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ABSTRACT
As a result of increases in both the query load and the data man-

aged, as well as changes in hardware architecture (multicore), the
last years have seen a shift from query-at-a-time approaches to-
wards shared work (SW) systems where queries are executed in
groups. Such groups share operators like scans and joins, leading
to systems that process hundreds to thousands of queries in one go.

SW systems range from storage engines that use in-memory co-
operative scans to more complex query processing engines that
share joins over analytical and star schema queries. In all cases,
they rely on either single query optimizers, predicate sharing, or on
manually generated plans. In this paper we explore the problem of
shared workload optimization (SWO) for SW systems. The chal-
lenge in doing so is that the optimization has to be done for the
entire workload and that results in a class of stochastic knapsack
with uncertain weights optimization, which can only be addressed
with heuristics to achieve a reasonable runtime. In this paper we
focus on hash joins and shared scans and present a first algorithm
capable of optimizing the execution of entire workloads by deriving
a global executing plan for all the queries in the system. We eval-
uate the optimizer over the TPC-W and the TPC-H benchmarks.
The results prove the feasibility of this approach and demonstrate
the performance gains that can be obtained from SW systems.

1. INTRODUCTION
The increasing and widespread use of data service is putting a

strain on databases behind them. These data services need to sup-
port complex SQL queries for strategic decision making in indus-
tries as varied as travel reservation, financial, insurance or even so-
cial networking. With the number of internet users and web ser-
vices increasing, these systems are faced with loads that often in-
volve hundreds or thousands of queries submitted at the same time
[26]. Conventional database engines deal with queries individu-
ally, trying to achieve the best performance for each query plan.
With very high loads, these independent plans compete with each
other for resources, causing a load interaction problem further ag-
gravated by multi core architectures [21].
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As a result, systems have started to appear where queries are
processed in groups or batches, implementing different forms of
cooperative and shared execution. Blink[19, 18] and Crescando
[27] share scans at the storage engine level. QPipe[8], DataPath[1],
SharedDB[6] and CJoin [2] add more complex operators and try
to avoid repetitive work by sharing it across all queries. Instead
of instantiating operators at runtime, most of these systems use a
set of always-on operators in order to further reduce execution time
and maximize sharing. Finally, MonetDB[29] implements sharing
by caching intermediate results and reordering queries so that the
cached results can be useful to more than one query.

These shared work (SW) systems are well established and quite
sophisticated but lack a global optimizer. Some of them use con-
ventional query-at-a-time optimization techniques, others rely on
predicate sharing, and yet others use hand crafted plans. All of
these SW systems would benefit from an optimizer capable of look-
ing an entire workload and coming up with a shared execution plan
that maximizes sharing.

In this paper we explore the problem of Shared Workload Op-
timization (SWO), and propose an algorithm that given a set of
statements and their relative frequency in the workload, outputs a
global plan over shared, always-on operators. Unlike what has been
done until now, SWO concerns itself with entire workloads and the
simultaneous optimization of all queries in each workload. SWO
does not optimize queries individually and does not look for com-
mon predicates. Instead it focuses on running queries concurrently
over a pool of shared operators and, consequently, must identify
which operators to share and how to organize these operators into
a global access plan.

Formally, identifying the shared operators and ordering them are
not orthogonal decisions, which turns SWO into a bilinear opti-
mization problem. As we will show in the paper, changing how
many statements share the same operator affects the overall selec-
tivity, which might require to reorder the operator. Additionally,
the cost function is non-convex, as there are a lot of local optima.
For instance, each independent query adds a local optimum, which
is the cheapest way to execute it. The non-convex, bilinear nature
of the problem renders exhaustive techniques, like brute-force and
greedy optimization unsuitable. Exhaustive search will result in
huge running times due to the enormous size of the solution space,
while greedy optimization will most likely converge to a locally op-
timum solution. SWO is similar to the stochastic knapsack problem
with uncertain weights [12], where the stochasticity comes from the
fact that the cost or the weight of an item is variable and depends
on all previous decisions.

In this paper we show how SWO can be tackled through a branch
and bound optimization technique. To reduce the size of the so-
lution space, we introduce two heuristics. The first one makes a
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quick, yet effective, decision on how to share operators, while the
second one gives guidelines on the ordering of these operators. We
have used the resulting algorithm to generate global plans for the
entire TPC-W and TPC-H benchmarks. The runtime of our algo-
rithm is negligible, given that the generated query plan can be used
for a long time, possibly the whole lifetime of the system. The
experiments prove the feasibility of SWO and open up several in-
teresting research directions for further extending the algorithm.

2. RELATED WORK & MOTIVATION

2.1 Query-at-a-time Optimization
The problem of optimizing a query plan is not a new one [17, 22].

Most of the early work focused on how to optimize individual query
plans by trying to reduce the required processing power and I/O.
This single query optimization problem boils down to exploring
the whole solution space, which gets exponentially bigger as the
number of operators involved increases. The solution space has
a size of O( (2N)!

N !
), where N is the number of involved relations.

To make matters worse, this combinatorial problem is non-convex,
meaning that there are a lot of local optima which, in most of the
cases, are spread across the solution space.

Because the nature of the problem renders linear optimization
unsuitable and exhaustive search comes with a high runtime, for-
ward Dynamic Programming became the optimization technique
of choice for single query plans [22]. In Dynamic Programming,
memoization is used in order to avoid repeating work while explor-
ing the solution space. The solution space is searched bottom up, by
first examining all possible two way joins and then incrementally
adding more relations. Several flavors of Dynamic Programming
have been suggested depending on the nature and complexity of
the queries [11]. Even though Dynamic Programming proved to be
a successful option for single query optimization, it cannot be used
in SWO because of the bilinear nature of the problem. An analysis
of the bilinear nature of the problem is presented in Section 3.

2.2 Multi Query Optimization
Multi Query Optimization (MQO) was originally explored in

[23]. The main idea is to identify common subexpressions across
the set of running queries. Once common subexpressions are de-
tected, the system can replace the original subqueries with a broader
subquery that subsumes all of them or rearrange running queries
such that common subexpressions are executed together.

The idea of MQO was extended and further improved in the Vol-
cano optimizer [20]. This work uses materialized views to further
benefit from commonalities across queries. Nevertheless, the ad-
ditional overhead of maintaining the materialized views limits the
applicability of this technique.

An alternative type of multiple query optimization that caches in-
termediate results has been suggested in [24] and further improved
in [10, 15]. Caching (recycling) intermediate results of common
operators (i.e. a very frequent join), has been shown to increase the
performance as it comes with a number of advantages. Nonethe-
less, result caching cannot be applied to systems with high update
loads, as the caches are invalidated very frequently. In order to
support high update loads, the proposed algorithm does not rely on
result caching at all.

Recent work by Zhou et al. [28] introduces a novel technique for
detecting common subexpressions which allows MQO to be inte-
grated in production systems. The experiments show that applying
MQO across a few tens of queries is extremely efficient.

