
Scalable and Adaptive Online Joins

Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Christoph Koch
{firstname}.{lastname}@epfl.ch

École Polytechnique Fédérale de Lausanne

ABSTRACT
Scalable join processing in a parallel shared-nothing environ-
ment requires a partitioning policy that evenly distributes
the processing load while minimizing the size of state main-
tained and number of messages communicated. Previous
research proposes static partitioning schemes that require
statistics beforehand. In an online or streaming environ-
ment in which no statistics about the workload are known,
traditional static approaches perform poorly.

This paper presents a novel parallel online dataflow join
operator that supports arbitrary join predicates. The pro-
posed operator continuously adjusts itself to the data dy-
namics through adaptive dataflow routing and state repar-
titioning. The operator is resilient to data skew, maintains
high throughput rates, avoids blocking behavior during state
repartitioning, takes an eventual consistency approach for
maintaining its local state, and behaves strongly consistently
as a black-box dataflow operator. We prove that the opera-
tor ensures a constant competitive ratio 3.75 in data distri-
bution optimality and that the cost of processing an input
tuple is amortized constant, taking into account adaptivity
costs. Our evaluation demonstrates that our operator out-
performs the state-of-the-art static partitioning schemes in
resource utilization, throughput, and execution time.

1. INTRODUCTION
To evaluate joins with arbitrary predicates on very large

volumes of data, previous works [32, 26] propose efficient
partitioning schemes for offline theta-join processing in par-
allel environments. The goal is to find a scheme that achieves
load balancing while minimizing duplicate data storage and
network traffic. Offline approaches require that all data is
available beforehand and accordingly perform optimization
statically before query execution.

However, online and responsive analysis of fresh data is
necessary for an increasing number of applications. Busi-
nesses, engineers and scientists are pushing data analytics
engines earlier in their workflows for rapid decision making.
For example, in algorithmic trading, strategy designers run

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 6
Copyright 2014 VLDB Endowment 2150-8097/14/02.

online analytical queries on real-time order book data. Or-
der books consist of frequently changing orders waiting to
be executed at a stock exchange. Some orders may stay
in the order book relatively long before they are executed
or revoked. Orders are executed through a matching engine
that matches between buyer and seller trades using sophisti-
cated matching rules. A broad range of applications, includ-
ing fraud-detection mining algorithms, interactive scientific
simulations, and intelligence analysis are characterized as
follows: They (i) perform joins on large volumes of data
with complex predicates; (ii) require operating in real-time
while preserving efficiency and fast response times; (iii) and
maintain large state, which potentially depends on the com-
plete history of previously processed tuples [9, 5].

Previous work on stream processing has received consid-
erable attention [2, 4], but is geared towards window-based
relational stream models, in which state typically only de-
pends on a recent window of tuples [9]. Although this sim-
plifies the architecture of the stream processing engine, it
is ineffective for emerging application demands that require
maintaining large historical states. Only recently, has this
concern been acknowledged and interest been raised in de-
vising scalable stateful operators for stream processing [9].

This motivates our work towards full-history theta-join
processing in an online scalable manner. In this context,
the traditional optimize-then-execute strategy is ineffective
due to lack of statistics such as cardinality information. For
pipelined queries, cardinality estimation of intermediate re-
sults is challenging because of the possible correlations be-
tween predicates [23, 33] and the generality of the join con-
ditions. Moreover, statistics are not known beforehand in
streaming scenarios, where data is fed in from remote data
sources [13]. Therefore, the online setting requires a ver-
satile dataflow operator that adapts to the data dynamics.
Adaptivity ensures low latency, high throughput, and effi-
cient resource utilization throughout the entire execution.

This paper presents a novel design for an intra-adaptive
dataflow operator for stateful online join processing. The
operator supports arbitrary join-predicates and is resilient
to data skew. It encapsulates adaptive state partitioning
and dataflow routing. The authors of [17] point out the
necessity of investigating systematic adaptive techniques as
current ones lack theoretical guarantees about their behav-
ior and instead rely on heuristic-based solutions. Therefore,
to design a provably-efficient operator we need to charac-
terize the optimality measures and the adaptivity costs of
the operator. This requires theoretical analysis and address-
ing several systems design challenges which we discuss while
outlining our main contributions.

441

1. Adapting the partitioning scheme requires state relo-
cation which incurs additional network traffic costs. Our
design employs a locality-aware migration mechanism that
incurs minimal state relocation overhead.
2. We present an online algorithm that efficiently decides
when to explore and trigger new partitioning schemes. An
aggressively adaptive approach has excessive migration over-
heads, whereas a conservative approach does not adapt well
to data dynamics which results in poor performance and
resource utilization. Our presented algorithm balances be-
tween maintaining optimal data distribution and adaptation
costs. It ensures a constant competitive ratio (3.75) in data
distribution optimality and amortized linear communication
cost (including adaptivity costs).
3. Previous adaptive techniques [31, 24, 29] follow a gen-
eral blocking-approach for state relocation that quiesces in-
put streams until relocation ends. Blocking approaches are
not suitable for online operators that maintain large states
because they incur lengthy stalls. Our design adopts a non-
blocking protocol for migrations that seamlessly integrates
state relocation with on-the-fly processing of new tuples
while ensuring eventual consistency and result correctness.
4. Statistics are crucial for optimizing the partitioning scheme.
The operator must gather them on-the-fly and constantly
maintain them up-to-date. Traditionally, adaptive solutions
delegate this to a centralized entity [31, 24, 19, 40] which
may be a bottleneck if the volume of feedback is high [17].
Our approach for computing global statistics is decentralized
requiring no communication or synchronization overhead.

Next we discuss related work; §3 introduces the back-
ground and concepts used throughout the rest of the paper
and it outlines the problem and the optimization criteria; §4
presents the adaptive data-flow operator and its design in
detail; §5 evaluates performance and validates the presented
theoretical guarantees; and §?? concludes.

2. RELATED WORK
Parallel Join Processing. In the past decades, much ef-
fort has been put into designing distributed and parallel
join algorithms to cope with the rapid growth of data sets.
Graefe [18] gives an overview of such algorithms. Schnei-
der et al. [30] describe and evaluate several parallel equi-
join algorithms that adopt a symmetric partitioning method
which partitions input on the join attributes, whereas Sta-
mos et al. [32] present the symmetric fragment-and-replicate
method to support parallel theta-joins. This method relies
on replicating data to ensure result completeness and on a
heuristic model to minimize total communication cost.
MapReduce Joins. MapReduce [11] has emerged as one
of the most popular paradigms for parallel computation that
facilitates scalable and parallel processing of large data. There
has been much work done towards devising efficient join
algorithms using this framework. Previous work focuses
primarily on equi-join implementations [3, 8, 28] by par-
titioning the input on the join key, whereas Map-Reduce-
Merge [41] supports other join predicates as well. However,
the latter requires explicit user knowledge and modifications
to the MapReduce model. Recently, Okcan et al. [26] pro-
posed techniques that supports theta-join processing with-
out changes to the model. Finally, Zhang et al. [42] extend
Okcan’s work to evaluate multi-way joins. All of the afore-
mentioned algorithms are offline and rely on static optimiza-
tion. They have a blocking behavior that is attributed either

to their design or to the nature of the MapReduce frame-
work. In contrast, this paper sets out to build an online
dataflow operator for scalable theta-join processing which
allows for early results and online adaptivity.
Online Join Algorithms. There has been great interest
in designing non-blocking join algorithms. The symmetric
hash join Shj [39] is one of the first along these lines to
support equi-joins. The family of ripple joins [20] general-
ize block nested loop join, index loop join, and hash join
to their online counterparts as well. However, these algo-
rithms require that relations fit in memory. Subsequently,
many works [37, 34, 14, 25] appeared which present mem-
ory overflow resolution techniques that allow parts of the
input stream to be spilled out to disk for later processing.
All the previous are local online join algorithms, and thus,
are orthogonal to our data-flow operator. In the presented
parallel operator, each machine can freely adopt any flavor
of the aforementioned non-blocking algorithms to perform
joins locally on its assigned data partition.
Stream Processing Engines. Distributed stream proces-
sors such as Borealis [2] and Stream [4] focus on design-
ing efficient operators for continuous queries. They assume
that data streams are processed in several sites, each of
which holds some of the operators. They are geared towards
window-based relational stream models, in which state typi-
cally only depends on a recent finite set of tuples [9]. In con-
trast, this paper is concerned with the design of a scalable
operator, as opposed to a centralized approach and it targets
stateful streaming queries which maintain large states, po-
tentially full historical data [9]. Castro et al. [9] introduce a
scale-out mechanism for stateful operators, however they are
limited to stream models with key attributes (equi-joins).
Adaptive Query Processing. Adaptive query processing
Aqp techniques cope their behavior, at run-time, to data
characteristics. There has been a great deal of work on cen-
tralized Aqp [7, 13, 21, 16] over the last few years. For
parallel environments, [17] presents a detailed survey. The
Flux operator [31] is the closest to our work. Flux is a
general adaptive operator that encloses adaptive state par-
titioning and routing. The operator is content-sensitive and
suitable for look-up based operators. Although in [31] the
authors focus on single-input aggregate operators [24], it
can support a restricted class of join predicates, e.g. equi-
join. Flux supports equi-joins under skewed data settings
but requires explicit user knowledge about partitions before
execution. In [19, 38], the authors present techniques to
support multi-way non equi-joins. All these approaches are
mainly applied to data streaming scenarios with finite win-
dow semantics. On the other hand, this paper presents an
adaptive dataflow operator for general joins. It advances the
state of the art in online equi-join processing in the presence
of data skew. And most importantly, the operator runs on
long running stateful, potentially full-history, queries [9, 5].
Eddies. Eddies [6, 12] are among the first adaptive tech-
niques known for query processing. Eddies act as a tuple
router that is placed at the center of a dataflow, intercept-
ing all incoming and outgoing tuples between operators in
the flow. Eddies observe the rates of all the operators and
accordingly makes decisions about the order at which new
tuples visit the operators. In principle, Eddies are able to
choose different operator orderings for each tuple within the
query processing engine to adapt to the current information
about the environment and data. Compared to our work,
this direction seeks adaptations at an orthogonal hierarchi-
cal level. It is concerned with inter-operator adaptivity as
opposed to our work on intra-operator adaptivity. More-

442

S

1

5

2

6

3

7

4

8

n=2

m=4
(b)

R
S

2
6
2
2
3
2

221 26 9 3 2

(a)

R

R
1

R
2

S1 S2 S3 S4

....

