
MaaT: Effective and scalable coordination of distributed
transactions in the cloud

Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, Amr El Abbadi
University of California,

Santa Barbara, CA, USA
{hatem, vaibhavarora, nawab, agrawal,amr}@cs.ucsb.edu

ABSTRACT
The past decade has witnessed an increasing adoption of
cloud database technology, which provides better scalabil-
ity, availability, and fault-tolerance via transparent parti-
tioning and replication, and automatic load balancing and
fail-over. However, only a small number of cloud databases
provide strong consistency guarantees for distributed trans-
actions, despite decades of research on distributed transac-
tion processing, due to practical challenges that arise in the
cloud setting, where failures are the norm, and human ad-
ministration is minimal. For example, dealing with locks
left by transactions initiated by failed machines, and de-
termining a multi-programming level that avoids thrashing
without under-utilizing available resources, are some of the
challenges that arise when using lock-based transaction pro-
cessing mechanisms in the cloud context. Even in the case
of optimistic concurrency control, most proposals in the lit-
erature deal with distributed validation but still require the
database to acquire locks during two-phase commit when
installing updates of a single transaction on multiple ma-
chines. Very little theoretical work has been done to en-
tirely eliminate the need for locking in distributed trans-
actions, including locks acquired during two-phase commit.
In this paper, we re-design optimistic concurrency control to
eliminate any need for locking even for atomic commitment,
while handling the practical issues in earlier theoretical work
related to this problem. We conduct an extensive experi-
mental study to evaluate our approach against lock-based
methods under various setups and workloads, and demon-
strate that our approach provides many practical advantages
in the cloud context.

1. INTRODUCTION
The rapid increase in the amount of data that is han-

dled by web services, as well as the globally-distributed
client base of those web services, have driven many web
service providers towards building datastores that provide

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 5
Copyright 2014 VLDB Endowment 2150-8097/14/01.

more scalability and availability via transparent partition-
ing and replication, at the expense of transactional guar-
antees. For example, systems like Google’s Bigtable [16],
Apache Cassandra [24], and Amazon’s Dynamo [19] do not
guarantee isolation or atomicity for multi-row transactional
updates, so as to avoid the cost of distributed concurrency
control and distributed atomic commitment, in order to pro-
vide more scalability. Such systems are usually referred
to as cloud datastores because the location of the data,
as well as the partitioning scheme, are totally transpar-
ent to the application. However, while cloud datastores
relieve the application from the burden of load balanc-
ing and fault-tolerance, the lack of transactional support
throws the burden of data consistency onto the applica-
tion. In an attempt to mitigate this issue, major service
providers have developed cloud datastores that provide re-
stricted transactional support. For example, systems like
Google’s Megastore [10], Microsoft’s Cloud SQL Server [12],
and Oracle’s NoSQL Database [34] provide ACID guaran-
tees for transactions whose data accesses are restricted to
subsets of the database. Moreover, some research efforts
have been directed towards developing methods for parti-
tioning databases in a manner that reduces the need for
multi-partition transactions [18, 37, 29]. Restricting trans-
actional guarantees to single-partition transactions takes an
important feature out of cloud databases, namely trans-
parent partitioning, which allows non-transactional cloud
datastores like Cassandra and Dynamo to automatically re-
partition data for load balancing. Besides, there are still ap-
plications whose data access patterns do not lend themselves
easily to partitioning, and for those applications isolation
and atomicity of multi-partition transactions are still the
job of application developers, resulting in slower and more
complex application development. As a result, there has
been a renewed interest in distributed transactions for the
past decade, stimulating research and development efforts in
the industry (e.g., Spanner [17]), in the academic commu-
nity (e.g., Calvin [41]), and in the open source community
(e.g., MySQL Cluster [1]), towards building scalable and
highly-available database systems that provide ACID guar-
antees for distributed transactions; we refer to those sys-
tems as transactional cloud databases. Transactional cloud
databases are still different from the traditional partition-
ing solutions that all major database management systems
provide as options in their recent releases, in the sense that
transactional cloud databases are designed with transparent
partitioning in mind. A typical cloud database performs au-
tomatic re-partitioning and live migration of partitions for

329



load balancing at runtime, as well as synchronous replica-
tion for automatic fail-over, thus concurrency control needs
to be optimized for distributed transactions.

Most transactional cloud databases use some form of lock-
ing for concurrency control, either dynamic locking as the
case in Spanner and MySQL Cluster, or static locking as
the case in Calvin. In fact, aside from Megastore, all ma-
jor production database management systems, whether de-
signed for the cloud or not, use lock-based concurrency con-
trol [13, 36]. However, while lock-based concurrency control
is widely-used for implementing transactions at the database
layer, optimistic concurrency control (OCC) [22] has been a
favorite choice when implementing transactions at the ap-
plication layer, specially for RESTful web applications that
are stateless by definition. For example, Microsoft’s .Net
framework [6], and the Ruby on Rails framework [2] both
use OCC at the application layer, regardless of the con-
currency control implemented at the database layer. Also,
Google’s App Engine [3] still uses Megastore as its database
layer, which uses OCC. Optimistic locking is a common way
of implementing OCC at the application layer on top of lock-
based concurrency control at the database layer [13]. In op-
timistic locking, each application-level transaction is broken
down into two database-level transactions: (1) a read-only
transaction that fetches data, and (2) a read-write trans-
action that checks whether the data fetched by the first,
read-only transaction has been changed, and commits up-
dates only if the read data has not been changed. Many
database management systems (e.g., IBM DB2 [4] and Ora-
cle DB [5]) provide native support for optimistic locking at
the database layer. In general, OCC is very practical for in-
teractive user-facing applications that involve arbitrary user
stalls, in which most data reads are not followed by updates,
because OCC allows an application to release the database
connection after retrieving data, then requesting the con-
nection again if the application needs to perform updates.
This saves database resources and allows more application
instances to use the database concurrently (e.g., via connec-
tion pooling). However, when implementing transactions at
the database layer, disk and network stalls are measured in
milliseconds, so lock-based pessimistic concurrency control
performs well enough, while lock-free OCC wastes relatively
high portion of the processing power of a database server
aborting transactions that have already been processed [9].

Optimistic concurrency control involves even more prac-
tical challenges in the context of distributed databases. Al-
though a fair volume of research has been conducted in the
area of distributed OCC [15, 33, 23, 7, 14, 39] soon after
the original OCC algorithm was published [22], distributed
OCC has rarely been used in practice when implementing
transactions at the database layer [42]. In addition to the
inherent issue of resource waste due to transaction restarts
in OCC, almost all proposed distributed OCC schemes do
not eliminate the need for exclusive locking during the final
phase of the two-phase commit. When a transaction updates
data items on multiple servers, the database needs to lock
those data items between the prepare and commit phases
of two-phase commit, thus blocking all reads except those
made by read-only transactions that can read stale versions
of the data. One proposed distributed OCC scheme [23] at-
tempts to work around exclusive locking during two-phase
commit using techniques like ordered sharing of locks [8],
which is still a form of locking that has its own disadvantages

(e.g., cascading aborts). Another proposed distributed OCC
scheme [14] eliminates the need for locking during two-phase
commit but requires each transaction to perform validation
on all data servers in a distributed database system, includ-
ing data servers not accessed by the transaction, thus adds
significant messaging and processing overhead, and sacrific-
ing many of the advantages of distributed databases such as
load distribution and fault-tolerance.