Although intuitively useful, when MQO is applied to SW sys-
tems, it limits the amount of queries that can share work. The goal

of SW systems is to process hundreds to thousands of queries con-
currently and we are not aware of any techniques that can detect
common subexpressions for so many queries within a reasonable
runtime. Additionally, subexpressions have to be detected every
time a new set of queries arrive in the system, because the sharing
of the previous set of queries is independent of the sharing of the
next set of queries. Our approach to SWO avoids this limitations
by not detecting common subexpressions at all. Instead we rely on
identifying common operators across prepared statements. More-
over, SWO has to be executed only when the workload evolves
(i.e. more prepared statements are added). This allows SWO to be
applied not only to analytical workloads, but also to transactional
workloads, where new queries arrive at a much faster rate. Our ex-
periments on both TPC-H (analytical) and TPC-W (transactional)
show that SWO is able to generate efficient plans in both cases. We
are not aware of any work on MQO that is able to process the en-
tire TPC-H benchmark, let alone TPC-W which has shorter running
queries where MQO is not effective.

2.3 Shared Work Systems
In the last years, there is an increasing shift towards database

systems and database operators that process multiple queries at a
time by sharing work (SW Systems). For instance, DB2 UDB [13],
uses a cooperative scan operator where each table scan answers
more than one query at the same time, independently of their se-
lection predicates. Similar ideas have been implemented in Mon-
etDB/X100 [29] and the Blink system [19, 18]. Crescando [27]
allows thousands of queries to share the same scan, while main-
taining predictable performance by indexing the running queries.

Additionally, several systems implement relational operators ca-
pable of processing multiple queries at a time. Datapath [1], CJoin
[2, 3] and SharedDB [6] are just a few of them. The common idea
behind these systems is to share operators across queries. For in-
stance, QPipe [8] creates dynamic pipelines of always on operators.
As queries arrive in the system, they are attached to the active set
of queries and are evaluated. Experimental results on these systems
show that they outperform query-at-a-time systems, while provid-
ing better response time guarantees.

Even though these SW systems are quite sophisticated, they all
currently rely on either single query optimization techniques, or
on MQO, thus not taking full advantage of their capabilities. For
instance, DataPath and QPipe rely on predicate sharing and MQO,
a decision that limits their scalability to amount of sharing possible
among concurrent queries. Because these systems rely on temporal
overlap for enacting sharing, they are more suitable for analytical
workloads where some queries take long enough to allow sharing
with other queries. SharedDB and CJoin do not use MQO to avoid
this limitation but they do not have an optimizer and rely on hand
tuned query plans. A different type of optimization is hinted in [6]
in order to automate hand tuning of query plans. In this two step
optimization, single query optimization is used on each query and
then the resulting access plans are overlapped. This reduces sharing
opportunities as executing each query in the best locally way, might
create a suboptimal global plan.

To tackle these shortcomings, our query optimization algorithm
is designed specifically for these systems. The algorithm takes as
an input the whole workload and produces an execution plan that
minimizes the total amount of work necessary to evaluate it.

Finally, some of these systems impose additional constraints on
the generated pipelines [4]. For instance, two complementary sort-
merge join operator can cause a deadlock if their pipelines are used
concurrently. These constraints can be safely integrated in our op-
timizer. The work of Dalvi et al. presents all the required methods
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Figure 1: Difference between MQO and SWO

for detecting and resolving a deadlock in such pipelines. Other sys-
tems, like CJoin and SharedDB, avoid deadlocks by explicitly not
using operators processing two or more streams concurrently.

We will compare the effectiveness of the generated plans by run-
ning them on SharedDB [6]. Nevertheless, the algorithm is not
specific to SharedDB and can be applied to other SW systems as
well. SharedDB executes multiple queries by multiplexing their
result tuples in shared result streams and driving them through a
network of always on operators. The whole data-flow architecture
operates in a push-based manner, where the lowest level operators
push results to the highest level operators. Each shared operator is
able to process possibly thousands of queries concurrently, and in
fact, sharing more queries reduces the cumulative required work.

2.4 MQO vs SWO
To illustrate the differences between SWO and MQO, consider

the following three queries:
Q1: SELECT * FROM ORDERS NATURAL JOIN CUSTOMERS
WHERE ORDERS.DATE BETWEEN ’2012-01-01’ AND NOW()
AND CUSTOMERS.CITY = ’NEW YORK’;

Q2: SELECT * FROM ORDERS NATURAL JOIN CUSTOMERS
WHERE CUSTOMERS.COUNTRY = ’SWITZERLAND’;

Q3: SELECT * FROM ORDERS NATURAL JOIN CUSTOMERS
WHERE ORDERS.DATE BETWEEN ’2011-01-01’ AND ’2012-12-31’
AND CUSTOMERS.CITY = ’NEW YORK’;

Implementing these three queries using MQO results in the exe-
cution plan of Figure 1a. The expressions of Q1 and Q3 are rewrit-
ten into a broader expression that selects tuples for both queries.
As a result, the cost of accessing ORDERS is shared across these
two queries. Post-filtering is required in order to separate tuples
that answer each query. Executing this plan on a SW system is
not optimal. First of all, the plan generation has to be repeated for
every batch of queries. Also, the performance of the system de-
pends on the query parameters; if there is no overlap across query
predicates, broader subexpressions end up being a long disjunction
of predicates. Finally, subexpression detection becomes expensive
if hundreds of queries have to be taken into account. CJoin for in-
stance has been shown to easily implement sharing across hundreds
of concurrent queries and SharedDB case share work across thou-
sands of queries while both systems maintain stable performance.

A plan that works better for most SW systems is shown in Fig-
ure 1b. In this case, a single shared join operator processes all three
queries at the same time, regardless of commonalities. The pred-
icates are pushed to the storage engines that execute all of them
at the same time, while tagging tuples with the IDs of each query.
There is no need to identify common subexpressions and, as a re-
sult, the plan optimizer does not have to examine the query parame-
ters. This allows to create a global plan for all prepared statements
of a workload. For instance, if ORDERS has to be accessed using
full table scans, the same scan will answer all three queries. The
lack of commonalities allows this plan to be used by any query that
asks for ORDERS 1 CUSTOMERS. Finally, post filtering in this case

is much faster. Instead of executing part of the original query, the
filter selects tuples by the tagged query IDs and distributes them to
the correct consumers.

Sharing as much as possible is not always optimal. To illustrate
this consider three queries over two tables with these selections:

Query 1 Query 2 Query 3

Customers Select 10 Tuples Fetch all 1,000
Tuples Select 20 Tuples

Orders
Fetch all 10,000

Tuples
Select 100

Tuples
Fetch all 10,000

Tuples

Sharing the Customers 1 Orders operation across all queries re-
quires building a hash table of 1,000 Customer tuples and probing
it with 10,000 Order tuples. In other words, it requires computing
the full join. During the build phase, there are a total of 1,030 tu-
ples. The overlapping 30 tuples are processed only once. Similarly,
for the probe phase, the processing of the 100 overlapping tuples is
shared. The total number of shared tuples for this plan is 130.

An alternative plan is to share the join across Q1 and Q3 only.
In this case, less tuples are shared. Yet, this plan may require less
amount of work. The reason is that building a hash table is not as
cheap as probing it. This plan requires building two hash tables of
(10+20) and 100 tuples respectively and probing them with 10,000
and 1,000 tuples. For most SW systems, build(130)+probe(11K)
is less expensive than build(1K)+ probe(10K). Also, by sharing
the join across Q1 and Q3, the probe phase of 10,000 tuples is shared
and as a result all tuples are processed exactly once.