....

21

.... J..

21 J..

J Joiner Tasks

R S

⋈

J Reshuffler Tasks

(c)

Statistics
Manager

ControllerTuple
keys

Ri Sj

Scheme
Partitioner

A reshuffler task
with a controller

A joiner task

Figure 1: (a) R ./ S join-matrix example, gray cells satisfy
the 6= predicate. (b) a (2,4)-mapping scheme using J = 8
machines. (c) the theta-join operator structure.

over, the original Eddies architecture is centralized and can-
not be applied to a distributed setting in a straightforward
manner [17]. The work in [35, 43] leverages the Eddies de-
sign to the distributing setting but assumes window seman-
tics; tolerates loss of information; and does not investigate
adaptations on operators that hold internal state.

3. PRELIMINARIES
This section defines notations and conventions used through-

out the rest of this paper. It describes the data partitioning
scheme used by the dataflow operator, outlines the opera-
tor’s structure, and defines the optimization criteria.

3.1 Join Partitioning Scheme
We adopt and extend the join-matrix model [26, 32] to the

data streaming scenario. A join between two data streams R
and S is modeled as a join-matrixM. For row i and column
j, the matrix cellM(i , j) represents a potential otput result.
M(i , j) is true if and only if the tuples ri and sj satisfy the
join predicate. The result of any join is a subset of the cross-
product. Hence, the join-matrix model can represent any
join condition. Fig. 1a shows an example of a join-matrix
with the predicate 6=.

We assume a shared-nothing cluster architecture. J phys-
ical machines are dedicated to a single join operator. A
partitioning scheme maps matrix cells to machines for eval-
uation such that each cell is assigned to exactly one machine.
This ensures result completeness and avoids expensive post
processing or duplicate elimination. There are many possi-
ble mappings [26], however, we present a grid-layout parti-
tioning scheme which (i) ensures equal and minimum join
work distribution among all machines, (ii) incurs minimal
storage and communication costs, (iii) and has a symmet-
ric structure that lends itself to adaptivity. We refer the
interested reader to [15] for bounds, proofs, and compari-
son with previous partitioning approaches [26]. The scheme
can be briefly described as follows: the join-matrix M is
divided into J regions of equal area and each machine is
assigned a single region. As illustrated in Fig. 1b, the re-
lations are split into equally sized partitions R1, R2, . . . , Rn
and S1, S2, . . . , Sm where n·m = J . For every pair 1 ≤ i ≤ n
and 1 ≤ j ≤ m, there is exactly one machine storing both
partitions Ri and Sj . Accordingly, each machine evaluates
the corresponding Ri ./θ Sj independently. We refer to this
as the (n,m)-mapping scheme.

3.2 Operator Structure
As illustrated in Fig. 1c, the operator is composed of two

sets of tasks. The first set consists of joiner tasks that do

the actual join computation whereas the reshufflers set is
responsible for distributing and routing the tuples to the
appropriate joiner tasks. An incoming tuple to the operator
is randomly routed to a reshuffler task. One task among
the reshufflers, referred to as the controller, is assigned the
additional responsibility of monitoring global data statistics
and triggering adaptivity changes. Each of the J machines
run one joiner task and one resuffler task.

The reshufflers randomly divide incoming tuples uniformly
among partitions. Under an (n,m)-mapping scheme, an in-
coming r(s) tuple, is assigned a randomly chosen partition
Ri(Sj). This routing policy ensures load balance and re-
silience to data skew, i.e., content-insensitivity. For a large
number of input tuples, the numbers in each partition are
roughly equal. Thus, all bounds, later discussed, are meant
to approximately hold in expectation with high probability.

Exactly m joiners are assigned partition Ri and exactly
n joiners are assigned partition Sj . Therefore, whenever a
reshuffler receives a new R(S) tuple and decides that it be-
longs to partition Ri(Sj), the tuple is forwarded to m(n) dis-
tinct joiner tasks. Any flavor of non-blocking join algorithm,
e.g., [39, 37, 34, 14, 20], can be independently adopted at
each joiner task. Local non-blocking join algorithms tradi-
tionally operate as follows: when a joiner task receives a
new tuple, it is stored for later use and joined with stored
tuples of the opposite relation.

3.3 Input-Load Factor
Theta-join processing cost, in the presented model, is de-

termined by the costs of joiners receiving input tuples, com-
puting the join, and outputting the result. Under the pre-
sented grid-scheme, the join matrix is divided into congruent
rectangular regions. Therefore, the costs are the same for
every joiner. Since all joiners operate in parallel, we restrict
our attention to analyzing one joiner.

The join computation and its output size on a single joiner
are independent of the chosen mapping. This holds because
both quantities are proportional to the area of a single re-
gion, which is |R| · |S| /J . This is independent of n and m.
However, the input size corresponds to the semi-perimeter
of one region and is equal to sizeR · |R| /n + sizeS · |S| /m,
where sizeR(sizeS) is the size of a tuple of R(S). This also
represents the storage required by every joiner since each
received tuple is eventually stored. We refer to this value as
the input-load factor (ILF). This is the only performance
metric that depends on the chosen mapping. An optimal
mapping covers the entire join matrix with minimum ILF.
Minimizing the ILF maximizes performance and resource
utilization. This is extensively validated in our experiments
(§5) and is attributed to the following reasons: (i) there is a
monotonically increasing overhead for processing input tu-
ples per machine. The overhead includes demarshalling the
message; appending the tuple to its corresponding storage
and index; probing the indexes of the other relation; sorting
the input in case of sort-based online join algorithms [14, 25],
etc. Minimizing machine input size results in higher local
throughput and better performance. (ii) Minimizing stor-
age size per machine is also necessary, because performance
deteriorates when a machine runs out of main memory and
begins to spill to disk. Local non-blocking algorithms per-
form efficiently when they operate within the memory ca-
pacity. Although, they employ overflow resolution strategies
for large data, they persist to experience performance hits
and long delayed join evaluation [13]. (iii) Overall, minimiz-
ing the ILF results in minimum global duplicate storage and
replicated messages (J ·ILF). This maximizes overall opera-

443

S
R

<64GB>

<1
G
B
>

1 2 3 4 62 63 64

1

(a)

(b)<1GB>

<1
G
B
>

(c)

2 3 8

57 58 59 64

<8GB>

<1
/8
G
B
>

61

Figure 2: (a) join-matrix (b) (8, 8)-mapping scheme (c)
(1, 64)-mapping scheme.

tor performance and increases global resource utilization by
minimizing total storage and network traffic and thus pre-
venting congestion of resources. This is essential for cloud
infrastructures which typically follow pay-as-you-go policies.

Fig. 2 compares between two different mappings of a join-
matrix with dimensions 1GB and 64GB for streams R and S
respectively. Given 64 machines, an (8, 8)-mapping results
in an (8 1

8)GB ILF and a total of 520GB of replicated storage
and messages. Whereas a (1, 64)-mapping results in a 2GB
ILF and a sum of 128GB of replicated data. Since stream
sizes are dynamic and not known in advance, maintaining
an optimal (n,m)-mapping scheme throughout execution re-
quires adaptation and mapping changes.

4. INTRA-OPERATOR ADAPTIVITY
The goal of adaptive processing is, generally, dynamic

recalibration to immediately react to the frequent changes
in data and statistics. Adaptive solutions supplement reg-
ular execution with a control system that monitors per-
formance, explores alternative configurations and triggers
changes. These stages are defined within a cycle called the
Adaptivity Loop. This section presents the design of an adap-
tive dataflow theta-join operator that continuously modifies
its (n,m)-mapping scheme to reflect the optimal data as-
signment and routing policy. We follow a discussion flow
that adopts a common framework [13] that decomposes the
adaptivity loop into three stages: (i) The monitoring stage
that involves measuring data characteristics like cardinal-
ities. (ii) The analysis and planning stage that analyzes
the performance of the current (n,m)-mapping scheme and
explores alternative layouts. (iii) The actuation stage that
corresponds to migrating from one scheme to another with
careful state relocation.

4.1 Monitoring Statistics
In this stage, the operator continuously gathers and main-

tains online cardinality information of the incoming data.
Traditional adaptive techniques in a distributed environ-
ment [31, 24, 19, 40] either rely on a centralized controller
that periodically gathers statistics or on exchanging statis-
tics among peers [35, 43]. This may become a bottleneck
if the number of participating machines and/or the volume
of feedback collected is high [17]. In contrast, we follow a
decentralized approach, where reshufflers gather statistics
on-the-fly while routing the data to joiners. Since reshuf-
flers receive data that is randomly shuffled from the previ-
ous stages, the received local samples can be scaled by J
to construct global cardinality estimates (Alg. 1 lines 2,3).
These estimates can be reinforced with statistical estimation
theory tools [22] to provide confidence bounds. The advan-
tages of this design are three-fold: a) A centralized entity
for gathering statistics is no longer required, removing a

Algorithm 1 Controller Algorithm.
Input: Tuple t
Initialize: |R|, |S|, |∆R|, |∆S| ← 0;
1: function Update State(t)
2: if t ∈ R then |∆R| ← |∆R|+ J . Scaled increment.
3: else|∆S| ← |∆S|+ J

4: MigrationDecision(|R|, |S|, |∆R|, |∆S|)
5: Route t according to the current (n,m)-scheme.
6: end function

source of potential bottlenecks. Additionally, it precludes
any exchange communication or synchronization overheads.
b) This model can be easily extended to monitor other data
statistics, e.g., frequency histograms. c) The design sup-
ports fault tolerance and state reconstruction. When a con-
troller task fails, any other reshuffler task can take over.