Megastore [10] is a rare example of a production dis-
tributed database management system that implements
OCC. In Megastore, a database is partitioned into entity
groups, and the system guarantees serializability only among
transactions accessing the same entity group by restricting
updates on an entity group to only one transaction at a
time, while aborting and restarting other concurrent up-
dates. Since transaction latencies in Megastore are mea-
sured in hundreds of milliseconds (because updates need to
be synchronously replicated across datacenters), the update
throughput of each entity group in Megastore is only a few
transactions per second [10]. Using finer-grained conflict de-
tection is a possible solution to improve the throughput of
Megastore, as shown in [28]. However, Google eventually
switched to lock-based multi-version concurrency control in
Spanner [17], citing the need to handle long-lived transac-
tions as the motivation behind abandoning OCC and adopt-
ing lock-based concurrency control [17]. We question the
validity of that reasoning though, since multi-version OCC
also performs well in terms of throughput in the presence
of long-lived transactions [25]. Instead, we claim that the
actual value added by implementing lock-based concurrency
control in Spanner is the ability to guarantee atomicity for
multi-partition transactions using two-phase commit, since
none of the existing distributed OCC mechanisms provide a
practical way to perform two-phase commit without locking.

Aside from the practicality issues of OCC, there are ad-
vantages of using OCC instead of lock-based concurrency
control. First, unlike lock-based concurrency control, sys-
tems that use OCC to implement transactions do not ex-
perience thrashing when the number of concurrent transac-
tions grows very large [38, 13]. Second, when enough surplus
resources are made available to account for aborted trans-
actions, OCC consistently performs better than lock-based
concurrency control in experimental evaluations [9]. In this
paper, we tackle the practicality issues associated with OCC
when implementing transactions at the database layer in a
distributed setting. We present a novel re-design of OCC
that (1) eliminates the need for any locking during two-
phase commit when executing distributed transactions, (2)
reduces the abort rate of OCC to a rate much less than that
incurred by deadlock avoidance mechanisms in lock-based
concurrency control, such as wait-die and wound-wait, (3)
preserves the no-thrashing property that characterizes OCC,
and (4) preserves the higher throughput that OCC demon-
strates compared to lock-based concurrency control. Thus,
our novel re-design of OCC overcomes the disadvantages of
existing OCC mechanisms, while preserving the advantages
of OCC over lock-based concurrency control. We implement
our proposed approach as part of a transaction processing
system that we develop; we refer to this transaction process-
ing system as MaaT, which is an abbreviation of ”Multi-
access as a Transaction.” We conduct an extensive experi-
mental study to evaluate the performance of MaaT under
various workloads and compare its performance against dis-

330



tributed two-phase locking and traditional optimistic con-
currency control.

The rest of the paper is organized as follows. In Section 2
we specify the requirements that a practical transaction pro-
cessor for the cloud should satisfy. In Section 3, a description
of MaaT is given followed by a proof of its correctness and
an analysis of its characteristics in Section 4. In Section 5 we
explain our implementation of MaaT and show experimental
results. We conclude in Section 6.

2. REQUIREMENTS SPECIFICATION
In this section, we discuss the requirements that an ideal

cloud database should satisfy. We set these requirements
for ourselves to guide our design of a practical transaction
processing system based on optimistic concurrency control.

2.1 High throughput
The motivation behind partitioning in cloud databases is

to achieve higher throughput by distributing load among
multiple data servers. Therefore, high throughput is a key
requirement in any cloud database. If all transactions are
short, performing few small reads and updates, with few
conflicts and no stalls, achieving high throughput is a very
easy task; in fact, concurrency control is arguably unnec-
essary in that case [40]. Instead, we are interested in high
throughput that is resilient to long queries, data contention,
and potential stalls (e.g., network communication stalls).
Single-version concurrency control is known to be problem-
atic under these settings [25]. When using single-version
concurrency control with workloads that involve long trans-
actions or data contentions, performance degrades rapidly
as many transactions get blocked, when lock-based concur-
rency control is used, or aborted and restarted, when restart-
based concurrency control is used.

2.2 Efficient CPU utilization
Cloud databases are horizontally partitioned to achieve

higher throughput by distributing the processing load over
multiple data servers. Efficient CPU utilization is crucial to
reduce the load on each data server in a system, so as to
reduce the need for partitioning, re-partitioning, and migra-
tion. Optimistic concurrency control is known for wasting
a lot of resources by aborting and restarting transactions
after processing them [9, 30]. Also, timestamp ordering [31]
is known for incurring many unnecessary rollbacks [7]. A
practical concurrency control mechanism should reduce the
abort rate as much as possible; for example, by checking
conflicts at finer granularities and/or developing techniques
that do not abort transactions for mere conflicts.

2.3 Scalability
The trend in the computing industry for the past decade

has been to scale out horizontally; that is, to scale out by
adding more computing nodes, rather than adding more
computing power to a single computing node. We are
particularly interested in concurrency control mechanisms
that can be implemented with minimal or no mutual exclu-
sion among database threads/processes running over mul-
tiple servers. Experimental studies evaluating widely-used
database systems on multi-core architectures (e.g., [32])
demonstrate that contention over mutexes in many cases
causes the database performance to drop as the number of
cores increases, instead of taking advantage of the increasing

computing capacity. The performance penalty is even worse
in the case of distributed mutual exclusion over a network
if the database is distributed over multiple servers.

2.4 No thrashing
Thrashing is a well-known issue in lock-based concurrency

control mechanisms [38, 13]. When a system thrashes, its
throughput drops rapidly after the number of transactions
running concurrently on the system exceeds a particular
limit. Thrashing can be avoided by configuring the database
so that the concurrency degree (i.e., the number of transac-
tions that run concurrently on the system) does not exceed
a particular limit. However, determining an optimum con-
currency degree, that neither under-utilizes the system nor
causes it to thrash, is not always an easy task and depends
on the characteristics of different workloads. Having a con-
currency control mechanism that does not thrash relieves
database operators from the burden of determining the op-
timum concurrency degree for each different workload.

2.5 Liveness
Indefinite blocking may occur in case of deadlock, or in

case of a crashing client that hold locks. When considering
lock-based concurrency control, deadlock detection by con-
structing wait-for graphs is impractical in a distributed envi-
ronment. Non-preemptive deadlock avoidance mechanisms,
like wait-die, do not allow a transaction to release the locks
held by another transactions; thus, if a transaction crashes
while holding locks, these locks remain in place, blocking
other transactions that access the same data. Preemptive
deadlock avoidance, like wound-wait, allows transactions to
release the locks of other (possibly crashed) transactions;
however, releasing a lock is still not possible after a trans-
action that owns that lock has started the prepare phase
of two-phase commit. The possibility of indefinite block-
ing is a well-know problem in two-phase commit. Most ex-
isting distributed optimistic concurrency control algorithms
require locking during two-phase commit, thus encounter
the same problem of potentially indefinite blocking. Three-
phase commit [35] eliminates indefinite blocking using time-
outs. As timeouts are very sensitive to fluctuations in net-
work latency, and in order to handle the case of network
partitioning, more sophisticated atomic commit protocols,
such as enhanced three-phase commit [21] and Paxos com-
mit [20], have been proposed to eliminate indefinite blocking
without relying on timeouts. We are interested in concur-
rency control mechanisms that avoid indefinite blocking in
a distributed setting, or at least lend themselves to existing
techniques that eliminate indefinite blocking.