3. PROBLEM DEFINITION
The problem we are solving in this paper is query optimization

by work sharing, where we search for the globally optimal plan
to execute a whole workload. There are two dimensions in this
problem: a. ordering of operators and b. sharing of operators.
Unfortunately, these dimensions are not orthogonal. For instance,
a decision to share a join operator across two queries, means that
the selectivity of this operator will be affected and as a result, we
should reorder the operators to achieve a better plan.

The ordering part of the problem is similar to single query opti-
mization, a problem that has been extensively studied [17]. Given
a query that involves n operators, the optimizer has to make n de-
cisions on which order the operators should be executed. For every
join operator, the optimizer has to additionally decide on which one
is the inner relation and which one is the outer relation. This cre-
ates a solution space of O( (2n)!

n!
) solutions. We can formulate this

as a mixed integer optimization problem using a two dimensional
matrix sel to store which operator o was selected on each step s,
and a two dimensional matrix costs,o that contains the cost of se-
lecting operator o at step s. The problem of join ordering can be
mathematically formulated by:
Minimize:

n∑
s=1

n∑
o=1

sels,o ∗ costs,o

under the constraints:
n∑

o=1
sels,o = 1, ∀s ∈ [1, n] (1)

n∑
s=1

sels,o = 1, ∀o ∈ [1, n] (2)

Here constraint 1 enforces that we choose only one operator on
each step, while constraint 2 enforces that we eventually select all
the required operators. This formulization of the problem assumes
that there is only one possible implementation for each operator. In
most systems there are different flavors of i.e. table access (scans or
indexes), or joins (sort-merge and hash join). Adding all the possi-
ble flavors of operators in the formulization would only increase the
dimension of the operators, without increasing the required steps.
Nevertheless, the subproblems are overlapping and independent of
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each other, so dynamic programming can be applied. The key idea
is to isolate subproblems and find the optimal way to execute each
subproblem, i.e. find the best way to join R relations. Then incre-
mentally build on top of these subproblems.

Even with dynamic programming, a total of O(3n) joins have to
be evaluated [16]. As a result, for large values of n the problem
of join ordering requires a lot of processing and other techniques
should be applied to simplify it. For instance, [11] suggests that for
n greater than 10 (i.e. a ten-way join), heuristics should be used.

Adding operator sharing on top of ordering introduces a third
dimension. The problem can be defined as:
Given: Q queries that involve a set of operators, O1...|Q|,
Find: A global access plan GP that uses a set of operators se-
lected from all the O1...|Q| sets, such that:
• all queries from Q can be answered, and
• the cost of GP is minimal.
This definition assumes that if multiple queries involve the same

operator, then this operator can be chosen only once and serve all
queries at the same time. The third dimension contains the decision
on which queries share which operators and dramatically increases
the decision space of our problem. Additionally, the number of
required steps is not fixed. Sharing an operator across s queries
means that we require s−1 fewer decisions. This three dimensional
multi query optimization problem can be formulated as:
Minimize: S∑

s=1

|O|∑
o=1

|Q|∑
q=1

sels,o,q ∗ cost(s, o, q)

under the constraints:
|O|∑
o=1

|Q|∑
q=1

max(sels,o,q) = 1,∀s ∈ [1, S] (3)

S∑
s=1

|Q|∑
q=1

max(sels,o,q) = O,∀o ∈ [1, |O|] (4)

S∑
s=1

|O|∑
o=1

max(sels,o,q) = |Oq |, ∀q ∈ [1, |Oq |] (5)

In the formulas, s is the current step, o denotes the operator,
and q the query. The maximum number of required steps, S, is
|Q|∑
q=1

|Oq|, where Oq is the set of operators required by the qth query.

The maximum number of operators, |O|, is also equal to S. In this
case, no operator could be shared and as a result we have to use all
operators of all queries.

Constraint 3 enforces that we choose only one operator on each
step. This operator might be shared across all or some queries,
which introduces the max() function. Constraint 4 enforces that
we eventually choose all operators. Finally, constraint 5 enforces
that all queries are answered. This mathematical formalization
lacks one more constraint which cannot be described mathemati-
cally and limits the sharing of operators. In short, an operator can-
not be shared across a set of queries unless all suboperators are also
shared across the same set of queries. An analysis of this constraint
will be given in Section 4.1.

Last but not least, the cost of subproblems is not fixed. In the
two dimensional problem, the cost of selecting a join depends on
the join and the previous decision (subproblems are independent).
In the SWO problem, the cost of a decision depends on the join and
on how many queries are sharing this join and all the underlying
joins. In other words, the best way to join R relations depends on
how many queries are sharing theseR−1 joins. More interestingly,
the cost changes if one of these joins is shared across some other

query (that does not require all R relations). As mentioned before,
the problem resembles a knapsack problem with stochastic weights.

Complexity Analysis
Adding sharing on top of ordering, a problem that was already

NP-hard [9], heavily affects the complexity. A work sharing op-
timizer has to decide which operator should be executed next, as
well as which combination of queries will use it. For every opera-
tor, a new dimension of O(2ds−1) choices is introduced, where ds
represents the degree of sharing, the number of queries that ask for
the same operator.

To make matters worse, in SWO we have to consider all opera-
tors involved by all queries. For instance, if a workload contains q
queries, each of which involving the set of operators Oq , the SWO
optimizer will have to consider the union of all Oq operators. As
a result the solution space of the presented problem has a size of
O(2ds−1 ∗ (2∗|O|)!

(|O|)! ), where O = O1∪O2∪· · ·∪Oq . The problem
can be classified as a non-convex, bilinear optimization problem,
where the non-convex nature comes from the fact that there are a
lot of local minima and the bilinearity comes from the fact that
subproblems are not independent.

In order to solve this problem we considered a number of opti-
mization methods. Exhaustive methods, like brute force or back-
tracking could not be used, due to the huge dimensions of the so-
lution space. Additionally, greedy optimization methods, as well
as convex optimization methods are useless. These methods would
most likely converge to a local minimum. Furthermore, the dimen-
sions of the problem do not have optimal substructure properties.
Solving the ordering problem independently of the sharing problem
will result on suboptimal solutions.

A class of optimization methods that is able to solve such prob-
lems is stochastic optimization, where generated random variables
are applied into the objective function and the best encountered so-
lution is chosen. Recent stochastic methods like Stochastic Op-
timization using Markov chains [14] provide some guarantees on
the optimality of the solution by generating random variables in a
smarter way. Yet, the runtime of such methods is quite high which
make them not a good solution for this kind of problem.

Next we explored combinatorial optimization methods. Dynamic
programming, a method successfully used in single query opti-
mization is not suitable for this problem. In SWO, subproblems
are not independent of each other as explained before. As a result,
memoization is useless, thus dynamic programming cannot be ap-
plied. Branch and bound (B&B), an optimization method used to
solve a wide variety of combinatorial problems, fits the constraints
of our problem. B&B systematically enumerates a tree of candi-
date solutions, based on a bounded cost function. However, the
huge number of variables of our problem means that branch and

bound will need to examine on averageO((|O| ∗ds)
|O|
ds ) candidate

solutions [25, 5]. In this case |O| ∗ ds is the fan out of the solu-
tion tree which is the number of possible solutions to branch, and
O
ds

is the average depth of the tree. In order to further reduce the
complexity of the problem, heuristics have to be applied.