4.2 Analysis and Planning
Given that global statistics are constructed in Alg. 1, the

controller is capable of monitoring the efficiency of the cur-
rent mapping scheme, and thus, determining the overall per-
formance of the operator. Furthermore, it checks for alterna-
tive (n,m)-mapping schemes that minimize the ILF (Alg. 1
line 4). If it finds a better one, it triggers the new scheme.
This affects the route of new tuples and impacts machine
state. Adopting this dynamic strategy reveals three chal-
lenges that need careful examination: a) Since the controller
is additionally a reshuffler task, it has the main duty of
routing tuples in parallel to exploring alternative mappings.
Thus, it has to balance between the ability to quickly react
to new cardinality information against the ability to pro-
cess new tuples rapidly (the classic exploration-exploitation
dilemma). b) Migrating to a new mapping scheme requires
careful state maintenance and transfer between machines.
This incurs non-negligible overhead due to data transmis-
sion over the network. The associated costs of migration
might outweigh the benefits if handled näıvely. c) An aggres-
sively adaptive control system might suffer from thrashing
and excessive migration overheads (quadratic costs) while a
conservative system does not adapt well to data dynamics.
Thus, the controller should be alert in choosing the moments
for triggering migrations.

In this section, we describe a constant-competitive algo-
rithm that decides when to explore and trigger new schemes
such that the total adaptation costs are amortized.

4.2.1 1.25-Competitive Online Algorithm
Alg. 2 decides the time points that explore and trigger

migration decisions. Right after an optimal migration, the
operator has received |R| and |S| tuples from the respective
relations. The algorithm maintains two counts |∆R| and
|∆S|, denoting the newly arriving tuples on both relations
respectively after the last migration. If either |∆R| reaches
|R| or |∆S| reaches |S|1, the algorithm explores alternative
mapping schemes and performs a migration, if necessary.

The two metrics of interest here are the ILF and the mi-
gration overhead. The aim of this section is to demonstrate
the following key result.

Theorem 4.1. Assume that the number of joiners J is
a power of two, the sizes for |R| and |S| are no more than
a factor of J apart, and that tuples from R and S have the
same size. For a system applying Alg. 2, the following holds:
1These conditions can be generalized to |∆R| = ε |R| or
|∆S| = ε |S|, where 0 < ε ≤ 1 trading off competitiveness
with costs. Further details and analyses can be found in [15].

444

Algorithm 2 Migration Decision Algorithm.
Input: |R|, |S|, |∆R|, |∆S|
1: function MigrationDecision(|R|, |S|, |∆R|, |∆S|)
2: if |∆R| ≥ |R| or |∆S| ≥ |S| then
3: Choose mapping (n,m) minimizing |R| /n+ |S| /m
4: Decide a migration to (n,m)
5: |R| ← |R|+ |∆R| ; |S| ← |S|+ |∆S|
6: |∆R| ← 0; |∆S| ← 0
7: end function

1. The ILF is at most 1.25 times that of the optimal mapping
at any point in time. ILF ≤ 1.25 · ILF∗, where ILF∗ is the
input-load factor under the optimal mapping at any point in
time. Thus, the algorithm is 1.25-competitive.
2. The total communication overhead of migration is amor-
tized, i.e., the cost of routing a new input tuple, including
its migration overhead, is O(1).

Input-Load Factor. We hereby analyze the behavior of
the ILF under the proposed algorithm. Since we assume
that size(r) = size(s), it follows that minimizing the ILF is
equivalent to minimizing (|R| /n+ |S| /m).

Lemma 4.1. If J is a power of two and it holds that 1/J ≤
|R| / |S| ≤ J , then under an optimal mapping (n,m),

1
2
|S|
m
≤ |R|

n
≤ 2 |S|

m
and 1

2
|R|
n
≤ |S|

m
≤ 2 |R|

n
.

Proof. An optimal mapping minimizes |R| /n+ |S| /m,
under the restriction that n · m = J . This happens when
|R| /n and |S| /m are closest to each other. Since J is a
power of two, by assumption, (thus, also n and m), it fol-
lows that under the optimal mapping |R| /n ≤ 2 |S| /m. As-
sume it were not the case, then |R| /n > 2 |S| /m. Under the
mapping (2n,m/2), both |R| /n and |S| /m are closer, yield-
ing a lower input-load factor, contradicting the optimality of
(n,m). Choosing such a mapping is possible, assuming that
1/J ≤ |R| / |S| ≤ J . The other inequality is symmetric.

This lemma is useful in proving all subsequent results.
The first important result is that the ILF is within a con-
stant factor from that of the optimal scheme. This is due to
the fact that Alg. 2 does not allow the operator to receive
many tuples without deciding to recalibrate. The following
theorem formalizes this intuition.

Lemma 4.2. If |∆R| ≤ |R| and |∆S| ≤ |S| and (n,m)
is the optimal mapping for (|R| , |S|) tuples, then the opti-
mal mapping for (|R| + |∆R| , |S| + |∆S|) is one of (n,m),
(n/2, 2m), and (2n,m/2).

Proof. Without loss of generality, assume that |∆S| ≥
|∆R|. It must be that an optimal mapping will not decrease
m (since |S| grew relative to |R|). Therefore, the optimal is
one of (n,m), (n/2, 2m), (n/4, 4m), . . . , etc. To prove that
the optimum is either (n,m) or (n/2, 2m), it is sufficient to
prove the following inequality

|R|+ |∆R|
n/2 + |S|+ |∆S|2m ≤ |R|+ |∆R|

n/4 + |S|+ |∆S|4m
|S|+ |∆S|

m
≤ 8(|R|+ |∆R|)

n

which means that the ILF under an (n/2, 2m)-mapping is
smaller than that under an (n/4, 4m)-mapping. This holds
because |S| /m ≤ 2 |R| /n (lemma 4.1), even if |∆S| = |S|
and |∆R| = 0. The case |∆R| ≥ |∆S| is symmetric.

Alg. 2 decides migration once |∆R| = |R| or |∆S| = |S|.
Therefore, lemma 4.2 implies that while the system is oper-
ating with the mapping (n,m), the optimum is one of (n,m),
(n/2, 2m), and (2n,m/2). This implies the following.

Lemma 4.3. If |∆R| ≤ |R| and |∆S| ≤ |S| and (n,m) is
the optimal mapping for (|R| , |S|) tuples, then under Alg. 2,
the input-load factor ILF never exceeds 1.25 · ILF∗. In other
words, the algorithm is 1.25-competitive.

Proof. By lemma 4.2, the optimal mapping is either
(n,m), (n/2, 2m) or (2n,m/2). If the optimal mapping
is (n,m) then ILF = ILF∗. Otherwise, the ratio can be
bounded as follows. Without loss of generality, assume that
the optimum is (n/2, 2m) then

ILF
ILF∗ ≤

(|R|+ |∆R|)/n+ (|S|+ |∆S|)/m
(|R|+ |∆R|)/(n/2) + (|S|+ |∆S|)/(2m)

where the constraints |∆R| /n ≤ |R| /n, |∆S| /m ≤ |S| /m
and those in lemma 4.1 must hold. All cardinalities are non-
negative. Consider the ratio as a function of the variables
|R| /n, |S| /m, |∆R| /n and |∆S| /m. The maximum value
of the ratio of linear functions in a simplex (defined by the
linear constraints) is attained at a simplex vertex. By ex-
haustion, the maximum occurs when |∆R| = 0, |∆S| = |S|
and |S| /m = 2 |R| /n. Substituting gives 1.25.

Migration Overhead. It remains to show that, under the
described algorithm, the migration overhead is amortized.
This requires showing that the migration process can be
done efficiently and that when a migration is triggered, enough
tuples are received to “pay” for this migration cost.

The migration of interest is the change from the (n,m)
to (n/2, 2m)-mapping (symmetrically, (n,m) to (2n,m/2)).
Migration can be done näıvely by repartitioning all previ-
ous states around the joiners according to the new scheme.
This approach unnecessarily congests the network and is
expensive. In contrast, we present a locality-aware migra-
tion mechanism that minimizes state transfer overhead. To
illustrate the procedure, we walk through an example. Con-
sider a migration from a (8, 2) to a (4, 4)-mapping scheme
(J = 16) as depicted in Fig. 3. Before the migration, each
joiner stores about an eighth of R and half of S. After the
migration, each joiner stores a quarter of R and only one
quarter of S. To adapt, joiners can efficiently and deter-
ministically discard a quarter of S (half of what they store).
However, tuples of R must be exchanged. In Fig. 3, join-
ers 1 and 2 store the “first” eighth of R while joiners 3 and
4 store the “second” eighth of R. Joiners 1 and 3 can ex-
change their tuples and joiners 2 and 4 can do the same
in parallel. Joiners 5 and 7, 6 and 8, and so forth operate
similarly in parallel. This incurs a total overhead of |R| /4
time units which is the bi-directional communication cost of
|R| /8. This idea can be generalized, yielding bounds on the
migration overhead.