3. MAAT TRANSACTION PROCESSING

3.1 Design Overview
Motivation. We avoid multi-version concurrency control

so as to make efficient use of memory space. In fact, the de-
sign decision of using single-version concurrency control has
been made by several commercial main memory databases as
well, such as Oracle TimesTen and IBM’s solidDB. In addi-
tion to deadlock-related issues, lock-based concurrency con-
trol also experiences thrashing when the number of clients
accessing the database concurrently grows very large. Con-
currency control techniques that require full knowledge of
global system state, such as serializability graph checking,

331



are also problematic since they do not lend themselves to
horizontal scalability. Our requirements specification has
motivated us to consider re-designing single-version opti-
mistic concurrency control to make it the practical solution
for cloud databases, by reducing the abort rate significantly,
and by eliminating the need for locking during two-phase
commit.

In this section we explain how we re-design optimistic
concurrency control in order to make it practical for dis-
tributed, high-throughput transactional processing in the
cloud. A practical solution should scale out linearly; that is,
the throughput of the system, measured in transactions per
time unit, should grow as a linear function in the number of
data servers. For example if we double the number of servers
the throughput of the system should get doubled. In order
for lock-free optimistic concurrency control to be practical
as a concurrency control mechanism at the database layer
for distributed, high-throughput, update-intensive transac-
tional processing, a set of design issues need to be con-
sidered. First, to achieve high-throughput with update-
intensive workloads, the verification phase of OCC needs
to be re-designed so as to reduce the transaction abort rate
as much as possible. In particular, a mere conflict between
two transactions should not be enough reason to restart any
of the two transactions; instead, the system should try to
figure out whether this conflict really violates serializability,
and should tolerate conflicts whenever possible. Second, in
order to be practical for distributed, high-throughput sys-
tems, the validation phase of optimistic concurrency control
needs to be fully-distributed over data servers, rather than
relying on a centralized verifier. Almost all existing OCC
mechanisms that are fully distributed involve some kind of
locking or distributed mutual exclusion during two-phase
commit. To the best of our knowledge, the only distributed
OCC mechanism that eliminates the need for locking dur-
ing two-phase commit is a theoretical proposal [14] that has
many practical issues; for example, each transaction needs
to be validated on each data servers, including data servers
not accessed by the transaction. Third, related to the first
issue of reducing transaction abort rate, checking for con-
flicts should be done at fine granularities (i.e., at row level).
Performing this fine-grained conflict checking in optimistic
concurrency control has been a challenge [27], and the lack
thereof in production implementations of optimistic concur-
rency control (e.g., Megastore) results in very low update
throughput [10].

Timestamp ranges. In order to handle these three de-
sign issues, we abandon the way verification has been tradi-
tionally implemented in optimistic concurrency control. The
original proposal [22] presents a parallel validation mecha-
nism that is based on comparing the write set of a trans-
action T that is being validated against the read and write
sets of other active transactions in the system; thus any read-
write or write-write conflict results in a transaction getting
aborted. A later OCC protocol [14] uses dynamic times-
tamp ranges to capture and tolerate conflicts. Each trans-
action is associated with a timestamp range whose lower
bound is initially 0 and whose upper bound is initially ∞.
When validating a transaction T , the concurrency control
mechanism adjusts the timestamp range of T , mainly by
narrowing that timestamp range, to avoid overlapping with
other timestamp ranges of transactions conflicting with T .
Thus, instead of aborting conflicting transactions, conflicts

are translated into constraints on the timestamp ranges of
transactions, and abort occurs only when these constraints
can not be satisfied. At commit time, if the constraints
on the timestamp range of transaction T can be satisfied,
the concurrency control mechanism picks an arbitrary times-
tamp for transaction T from the timestamp range that sat-
isfies the constraints, and assigns that timestamp to T .
The concept of dynamic timestamp ranges has been used
in other contexts as well, such as pessimistic timestamp or-
dering [11], and transaction-time databases [26], where ad-
justments to timestamp ranges are done whenever a conflict
occurs, rather than at commit time as the case in OCC.
The advantage of deferring timestamp range adjustment to
the end of a transaction in OCC is that the concurrency
control mechanism can make more informed decisions to
avoid as many transaction aborts as possible. In addition
to reducing the abort rate, optimistic validation based on
dynamic timestamp ranges has the advantage of lending it-
self to distribution without the need for locking during two-
phase commit. However, the original proposal that presents
distributed OCC validation based on dynamic timestamp
ranges [14] is a theoretical proposal that has practicality is-
sues; mainly, each data server needs to be involved in the
validation of each transaction, even data servers that are not
accessed by that transaction.

MaaT design. We develop a practical optimistic concur-
rency control algorithm that still uses dynamic timestamp
ranges, yet only the data servers accessed by a transaction
are involved in the validation of that transaction. Our opti-
mistic concurrency control algorithm utilizes concepts from
pessimistic timestamp ordering and lock-based concurrency
control to eliminate the need for validating every transaction
on every data server, without being pessimistic or blocking.
First, as in the case in pessimistic timestamp ordering [31],
our algorithm associates each data item x with two times-
tamps: (1) a timestamp tsr(x) of the transaction that last
read x, and (2) a timestamp tsw(x) of the transaction that
last wrote x. However, unlike pessimistic timestamp order-
ing, the two timestamps tsr(x) and tsw(x) must refer to
committed transactions since only committed transactions
have timestamps in our case; in other words, a read (resp.
write) operation done by a transaction T on a data item x
can not change the read timestamp tsr(x) (resp. the write
timestamp tsw(x)) until T actually commits, if at all. More-
over, whenever a transaction T reads (resp. writes) a data
item x whose write timestamp tsw(x) (resp. read timestamp
tsr(x)) is not less than the lower bound of the timestamp
range of T , the transaction T does not abort; instead, this
conflict results in an adjustment of the lower bound of the
timestamp range of T to a value greater than tsr(x) (resp.
tsw(x)), and an abort may occur only if this adjustment
makes the lower bound of the timestamp range of T greater
than the upper bound of the timestamp range of T . Second,
we also use the concept of soft locks to enable our solution.
Soft locks are either read or write locks; however, unlike con-
ventional (hard) locks, soft locks do not block transactions.
Instead, soft locks act as markers to inform transactions ac-
cessing a data item x of other transactions that have read or
written x but have not committed yet. Since transactions
are not assigned timestamps until they commit, soft locks
refer to transactions using unique identifiers that we call
transaction IDs. A transaction ID is assigned to a trans-
action when the transaction is initialized (i.e., before any

332



Figure 1: An example of a state of MaaT’s data and
timetable in a data server

reads or writes) and remains unchanged during the life time
of the transaction. By utilizing these two concepts from
pessimistic timestamp ordering and lock-based concurrency
control, we are able to use dynamic timestamp ranges for
optimistic concurrency control without having to perform
validation on each data server for each transaction.

Figure 1 shows an example of the state of one data server
in MaaT. To facilitate MaaT’s concurrency control two ta-
bles are maintained. The timetable is a main-memory hash
table on each data server that is indexed by the transaction
ID, and holds for each transaction the lower bound lower(T )
and upper bound upper(T ) of the timestamp range of the
transaction, as well as the current state of the transaction
state(T ); there are four possible states: RUNNING, VAL-
IDATED, COMMITTED, or ABORTED. The Data table
containing the data objects also maintins the following: (1)
Uncommitted Writes (UW) maintains per object a list of
transactions that hold soft write locks on the data object,
(2) Uncommitted Reads (UR) contains the soft read locks,
(3) write timestamp (wts) contains the timestamp of the
last committed write on that object, and (4) read timestamp
(rts) is the timestamp of the transaction that last read the
object. In the example, two data objects are shown, where
the object is described by an ID, a name, and other omit-
ted values. Data object with ID 1207 for example, was last
written by a transaction with timestamp 101. The Figure
also shows a list maintaining transaction IDs of transactions
holding soft write locks on data object 1207. Transaction
76501 is shown in the timetable where it is VALIDATED
and has a lower bound of 124 and upper bound of 140. The
next section will show how the state is changed in MaaT
and how transactions are committed.