The algorithm we present in this paper uses branch and bound
with heuristics in order to find a globally optimized solution. The
heuristics used are presented in Section 4.1. In order to simplify
the problem, we will consider queries that only have two operators:
hash joins and scans. This does not reduce the effectiveness or
applicability of our algorithm, as it can be easily adapted to support
more join methods and other operators, like sort and group by. We
decided to work with joins, as these are more sensitive in terms of
performance when it comes to ordering as well as sharing.
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Figure 2: Different Approaches to Share Operators across Query Statements

4. WORK SHARING
The goal of our optimizer is to find an efficient global query plan

for all input queries. As already mentioned, this requires two tasks:
a. decide on whether to share a database operator across queries and
b. decide on the ordering of the shared and not shared operators.
What makes the problem interesting is that these two tasks interact
with each other.

The task of ordering operators has been extensively studied [17,
22]. In this section we will study how operators can be shared
and what are the limitations of sharing. We will first analyze the
possible sharing strategies and then we will present two heuristics
that are based on experimental data and simplify the problems of
sharing and ordering operators.

4.1 Sharing Operators
As already mentioned in Section 2.3, sharing an operator across

different statements reduces the amount of work required to exe-
cute the workload by not repeating the same work multiple times.
However, sharing everything is not always optimal. For instance,
sharing the execution of a full table join with a much smaller join
means that the second statement will have to post filter more tu-
ples on the higher levels of the query plan, as the result stream will
contain tuples from both queries.

Based on the constraints of different SW systems, we can enu-
merate three different types of sharing:

Share Nothing: An example of a share nothing query plan is
shown in Figure 2a. In this approach no work is shared across state-
ments. Queries that are created from the same prepared statement
will still share work with each other, however, scans, joins and other
operations that are common with queries from other statements will
be executed multiple times. Finding the globally optimal plan for
this case is easier since traditional (single) query optimization tech-
niques can be applied. Share Nothing is very common in systems
that make use of heterogeneous replication. In this case, multiple
replicas of the dataset and the query processing engine are present.
Each replica is specialized in executing a different prepared state-
ment. Thus, replicas that answer point queries will incorporate the
appropriate indexes, while replicas that are dedicated to queries in-
volving full table scans will omit these indexes and as a result avoid
the cost of maintaining them. Another example of a share nothing
approach is materialized views.

Nevertheless, a plan that shares nothing does not utilize the full
potential of SW systems, as there are no sharing possibilities across

statements. To make matters worse, share nothing implies that all
storage engines have to be replicated for every statement that re-
quires them. This requires additional locking and synchronization
to ensure consistency which adds a considerable overhead in case
of updates and makes the global query plan not scalable to the num-
ber of statements. Even though global query plans that share noth-
ing are viable, none of the studied SW systems support them, thus
our optimizer is not considering them.

Share Storage Engines: This approach overcomes the issue of
storage engine replication by sharing all the storage engines in the
system with all statements. An example of such a plan can be seen
in Figure 2b. Database operators are still not shared across state-
ments, while all storage engines are shared. Finding a globally opti-
mal plan is still possible using traditional single query optimization
techniques. Each statement has its own pipeline of operators that
only interacts with other pipelines in the lowest level, making it
possible to reorder operators within each pipeline.

This sharing model is currently employed by a couple of research
prototypes, like DataPath [1] and StagedDB [7]. The big advan-
tage of this model is that any similar operation on the storage layer,
which typically is the slowest one, is not repeated. For instance, a
full table scan operator can run once in order to execute as many
scan queries are currently pending. This is the main reason why
shared (cooperative) scans have been established and implemented
in a number of systems, like Blink [19, 18] and MonetDB [29].

Such query plans are considered in the proposed optimizer even
though the amount of shared work is minimal. The optimizer con-
siders building such disconnected pipelines of operators in cases
where the statements are very diverse. For instance, consider a
workload of two prepared statements, one of which is analytical
and long running while the other is a transactional, short running
query. Sharing, e.g., a join across these two statements means that
the performance of the short running query will be dominated by
the shared join which will be slowed down by the analytical state-
ment. The overall cost of executing these two queries will also be
greater, as filtering will be required in the smaller access plan in or-
der to isolate the relevant small set of results out of the much larger
stream of results.

Share Everything: The last type of sharing is to share as much
as possible across statements. Such a plan can be seen in Figure 2c.
In this case, each operation that is common across all statements is
shared. A number of recent research prototypes fit this model, like
CJoin[2] and SharedDB[6]. The Share Everything model achieves
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Figure 3: Different Approaches to Share Two Query
Statements. Arrow lines are build relations, plain lines are

probe relations.

maximum sharing which means that work is never repeated. Prac-
tically, this approach reduces the total processing power required to
execute a given workload. Nevertheless, if very diverse statements
are involved, the pipeline of execution gets slower for the whole
workload, and as a result shorter pipelines spend more time wait-
ing for the longer pipelines to finish, rather than actually processing
tuples. As a result, in such cases the short queries are penalized and
the slowest query dominates the performance of the system.

While share everything seems optimal, it adds constraints on the
ordering of operators. Shared operators should always have the
same sub-operators for all the participating statements. To make
this clearer, consider these queries:

A: SELECT * FROM LINEITEM JOIN ORDERS JOIN CUSTOMERS
WHERE LINEITEM.ITEM ID = ‘?’

B: SELECT * FROM LINEITEM JOIN ORDERS JOIN CUSTOMERS
WHERE CUSTOMERS.ID = ‘?’

The locally optimal plans for these two queries can be seen in
Figure 3a. Figure 3c illustrates a global plan that shares only the

storage engines. The joins are processed independently and any
work that is common, like hashing and probing of tuples as well
as materialization, is performed two times. Additionally, Figure 3b
shows two ways in which these statements can be executed using
shared operators. Finally, the plan of Figure 3d is not legal because
the sources of the shared operator are not the same. The shared
operator is asked to build a hash table with tuples that are of type
LINEITEM 1 ORDERS and of type ORDERS at the same time. Even
though such a join operator could be implemented, it will require
interpretation of every tuple, probably by means of a switch state-
ment, in order to distinguish the tuple format. Adding a switch in
the innermost loop of a hash join, adds considerable overhead, as
well as a data dependency in the code. Thus the inner most loop
cannot be fully optimized and branch miss-prediction would add a
penalty on every tuple. To our knowledge, this is an implementa-
tion decision chosen by all SW systems.

In fact, our algorithm considers mostly hybrid approaches, where
the operators that serve similar statements are shared, while opera-
tors that serve diverse statements are not shared. The optimizer can
also take into account the probability (or the expected probabil-
ity) of a prepared statement appearing in the workload and decides
on whether to share an operator or not. This is not unreasonable
even in real-life workloads, as nowadays, most database systems
are behind web-services that have well known access patterns. The
probability is then used to calculate the expected selectivity at any
operator. For instance, in the example of Figure 3, if Query B ap-
pears with a probability of 0.05 and Query A with a probability of
0.95, then the left plan of Figure 3b would be more efficient.

4.2 Sharing Heuristic
In order to reduce the solution space of the multi query optimiza-

tion problem, we introduce a heuristic that simplifies the sharing
decision. The heuristic provides the optimization algorithm with
the following two hints: a. which operators should not be shared,
and b. which operators can be shared across which statements in
the global access plan.