Lemma 4.4. Migration from (n,m) to (n/2, 2m)-mapping
can be done with a communication cost of 2 |R| /n time units.
Similarly, migrating to (2n,m/2) incurs a cost of 2 |S| /m.

Proof. Without loss of generality, consider the migra-
tion to (n/2, 2m). No exchange of S state is necessary. On
the other hand, tuples of R have to be exchanged among
joiners. Before migration each of the J joiners had |R| /n
tuples from R, while after the migration, each must have
2 |R| /n. Consider one group of n joiners sharing the same
tuples from S (corresponding to a “column” in Fig. 3). These

445

15 16

13 14

1211

9 10

7 8

65

43

21

12

1615

11

14

10

13

9

65 7 8

4321

n=8

Relation S: Keep
 part i of n i/n

i/n Relation S:
Discard part i of n

Legend

8/8

7/8

6/8

5/8

4/8

3/8

2/8

1/8

1/2 2/2

4/8

7/8

3/8

8/8

1/8 2/8

5/8 6/8

2/4 2/4 4/44/4

3/41/41/4 3/4

2/21/22/21/2

m=2

m'=2*m=4

n'=n/2=4

i/n Relation R
part i of n

2 subgroups each of size
n/2=4 perform exchanges

RS

4

3

4

3

2 2

11

Mapping
Migration

RS

7/8

3/8

1/8

5/8

4/8

8/8

2/8

6/8

Figure 3: Migration from a (8, 2)- to a (4, 4)-mapping.

joiners, collectively, contain the entire state of R. They can
communicate in parallel with the other m−1 groups. There-
fore, we analyze the state relocation for one such group and
it follows that all groups behave similarly in parallel.

Divide the group into two subgroups of n/2 joiners. Num-
ber the joiners in each group 1, 2, . . . , n/2. Joiner pairs la-
beled i should exchange their tuples together. It is clear that
each pair of joiners labeled i ends up with a distinct set of
2 |R| /n tuples. Fig. 3 describes this exchange process. Each
of the pairs labeled i can communicate completely in paral-
lel. Therefore, the total migration overhead is 2 |R| /n, since
each joiner in the pair sends |R| /n tuples to the other.

Lemma 4.5. The cost of routing tuples and data migra-
tion is linear. The amortized cost of an input tuple is O(1).

Proof. Since all joiners are symmetrical and operate si-
multaneously in parallel, it suffices to analyze cost at one
joiner. Therefore, after receiving |∆R| and |∆S| tuples,
the operator spends at least max(|∆R| /n, |∆S| /m) units
of time processing these tuples at the appropriate joiners.
By assigning a sufficient amortized cost per time unit, the
received tuples pay for the later migration.

By lemma 4.2, the optimal mapping is (n,m), (n/2, 2m)
or (2n,m/2). If the optimal mapping is (n,m), then there
is no migration. Without loss of generality, assume that
|∆S| ≥ |∆R| and that the optimal mapping is (n/2, 2m).
Between migrations, max(|∆R| /n, |∆S| /m) time units elapse,
each is charged 7 units. One unit is used to pay for routing
and 6 are reserved for the next migration. The cost of mi-
gration by lemma 4.4 is 2(|R|+|∆R|)/n. The amortized cost
reserved for migration is 6 max(|∆R| /n, |∆S| /m). Since a
migration was triggered, either |∆R| = |R| or |∆S| = |S|. In
either case, it should hold that the reserved cost is at least
the migration cost, that is,

6 max(|∆R| /n, |∆S| /m) ≥ 2(|R|+ |∆R|)/n.

If |∆R| = R, then by substituting, the left hand side is
6 max(|∆R| /n, |∆S| /m) ≥ 6 |R| /n and the right hand side
is 2(|R| + |∆R|)/n = 4 |R| /n. Therefore, the inequality
holds. If |∆S| = S, then the left hand side is

6 max(|∆R| /n, |∆S| /m) ≥ 2 |∆R| /n+ 4 |S| /m.

Therefore, the left hand side is not smaller than the right
hand side, since 2 |S| /m ≥ |R| /n (by lemma 4.1). Thus, the
inequality holds in both cases. The cases, when |∆R| ≥ |∆S|
or when the optimal is (2n,m/2), are symmetric.

Lemmas 4.3 and 4.5 directly imply Theorem 4.1.

4.2.2 Generalization and Discussion
This section outlines the relaxation of the assumptions

in Theorem 4.1 while preserving the constant competitive-
ness and the amortized adaptivity costs. This is followed by
a discussion about including elasticity into the framework
while maintaining strong guarantees.
Relation Cardinality Ratio. Without loss of generality,
assume that |R| > |S|. Previously, the analysis assumed
that |R| ≤ J |S|. This can be relaxed by continuously
padding the smaller relation with dummy tuples to main-
tain the ratio less than J . This requires padding the relation
S with at most |R| /J ≤ T/J tuples, where T is the total
number of tuples |R| + |S|. Therefore, the total number of
tuples the operator handles, including dummy tuples, is at
most T +T/J = (1+1/J)T tuples. The ratio of the relation
sizes still respects the assumption. Therefore, the analysis
in the previous section holds except that the ILF now gets
multiplied by a factor of 1 + 1/J . This factor is at most 1.5
(since J ≥ 2). This factor tends to one as the number of
joiners increases. Therefore, the algorithm is still constant-
competitive, with the constant being 1.25 ·1.5 = 1.875. Sim-
ilarly, adding the dummy tuples multiplies the migration
costs by at most 1.5. Hence, the overhead remains linear.
Relative Tuple Sizes. To facilitate analysis we assumed
that tuples from R and S have the same size. To gener-
alize this, let the size of an R(S) tuple be τR(τS). An in-
put R tuple can be viewed as the reception of τR “unit”
tuples. Similarly an S tuple is τS unit tuples. The previ-
ous analysis holds except that migration decisions can be
slightly delayed. For example, if the migration decision is
supposed to happen after the reception of 5 unit tuples and
a tuple of size 1000 units is received, then the migration
decision is delayed by 995 units. Therefore, the ILF is in-
creased by at most an additive factor of max(τR, τS), i.e.,
ILF ≤ K · ILF∗ + max(τR, τS).
Number of Joiners. Until this point, we have assumed
that the number of available machines is a power of 2. Un-
der this scheme, at most half of the resources (R ∈ N+)
need to be discarded, and hence, both the joiner workload
and the ILF are at most doubled. Nevertheless, we describe
a simple extension to the scheme that exploits all resources
while providing strong guarantees. Assume that J ∈ N+,
then J has a unique decomposition into a sum of powers of
two. Let J = J1 + J2 + . . . + JG where each Ji is a power
of two. Accordingly, the machines are broken down into G
groups, where group i has Ji machines. There can be at
most dlog Je of such groups. Finally, each group operates
exactly as described previously. Fig. 4a illustrates an exam-
ple, given a pool of J = 20 machines, it is clustered into
two groups of sizes 16 and 4 which operate independently.
An incoming tuple is sent to all G groups to be joined with
all stored tuples. Only one group stores this tuple for join-
ing with future tuples. This is determined by computing a
pseudo-random hash such that the probability that group i
is chosen is equal to Pi = Ji/J . To guarantee correctness, it
is essential that if a pair of tuples are sent to two machines,
each belonging to different groups, that this pair of tuples
is received in the same order by both machines. With very
high probability, the mappings of two groups will be similar.
More specifically, for two groups with sizes J1 < J2, it will
hold that n2 (m2) is divisible by n1 (m1). Blocks of ma-
chines in the bigger group correspond to a single machine in
the smaller group (see Fig. 4a). In each such block, a single
machine does the task of forwarding all tuples to machines
within that block as well as the machine in the smaller group.

446

1 2 3

765

4

8

129 10 11

151413 16

1817

19 20

Reshufflers

J1=16

J2=4

P1=16/20

P2=4/22

(b)(a)

14

1615

4

13

11

12

3

76 9 10

8251

2/4 4/4 4/42/4

3/43/41/4 1/4

2/22/21/21/2

Expand

RS

43

21

2/
4

4/
4

4/
4

2/
4

3/
4

3/
4

1/
4

1/
4

2/
2

2/
2

1/
2

1/
21/2 2/2RS

2/
2

1/
2

J=4

J=16

Relation S: Keep
 part i of n i/n

i/n Relation S:
Discard part i of n

Legend

i/n Relation R: Keep
part i of n

i/n Relation R:
Discard part i of n

Figure 4: (a) decomposing J = 20 machines into indepen-
dent groups of 16 and 4 machines. (b) Elastic expansion
from 4 to 16 machines.

This ensures that machines get tuples in the same order at
the cost of tuple latency proportional to log J , since tuples
have to be propagated serially among log J groups of ma-
chines. Under this modified scheme, the total join work is
equally distributed among all joiners, the competitive ratio
of storage is at most doubled (3.75), and the total routing
cost, including migrations, is O(T log J). For further details
about these results and their proofs, we refer the interested
reader to the technical report [15].
Elasticity. In the context of online query processing, the
query planner may be unable to a-priori determine the num-
ber of machines J to be dedicated to a join operator. It is
thus desirable to allocate as few joiners as possible to the op-
erator while ensuring that the stored state on each machine
is reasonably maintained to prevent disk spills and perfor-
mance degradation. We hereby briefly describe a simple
extension that allows the operator to elastically scale-out as
required while maintaining all the theoretical bounds. For
joiners, designate a maximum capacity C of tuples (ILF)
per joiner. At the migration checkpoints (Alg. 2) and after
migration, if any joiner’s storage exceeds C/2, the operator
scales-out by splitting the state of every joiner to 4 joiners.
Each joiner distributes state to 3 new joiners as described
in Fig. 4b. Under the described extension, the competitive
ratio remains unchanged as before and the amortized costs
of scaling-out and adaptation remain linear. Due to space
constraints we refer the interested reader to [15] for further
details, analyses, and proofs.

