by the
above work, given the node selection probability −→p i,t of CBAS-
ND at each stage t, we derive the difference zi between −→p i,t and−→p i,t−1 as follows.

zi =
n∑

j

(−→p i,t,j −−→p i,t−1,j)
2.

When the difference zi between −→p i,t and −→p i,t−1 is lower than a
given threshold zt, which indicates that the solution quality con-
verges, we backtrack the solution by resetting the node selection
probability −→p i,t to −→p i,t−1 and re-sample.

4.4.3 CBAS-ND for Different Scenarios
For the scenarios of couple and foe, invitation, and exhibition,

CBAS-ND can be directly applied by modifying the node and edge
weights of the graph. For the scenario of separate groups, the start
nodes are selected first, and the virtual node v is then added to the
selection set VS to relax the connectivity constraint.

5. EXPERIMENTAL RESULTS
In this section, we first present the experiment setup in Section

5.1. The results of user study are provided in Section 5.2 and the
performance of the proposed algorithms with different parameter
settings on real datasets are evaluated in Section 5.3.

5.1 Experiment Setup
We implement CBAS-ND in Facebook and invite 137 people

from various communities, e.g., schools, government, technology
companies, and businesses to join our user study, to compare the
solution quality and the time to answer WASO with manual co-
ordination and CBAS-ND for demonstrating the need of an auto-
matic group recommendation service. Each user is asked to plan 10
social activities with the social graphs extracted from their social
networks in Facebook. The interest scores follow the power-law
distribution according to the recent analysis [4] on real datasets,
which has found the power exponent β = 2.5. The social tight-
ness score between two friends is derived according to the widely
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adopted model based on the number of common friends that rep-
resent the proximity interaction [2]. Then, social tightness scores
and interest scores are normalized. Nevertheless, after the scores
are returned by the above renowned models, each user is still al-
lowed to fine-tune the two scores by themselves. The 10 problems
explore various network sizes and different numbers of attendees
in two different scenarios. In the first 5 problems, the user needs
to participate the group activity and is inclined to choose her close
friends, while the following 5 problems allow the user to choose
an arbitrary group of people with high willingness. In other words,
CBAS-ND in the first 5 problems always chooses the user as a start
node. In addition to the user study, three real datasets are tested
in the experiment. The first dataset is crawled from Facebook with
90, 269 users in the New Orleans network10. The other datasets are
DBLP and Flickr datasets.11 However, due to the space constraint,
detailed experimental results of the DBLP and Flickr datasets are
presented in the extended version [18].
In the following, we compare DGreedy, RGreedy, CBAS, CBAS-

ND, and IP (Integer Programming) solved by IBM CPLEX in an
HP DL580 server with four Intel E7-4870 2.4 GHz CPUs and 128
GB RAM. IBM CPLEX is regarded as the fastest general-purpose
parallel optimizer, and we adopt it to solve the Integer Program-
ming formulation for finding the optimal solution to WASO12. The
details of Integer Programming formulation is presented in the ex-
tended version [18]. It is worth noting that even though RGreedy
performs much better than its counterpart DGreedy and is closer to
CBAS and CBAS-ND, it is computation intensive and not scalable
to support a large group size. Therefore, we can only plot a few
results of RGreedy in some figures. The defaultm is set to be n/k
since n/k different k-person groups can be partitioned from a net-
work with size of n. Withm equal n/k, the start nodes averagely
cover the whole network. Nevertheless, the experimental analy-
sis manifests that m can be set to be smaller than n/k in WASO
since the way we select start nodes efficiently prunes the start nodes
which do not generate good solutions. The computational budget
of CBAS-ND is not wasted much since the start node that do not
generate good solutions will be pruned after the first stage. The
default cross-entropy parameters ρ and w are 0.3 and 0.9 respec-
tively, and α is 0.99 as recommended by the cross-entropy method
[17]. The results with different settings of parameters will be pre-
sented. Since CBAS and CBAS-ND natively support paralleliza-
tion, we also implemented them with OpenMP for parallelization,
to demonstrate the gain in parallelization with more CPU cores.