The first hint can be easily computed, provided that approximate
statistics about the sizes of relations and the cardinalities of all in-
volved attributes exist. The usefulness of this hint is easy to un-
derstand: the generated plan should avoid sharing operators across
low selectivity and high selectivity subqueries at the same time, as
already explained. The second hint requires analysis of each state-
ment. The goal is to find what are the common operators across all
statements. Even though this is something that can be computed
by the algorithm at runtime, it is better to make this decision at a
very early point. The reason is that this information is reused many
times during optimization and it is better to precompute it. Addi-
tionally, it allows the optimizer to explore first the more popular
operators. In contrast to the first hint, the second hint should only
provide a guideline that can be ignored by the optimizer. For in-
stance, the example of Figure 3d is one of the cases where the can
be shared hint should be ignored.

The sharing heuristic analyzes all operators involved in all state-
ments individually. First, it classifies all storage engine access for
each query. We distinguish two classes: High Selectivity and Low
Selectivity. Subqueries that ask for the whole relation or request
for big ranges of the relation are classified as L, while point queries
or subqueries that ask for smaller ranges are classified as H. The
assignment of a subquery to class H or L depends on the underly-
ing implementation of the SW System. If the storage engine uses
B-Tree lookups to access tuples, then the cost of retrieving all tree
nodes should be taken into account. If the storage engine is imple-
mented using full table scans, like for instance in SharedDB, then
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the cost of retrieving 1 tuple or 100 tuples is very similar. In any
case, properly identifying the threshold between L and H requires
careful microbenchmarking of the specific SW System.

In the example of Figure 3, Lineitem access is H for query A and
L for query B. Then, all higher level operators are classified accord-
ingly. This means that three different classes for hash join operators
are taken into account: H-H, L-L and L-H. The symmetrical class
of the latter, the H-L (i.e. build on a big set of tuples and probe on
a smaller) is not taken into account as it is always suboptimal. In
this case, we always swap the build side with the probe side. The
classification of joins always takes into consideration what can be
filtered. For example, in query A of Figure 3, the Customers 1

Orders is classified as L-H, as there is the potential to filter the
Orders relation. In order to extend the heuristic to other flavors
of join operators, we have to take into account the properties of the
join. For instance, sort merge joins should only allow L-L or H-H
classifications, as sort joins perform better if the sizes of the joined
relations are similar.

The classification of operators alone is enough to provide a rough
guideline of when operators should be shared or not. Operators that
belong to different classes should never be shared, as this will result
in too much unnecessary work for some queries. For instance, con-
sider the left plan of Figure 3b. In this case Orders 1 Lineitem

is L-H for Query A and L-L for Query B. Our heuristic suggests
that this join should not be shared across these queries. Instead,
the operator has to be replicated and one instance should be used
exclusively for Query A, while the second one should be dedicated
to Query B, as show in Figure 3c.

In most cases, the sharing heuristic manages to reduce the so-
lution space by an important factor. To quantify, consider a popu-
lar join that is asked by ds different prepared statements. An ex-
haustive search algorithm will have to make the decision on which
of these ds statements should share the operator. This creates a
combinatorial problem with a total of 2ds−1− 1 combinations (the
combination that no operator shares the join is void). The Sharing
Heuristic groups queries into 3 different groups. Queries that be-
long to different groups should not share the same operator, which
reduces the number of combinations to 2

ds
3
−1 − 1, assuming the

average case of uniform distribution.
Even though this heuristic seems quite abrupt, it always hints to-

wards the optimal solution. In Section 6.1 we present experimental
results on the effectiveness of this heuristic.

4.3 Ordering Heuristic
In addition to the sharing heuristic, our multi query optimizer

uses a second heuristic, the ordering heuristic, which provides the
optimizer with a hint on how to explore the solution space. Based
on the classification of the Sharing Heuristic, we are able to make a
draft decision on the ordering of operators in the global query plan.

The heuristic exploits the observation that if a sequence of join
operations is requested, executing the smaller joins (in terms of cost
and number of tuples) first results in faster runtime. The benefits
come mainly from the fact that using smaller sets of tuples first, we
essentially perform more filtering at the early stages. This means
that fewer tuples have to be joined and materialized.

In order to faster evaluate the heuristic, we reuse the classifi-
cation of the Sharing Heuristic. Based on it, the optimizer will ex-
plore first the plans that have H-H hash joins on the lower level, L-H
joins on the higher and the L-L join on the top level of the query
plan. This means that before executing any full table join (L-L), we
have filtered as much as possible the inner and outer relations.

The Ordering Heuristic is not reducing the solution space by
omitting sub-optimal decisions, but instead gives a greedy direc-

tion on how to start exploring the solution space. The worst case
is that all solutions need to be explored. Nonetheless, our experi-
mental results show that the Ordering Heuristic helps in converging
towards the best solution faster.

5. SWO ALGORITHM
In this section we present the shared workload optimization al-

gorithm. The goal of the algorithm is to produce a globally efficient
shared access plan, given a whole workload. In this context, glob-
ally dictates that we are interested in the cost of executing the whole
workload, rather than each query independently.

Shared Workload Optimization is a non-convex bilinear global
optimization problem. The objective (cost) function contains a lot
of local minima. For instance, the best way to execute a single
query is a local minimum. Additionally, subproblems are not in-
dependent of each other. The decision to share a hash join across
two queries affects the cost of both queries. Consider a join across
two relations, A and B, and two queries. Q1 asks for a join of the
set of tuples σ1(A) with the set of tuples σ1(B), while Q2 asks for
the join of σ2(A) with σ2(B). If the operator is shared, we have to
calculate the cost of joining σ1(A) ∪ σ2(A) with σ1(B) ∪ σ2(B).
Because of the union operator, if the selection are the same for both
queries, then the shared join will have exactly the same cost as the
not shared joins. Reordering join operators also affects the over-
all cost and may require to un-share certain operators, as already
explained in Section 4.1.

The optimizer algorithm is based on the branch and bound opti-
mization method. Branch and bound is used by most optimization
solvers due to its effectiveness, especially if the type of optimiza-
tion is discrete [12]. In branch and bound the solution space is
greedily explored under the assumption that there is a theoretical
bound in the solution. The theoretical bound is usually the solution
to the same problem with relaxed constraints. Using this bound as a
guide, the method proceeds by calculating the cost of intermediate
illegal solutions (i.e. solutions that violate some of the constraints)
and modifying the variables until a valid solution is reached.

Before presenting the algorithm, we will define the objective
function to be optimized, as well as identify the bounded problem
and the algorithm to estimate the cost of bounded solutions.

5.1 The Objective Function
The cost or objective function quantifies how good a solution

is over other solutions. In most existing single query optimizers,
the objective function consists of two variables: the number of I/O
operations required and the CPU cost. These two metrics were
sufficient for single query systems, where the queries had to be
executed as fast as possible.

On shared work systems these metrics are not applicable as mul-
tiple queries are executed concurrently. A shared full table scan
for instance, requires a lot of I/O operations, but now it serves a
lot of queries. Adding another query in the load will not increase
the number of I/O operations. The same applies to all shared op-
erators in all SW Systems that implement them. What is important
in SW systems is the number of tuples that have to be processed.
Since some of these systems share resources across queries, the cost
function is not linear. For example, if a query in the mix requests a
full table scan of n tuples while another one requests a single tuple
(point query), the total number of tuples fetched is going to be n
instead of n+ 1.