4.3 Actuation
The previous section provides a high-level conceptual de-

scription of the algorithm. Migration decision points are
specified to guarantee a close-to-optimal ILF and linear amor-
tized adaptivity cost. This section describes the system-level
implementation of the migration process.

Previous work on designing adaptive operators [31, 24,
29] follow a general theme for state relocation. The follow-
ing steps give a brief description of the process: (i) Stall
the input to the machines that contain state to be repar-
titioned. The new input tuples are buffered at the data
sources. (ii) Machines wait for all in-flight tuples to arrive
and be processed. (iii) Relocate state. (iv) Finally, online
processing resumes. Buffered tuples are redirected to their
new location to be processed. This protocol is not suit-
able for large state operators. Its blocking behavior causes
lengthy stalls during online processing until relocation ends.

4.3.1 Eventually Consistent Protocol
It is essential for the operator to continue processing tu-

ples on-the-fly while performing adaptations. Achieving this
presents new challenges to the correctness of the results.
When the operator migrates from one partitioning scheme
Mi to another Mi+1, it undergoes a state relocation pro-
cess. During this, the state of all machines, within the oper-
ator, does not represent a state that is consistent with either
Mi or Mi+1. Hence, it becomes hard to reason about how
new tuples entering the system should be joined. This sec-
tion presents a non-blocking protocol that allows continuous
processing of new tuples during state relocation by reason-
ing about the state of any tuple circulating the system with
the help of epochs. This ensures that the system (i) is con-
sistent at all times except during migration, (ii) eventually
converges to the consistent target stateMi+1, and (iii) pro-
duces correct and complete join results in a continuous man-
ner. The operation of the system is divided into epochs. Ini-
tially, the system is in epoch zero. Whenever the controller
decides a mapping change, the system enters a new epoch
with incremented index. For example, if the system starts
with the mapping (8, 8), later migrates to (16, 4) and finally
migrates to (32, 2), the system went through exactly three
epochs. All tuples arriving between the first and the second
migration decision belong to epoch 1. All tuples arriving
after the last mapping-change decision belong to epoch 2.
Reshufflers and joiners are not instantaneously aware of the
epoch change, but continue to process tuples normally until
they receive an epoch change signal along with the new map-
ping. Whenever a reshuffler routes a tuple to joiners, it tags
it with the latest epoch number it is aware of. It is crucial
for the correctness of the scheme described shortly to guar-
antee that all machines are at most one epoch behind the
controller. That is, all machines operate on, at most, two
different epochs. This is, however, guaranteed theoretically
and formalized later in Theorem 4.4.

The migration starts by the controller making the deci-
sion. The controller broadcasts to all reshufflers the map-
ping change signal. When a reshuffler receives this signal,
it notifies all joiners and immediately starts sending tuples
in accordance to the new mapping. Joiners continuously
join incoming tuples and start exchanging migration tuples.
Once a joiner has received epoch change signals from all
reshufflers, it is guaranteed that it will receive no further
tuples tagged with the old epoch index. At that point, the
joiner proceeds to finalize the migration and notifies the con-
troller once it is done. The controller can only start a new
migration once all joiners notify it that they finished the
data migration. The subsequent discussion shows how join-
ers continue processing tuples while guaranteeing consistent
state and correct output.

A migration decision partitions the tuples into several
sets. During a migration, τ is the set of all tuples received
before the migration decision. µ is the set of all tuples that
are sent from one joiner to another (due to migration). The
set of new tuples received after the migration decision times-
tamp are either tagged with the old epoch index, referred
to as ∆, or with the new epoch index, referred to as ∆′.
Notice that µ ⊂ (τ ∪∆). To simplify notation, no distinc-
tion is made between tuples of R or S. For example, writing
∆ ./ ∆′ refers to (∆R ./ ∆′S) ∪ (∆S ./ ∆′R), where σR (σS)
refers to the tuples of R(S) in the set σ.

During the migration, joiners have tuples tagged with the
old epoch and the new epoch. Those tuples tagged with
the new epoch are already on the correct machines since the

447

Algorithm 3 Joiner-Epoch Algorithm.
Input: s signal
Initialize: Use HandleTuple1 to handle incoming tuples.
1: procedure Main(s)
2: if First Reshuffler Signal Received then
3: Send τ for migration.
4: else if All Reshuffler Signals Received then
5: Use HandleTuple2 to handle incoming tuples.
6: else if Migration Ended then
7: Run FinalizeMigration.
8: Use HandleTuple1 to handle incoming tuples.

Input: t an incoming tuple
9: procedure HandleTuple1(t)
10: if t ∈ µ then Output {t} 1 ∆′; µ← µ ∪ {t}
11: else if t ∈ ∆′ then Output {t} 1 (µ ∪∆′); ∆′ ← ∆′ ∪ {t}
12: Output {t} 1 Keep(τ ∪∆)
13: else if t ∈ ∆ then Output {t} 1 (τ ∪∆); ∆← ∆ ∪ {t}
14: if t ∈ Keep(∆) then Output {t} 1 ∆′

15: if t ∈ Migrated(∆) then Send {t} for migration
Input: t an incoming tuple
16: procedure HandleTuple2(t)
17: if t ∈ µ then Output {t} 1 ∆′; µ← µ ∪ {t}
18: else if t ∈ ∆′ then Output {t} 1 (µ ∪∆′); ∆′ ← ∆′ ∪ {t}
19: Output{t} 1 Keep(τ ∪∆)
20: procedure FinalizeMigration
21: Send(Ack) signal to coordinator
22: τ ← Keep(τ ∪∆) ∪ µ ∪∆′
23: ∆← ∅; ∆′ ← ∅; µ← ∅

reshuffler sent them according to the new mapping. Joiners
should redistribute the tuples tagged with old labels accord-
ing to the new mapping. The set of tuples tagged with the
old label is exactly τ ∪∆. Joiners discard portions and send
other portions to the other machines. The discarded tu-
ples are referred to as Discard(τ ∪ ∆). For convenience,
(τ ∪ ∆) − Discard(τ ∪ ∆) is referred to as Keep(τ ∪ ∆).
The migrated tuples are Migrated(τ ∪∆) which coincides
exactly with µ. Keep(τ) refers to tuples in Keep(τ ∪∆)∩τ .
The same holds for Discard, Migrated and the set ∆.

Definition 4.2. A migration algorithm is said to be cor-
rect if right after the completion of a migration, the output
of the system is exactly (τ ∪∆ ∪∆′) ./ (τ ∪∆ ∪∆′).

During the migration, the output may be incomplete.
Therefore, completeness and consistency are defined only
upon the completion of the migration. The complete out-
put is the join of all tuples that arrived to the system be-
fore (τ) and after the migration decision (∆ ∪ ∆′). Alg. 3
describes the joiner algorithm whose output is provably cor-
rect. For the proof of correctness, we provide an alternative
characterization of the output.

Lemma 4.6.

(τ ∪∆ ∪∆′) ./ (τ ∪∆ ∪∆′)

is equivalent to the union of (1) τ ./ τ , (2) ∆ ./ ∆, (3) τ ./
∆, (4) ∆′ ./ µ, (5) ∆′ ./ Keep(∆), (6) ∆′ ./ Keep(τ), and
(7) ∆′ ./ ∆′.

Proof. Since set union distributes over join, the result
can be rewritten as,

(τ ./ τ)∪(τ ./ ∆)∪(τ ./ ∆′)∪(∆ ./ ∆)∪(∆ ./ ∆′)∪(∆′ ./ ∆′).

Subsets (1), (2), (3) and (7) appear directly in the expres-
sion. It remains to argue that ∆′ ./ (τ ∪ ∆) is equal to
∆′ ./ (µ∪Keep(τ ∪∆)). This follows directly from the cor-
rectness of the migration. τ ∪∆ is the set of tuples labeled
with the old epoch, while (µ ∪ Keep(τ ∪ ∆)) is the same
set distributed differently between the machines according
to the new mapping.

Alg. 3 exploits this equivalence to continue processing tu-
ples throughout migration. Informally, parts (1), (2) and
(3) are continuously computed in HandleTuple1 whereas,
(4), (5), (6) and (7) are continuously computed in both
HandleTuple1 and HandleTuple2.

Theorem 4.3. Alg. 3 produces the correct and complete
output and ensures eventually consistent state for all joiners.

Proof. First, it is easy to see that the data migration
is performed correctly. τ is sent immediately at the very
beginning (line 3). Tuples of ∆ are sent as they are received
(line 15). Finally, the discards are done once the migration
is over (line 22). By lemma 4.6, the result is the union of:
1. τ ./ τ . This is computed prior to the start of migration.
2. (∆ ./ ∆)∪(τ ./ ∆). ∆ is initially empty. Tuples are only
added to it in line 13. Every added tuple gets joined with
all previously added tuples to ∆ and to all tuples in τ (also
in line 13). It follows that this part of the join is computed.
τ never changes until the migration is finalized.
3. ∆′ ./ (µ ∪Keep(τ ∪∆)). Whenever a tuple is added to
∆′ (in lines 11 and 18), it gets joined with µ∪Keep(τ ∪∆)
(lines 11, 12, 18 and 19). Whenever a tuple is added to
µ (lines 10 and 17), it gets joined with ∆′. Furthermore,
tuples added to ∆ are joined with ∆′ if they are in Keep(∆)
(line 14). τ never changes until the migration ends.
4. ∆′ ./ ∆′. Initially ∆′ is empty. Tuples get added to it in
lines 11 and 18. Whenever a tuple gets added, it gets joined
with all previously added tuples (lines 11 and 18).