3.2 Concurrency Control
In MaaT, each transaction T undergoes the following

phases.

3.2.1 Initialize
During initialization, a transaction T is assigned to a data

server that acts as the home data server. Typically the home
data server should be the data server where the transaction
performs most of its reads and updates, but that is not nec-
essary. The home data server assigns to the transaction a
globally unique transaction ID, that we refer to as tid(T ), by
appending the current local time according to the ID of the
home data server itself. The home data server then creates
a new entry for the transaction in the timetable. Initially,

the lower bound is set to 0, the upper bound is set to ∞,
and the transaction state is set to RUNNING.

3.2.2 Read
A transaction T may read data from the home data server

of T , or other data servers. Whenever the transaction T
reads data from a remote data server s, the data server s
creates an entry for the transaction T in the local timetable
at s, if such an entry does not exist already. The data server
s initializes the timetable entry of T to the same values used
in the initialization phase; that is, the lower bound equals
0, the upper bound equals ∞, and the transaction state is
RUNNING. Let x denote the data item that T reads from
s. Whether the data server s that T reads from is the home
data server of T or a remote data server, the read operation
triggers the following operations at the transaction processor
of the data server s.

• The transaction processor places a soft read lock on
the data item x that is read by T . The transaction
ID of T is attached to this soft read lock, to inform
subsequent transactions that T has read x.

• When the transaction processor returns the value of
x back to T , the transaction processor also returns
the transaction IDs of all transactions that have soft
write locks placed on x; we refer to the set of transac-
tions with soft write locks on x as UW (x). Soft write
locks are placed by transactions during their validate-
and-prewrite phase to indicate that a particular data
item will be updated at commit time without actually
updating the data item. The transaction T needs to
collect those transaction IDs, so that when T commits,
T should be assigned a commit timestamp that is less
than the commit timestamp of any of the transactions
in UW (x), because T did not see the updates made by
any of the transactions in UW (x).

• The transaction processor returns to T the write times-
tamp tsw(x), which represents the largest commit
timestamp of a transaction that updated x. The trans-
action T needs to get the write timestamp tsw(x), so
that when T commits, T should be assigned a commit
timestamp that is greater than tsw(x), because T saw
the updates made by the transaction whose commit
timestamp is the write timestamp tsw(x).

During the read phase, all updates made by T are buffered
locally at the buffer space of T and do not affect the actual
content of the database until the transaction T is done with
all its reads, then the transaction processor moves T to the
prewrite-and-validate phase.

3.2.3 Prewrite and Validate
After all reads are done, the transaction T sends prewrite-

and-validate messages to relevant data servers. Relevant
data servers include data servers from which T has read
data items during the read phase, and data servers to which
T needs to write data items. Typically, the write set of T is
subset of the read set of T , but this is not required. When
sending a prewrite-and-validate message to a data server s,
the transaction T attaches to the prewrite-and-validate mes-
sage any information returned by the transaction processor
of s during the read phase; that is, for each data item x read

333



by T from s, the set of uncommitted writes UW (x) and the
write timestamp tsw(x).

When a data server s receives a prewrite-and-validate
message from a transaction T , the transaction processor at
s checks that the transaction T has a timetable entry at s;
if not, the transaction processor initializes a timetable entry
for T . Next, the transaction processor at s performs the fol-
lowing set of operations for each data item y that T needs to
write on s, if any. We refer to the following set of operations
as prewrite operations.

• The transaction processor places a soft write lock on y
to inform subsequent transactions that T will update
y at commit time.

• The transaction processor logs the update operation,
as well as the value to be assigned y by the transaction
T when T commits.

• The transaction processor collects the transaction IDs
of all transactions with soft read locks on y; we refer
to the set of transactions with soft read locks on y
as UR(y). The transaction T needs to collect those
transaction IDs, so that when T commits, T should
be assigned a commit timestamp that is greater than
the commit timestamp of any of the transactions in
UR(y), because none of the transactions in UR(y) saw
the update made by T on y.

• The transaction processor fetches the read timestamp
tsr(y), which represents the largest commit timestamp
of a transaction that read y. The transaction T needs
to get the read timestamp tsr(y), so that when T com-
mits, T should be assigned a commit timestamp that
is greater than tsr(y), because the transaction whose
timestamp is tsr(y) did not see the updates made by
T . The read timestamp tsr(y) is guaranteed to be
greater than the write timestamp tsw(y), thus there is
no need to fetch the write timestamp as well.

• The transaction processor collects the transaction IDs
of all transactions with soft write locks on y; we refer
to the set of transactions with soft write locks on y
as UW (y). The order of the commit timestamps of
those transactions with respect to the commit times-
tamp of T is not determined at this point, and will
be determined by the transaction processor during the
validation phase. However, there must be a total or-
der between the timestamps transactions in UW (y),
including T , because they are conflicting.

Once the transaction processor at the data server s fin-
ishes all prewrite operations for all data items that T needs
to write on s, the transaction processor performs a set of
operations to validate transaction T . Validation involves
adjusting the timestamp range of T and/or the timestamp
ranges of other transactions to ensure that the timestamp
ranges of conflicting transactions do not overlap. The out-
come of these validation operations is to determine whether
the constraints on the commit timestamp of T can be sat-
sified or not; that is, whether T can commit or not. If T is
a distributed transaction, other data servers accessed by T
may make different commit decisions; thus a final commit
decision can be made only when the client that executes T
receives commit decisions from all data servers accessed by
T . We explain the validation operations as follows.

• For each data item x read by T on s, the transaction
processor checks that the lower bound of the times-
tamp range of T is greater than the write timestamp of
x; that is, lower(T ) > tsw(x). If not, the transaction
processor adjusts lower(T ) to enforce this inequality.

• For each transaction T ′ in UW (x), for each data item
x read by T , the transaction processor checks that the
lower bound of T ′ is greater than the upper bound of T ;
that is, lower(T ′) > upper(T ). If yes, the transaction
processor does nothing. Otherwise, the transaction
processor needs to adjust either the lower bound of T ′

or the upper bound of T to enforce this inequality. If
the state of T ′ is VALIDATED or COMMITTED, the
timestamp range of T ′ can not be modified, thus the
transaction processor adjusts the upper bound of T .
For example, in Figure 1 say transaction 91007 reads
record 1207, which has a soft write lock held by trans-
action 76501 which has been VALIDATED. This will
lead to the upper bound of transaction 91007 to be set
to less than the lower bound of transaction 76501, i.e
124. If the state of T ′ is ABORTED, the transaction
processor adjusts the lower bound of T ′. Otherwise, if
the state of T ′ is RUNNING, the transaction processor
has the choice to adjust either or both of the times-
tamp ranges of T and T ′ to avoid their overlapping;
the transaction processor defers this decision to a lat-
ter step, and adds T ′ to a set after(T ) of transactions
whose lower bounds need to be greater than the upper
bound of T , but whose adjustments will be determined
later.

• For each data item y written by T on s, the trans-
action processor checks that the lower bound of the
timestamp range of T is greater than the read times-
tamp of y; that is, lower(T ) > tsr(x). If not, the
transaction processor adjusts lower(T ) to enforce this
inequality. For example, in Figure 1, if transaction
91007 writes record 1112, then its lower bound would
be greater than the read timestamp of record 1113, i.e
74.