As a result, the objective function of our optimizer is based only
on tuple count. The number of tuples is then multiplied by a fac-
tor that is different for each operator. For example, full table scans
have a factor of 1 per tuple, while key value lookups have a fac-
tor that is equal to the number of tuples that fit in a (memory or
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disk) page. Hash joins have different factors for the build and probe
phase. The build phase has a factor of 4, as in our implementation
four memory reads and writes are required to read and insert a tuple
in the hash table. On the other hand, the probe phase has a factor of
1. These factors originate mainly from experimental micro bench-
marks, which is part of micro tuning the objective function for a
particular SW System. Applying our algorithm to different SW
Systems, requires proper analysis of each individual operator.

Finally, the goal is to minimize the objective function. The opti-
mal solution should have the minimum number of processed tuples,
while answering the whole given workload.

5.2 Identifying the Bound
As already explained before, the bounded solution of the B&B

method is the optimal solution for a relaxed problem, thus an in-
valid solution for the actual problem. The bounded solution should
have a fast runtime as it is used only as an approximation of how
good each step is. Of course, choosing a very relaxed problem
increases the number of iterations required, as most of the interme-
diate steps will be very suboptimal compared to the approximation.

The bounded problem that we used in our optimizer originates
from the same optimization problem with the relaxed constraint
that every operator can and will be shared across all queries. A so-
lution to the bounded problem violates the ordering constraint that
was described in Section 4.1, but removes the non-linearity of the
original problem. Essentially, the bounded problem is the overlap-
ping of the access plans of all the queries, with no limitations. For
instance, consider a workload with three queries, Q1 that requires
two joins, A 1 B and A 1 C, Q2 that requires A 1 B and Q3 that
requires A 1 C. The relaxed problem allows both A 1 B and A 1

C to be shared. In contrast, the original SWO problem would only
allow one of these joins to be shared. Sharing A 1 B means that
we cannot share A 1 C, because Q1 is now interested in the join
(A 1 B) 1 C. Additionally, in order to reduce the complexity of
the problem, we approximate that an operator that has to execute a
set of n queries {Q1, Q2, ..., Qn} that ask for T1, T2, ..., Tn tuples
respectively, has a cost that is equal to max(T1, T2, ..., Tn).

The relaxed problem is a combinatorial optimization problem
that can be solved with traditional single query optimization tech-
niques, like dynamic programming. Memoization can be applied
as the subproblems and decisions are independent of each other.
As we explore the solution space of the relaxed problem, we keep
the cost of every subproblem. For instance, in a workload that re-
quires 5 hash joins, we will keep the minimum cost of all two-way,
three-way and four-way joins. This will help us bound the solution
in the branching part of the algorithm. As the B&B visits inter-
mediate (invalid) solutions, i.e. solutions that validate some of the
constraints, it can estimate how good this intermediate solution is.
The cost of every intermediate solution is equal to the actual cost
of the part of the solution that is valid, plus the theoretically limited
cost of the invalid solution.

5.3 Branch & Bound Algorithm
In this section we present the proposed multi query optimization

algorithm that is based on the Branch and Bound method. The
algorithm uses “nodes” to keep intermediate states. There are three
types of nodes: the solution nodes, the live nodes and the dead
nodes. A solution node contains a solution to the problem without
violating any constraint. The cost of a solution node comes directly
from the cost function. The algorithm may reach multiple solution
nodes as it explores the solution space. The solution with the lowest
cost is the output of the algorithm.

Live nodes contain the solution to some problem that violates
some constraints and they can be expanded into other nodes that

Algorithm 1: Multi Query Optimizer Algorithm
Data: Heap heap; // a cost-sorted heap of all live nodes
Data: Node boundSolution; // the relaxed problem solution
Data: Node e; // the currently expanded node
Data: Node solution; // the solution node
/* create the root node */
e← boundSolution;
e.validOperators← 0;
e.cost← BoundCostFunc(boundSolution);
Push(heap, e);
solution.cost←∞;
while ¬ IsEmpty(heap) do

e← Pop(heap);
if IsValidSolution(e) then

// The current node is a valid solution. Keep it only
// if it is the cheapest so far.
if e.cost < solution.cost then

solution← e;

else if e.cost < solution.cost then
// If the current node is cheapest than the best
// solution, expand it and look for better solutions.
Expand(e, h)

return solution;

Function IsValidSolution(Node e)
if e.validOperators = e.totalOperators then

/* If the sequence of all operators is valid, we have reached a
solution */

return true;
else

return false;

Function Expand(Node e, Heap h)
Node[] children← ChildrenOf(e);
foreach Node c ∈ children do

c.validOperators← e.validOperators+ 1;
c.cost← CalculateCost(c);
Push(heap, c);

Function CalculateCost(Node e)
Result: Cost cost ; // The cost of the given node
// Find the cost of the valid part
Cost c1← CostFunction(c, c.validOperators);
// Find the bounded cost of the invalid part
Cost c2← BoundFunction(c, c.validOperators);
return c1 + c2

Figure 4: Multi Query Optimization Algorithm

violate less constraints. Once expanded, a live node is turned into a
dead node, meaning that we do not have to remember it any more.
In order to calculate the cost of a live node, we use the cost function
for the part of the solution that does not violate the constraints, and
the bound cost function for the remaining part of the solution. A
feature of Branch and Bound is that once we have reached a solu-
tion node, we can prune all live nodes that have a cost higher than
the cost of the solution node. This does not affect the optimality
of the algorithm because the cost of a live node means that as we
explore this node and fully expand all children, we will never reach
a solution with a lower cost. In other words, the cost of a live node
is the theoretical bound of the subtree of nodes.

The algorithm, described in Figure 4, uses a heap to maintain
the set of live nodes sorted by their cost. The first node that enters
the heap is the root node, a node that contains the solution of the
relaxed problem described in Section 5.2. The root node dictates
that all expanded sub-nodes will have a cost that is equal or higher
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Q1 1 1 1 1
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Q1 1 1 1 1
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Q3 ‐ 1 1 1
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Q1 1 1 1 1
Q2 1 ‐ 1 ‐
Q3 1 1 ‐ 1
Q4 1 ‐ 1 ‐

C D A B B C D E
Q1 1 1 1 1
Q2 1 1 ‐ ‐
Q3 ‐ 1 1 1
Q4 1 1 ‐ ‐

A B C D B C D E
Q1 1 1 1 1
Q2 1 1 ‐ ‐
Q3 1 ‐ 1 1
Q4 1 1 ‐ ‐

B C A B C D D E
Q1 1 1 0 1 1
Q2 ‐ 0 1 1 ‐
Q3 1 1 0 ‐ 1
Q4 ‐ 0 1 1 ‐

Figure 5: SWO Optimization Algorithm at Runtime

to the cost of the root node. The algorithm proceeds by removing
the first node of the heap, and testing if it is a valid solution or not.
In case it is a solution, and it is cheaper than any solution we have
seen before, we keep it. In the case that the active node is not a
solution, it is further expanded and all child nodes are inserted into
the heap. As already explained, we can prune a node and the whole
subtree if it has a cost that is higher than the best solution seen so
far. This is because expanding a node will result in nodes with a
cost equal or higher to the one of the parent node.

The algorithm implementation uses a two dimensional matrix to
store the state of a node. The first (horizontal) dimension describes
which operator is used, while the second one the queries that share
this operator. Additionally every node remembers which part of the
bitmap is the valid solution and which has yet to be expanded. The
root node has no valid operators, as constraints are violated.