5.2 User Study
The weights λ and (1-λ) in Section 2 for interest scores and so-

cial tightness scores are directly specified by the users according
to their preferences, and Figure 4(a) shows that the range of the
weight mostly spans from 0.37 to 0.66 with the average as 50.3,
indicating that both social tightness and interest are crucial factors
in activity planning. Figures 4(b)-(e) compare manual coordination
and CBAS-ND in the user study. It is worth noting that we generate
the ground truth of user study with IP solved by IBM CPLEX to
evaluate the solution quality. Figures 4(b) and (c) present the solu-
tion quality and running time with different network sizes, where
the expected number of attendees k is 7. The user must be in-
cluded in the group for Manual-i and CBAS-ND-i, and in the other
two cases the user can arbitrarily choose a group with high willing-
ness. The result indicates that the solutions obtained by CBAS-ND
10http://socialnetworks.mpi-sws.org/data-wosn2009.html.
11http://socialnetworks.mpi-sws.org/data-imc2007.html.
12Note that because WASO is NP-Hard, it is only possible to find
the optimal solutions to WASO with IBM CPLEX in small cases.
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Figure 4: Results of user study

is very close to the optimal solutions acquired from solving IPwith
IBM CPLEX. WASO is challenging for manual coordination, even
when the network contains only dozens of nodes. It is interesting
that n = 30 is too difficult for manual coordination because some
users start to give up thus require smaller time for finding a solution.
In addition, WASO is more difficult and more time-consuming in
Manual-ni because it considers many more candidate groups.
Figures 4(d) and (e) presents the results with different k. The

results show that the solution quality obtained by manual coordina-
tion with k = 7 is only 66% of CBAS-ND, since it is challenging for
a person to jointly maximize the social tightness and interest. Sim-
ilarly, we discover that some users start to give up when k = 13,
and the processing time of manual selection grows when the user
is not going to join the group activity. Finally, we return the solu-
tions obtained by CBAS-ND to the users, and Figure 4(f) manifests
that 98.5% of users think the solutions are better or acceptable, as
compared to the solutions found by themselves. Therefore, it is de-
sirable to deploy CBAS-ND as an automatic group recommendation
service, especially to address the need of a large group in a massive
social network nowadays.

5.3 Performance Comparison and Sensitivity
Analysis

5.3.1 Experimental Results on Facebook
Figure 5(a) first presents the running time with different group

sizes, i.e., k. RGreedy is computationally intensive since it is nec-
essary to sum up the interest scores and social tightness scores
during the selection of a node neighboring each partial solution.
Therefore, RGreedy is unable to return a solution within even 12
hours when the group size is larger than 20. In addition, the dif-
ference between CBAS-ND and RGreedy becomes more significant
as k grows. Figure 5(b) presents the solution quality with different
activity sizes, where m = n

k , ρ = 0.3, and w = 0.9, respec-
tively. The results indicate that CBAS-ND outperforms DGreedy,
RGreedy, and CBAS, especially under a large k. The willingness of
CBAS-ND is at least twice of the one fromDGreedywhen k = 100.
On the other hand, RGreedy outperforms DGreedy since it has a
chance to jump out of the local optimal solution.
In addition to the activity sizes, we compare the running time

of RGreedy, CBAS-ND, and DGreedy with different social network
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Figure 5: Experimental results on Facebook dataset
sizes in Figure 5(c) with k = 10. DGreedy is always the fastest one
since it is a deterministic algorithm and generates only one final so-
lution, but CBAS and CBAS-ND both require less than 10 seconds,
whereas RGreedy requires more than 103 seconds. To evaluate the
performance of CBAS-ND with multi-threaded processing, Figure
5(d) shows that we can accelerate the processing speed to around
7.6 times with 8 threads. The acceleration ratio is slightly lower
than 8 because OpenMP forbids different threads to write at the
same memory position at the same time. Therefore, it is expected
that CBAS-ND with parallelization is promising to be deployed as
a value-added cloud service.
Figures 5(e) and (f) compare the running time and solution qual-

ity of three randomized approaches under different total compu-
tational budgets, i.e., T . As T increases, the solution quality of
CBAS-ND increases faster than that of the others because it can
optimally allocate the computation resources. The running time
of CBAS-ND is slightly larger than that of CBAS since CBAS-ND
needs to sort and extract the samples with high willingness in pre-
vious stages to generate better samples. Even though the solution
quality of RGreedy is closer to CBAS-ND in some cases, both CBAS
and CBAS-ND are faster than RGreedy by an order of 10−2.
Figure 5(g) presents the solution quality of CBAS-ND with dif-

ferent smoothing technique parameters, i.e., w. Notice that the
node selection probability vector is homogeneous if we set w to
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Figure 6: Experimental results of WASO with Gaussian distri-
bution