• For each transaction T ′ in UR(y), for each data item y
written by T , the transaction processor checks that the
upper bound of T ′ is less than the lower bound of T ;
that is, upper(T ′) < lower(T ). If yes, the transaction
processor does nothing. Otherwise, the transaction
processor needs to adjust either the upper bound of
T ′ or the lower bound of T to enforce this inequality.
If the state of T ′ is VALIDATED or COMMITTED,
the timestamp range of T ′ can not be modified, thus
the transaction processor adjusts the lower bound of
T . If the state of T ′ is ABORTED, the transaction
processor adjusts the upper bound of T ′. Otherwise, if
the state of T ′ is RUNNING, the transaction processor
adds T ′ to a set before(T ) of transactions whose upper
bounds need to be less than the lower bound of T , but
whose adjustments will be determined later.

• For each transaction T ′ in UW (y), for each data item
y written by T , the transaction processor checks the
state of T ′. If the state of T ′ is ABORTED, the trans-
action processor ignores T ′. If the state of T ′ is VAL-
IDATED or COMMITTED, the transaction processor
needs to ensure that the upper bound of T ′ is less than

334



the lower bound of T ; that is, upper(T ′) < lower(T ).
If this inequality does not hold, the transaction pro-
cessor adjusts the lower bound of T to enforce this
inequality. Otherwise, if the state of T ′ is RUNNING,
the transaction processor adds T ′ to a set after(T )
of transactions whose lower bounds need to be greater
than the upper bound of T , but whose adjustments
will be determined later.

After performing the previous operations, the transaction
processor checks if the lower bound of T is still less than
the upper of T . If no, the transaction processor changes the
state of T to ABORTED. Otherwise, the transaction pro-
cessor changes the state of T to VALIDATED. Although the
transaction processor has not decided yet how the transac-
tions in before(T ) and after(T ) will be adjusted, the trans-
action processor never aborts a transaction that is being val-
idated to save a transaction that is still running. A simple-
minded policy would be to leave the timestamp range of T
as it is at this point, and adjust the timestamp ranges of all
transactions in before(T ) and after(T ) accordingly, abort-
ing as many transactions of them as it takes to keep the
timestamp range of T intact. Instead, to reduce the abort
rate, the transaction processor assigns to T a sub-range of
the range from lower(T ) to upper(T ) such that the number
of transactions in before(T ) and after(T ) that are forced to
abort is minimized. The transaction processor then sends a
response back to the client executing T to indicate whether
T should commit or abort. If the validation decision is to
commit, the transaction processor attaches to the response
the timestamp range of T as set locally in the timetable of
the data server s.

3.2.4 Commit or Abort
The client collects validation decisions, and the attached

timestamp ranges, from all data servers on which T is vali-
dated. If one or more of the validation decisions is an abort,
the transaction T is aborted. If all validation decisions in-
dicate a commit, the client computes the intersection of all
timestamp ranges returned by all data servers accesed by
T . This intersection needs to be a valid range; that is, a
range whose lower bound is no more than its upper bound.
If the intersection is not a valid range the transaction T gets
aborted; otherwise, T is committed, and the client picks an
arbitrary timestamp from the intersection range to be the
commit timestamp of T . The client forwards the final de-
cision, whether to commit or abort, as well as the commit
timestamp if any, to all data servers accessed by T . When-
ever the client sends a commit message to a data server, the
client attaches again all buffered writes that need to be done
on that data server, since these updates are not applied to
the database during the prewrite-and-validate phase.

Whenever a data server s receives an abort message from
T , the transaction processor at s sets the state of T to
ABORTED, removes all soft locks placed by T on any data
items, and logs the abort operation. If s receives a commit
message from T , the transaction processor at s performs the
following operations.

• The transaction processor sets the state of T to COM-
MITTED, removes all soft locks placed by T on any
data items, logs the commit operation.

• The transaction processor sets both the lower bound
and the upper bound of the timestamp range of T in
the timetable at s to the commit timestamp of T .

• For each data item x read by T from s, the trans-
action processor compares the read timestamp tsr(x)
against the commit timestamp of T . If the commit
timestamp of T is greater than the read timestamp of
x, the transaction processor sets the read timestamp of
x to the commit timestamp of T ; otherwise, the read
timestamp of x remains unchanged.

• For each data item y written by T on s, the transac-
tion processor compares the write timestamp tsw(y)
against the commit timestamp of T . If the commit
timestamp of T is greater than the write timestamp of
y, the transaction processor sets the write timestamp
of y to the commit timestamp of T , and applies the
write of T to the database (i.e., sets the value of y
to the value written by T ); otherwise, the write times-
tamp of y, as well as the value of y, remain unchanged.

3.3 Garbage collection
For any given transaction T , as long as the state of T on

a data server s is set to RUNNING or VALIDATED, the
timetable entry of T on s can not be garbage collected. If
the state of T on s becomes ABORTED, the timetable entry
of T on s can be garbage collected immediately because the
lower and upper bounds of the timestamp range of T can
be set to any arbitrary values, thus there is no need to save
these bounds in the timetable; other transactions conflicting
with T on s recognize that T is ABORTED when they can
not find the entry of T in the timetable. If the state of T
becomes COMMITTED on a data server s, the timetable
entry of T on s can be garbage collected once it is no longer
needed for the validation of other transactions on s. Let x
be any data item in the read set of T on s, and let T ′ be any
transaction that places a soft write lock on x after T places
its soft read lock on x, and before T removes its soft read
lock from x. T ′ needs the timetable entry of T to perform
validation. Thus, if T commits before T ′ is validated, the
timetable entry of T should not be garbage collected until
T ′ performs validation. Similarly, let y be any data item
in the write set of T on s, and let T ′ be any transaction
that places a soft read lock or a soft write lock on y after T
places its soft write lock on y, and before T removes its soft
write lock from y; if T commits before T ′ is validated, the
timetable entry of T should not be garbage collected until
T ′ performs validation.

One possible approach is to use a garbage collection mech-
anism that is based on reference counting by adding a refer-
ence count field to each timetable entry. When the state of
T becomes COMMITTED on s, the transaction processor
sets the reference count of T on s to the number of RUN-
NING transactions that will need the timetable entry of T
on s during their validation. Whenever a transaction T ′

uses the timetable entry of T on s for validation, and recog-
nizes that the state of T is COMMITTED, T ′ decrements
the reference count of T on s. When the reference count of
T on s becomes 0, the timetable entry of T on s is garbage
collected by the transaction processor. Alternatively, it is
possible to use a more eager approach in which the timetable
entry of T on s is garbage collected immediately after the
state of T on s become COMMITTED. To see this, let T ′

335



be any RUNNING transaction that will need the timetable
entry of T during validation; note that the constraints im-
posed by T on T ′ are determined at the moment the state
of T becomes COMMITTED, and do not change thereafter.
Thus, the transaction processor can proactively apply the
constraints imposed by T on T ′ as soon as T commit, then
the transaction processor can remove the timetable entry of
T immediately. When T ′ performs validation on s, T ′ will
not find the entry of T in the timetable, thus will ignore T ;
this still does not affect the correctness of the transaction
history because the constraints imposed by T on T ′ has al-
ready been applied. The difference between the two garbage
collection approaches, the reference counting approach and
the eager approach, is analogous to the different between
backward and forward validation in traditional optimistic
concurrency control.