Figure 5 shows an example of how our algorithm explores the
workspace by expanding nodes. The root node holds a matrix that
describes which queries use which operators. The values of the
matrix are tristate. A value of ‘1’ means that the respective query
is interested for this operator, and in this node it is using it. A value
of ‘0’ means that the query is interested for the operator, but in this
step it is not using it. Finally, a value of ‘-’ means that the query is
not interested in this operator.

In the example of Figure 5 expanding the root node results in
three child nodes. These child nodes have the first operator fixed,
meaning that as they expand, this part of the solution will remain
constant. Their cost is calculated by combining the cost of the first
operator using the cost function with the cost of the remaining op-
erators using the bound function.

During node expansion all constraints must be taken into ac-
count. In our example the expansion of the root node creates only
3 child nodes. The D 1 E operator is not part of the permutation,
because it is a L-L operator and the ordering heuristic suggests that
the selective operators should be executed first. Also, as node #2
expands into node #2.1, the A 1 B operator is duplicated. This is
done in order to adhere to the sharing constraint that was explained
in Section 4.1. The first replica serves only Q1 and Q3 and it is able
to join tuples of (BC) with tuples of (A), while the second replica
serves Q2 and Q4 and it is able to join tuples of (B) with tuples
of (A). For reasons of simplicity, we have not taken into account
different build and probe order in this example.

Finally, at this point we should notice the importance of the
heuristics. Without the sharing heuristic, node #1 would be split
into 8 different nodes that contain all the possible values of the
bitmap {1, 1, 1, 1}. The optimizer would have had to consider in-

stantiating the A 1 B operator just for query 1 ({1, 0, 0, 0}), then
just for query 2 ({0, 1, 0, 0}) and so on, for a total of 24 nodes. The
benefits of the ordering heuristic is less obvious. The root node
expands only to 3 nodes instead of 4, as the hint says that the L-L
joins should be executed after the H-H joins.

6. EXPERIMENTAL ANALYSIS
In order to evaluate the performance of our work sharing multi

query optimization algorithm, we carried out a series of perfor-
mance experiments. First we present experimental results to vali-
date the correctness of the two heuristics of our algorithm and then
we present results on the generated plans of two well known work-
loads, the TPC-W and the TPC-H benchmarks.

The baseline we compared against is multi query optimization,
where only subexpressions of the same prepared statements are ex-
ecuted together (predicate sharing). Executing the same workload
on a query-at-a-time database system, like MySQL, would be fruit-
less. SW systems outperform query-at-a-time systems, especially
under high load, as already shown in the experiments of related
work [6, 7]. We decided not to perform any tests with a query-at-a-
time system, as this paper focuses on the techniques of optimizing
entire workloads info an globally efficient access plan.

The generated plans were implemented on a cooperative rela-
tional database system, SharedDB. In SharedDB each operator is
assigned to one or more CPU cores that are dedicated to it. Queries
are pushed from the top of the query plan until a storage engine
is reached, and then results are pushed all the way to the original
client. SharedDB batches queries on every operator and executes
these batches one at a time. Any work that is common within a
batch, is not repeated. Additional information on how SharedDB
processes queries can be found in [6].

The baseline plans were also implemented on SharedDB, with
the additional constraint that each batch can contain only queries
that originate from the same prepared statement (i.e. they have
common subexpressions). The sharing that occurs in baseline plans
resembles the one of Figure 2b, while our algorithm shares more
work by creating plans similar to the one of Figure 2c. In order to
generate the baseline plans, we used dynamic programming to opti-
mize each individual query. Then we combined the locally optimal
plans to create the global query plan.

The global query plans were generated on a dual core laptop, as
the runtime of the optimization algorithm is very small. We discuss
the exact optimization time of each experiment as we present the
results. The same laptop was used to generate the baseline query
plans. In all experiments reported in this paper, we used a multi
core machine to evaluate the efficiency of the generated plans. This
machine features four eight core Xeon CPUs. Each core has a 2.4
GHz clock frequency and is hyper threaded. The hyper threaded
cores were used to run the clients. This did not affect the perfor-
mance in any benchmark, as clients mostly wait for the results to
arrive and perform no additional work.

6.1 Heuristic Test
The first part of our experimental study focuses on the correct-

ness of the heuristics. We used two small microbenchmarks, one
that involves a two way join across two relations, and one that in-
volves two overlapping three-way joins. In both cases, we used two
prepared statements with very diverse selectivities.

Two Way Joins
For the first microbenchmark, we used two relations, L and O. L

was loaded with approximately 1 GB of data that were generated
from the LINEITEM relation of TPC-H, while O was loaded with
approximately 230 MB of the ORDER relation. We considered a

437



 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70  80  90  100

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t 
(Q

u
er

ie
s 

/ 
S

ec
o

n
d

)

Statement 1 Probability in Workload Mix

Heuristic Test on Lineitem Join Orders

Statement 2 Probability in Workload Mix

Share: Build L, Probe O
Share: Build O, Probe L
No Sharing

(a) Experimental Results

PS1 PS2 Maximum Optimal Actual
0 10 13,500,000 13,500,000 13,500,000
5 5 78,005,035 30,004,860 30,004,860

10 0 54,010,935 54,010,935 54,010,935

(b) Number of Shared Tuples for 10 Queries

Figure 6: Testing Heuristic on a 2-Way Join

natural join across these two relations and issued a workload of
these two prepared statements:
PS1: SELECT * FROM L JOIN O on L.o id = O.id

WHERE L.part = ?

PS2: SELECT * FROM L JOIN O on L.o id = O.id
WHERE O.id = ?

The query parameters were also generated based on the TPC-
H specification. We used a total of 160 client threads that issued
queries generated from these prepared statements in a closed loop.

Based on our operator classification presented in Section 4.2,
these two statements have a L-H join. We considered three dif-
ferent global plans to execute this workload. The first plan creates
an operator that builds a hash table with tuples from the L relation
and probes with tuples from O and shares the operator across both
statements. The second one builds on O, probes on L and shares
the operator across both statements as well. Finally, the third pos-
sible plan uses both of these join operators, one for PS1 and one for
PS2. All three plans use the same amount of resources, in terms of
number of CPU cores and memory buffers.

We varied the probability of a prepared statement appearing in
the workload and measured the achieved throughput on all possi-
ble plans. Figure 6a shows the results. In the left-most extreme,
where no queries generated from PS1 were executed, the second
plan is better, while in the right-most extreme, where only queries
of type PS1 were executed, the first plan is better. However, in
these extreme cases we would never consider work sharing. If the
probability of PS1 is 0, there is no need to create a shared operator
that would serve PS1 and PS2.

The area of the plot between the two extremes is the interest-
ing region. The “No Sharing” plan has a higher performance in
this area. This means that whenever two queries with diverse se-
lectivities are present, the optimizer should never attempt to share
the operator across them. This is exactly the hint that the sharing
heuristic provides. Finally, the table of Figure 6b shows the number
of shared tuples while executing 10 of these queries. We see that in
all cases the measured number of shared tuples is equal to the op-
timal. The optimal sharing is computed by evaluating all possible
plans and computing their costs.