Therefore, all parts are computed by the algorithm (com-
pleteness). Since the analysis covers all the lines that per-
form a join, it follows that each of the 4 parts of the result is
output exactly once (correctness). Thus, the result of the al-
gorithm is correct right after migration is complete. Tuples
tagged with the old epoch (τ and ∆) are migrated correctly.
Tuples tagged with the new epoch (∆′) are immediately sent
to machines according to the new scheme. Therefore, at the
end of migration, the state of all joiners is consistent with
the new mapping.

4.3.2 Theoretical Guarantees Revisited
The guarantees given in Theorem 4.1 assume a blocking

operator. During migration, it is required that no tuples
are received or processed. However, Alg. 3 continuously
processes new tuples while adapting. We set the joiners to
process migrated tuples at twice the rate of processing new
incoming tuples. We show that, under these settings, the
proven guarantees hold. It is clear that the amortized cost
is unchanged and remains linear because incoming tuples
continue to “pay” for future migration costs. The results for
competitiveness, on the other hand, need to be verified.

Theorem 4.4. With the non-blocking scheme Alg. 3, the
competitive ratio ensured by Theorem 4.1 remains 1.252.

Proof. We prove that the numbers of tuples, received
during migration, |∆R| and |∆S|, are bounded by |R| and
|S|, respectively. Hence, the 1.25-competitiveness follows
immediately (by lemma 4.3).

Consider a migration decision after the system has re-
ceived |R| and |S| tuples from R and S. Let the current
mapping be (n,m). Lemma 4.2 asserts that the optimal
2Notice that Theorem 4.4 is based on the assumptions made
in Theorem 4.1. However, it naturally follows, that if any of
the assumptions are relaxed the competitive ratio is changed
accordingly as described in §4.2.2.

448

Query Join Predicate
EQ5 (Region1Nation1Supplier)1Lineitems Equi-join
EQ7 (Supplier1Nation)1Lineitems Equi-join
BNCI Lineitems1Lineitems Band-join
BCI Lineitems1Lineitems Band-join

Fluct-join Lineitems1Orders Equi-join

Table 1: Join Queries

mapping is one of (n,m), (n/2, 2m) and (2n,m/2). This is
trivially true for the first migration. Since we prove below
that |∆R| and |∆S| are bounded by |R| and |S|, this also
holds for all subsequent migrations, inductively. Without
loss of generality, let the chosen optimal mapping for a sub-
sequent migration be (n/2, 2m). The migration process lasts
for 2 |R| /n time units (by lemma 4.4). Alg. 3 processes new
tuples at half the rate of processing migrated tuples. Thus,
during migration, the operator receives at most 1/2 · (n/2)
new tuples from R and 1/2 · (2m) from S per time unit.
Hence, it holds that,

|∆R| ≤ 2|R|
n
· n4 < |R| and |∆S| ≤ 2|R|

n
·m ≤ |S|

m
·m = |S|

where the last inequality holds by lemma 4.1 (with the
optimal being (n/2, 2m) instead of (n,m)).

5. EVALUATION
Environment. Our experimental platform consists of an
Oracle Blade 6000 Chassis with 10 Oracle X6270 M2 blade
servers. Each blade has two Intel Xeon X5675 CPUs run-
ning at 3GHz, each with 6 cores and 2 hardware threads
per core, 72GB of DDR3 RAM, 4 SATA 3 hard disks of
500GB each, and a 1Gbit Ethernet interface. All blades run
Solaris 10, which offers Solaris Zones, a native resource man-
agement and containment solution. Overall, there are 220
virtual machines available exclusively for our experiments,
each with its own CPU hardware thread and dedicated mem-
ory resources. There are 20 separate hardware threads for
running instances of the host operating system.
Datasets. For the evaluation setup, we use the TPC-H
benchmark [1]. We employ the TPC-H generator proposed
by [10] to generate databases with different degrees of skew
under the Zipf distribution. The degree of skew is adjusted
by choosing a value for the Zipf skew parameter z. We
experiment on five different skew settings Z0, Z1, Z2, Z3, Z4
which correspond to z = 0, z = 0.25, z = 0.5, z = 0.75 and
z = 1.0 respectively. We build eight databases with sizes
8, 10, 20, 40, 80, 160, 320, and 640GB.
Queries. We experiment on four join queries, namely, two
equi-joins from the TPC-H benchmark and two synthetic
band-joins. The equi-joins, EQ5 and EQ7 , represent the
most expensive join operation in queries Q5 and Q7 respec-
tively from the benchmark. All intermediate results are ma-
terialized before online processing. Moreover, the two band-
joins depict two different workload settings. a) BCI is a
high-selectivity join query that represents a computation-
intensive workload, and b) BNCI is a low-selectivity join
query that corresponds to a non-computation-intensive work-
load. The output of BCI is three orders of magnitude bigger
than its input size, whereas the output of BNCI is an order
of magnitude smaller. Both join queries are described in [15]
and all query characteristics are summarized in Table 1.
Operators. To run the testbed, we implement Squall3, a
distributed online query processing engine built on Storm4,
3https://github.com/epfldata/squall/wiki
4https://github.com/nathanmarz/storm

EQ5 EQ7
Zipf SHJ Dynamic StaticMid SHJ Dynamic StaticMid

Z = 0 79 168 838∗ 98 192 210
Z = 1 79 176 851∗ 159 183 301
Z = 2 2742∗ 158 1425∗ 191 369 462
Z = 3 4268∗ 212 2367∗ 5462∗ 334 2610∗
Z = 4 5704∗ 203 2849∗ 6385∗ 415 3502∗

* Overflow to disk.

Table 2: Runtime in secs.

Twitter’s backend engine for data analytics. The engine is
based on Java and runs on JRE v1.7. Throughout the dis-
cussion, we use four different dataflow operators: (i) Stat-
icMid, a static operator with a fixed (

√
J,
√
J)-mapping.

This scheme assumes that both input streams have the same
size and lies in the center of the (n,m)-mapping spectrum.
(ii) Dynamic, our adaptive operator, initialized with the
(
√
J,
√
J)-mapping scheme. (iii) StaticOpt, another static

operator with a fixed optimal mapping scheme. This re-
quires knowledge about the input stream sizes before ex-
ecution, which is practically unattainable in an online set-
ting. (iv) SHJ, the parallel symmetric hash-join operator de-
scribed in [18]. This operator can only be used for equi-join
predicates and it is content-sensitive as it partitions data on
the join key. StaticMid, assumes as a best guess, that the
streams are equal in size; hence it has a square grid partition-
ing scheme, i.e., (

√
J,
√
J). Comparing against StaticOpt

shows that our operator does not perform much worse than
an omniscient operator with oracle knowledge about stream
sizes, which are unknown beforehand. Joiners perform the
local join in memory, but if it runs out of memory it begins
spilling to disk. For this purpose, we integrated the oper-
ators with the back-end storage engine BerkeleyDB [27].
We first experimentally verify that, in case of overflow to
disk, machines suffer from long delayed join evaluation and
performance hits. Then, for a more fair comparison, we in-
troduce more memory resources, such that all operations fit
in memory if possible. The heap size of each joiner is set to
2GB. As indexes, joiners use balanced binary trees for band
joins and hashmaps for equi-joins. Input data rates are set
such that joiners are fully utilized.

5.1 Skew Resilience
Table 2 shows results for running joins EQ5 and EQ7 with

different skew settings of the 10G dataset. It compares the
performance of our Dynamic operator against the SHJ op-
erator using 16 machines. We report the final execution
time. We observe that SHJ performs well under non-skewed
settings as it evenly partitions data among machines and
does not replicate data. On the other hand, the Dynamic
operator, distributes workload fairly between machines, but
pays for the unnecessary overhead of replicating data. As
data gets skewed, SHJ begins to suffer from poor parti-
tioning and unbalanced distribution of data among joiners.
Thus, the progress of join execution is dominated by a few
overwhelmed workers, while the remaining starve for more
data. The busy workers are congested with input data and
must overflow to disk, hindering the performance severely.
In contrast, the Dynamic operator is resilient to data skew
and persists to partition data equally among joiners.

5.2 Performance Evaluation
We analyze in detail the performance of static dataflow

operators against their adaptive counterpart. We report the
results for EQ5 and EQ7 on a Z4 10G dataset and of BNCI

449

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 20 40 60 80 100

In
p

u
t-

L
o

a
d

-F
a

c
to

r
(M

B
)

Percentage of Input Stream Processed

SHJ
StaticMid
Dynamic
StaticOpt

(a) EQ5 Input-Load Factor.

 0

 500

 1000

 1500

 2000

 2500

Q5 Q7 BNCI BCI
 0

 20

 40

 60

 80

 100

 120

In
p

u
t-

L
o

a
d

-F
a

ct
o

r
(M

B
)

T
o

ta
l

C
lu

st
er

 S
to

ra
g

e
C

o
n

s.
 (

G
B

)

StaticMid
Dynamic
StaticOpt

(b) Final Input-Load Factor.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100
 0

 1000

 2000

 3000

 4000

 5000

 6000

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
s)

S
H

J
 E

x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
s)

Percentage of Input Stream Processed

SHJ
StaticMid
Dynamic
StaticOpt

(c) EQ5 Execution Time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q5 Q7 BNCI BCI

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
)

x10

StaticMid
Dynamic
StaticOpt

(d) Total Execution Time.

 0

 2

 4

 6

 8

 10

 12

Q5 Q7 BNCI BCI

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

(T
u

p
le

s/
S

ec
)

x10
5

x10
5

x10
4

x10
7

SHJ
StaticMid
Dynamic
StaticOpt

(e) Operator Throughput.

 0

 20

 40

 60

 80

 100

 120

Q5 Q7 BNCI BCI

L
a

te
n

c
y
 (

m
s)

StaticMid
Dynamic
StaticOpt

(f) Tuple Latency.