4. ANALYSIS
In this section, we analyze the various aspects of our con-

currency control algorithm explained in Section 3.2.

4.1 Correctness
The following theorem states the correctness of MaaT.

Theorem 4.1. Transaction histories generated by the al-
gorithm in Section 3.2 are conflict serializable.

Proof: Assume for contradiction that a transaction history
H generated by MaaT is not in conflict serializable. Then
there exists a cycle of n transactions T1, ..., Tn in H, such
that for each two consecutive transactions in the cycle, say
T1 and T2, there exists an object x that was either (1) up-
dated by T1 then updated by T2, (2) updated by T1 then
read by T2, or (3) read by T1 then updated by T2. We prove
that such a cycle never exists by showing that for all three
types of conflicts between T1 and T2, the commit times-
tamp of T1 is less than the commit timestamp of T2; that
is, ts(T1) < ts(T2), thus a cycle is impossible. Assume a
conflict between T1 and T2 on object x. Let s be the data
server hosting x, note that x is updated only when s receives
a commit message from a transaction, not when s receives
a prewrite message.

Consider Case (1) when x is updated by T1 then read by
T2. When x gets updated by T1, the write timestamp of x
becomes at least the commit timestamp of T1. The write
timestamp of x is fetched by T2 when x receives the read
request from T2, thus the commit timestamp of T1 becomes
a lower bound on the timestamp range of T2. Similarly, in
Case (2) when x is updated by T1 then updated by T2, when
x gets updated by T1, the write timestamp fo x becomes at
least the commit timestamp of T1, and the read timestamp
of x is set to be at least the write timestamp of x. The
read timestamp of x is fetched by T2 when x receives the
update request from T2, thus the commit timestamp of T1

becomes a lower bound on the timestamp range of T2. Con-
sider Case (3) when x is read by T1 then updated by T2.
In this case, either T1 commits before x receives a prewrite
from T2, or T1 commits after x receives a prewrite from T2.
If T1 commits before the prewrite of T2, the read timestamp
of x becomes at least the commit timestamp of T1, then the
read timestamp of x is fetched by T2 when x receives the
prewrite of T2, thus the commit timestamp of T1 becomes a
lower bound on the commit timestamp of T2. Otherwise, if
x receives the prewrite of T2 before T1 commits, either (3-a)

T1 encounters the soft write lock placed by T2 on x, if x
receives the prewrite of T2 before the read of T1, or (3-b) T2

encounters the soft read lock placed by T1 on x, if x receives
the read of T1 before the prewrite of T2. In either case, one
of the two transactions is aware of the conflict. During val-
idation, the transaction that is aware of the conflict either
imposes a constraint on the timestamp range of the other
transaction, if the other transaction has not undergone val-
idation yet, or on itself if the other transaction has already
undergone validation. In particular, in Case (3-a) if T1 gets
validated before T2, T1 imposes a constraint on T2 to force
it to pick a timestamp greater than that of T1; otherwise,
if T2 gets validated before T1, T1 imposes a constraint on
itself to pick a timestamp less than that of T2. Similarly, in
Case (3-b) if T2 gets validated before T1, T2 imposes a con-
straint on T1 to force T1 to pick a timestamp less than that
of T2; otherwise, if T1 gets validated before T2, T2 imposes
a constraint on itself to pick a timestamp greater than that
of T1. Thus, in both cases, the timestamp of T1 is less than
that of T2.

Having proved that in Cases (1), (2), and (3), the com-
mit timestamp of T1 is less than the commit timestamp of
T2 (i.e., ts(T1) < ts(T2)), we apply this inequality to each
two consecutive transactions in the cycle T1, ..., Tn. From
the transitivity of the < operator, we infer that the commit
timestamp of T1 is less than itself (i.e., ts(T1) < ts(T1)),
which is a contradiction. Thus, a cycle is impossible, and
the transaction history H is guaranteed to be conflict seri-
alizable. �

4.2 Memory utilization
The memory needs of our concurrency control algorithm

arise from (1) the timetable at each data server, (2) the (soft)
lock table at each data server, and (3) the read and write
timestamps associated with each data item in the database.
The timetable space reserved for any given transaction T is
constant, but the size of the lock table entry of T is pro-
portional to the number of data items accessed by T , which
is a small number in typical transactional workloads. The
memory allocated to a transaction T can be freed as soon as
T commits, but read and write timestamps remain attached
to data items.

4.3 CPU utilization
Unlike most existing concurrency control algorithms, our

algorithm neither aborts nor blocks a transaction because of
a mere conflict with another transaction. In MaaT, aborts
occur only in the following case. Consider a transaction T
that conflicts with two transactions, T1 and T2, such that the
type of conflict between T and T1 is different from the type of
conflict between T and T2; for example, the conflict between
T and T1 could be write-read while the conflict between T
and T2 could be read-write or write-write. If both T1 and
T2 perform validation before T performs validation, both
T1 and T2 impose their constraints on the timestamp range
of T . In this example, T1 imposes a lower bound on the
timestamp range of T , while T2 imposes an upper bound on
the timestamp range of T . If the lower bound imposed by T1

is greater than the upper bound imposed by T2, then T must
abort. The probability that this scenario occurs is much less
than the probability of a simple conflict. In fact, as we show
in our experiments, the abort rate of our algorithm is much

336



less than the abort rate of deadlock avoidance mechanisms
such as wait-die.

4.4 Fault-tolerance
Since MaaT is totally lock-free, an aborting transaction

never causes indefinite blocking of other transactions. The
main concern when a transaction aborts is to release soft
write locks held by this aborted transaction as soon as pos-
sible. This concern is due to the fact that soft write locks
impose upper bounds on the timestamp ranges of conflicting
transactions, and these upper bounds when left indefinitely
become eventually unsatisfiable, and may lead to unneces-
sary aborts of other transactions. For example, if a trans-
action T aborts while holding a soft write lock on a data
item y, a subsequent transaction T ′ that reads or updates y
has to pick a timestamp that is less than the lower bound
on the timestamp range of T . The transaction T ′ may or
may not be able to obtain a timestamp less than the lower
bound of T , depending on the read and write timestamps
of other data items that T ′ update and read. For example,
if T ′ needs to read or update another data item z whose
write timestamp tsw(z) is not less than the lower bound of
T , then T ′ has to abort. As in lock-based methods, timeouts
and three-phase commit can be used to ensure that locks are
never held indefinitely. However, in lock-based mechanisms,
locks left by aborted transactions affect the throughput of
the system as other transactions queue up waiting for these
locks to timeout, causing cascading blocking; meanwhile, in
MaaT, no cascading blocking occurs since transactions never
block at all.

5. EXPERIMENTS
We begin by explaining our framework and implementa-

tion of MaaT. Then we perform an evaluation of perfor-
mance of MaaT. In this evaluation, one of our aims is to
compare MaaT, which has an optimisitc concurrency con-
trol scheme to pessimistic concurrency control techniques
to evaluate their differences. MaaT will be compared with
two reference implementations of locking protocols. The
first part of the evaluation will compare with distributed
two-phase locking, which is the basis of concurrency control
schemes in many current database management systems exe-
cuting distributed transactions. The next part will compare
with a deterministic locking scheme.