S PS O

σσ

Q1 Q2

LI

(a) Plan with Shared LI 1 PS

S O

σ σ

Q1 Q2

PS LI

(b) Plan with no Sharing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60  70  80  90  100

 0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t 

(Q
u
er

ie
s 

/ 
S

ec
o
n
d
)

Statement 1 Probability in Workload Mix

Heuristic Test on N-Way Joins

Statement 2 Probability in Workload Mix

Shared LIxPS
Not Shared LIxPS
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PS1 PS2 Maximum Optimal Actual
0 10 61,210,935 61,210,935 61,210,935
5 5 122,421,870 54,409,720 54,409,720

10 0 61,210,935 61,210,935 61,210,935

(d) Number of Shared Tuples for 10 Queries

Figure 7: Testing Heuristic on a N-Way Join

N-Way Joins
The next microbenchmark studies the correctness of the heuris-

tic in more complicated scenarios. We used a schema consisting
of four relations taken from the TPC-H benchmark, Supplier,
PartSupp, LineItem and Orders. Similar to the 2-way exper-
iments, we used a workload of the following two statements:
PS1: SELECT * FROM S JOIN PS on S.id = PS.s id

JOIN LI on PS.ps id = LI.ps id WHERE S.id = ?

PS2: SELECT * FROM O JOIN LI on O.id = LI.o id
JOIN PS on LI.ps id = PS.ps id WHERE O.id = ?

To answer this workload, we considered the two global plans of
Figures 7a and 7b. The first plan uses a shared operator to eval-
uate Lineitem 1 PartSupp. This is against the sharing heuris-
tic, as in the first prepared statement, tuples from PartSupp can
be filtered, while in the second prepared statement, tuples from
LineItem can be filtered. Also, the ordering heuristic would in-
struct the optimizer to execute LI 1 PS at the end, as it is a L-L

join. In order to ensure fairness in our comparisons, we assigned
twice the amount of resources (CPU cores, buffer size) to the shared
operator of Figure 7a.

We measured the throughput of the two global query plans, as
we modified the probability of a statement appearing in the mix.
The results are presented in Figure 7c. The results show that not
sharing the LI 1 PS operator and executing it after filtering as
many tuples as possible is better for all cases, except for the extreme
case where only queries of the second statement are executed. In
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Figure 8: Testing the TPC-W Browsing Workload

this case, the two cores that were assigned to the shared operator,
give an advantage to the shared plan. Yet, if the optimizer knows
that PS1 will never appear in the workload, there will be no need for
a decision of sharing this join or not. Additionally, the number of
shared tuples when executing 10 queries can be seen in 7d. As with
before, the measured shared tuples match the optimal, something
that is expected given that the solution space is very small.

6.2 TPC-W Analysis
As seen in the previous experiments, sharing as much work as

possible (greedily) is not optimal. The two heuristics of our algo-
rithm make sure that we do not share too many operators. In most
realistic workloads, removing these cases still leaves enough op-
portunities for sharing. To demonstrate this, we used the TPC-W
workload with 10,000 items which contains a total of 11 prepared
statements that use a total of 17 join operators. The prepared state-
ments were issued based on the frequencies defined by the TPC-W
Browsing mix. The query parameter were generated as defined in
the TPC-W specification. What makes this workload interesting is
that it contains queries that have deep pipelines of operators (an-
alytical queries) as well as short running queries that join only a
couple of tuples every time. In order to focus only on the query
plan efficiency, we used only the prepared statements and skipped
the web interface that is part of the TPC-W specification.

Since our implemented algorithm focuses on hash join and scan
operators, we removed all other relational operators from the pre-
pared statements. All selections were executed as part of the scans.
Yet, this does not limit the applicability of our algorithm. The same
technique can be easily applied to all relational operators, like SORT
and GROUPBY. We limited our implementation to join operators be-
cause of their sensitivity to optimization decisions. Additionally,
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Figure 9: Testing the TPC-H Workload

adding different storage access (i.e. index lookup) and different
flavors of joins is orthogonal to our algorithm and has been exten-
sively examined in prior work [22, 11].

The runtime of our SWO optimizer for the whole TPC-W was
less than 3 seconds, which is quite fast, given it requires analy-
sis of 17 join operators across 11 statements. To put it into per-
spective, a brute force optimizer would have to consider a total of
216 ∗ (2∗11)!

11!
= 4.39 ∗ 1016 possible solutions. The generated plan

contained only 10 join operators, some of which were shared across
multiple statements. The baseline plan, where operators are shared
across queries of the same statements only, was generated in 500
msec and requires a total of 17 join operators. In traditional MQO,
this plan has to be generated every time a new set of queries arrives
in the system. We did not include this overhead in our measure-
ments. The measured latency and throughput account only for the
query execution.

We implemented the two plans in SharedDB and used a vari-
able number of TPC-W clients in a closed system with no think-
ing time, as we measured the throughput and latency of the sys-
tem. Each experiment was run for one hour. The results, shown in
Figure 8, clearly demonstrate that the shared workload optimiza-
tion algorithm outmatches the traditional multi query optimization
techniques. Sharing operators across statements independently of
whether there are common subexpressions or not is beneficial both
in terms of throughput and in terms of latency. For the latter, we can
also observe that work sharing reduces the variance of the response
time. The plot illustrates the 50th and 90th percentiles.

6.3 TPC-H Analysis
Next, we used the TPC-H benchmark with a scale factor of 1.0

to measure the quality of the work sharing global query plans. As
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with TPC-W we simplified the queries by removing all relational
operators except joins and full table scans. We used all 22 state-
ments that are part of the specification, even the ones that require
just a full table scan and no join operators, like Q1 and Q6. A total
of 49 hash join operators were considered.

The SWO algorithm needs around 30 seconds to optimize this
workload, which is acceptable, given the size of the problem and
the fact that the generated plan can be used for the whole lifetime of
the system. The generated plan contained only 34 operators, some
of which were shared. The baseline plan for a set of 22 queries
requires on average 3 seconds to be generated. As with the TPC-W
benchmark, our metrics do not include the overhead of generating
a plan every time a new set of queries arrives.

The results of our experiment are shown in Figure 9, and clearly
show the advantages of work sharing. Any work that is common
across statements is executed only once, which explains the higher
throughput and the lower response time of the work sharing plan.

As already explained, a query-at-a-time system database would
not be able to handle such a load. Since, all table accesses are
full table scans, the storage engine overhead would dominate the
performance of such a system. Additionally, the number of clients
is prohibitive. Executing 2,048 queries concurrently would either
require queuing, or queries will fight with each other for resources.
In both cases, performance would be significantly lower compared
to the performance of a SW system.

7. CONCLUSION
This paper presented a global query optimization algorithm that

can be used to optimize the whole workload on modern cooperative
database systems. The problem is twofold. The optimizer has to or-
der the relational operators as well as decide which queries should
share them. The generated plan does not necessarily answer each
query in the best possible way. Nevertheless, the cost of executing
the whole workload is optimized.

What makes the problem interesting is that state-of-the-art query
optimization techniques cannot be applied. The solution space is
so big that exhaustive techniques cannot be used. Additionally, the
problem does not have optimal substructure and as a result, it can-
not be broken into smaller subproblems. To tackle these challenges,
our optimizer uses the branch and bound optimization method. In
order to reduce the solution space, we introduce two heuristics
that prune suboptimal solutions and guide the optimizer to explore
first the most promising part of the solution space. Our experi-
mental results on the generated plans of different workloads, show
that work sharing outperforms traditional multi query optimization
techniques that share work only across common subexpressions.
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