zero. The result shows that the best result is generated by w = 0.9
for k = 10, 20, and 30, implying that the convergence rate with
w = 0.9 is most suitable for WASO in the Facebook dataset. Fig-
ure 5(h) compares the top percentile of performance sample value
ρ. The result manifests that the solution quality is not inversely
proportional to ρ, because for a smaller ρ, the number of samples
selected to generate the node selection probability vector decreases,
such that the result converges faster to a solution.
Figures 5(i) and (j) present the running time and solution quality

of RGreedy, CBAS, and CBAS-ND with different numbers of start
nodes, i.e.,m. The results show that the solution quality in Figure
5(j) converges when m is equal to 500, which indicates that it is
sufficient form to be set as a value smaller than n

k as recommended
by OCBA [3]. By assigning m = 500 in the Facebook dataset, we
can reduce the running time to only 20% of the running time in
m = 2000, while the solution quality remains almost the same.
Figure 6(a) shows the interest histogram of random samples on

Facebook, which indicates that the distribution follows a Gaussian
distribution with the mean as 124.71 and variance as 13.83. The
allocation ratio for the variant CBAS-ND-G of CBAS-ND by re-
placing the uniform distribution with the Gaussian distribution is
derived in the extended version [18]. Figure 6(b) indicates that the
solution quality of CBAS-ND and CBAS-ND-G is very close. In
contrast to CBAS-ND-G, however, CBAS-ND is more efficient and
easier to be implemented because it does not involve the probability
integration to find the probability of the best start node.

5.3.2 Comparison with Integer Programming
To evaluate the solution quality of CBAS-ND, Figures 7(a) and

(b) compare the solution quality and running time of IP (ground
truth) with k = 10. Since WASO is NP-hard, i.e., the running
time for obtaining the ground truth is unacceptably large, we extract
1000 small real datasets from the DBLP dataset with the node sizes
as 25, 100, and 500 respectively. The result shows that the solution
quality of CBAS-ND is very close to IP, while the running time
is smaller by an order of 10−2. It is worth noting that CBAS-ND
here is single-threaded, but IP is solved by IBM CPLEX (parallel
version).

5.3.3 Experimental Results of WASO-dis
For separate groups, Figure 7(c) first presents the running time

with different group sizes, i.e., k, where m = n
k , ρ = 0.3, and

w = 0.9, respectively. For all algorithms, the virtual node v is
added to the selection set VS to relax the connectivity constraint.
RGreedy computes the incremental willingness of every node in
VA to the selection set VS , where VA includes all nodes, and thus
are computationally intractable. Therefore, RGreedy is unable to
return a solution within 24 hours when the group size is larger than
20. Figure 7(d) presents the solution quality with different activity
sizes. The results indicate that CBAS-ND outperforms DGreedy,
RGreedy, and CBAS, especially under a large k. In addition, com-
pared to the experimental results in WASO, the difference between
CBAS-ND and DGreedy becomes more significant as k increases.
The reason is that the greedy algorithm selects the node with the
largest incremental willingness to the current group and thus is in-
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Figure 7: Experimental results on Integer Programming and
WASO-dis
clined to select a connected group, where the optimal solution may
be disconnected.

6. CONCLUSION AND FUTURE WORK
To the best of our knowledge, there is no real system or existing

work in the literature that addresses the issues of automatic activity
planning based on topic interest and social tightness. To fill this
research gap and satisfy an important practical need, this paper for-
mulated a new optimization problem called WASO to derive a set
of attendees and maximize the willingness. We proved that WASO
is NP-hard and devised two simple but effective randomized algo-
rithms, namely CBAS and CBAS-ND, with an approximation ra-
tio. The user study demonstrated that the social groups obtained
through the proposed algorithm implemented in Facebook signif-
icantly outperforms the manually configured solutions by users.
This research result thus holds much promise to be profitably adopted
in social networking websites as a value-added service.
The user study resulted in practical directions to enrich WASO

for future research. Some users suggested that we integrate the
proposed willingness optimization system with automatic available
time extraction to filter unavailable users, such as by integrating the
proposed system with Google Calendar. Since candidate attendees
are associated with multiple attributes in Facebook, e.g., location
and gender, these attributes can be specified as input parameters to
further filter out unsuitable candidate attendees. Last but not the
least, some users pointed out that our work could be extended to
allow users to specify some attendees that must be included in a
certain group activity.
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