5.1 Framework
In MaaT, a database is partitioned based on key ranges,

and each partition is managed by a single-threaded database
server process, thus no latches or mutexes are required. An
application accesses the database through a statically-linked
client library that exchanges messages with database server
processes using BSD sockets. The workload of transaction
processing is divided between database server processes and
the client library that runs in application process space. The
database server process is responsible for storing and re-
trieving data, logging transaction operations, and maintain-
ing the timetable, the lock table, and the timestamp cache.
The client library is responsible for mapping keys to data
servers, sending read and write requests to data servers, re-
ceiving responses, and performing commits and aborts. The
application passes to the client library a set of callback func-
tions to invoke upon receiving responses from data servers;
these callback functions perform the necessary processing on

Figure 2: Througput Analysis

data and may request more reads and writes. Although the
client library is single-threaded, an application may execute
multiple concurrent transactions through the client library,
which keeps track of reads, writes, and callbacks of each
transaction.

Our evaluation uses the standard benchmark TPC-C and
focuses on the New Order transaction, which models the
purchase of 5-10 items from one or more partitions. We im-
plement MaaT and distributed two-phase locking in C++,
and run our experiments on Amazon EC2 machines. We
use small 32-bit EC2 machines (m1.small), which promise
1 EC2 compute unit per machine; that is, equivalent to a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. In all
our experiments, we place one TPC-C warehouse partition
on each server machine, and execute a workload of 10,000
TPC-C New Order transactions on each server. The num-
ber of transactions running concurrently on each servers, as
well as the percentage of distributed transactions, differ from
one experiment to another. Each client is assigned a home
server. A distributed transaction accesses items in servers
other than the home server. For each item in the transac-
tion, the probability that it accesses a partition other than
the one in its home server is equal to the percentage of dis-
tributed transactions. If an item was assigned to access a
different partition, then it will choose a partition other than
the one in the home server using a uniform distribution.

5.2 Overall evaluation with distributed two-
phase locking

In the distributed two-phase locking implementation, each
data server maintains a lock table of items. When data are
read, a read lock is requested. If all read locks are acquired,
the write set is sent to all accessed servers. If all write locks
are successfully acquired, a commit message is sent to all
servers. In the implementation a wait/die approach is used
to avoid deadlocks.

5.2.1 Scaling Up
Figure 2 illustrates the performance of MaaT, in terms of

throughput, compared to distributed two-phase locking, as
the number of clients per server increases from 1 to 50. The
number of clients per server is usually also referred to as the
multi-programming level (MPL). In this set of experiments,
the number of servers is fixed at 50, with one database
process per server, managing one warehouse of the TPC-
C database. Transactions timeout within 100 milliseconds
for both MaaT and distributed two-phase locking. As shown
in Figure 2, when the percentage of distributed transactions

337



Figure 3: Scale-out Throughput

Figure 4: Scale-out Aborts

is as low as 10%, which is the standard percentage stated
by the TPC-C benchmark, there is barely any difference
between the performance of MaaT and the performance of
distributed 2PL; for both mechanisms the throughput grows
rapidly as the number of clients per server increases from 1
to 5, then the throughput remains unchanged as the number
of clients per server increases beyond 5. As we increase the
percentage of distributed transactions to 50% and 100%, the
throughput of both mechanisms decreases; however, start-
ing from MPL=10, the throughput of MaaT remains mostly
unchanged, while the throughput of distributed 2PL drops
rapidly. This set of experiments demonstrates that MaaT is
more resilient to variability in workload compared to lock-
based distributed concurrency control.

5.2.2 Scaling Out
In this set of experiments we run the TPC-C workload

with MPL=5 on a number of servers that ranges from 200
to 1000. Figure 3 illustrates the performance of MaaT com-
pared to distributed two-phase locking, as the number of
servers increases from 200 to 1000. As shown in Figure 3,
the throughputs of MaaT and 2PL grow linearly. However,
as the number increases over 600 servers, 2PL is not able to
scale as efficiently as MaaT. Figure 4 shows the percentage
of aborts incurred by each of the two concurrency control
mechanisms. As shown in Figure 4, the percentage of aborts
incurred by distributed 2PL remains slightly higher than
MaaT, until the system reaches a tipping point when the
percentage of aborts incurred by distributed 2PL starts to
increase as the number of servers increases, while the num-
ber of aborts incurred by MaaT remains relatively stable.
This set of experiments shows that MaaT is more effective
than lock-based concurrency control when it comes to very

Figure 5: Fault-tolerance Throughput

Figure 6: Fault-tolerance Aborts

large scale databases, and scales out much more smoothly.

5.2.3 Fault-tolerance
In this set of experiments, we evaluate the resilience of

both MaaT and distributed two-phase locking to failures.
We run our TPC-C workloads on 10 servers, with MPL=5,
and with different percentages of distributed transactions,
and evaluate the performance of the system when one of the
10 servers is faulty.

Figure 5 shows the throughput of both MaaT and 2PL for
different percentages of distributed transactions. In most
cases, MaaT’s throughput is higher than 2PL. However, it
is especially worth noting that in the 10% distributed trans-
action case, and in contrast to Figure 2 (the no failure case)
where both throughput were comparable, here, with one fail-
ure the throughput of MaaT is over 25% higher than 2PL.
The difference in throughput decreases as the percentage
of distributed transactions increases. In contrast, in Fig-
ure 6, which shows the percentage of aborts, the percentage
of aborted transactions in 2PL increases significantly more
than MaaT as the percentage of distributed transactions in-
creases. In particular, in the case of 100% distributed trans-
actions the number of aborted transactions is almost double
in 2PL over MaaT.

5.3 Evaluation with deterministic locking
The scalability exhibited by MaaT is an attractive fea-

ture sought by distributed transaction systems. A design
model that has been proven to be effective in scaling with a
large number of machines is the deterministic concurrency
model. One notable example is Calvin [41, 40]. In Calvin,
there are three layers of execution: (1) sequencers are used
to define a global ordering of transactions, (2) schedulers
receive transactions from sequencers and acquire locks de-
terministically according to the global order, and (3) execu-
tion threads are used to process transactions once all locks

338



Figure 7: Scale-out experiment with deterministic
locking

are acquired. This design is enabled by a transaction model
that requires a transaction read and write sets to be initially
declared together when contacting the sequencers. This is
different from MaaT’s flexible framework where the com-
plete read and write sets don’t have to be determined at the
beginning.

Given the success of deterministic protocols, we have de-
signed a deterministic locking protocol that is built on top
of our existing framework. Our aim is to study the effect of
a deterministic deployment on top of our framework. Each
client will act as a sequencer and will assign unique IDs to
transactions. These are ensured by assigning IDs as multi-
ples of the client ID. The lock manager, rather than grant-
ing locks in the order of received transactions, will grant
locks according to the global order of the received transac-
tions. However as mentioned, unlike in Calvin, in our model,
clients do not generate both the read and write-sets at the
start of the transaction. Thus, it is not possible to deliver the
whole transaction to the sequencer and the servers. Thus,
in our case, clients need to send the read and write opera-
tions to the servers. Reads are grouped in one package and
then sent as a whole. Once the read locks are acquired, the
client sends the write-set as a whole to the accessed servers.
For example, if a client is accessing data objects x, y, and
z, each residing at a different server, the client will send
three packages each containing one object. One challenge
that arises is that each server needs to know which trans-
actions do not access it so that it can proceed to serve the
next transactions. To do this, the client sends notifications
to servers that are not accessed by a transaction.