 0

 500

 1000

 1500

 2000

 2500

(1,64) (2,32) (4,16) (8,8)

 0

 20

 40

 60

 80

 100

 120

In
p

u
t-

L
o

a
d

-F
a

ct
o

r
(M

B
)

T
o

ta
l

C
lu

st
er

 S
to

ra
g

e
C

o
n

s.
 (

G
B

)

Optimal mappings

StaticMid
Dynamic
StaticOpt

(g) Final Input-Load Factor.

 0

 1

 2

 3

 4

 5

 6

 7

(1,64) (2,32) (4,16) (8,8)A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

(T
u

p
le

s/
S

ec
)

Optimal mappings

x10
4

x10
4

x10
5

x10
5

StaticMid
Dynamic
StaticOpt

(h) Operator Throughput.

 0

 100

 200

 300

 400

 500

 600

80GB/16 160GB/32 320GB/64 640GB/128

(M
in

ut
es

)

Dataset Size / # of Machines

 0
 100
 200
 300
 400
 500
 600
 700

10GB/16 20GB/32 40GB/64 80GB/128

(S
ec

on
ds

)
Ex

ec
ut

io
n

Ti
m

e

In-Memory Computation

Out-Of-Core Computation

TPCH5
TPCH7

BNCI

(i) Total Execution Time.

 0
 5

 10
 15
 20
 25
 30
 35

Q5 Q7 BNCI

x103

x103

x102

80GB/16
160GB/32
320GB/64

640GB/128

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Q5 Q7 BNCI

x103

x103

x102

x105

x105

x104

Av
er

ag
e

Th
ro

ug
hp

ut
 (T

up
le

s/
Se

c)

In-Memory Computation

Out-Of-Core Computation

10GB/16
20GB/32
40GB/64

80GB/128

(j) Operator Throughput.
Number of Tuples Processed

k=8

 0
 2
 4
 6
 8

103 104 105 106 107 108

 1

 1.5

k=6

 2
 4
 6

 1

 1.5

k=4
 2
 4

 1

 1.5

k=2

|R
|/|

S|
 R

at
io

C
om

pe
tit

iv
e

Ra
tio

Initiate
Adaptivity

|R|/|S|Competitive Ratio
 2

 1

 1.5

(k) ILF/ILF* Ratio.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
s)

Percentage of Input Stream Processed

k = 2

k = 4

k = 6

k = 8

(l) Execution Time.

Figure 5: Performance Evaluation

and BCI on a uniform (Z0) 10G dataset. We start by com-
paring performance using 16 machines. As illustrated in
Table 2, Dynamic operates efficiently, whereas StaticMid
consistently performs worse. For skewed data, the latter
suffers from very high values of ILF, and thus, overflows to
disk, hindering the performance drastically. For a fair com-
parison, we increase the number of machines to 64 such that
StaticMid is given enough resources. Under this setting,
StaticMid has a fixed (8, 8)-mapping scheme, whereas the
optimal mapping scheme for all joins is (1, 64). Our results
show that Dynamic behaves roughly the same as Stati-
cOpt. This is attributed to the fact that Dynamic migrates
to the optimal mapping scheme at early stages. For com-
pleteness, we also include the results for EQ5 and EQ7 using
Shj. The operator overflows to disk due to high data skew.
Input-Load Factor. As described in §3.3, different map-
pings incur different values for the input-load factor. Exam-
ining the average input-load factor for each operator shows
that the growth rate of the ILF is linear over time. Due
to the lack of space, we illustrate this behavior for EQ5
only. Fig. 5a plots the maximum size of ILF per machine
against the percentage of total input stream processed. Shj
and StaticMid suffer from a larger growth rate than Dy-
namic. Specifically, their rates are 27, 14 and 2MB per 1%
input stream processed, respectively. The graphs depicted
in Fig. 5b report on the final average ILF per machine for
all the join queries. StaticMid is consistently accompanied
with larger ILF values. Its ILF is about 3 to 7 times that of
Dynamic. The optimal mapping (1, 64) lies at one end of
the mapping spectrum and is far from that of StaticMid.

And Shj is up to 13 times that of the other operators.
§3.3 also emphasizes the fact that minimizing the ILF

maximizes resource utilization and performance. This is due
to the fact that higher ILF values also imply (i) unnecessary
replicated data stored around the cluster, (ii) more dupli-
cate messages sent congesting the network, and (iii) addi-
tional overhead for processing and housekeeping replicated
data at each joiner. In what follows, we measure the impact
of ILF on overall operator performance.
Resource Utilization. Fig. 5b also shows the total clus-
ter storage consumption (GB), as shown on the right axis.
StaticMid’s fixed partitioning scheme misuses allocated re-
sources as it unnecessarily consumes more storage and net-
work bandwidth to spread the data. Moreover, it requires
four times more machines (64) than Dynamic to operate
fully in memory (16 machines used in Table 2). Shj could
not fully operate in memory even with 64 machines. Dy-
namic performs efficiently in terms of resource utilization.
This is essential for cloud infrastructures which typically fol-
low pay-as-you-go policies.
Execution Time. Fig. 5c shows the execution time to pro-
cess the input stream for query EQ5 . The other join queries
are similar in behavior and we omit them due to the lack
of space. Fig. 5d shows the total execution time for all the
join queries. We observe that execution time is linear in the
percentage of input stream processed. The ILF has a deci-
sive effect on processing time. The rigid assignment (8, 8) of
StaticMid yields high ILF values and leads to consistently
worse performance. As ILF grows, the amount of data to
process, and hence, processing time increases. However, this

450

performance gap is not large when the join operation is com-
putationally intensive, i.e., BCI in Fig. 5d. The execution
time for SHJ, shown at the right axis of Fig. 5c, is two
orders of magnitude more, illustrating that poor resource
utilization may push the operator to disk spills, hindering
the performance severely. In all cases, the adaptivity of Dy-
namic allows it to perform very close to StaticOpt.
Average Throughput and Latency. Fig. 5e shows global
operator throughput. For all queries, the throughputs of
Dynamic and StaticOpt are close. They are at least twice
that of StaticMid, and two orders of magnitude more than
that of Shj, except for BCI where the difference is slight.
This validates the fact that the ILF has a direct effect on
throughput, and that the effect is magnified when overflow
occurs. The throughput gap between operators depends on
the amount of join computation a machine has to perform
(e.g. compare BCI and BNCI). Fig 5f shows average tuple
latencies. We define latency as the difference between the
time an output tuple t is emitted and the time at which the
(more recent) corresponding source input tuple arrives to the
operator. The figure shows that the operator latency is not
greatly affected by its adaptivity. During state migration,
an additional network hop increases the tuple latency. Dy-
namic achieves average latency close to that of StaticMid
while attaining much better throughput.
Different Optimal Mappings. So far, the join queries we
experiment on capture the interesting case of an optimal
mapping that is far from the (

√
J,
√
J) scheme. As illus-

trated in Figs. 5g, 5h, we compare performance under vari-
ous optimal mapping settings. We achieve this by increasing
the size of the smaller input stream. In all cases, Dynamic
adjusts itself to the optimal mapping at early stages. Fig. 5g
shows how the input-load factor gap between Dynamic and
StaticMid decreases as the optimal mapping gets closer
to the (

√
J,
√
J)-mapping scheme. Similarly, Fig. 5h illus-

trates how the performance gap decreases between the two
operators. This validates the fact that the input-load factor
has a decisive effect on performance. In case of the opti-
mal (

√
J,
√
J)-mapping scheme, StaticOpt has the same

mapping as StaticMid, whereas Dynamic does not devi-
ate from its initial mapping scheme. However, it performs
slightly worse because adaptivity comes with a small cost.

5.3 Scalability Results
We evaluate the scalability of Dynamic. Specifically, we

measure operator execution time and throughput as both
the data-size and parallelism configurations grow. We eval-
uate weak scalability on 10GB/16 joiners, 20GB/32 joiners,
and so forth as illustrated in the in-memory computation
graphs of Figs. 5i, 5j. Ideally, while increasing the data-
size/joiners configuration, the input-load factor and the out-
put size should remain constant per joiner. However, the
input-load factor grows, preventing the operator to achieve
perfect scalability (same execution time and double aver-
age throughput as the data-size/joiners double). For exam-
ple, for BNCI , under the 20GB/32 configuration, the input
stream sizes are 0.68M (million) and 30M tuples, respec-
tively, yielding a (1, 32) optimal mapping scheme with an
ILF of 0.68M+30M/32 = 1.61M ·sizetuple per joiner. How-
ever, under the 40GB/64 configuration, the input stream
sizes are 1.36M and 60M, respectively, yielding a (1, 64) op-
timal mapping scheme with an ILF of 1.36M + 60M/64 =
2.29M ·sizetuple. In both cases, the output size per joiner is
the same (64K tuples). However, the ILF differs by 42% be-
cause of the replication of the smaller relation. The ILF for

the other two joins does not grow more than 9%. Accord-
ingly, the execution time (Fig. 5i) and the average through-
put (Fig. 5j) graphs show that EQ5 and EQ7 achieve almost
perfect scalability. In case of BNCI , a joiner processes more
input tuples as data grows. Overall, the operator achieves
good scalability taking into account the increase in ILF.
Secondary Storage. Out-of-core computation in Figs. 5i, 5j
illustrates performance under weak scalability with secondary
storage support. As before, all the queries achieve ideal scal-
ability, taking into account the increase in ILF. This vali-
dates the fact that our system can scale with large volumes
of data, and that it works well regardless of the local join
algorithm. However, compared to the in-memory results
(Fig. 5i), the performance drops by an order of magnitude
which validates the conclusion that secondary storage is not
perfectly suited for high-performance online processing.