This deterministic deployment was tested to study its ap-
plicability to our framework. Figure 7 shows the results
of the deterministic deployment compared to MaaT while
varying the number of servers from 10 to 50. One client
runs at each server. These experiments are run on larger
EC2 machines (c1.medium). This is because the overhead
exhibited in our deterministic deployment made us unable
to run experiments on smaller machines. This overhead will
be analyzed in this experiment. MaaT is shown to scale
as the number of servers increases to achieve a throughput
of 12000 transactions per second for 50 servers compared
to 2000 transactions per second for 10 servers in the case
with 10% distributed transactions. Our deterministic de-
ployment on the other hand achieved a maximum through-
put of 2000 transactions per second for the case of 10% dis-
tributed transactions on 50 servers, which is only 16.67%
of what is achieved by MaaT. One reason for this is that
in our framework, a limited number of clients are run and
each client only has a limited number of allowed concurrent

transactions. Since clients are waiting for the read data
objects to be read before writing and moving to the next
transaction, transactions are not batched in large numbers
to the servers. This causes the communication overhead to
affect each transaction rather than distributing the overhead
among a large number of transactions in a batch. This study
demonstrates that significant changes need to be made to
the deterministic approach for it to succeed in a more gen-
eral framework where (1) the clients run a limited amount of
concurrent transactions , and (2) the complete read / write
sets of a transaction cannot be known at the beginning of
the transaction.

6. CONCLUSION
The past decade has witnessed an increasing adoption of

cloud database technology; however, only a small number
of cloud databases provide strong consistency guarantees
for distributed transactions, due to practical challenges that
arise because of distributed lock management in the cloud
setting, where failures are the norm, and human adminis-
tration is minimal. Most distributed optimistic concurrency
control proposals in the literature deal with distributed val-
idation but still require the database to acquire locks during
two-phase commit, when installing updates of a single trans-
action on multiple machines. In this paper, we re-design op-
timistic concurrency control to eliminate any need for lock-
ing during two-phase commit, while handling the practical
issues in earlier theoretical work related to this problem.
We conducted an extensive experimental study to evalu-
ate MaaT against lock-based methods under various setups
and workloads, and demonstrate that our approach provides
many practical advantages over lock-based methods in the
cloud context.

7. ACKNOWLEDGEMENTS
This work is partially supported by a gift grant from NEC

Labs America and NSF Grant 1053594. Faisal Nawab is
partially funded by a fellowship from King Fahd University
of Petroleum and Minerals. We would also like to thank
Amaozn for access to Amazon EC2.

8. REFERENCES
[1] http://www.mysql.com/products/cluster/.

[2] http://api.rubyonrails.org/.

[3] http://developers.google.com/appengine/.

[4] http://www.ibm.com/software/data/db2/.

[5] http://www.oracle.com/database/.

[6] A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar.
Anatomy of the ado.net entity framework. In
SIGMOD, 2007.

[7] D. Agrawal, A. J. Bernstein, P. Gupta, and
S. Sengupta. Distributed optimistic concurrency
control with reduced rollback. Distributed Computing,
2(1):45–59, 1987.

[8] D. Agrawal, A. El Abbadi, R. Jeffers, and L. Lin.
Ordered shared locks for real-time databases. The
VLDB Journal, 4(1):87–126, Jan. 1995.

[9] R. Agrawal, M. J. Carey, and M. Livny. Concurrency
control performance modeling: alternatives and
implications. ACM Trans. Database Syst.,
12(4):609–654, Nov. 1987.

339



[10] J. Baker, C. Bond, J. Corbett, J. J. Furman,
A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
CIDR, 2011.

[11] R. Bayer, K. Elhardt, J. Heigert, and A. Reiser.
Dynamic timestamp allocation for transactions in
database systems. In Proceedings of the Second
International Symposium on Distributed Data Bases,
DDB ’82, pages 9–20, 1982.

[12] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan,
G. Kakivaya, D. B. Lomet, R. Manne, L. Novik, and
T. Talius. Adapting microsoft sql server for cloud
computing. In ICDE, 2011.

[13] P. A. Bernstein and E. Newcomer. Principles of
transaction processing: for the systems professional.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1997.

[14] C. Boksenbaum, M. Cart, J. Ferrié, and J.-F. Pons.
Certification by intervals of timestamps in distributed
database systems. In VLDB, 1984.

[15] S. Ceri and S. S. Owicki. On the use of optimistic
methods for concurrency control in distributed
databases. In Berkeley Workshop, pages 117–129,
1982.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: a distributed storage system
for structured data. In OSDI, 2006.

[17] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In OSDI, 2012.

[18] C. Curino, E. Jones, Y. Zhang, and S. Madden.
Schism: a workload-driven approach to database
replication and partitioning. Proc. VLDB Endow.,
3(1-2):48–57, Sept. 2010.

[19] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
SOSP, 2007.

[20] J. Gray and L. Lamport. Consensus on transaction
commit. Technical Report MSR-TR-2003-96,
Microsoft Research, 2004.

[21] I. Keidar and D. Dolev. Increasing the resilience of
distributed and replicated database systems. J.
Comput. Syst. Sci., 57(3):309–324, Dec. 1998.

[22] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, June 1981.

[23] M.-Y. Lai and W. K. Wilkinson. Distributed
transaction management in jasmin. In VLDB, 1984.

[24] A. Lakshman and P. Malik. Cassandra: structured
storage system on a p2p network. In PODC, 2009.

[25] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman,
J. M. Patel, and M. Zwilling. High-performance
concurrency control mechanisms for main-memory
databases. Proc. VLDB Endow., 5(4):298–309, Dec.

2011.

[26] D. Lomet, A. Fekete, R. Wang, and P. Ward.
Multi-version concurrency via timestamp range
conflict management. In ICDE, 2012.

[27] C. Mohan. Less optimism about optimistic
concurrency control. In Research Issues on Data
Engineering, 1992: Transaction and Query Processing,
Second International Workshop on, pages 199 –204,
feb 1992.

[28] S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal,
and A. El Abbadi. Serializability, not serial:
concurrency control and availability in
multi-datacenter datastores. Proc. VLDB Endow.,
5(11):1459–1470, July 2012.

[29] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware
automatic database partitioning in shared-nothing,
parallel oltp systems. In SIGMOD, 2012.

[30] P. Peinl and A. Reuter. Empirical comparison of
database concurrency control schemes. In VLDB,
1983.

[31] D. P. Reed. Naming and synchronization in a
decentralized computer system. Technical report,
Massachusetts Institute of Technology, Cambridge,
MA, USA, 1978.

[32] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso.
Database engines on multicores, why parallelize when
you can distribute? In EuroSys, 2011.

[33] G. Schlageter. Optimistic methods for concurrency
control in distributed database systems. In VLDB,
1981.

[34] M. Seltzer. Oracle nosql database. In Oracle White
Paper, 2011.

[35] D. Skeen and M. Stonebraker. A formal model of crash
recovery in a distributed systems. IEEE Transactions
on Software Engineering, pages 219–228, 1983.

[36] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In VLDB, 2007.

[37] A. Tatarowicz, C. Curino, E. Jones, and S. Madden.
Lookup tables: Fine-grained partitioning for
distributed databases. In ICDE, 2012.

[38] A. Thomasian. Two-phase locking performance and its
thrashing behavior. ACM Trans. Database Syst.,
18(4):579–625, 1993.

[39] A. Thomasian. Distributed optimistic concurrency
control methods for high-performance transaction
processing. IEEE Trans. on Knowl. and Data Eng.,
10(1):173–189, Jan. 1998.

[40] A. Thomson and D. J. Abadi. The case for
determinism in database systems. Proc. VLDB
Endow., 3(1-2):70–80, Sept. 2010.

[41] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In
SIGMOD, 2012.

[42] G. Weikum and G. Vossen. Transactional information
systems: theory, algorithms, and the practice of
concurrency control and recovery. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

340