5.4 Data Dynamics
In order to validate the proven theoretical guarantees, we

evaluate the performance of Dynamic under severe fluctu-
ations in data arrival rates. We simulate a scenario where
the cardinality aspect ratios keep on alternating between
k and 1/k where k is the fluctuation rate. Data from the
first relation is streamed into the operator until its cardinal-
ity is k times that of the second one. Then, the roles are
swapped, by quiescing the first input stream and allowing
data to stream in from the second until its cardinality is k
times that of the first. This fluctuation continues until the
streams are finished. We experiment on an 8G dataset us-
ing the Fluct-Join query defined in [15] on 64 machines. We
run the query under various fluctuation factor, specifically,
k = 2, k = 4, k = 6 and k = 8. We set the operator to
begin adapting after it has received at least 500K tuples,
corresponding to less than 1% of the total input.

Analysis. The first metric of interest is the ILF compet-
itive ratio of Dynamic in comparison to an oracle that as-
signs the optimal mapping, and thus optimal ILF*, instantly
with no cost at all times. Fig. 5k plots both the |R| / |S|,
on the left axis, and the ILF/ILF* ratio, on the right axis,
throughout query execution. In the graph, migration dura-
tions are depicted by the shaded regions. We observe that
the ratio never exceeds 1.25 at all times which validates the
result of Theorem 4.4. Even under severe fluctuations, the
operator is well advised in choosing the right moments to
adapt. Fig. 5l shows the execution time progress under dif-
ferent fluctuation factors. Although Dynamic undergoes
many migrations, it persists to progress linearly showing
that all migration costs are amortized. This verifies the re-
sults of Lemma 4.5 and Theorem 4.1.

5.5 Summary
Experiments show that our adaptive operator outperforms

practical static schemes in every performance measure with-
out sacrificing low latency. They emphasize the effect of ILF
on resource utilization and performance. This validates the
optimization goal of minimizing ILF as a direct performance
measure. Our operator ensures efficient resource utilization
in storage consumption and network bandwidth that is up
to 7 times less than non-adaptive theta-join counterparts.
Non-adaptivity causes misuse of allocated resources leading
to overflows. Even when provided enough resources, the
adaptive operator completes the join up to 4 times faster
with an average throughput of up to 4 times more. Adap-
tivity is achieved at the cost of slight increase in tuple la-
tency (by as little as 5ms and at most 20ms). Experiments
also show that our operator is scalable. Under severe data

451

fluctuations, the operator adapts to data dynamics with the
ILF remaining within the proven bounds from the optimum
and with amortized linear migration costs. Additionally, the
operator, being content-insensitive, is resilient to data skew
while content-sensitive operators suffer from overflows, hin-
dering performance by up to two orders of magnitude.

6. ACKNOWLEDGMENTS
This work was supported by ERC Grant 279804.

7. REFERENCES
[1] The TPC-H benchmark. http://www.tpc.org/tpch/.
[2] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J. Hwang, W. Lindner, A. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design
of the Borealis stream processing engine. In CIDR, pages
277-289, 2005.

[3] F. Afrati and J. Ullman. Optimizing joins in a MapReduce
environment. In EDBT, pages 99-110, 2010.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom.
STREAM: The Stanford data stream management system.
Technical report, Stanford InfoLab, 2004.

[5] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, R. Tibbetts. Linear road: a
stream data management benchmark. In VLDB, pages
480-491, 2004.

[6] R. Avnur and J. Hellerstein. Eddies: continuously adaptive
query processing. In SIGMOD, pages 261-272, 2000.

[7] S. Babu and P. Bizarro. Adaptive query processing in the
looking glass. In CIDR, pages 238-249, 2005.

[8] S. Blanas, J. Patel, V. Ercegovac, J. Rao, E. Shekita, and
Y. Tian. A comparison of join algorithms for log processing
in MapReduce. In SIGMOD, pages 975-986, 2010.

[9] R. Fernandez, M. Migliavacca, E. Kalyvianaki and
P. Pietzuch. Integrating scale out and fault tolerance in
stream processing using operator state management. In
SIGMOD, pages 725-736, 2013.

[10] S. Chaudhuri and V. Narasayya. TPC-D data generation
with skew.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI, pages 10-10, 2004.

[12] A. Deshpande and J. Hellerstein. Lifting the burden of
history from adaptive query processing. In VLDB, pages
948-959, 2004.

[13] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Foundations and Trends in Databases,
1(1):1-140, 2007.

[14] J. Dittrich, B. Seeger, D. Taylor, and P. Widmayer.
Progressive merge join: a generic and non-blocking
sort-based join algorithm. In VLDB, pages 299-310, 2002.

[15] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch.
Scalable and adaptive online joins. EPFL-REPORT 190035
Technical Report, 2013.

[16] A. Gounaris, N. Paton, A. Fernandes, and R. Sakellariou.
Adaptive query processing: A survey. In British National
Conference on Databases, pages 11-25, 2002.

[17] A. Gounaris, E. Tsamoura, and Y. Manolopoulos. Adaptive
query processing in distributed settings. Advanced Query
Processing, 36(1):211-236, 2012.

[18] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73-169, 1993.

[19] X. Gu, P. Yu, and H. Wang. Adaptive load diffusion for
multiway windowed stream joins. In ICDE, pages 146-155,
2007.

[20] P. Haas and J. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, pages 287-298, 1999.

[21] J. Hellerstein, M. Franklin, S. Chandrasekaran,
A. Deshpande, K. Hildrum, S. Madden, V. Raman, and
M. Shah. Adaptive query processing: Technology in
evolution. IEEE Data Engineering Bulletin, 23(2), 2000.

[22] J. Hellerstein, P. Haas, and H. Wang. Online aggregation.
In SIGMOD, pages 171-182, 1997.

[23] Y. Ioannidis and S. Christodoulakis. On the propagation of
errors in the size of join results. In SIGMOD, pages
268-277, 1991.

[24] B. Liu, M. Jbantova, and E. Rundensteiner. Optimizing
state-intensive non-blocking queries using run-time
adaptation. In ICDE Workshop, page 614-623, 2007.

[25] M. Mokbel, M. Lu, and W. Aref. Hash-Merge join: A
non-blocking join algorithm for producing fast and early
join results. In ICDE, pages 251-262, 2004.

[26] A. Okcan and M. Riedewald. Processing theta-joins using
MapReduce. In SIGMOD, pages 949-960, 2011.

[27] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In
Annual Technical Conference, USENIX, pages 43-43, 1999.

[28] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs. In
Annual Technical Conference, USENIX, pages 267-273,
2008.

[29] N. Paton, J. Buenabad, M. Chen, V. Raman, G. Swart,
I. Narang, D. Yellin, and A. Fernandes. Autonomic query
parallelization using non-dedicated computers: an
evaluation of adaptivity options. VLDBJ, 18(1):119-140,
2009.

[30] D. Schneider and D. DeWitt. A performance evaluation of
four parallel join algorithms in a shared-nothing
multiprocessor environment. In SIGMOD, pages 110-121,
1989.

[31] M. Shah, J. Hellerstein, S. Chandrasekaran, and
M. Franklin. Flux: An adaptive partitioning operator for
continuous query systems. In ICDE, pages 25-36, 2002.

[32] J. Stamos and H. Young. A symmetric fragment and
replicate algorithm for distributed joins. Transactions on
Parallel and Distributed Systems, 4(12):1345-1354, 1993.

[33] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s learning optimizer. In VLDB, pages 19-28, 2001.

[34] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and
N. Mamoulis. RPJ: producing fast join results on streams
through rate-based optimization. In SIGMOD, pages
371-382, 2005.

[35] F. Tian and D. DeWitt. Tuple routing strategies for
distributed eddies. In VLDB, pages 333-344, 2003.

[36] P. Upadhyaya, Y. Kwon, and M. Balazinska. A latency and
fault-tolerance optimizer for online parallel query plans. In
SIGMOD, pages 241-252, 2011.

[37] T. Urhan and M. Franklin. XJoin: A reactively-scheduled
pipelined join operator. IEEE Data Engineering Bulletin,
23(2):27-33, 2000.

[38] S. Wang and E. Rundensteiner. Scalable stream join
processing with expensive predicates: workload distribution
and adaptation by time-slicing. In EDBT, pages 299-310,
2009.

[39] A. Wilschut and P. Apers. Dataflow query execution in a
parallel main-memory environment. In Parallel and
Distributed Information Systems, pages 68-77, 1991.

[40] Y. Xing, S. Zdonik, and J. Hwang. Dynamic load
distribution in the Borealis stream processor. In ICDE,
pages 791-802, 2005.

[41] H. Yang, A. Dasdan, R. Hsiao, and D. Parker.
Map-Reduce-Merge: simplified relational data processing
on large clusters. In SIGMOD, pages 1029-1040, 2007.

[42] X. Zhang, L. Chen, and M. Wang. Efficient multi-way
theta-join processing using MapReduce. VLDBJ,
5(11):1184-1195, 2012.

[43] Y. Zhou, B. Ooi, and K. Tan. Dynamic load management
for distributed continuous query systems. In ICDE, 2005.

452

	Introduction
	Related Work
	Preliminaries
	Join Partitioning Scheme
	Operator Structure
	Input-Load Factor

	Intra-Operator Adaptivity
	Monitoring Statistics
	Analysis and Planning
	1.25-Competitive Online Algorithm
	redGeneralization and Discussion

	Actuation
	redEventually Consistent Protocol
	Theoretical Guarantees Revisited

	Evaluation
	Skew Resilience
	Performance Evaluation
	Scalability Results
	Data Dynamics
	Summary

	Acknowledgments
	References

