
Tracking Entities in the Dynamic World:
A Fast Algorithm for Matching Temporal Records

Yueh-Hsuan Chiang 1, AnHai Doan 2, Jeffrey F. Naughton 3

University of Wisconsin Madison
1210 W Dayton Street, Madison, WI 53706, USA

{1yhchiang, 2anhai, 3naughton}@cs.wisc.edu

ABSTRACT
Identifying records referring to the same real world entity over time
enables longitudinal data analysis. However, difficulties arise from
the dynamic nature of the world: the entities described by a tem-
poral data set often evolve their states over time. While the state of
the art approach to temporal entity matching achieves high accu-
racy, this approach is computationally expensive and cannot handle
large data sets. In this paper, we present an approach that achieves
equivalent matching accuracy but takes far less time. Our key in-
sight is “static first, dynamic second.” Our approach first runs an
evidence-collection pass, grouping records without considering the
possibility of entity evolution, as if the world were “static.” Then,
it merges clusters from the initial grouping by determining whether
an entity might evolve from the state described in one cluster to
the state described in another cluster. This intuitively reduces a
difficult problem, record matching with evolution, to two simpler
problems: record matching without evolution, then “evolution de-
tection” among the resulting clusters. Experimental results on sev-
eral temporal data sets show that our approach provides an order
of magnitude improvement in run time over the state-of-the-art ap-
proach while producing equivalent matching accuracy.

1. INTRODUCTION
Record matching is a critical and well known problem (see [7, 9]

for recent surveys). The vast majority of work in record matching
so far has assumed that the records come with no temporal informa-
tion. In practice, however, we often have temporal information in
the form of time stamps associated with records. Examples include
author records in DBLP [2], donor records in federal campaign fi-
nance data sets [3], and tweets [4]. For this sort of data, it is often
desirable to construct an entire time line for each entity by group-
ing records according to their associated entities over time [14]. For
example, grouping all mentions of a company in a Web achieve al-
lows us to understand how the company and its products were doing
over the years. Grouping all publication records according to their
authors allows us to view the publication history of each author.

In many cases, the entities described by a temporal data set may
change or evolve their attribute values over time. For example,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 6
Copyright 2014 VLDB Endowment 2150-8097/14/02.

Table 1: A list of records from DBLP.

rid eid name affiliation co-authors year
r1 e1 Wang Wei Concordia Univ Swamy M.N.S., Ahmad M.O., Wang Yuke 1999
r2 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O., Wang Y. 2000
r3 e2 Wang Wei Fudan University 2001
r4 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O., Wang Y. 2002
r5 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O. 2002
r6 e2 Wang Wei Fudan University Q. Yuan, Y. Lou, H. Zhou, B. Shi 2002
r7 e1 Wang Wei Univ of W Ontario Swamy M.N.S., Ahmad M.O. 2003
r8 e3 Wang Wei Zhejiang University Wei G., Song G., Zheng Y., Luan C., Zhu C. 2004
r9 e1 Wang Wei Univ of W Ontario Swamy M.N.S., Ahmad M.O. 2004
r10 e1 Wang Wei Purdue University Swamy M.N.S., Ahmad M.O. 2004
r11 e3 Wang Wei Zhejiang University Zheng Y., Song G. 2005
r12 e3 Wang Wei Zhejiang University Wei G., Wang G., Zheng Y. 2005
r13 e1 Wang Wei Purdue University Liu S., Bowen F., King B. 2006
r14 e1 Wang Wei Purdue University Liu S., King B. 2007

Table 2: Processing Table 1 by a non-temporal clustering algo-
rithm.

rid eid name affiliation co-authors year
r1 e1 Wang Wei Concordia Univ Swamy M.N.S., Ahmad M.O., Wang Yuke 1999
r2 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O., Wang Y. 2000
r4 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O., Wang Y. 2002
r5 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O. 2002
r7 e1 Wang Wei Univ of W Ontario Swamy M.N.S., Ahmad M.O. 2003
r9 e1 Wang Wei Univ of W Ontario Swamy M.N.S., Ahmad M.O. 2004

r10 e1 Wang Wei Purdue University Swamy M.N.S., Ahmad M.O. 2004

r3 e2 Wang Wei Fudan University 2001
r6 e2 Wang Wei Fudan University Q. Yuan, Y. Lou, H. Zhou, B. Shi 2002

r8 e3 Wang Wei Zhejiang University Wei G., Song G., Zheng Y., Luan C., Zhu C. 2004
r11 e3 Wang Wei Zhejiang University Zheng Y., Song G. 2005
r12 e3 Wang Wei Zhejiang University Wei G., Wang G., Zheng Y. 2005

r13 e1 Wang Wei Purdue University Liu S., Bowen F., King B. 2006
r14 e1 Wang Wei Purdue University Liu S., King B. 2007

people usually change their physical addresses or phone numbers
over time. In other cases, people may change their names after
getting married or divorced. Organizations may also change their
titles or trademarks after restructuring in their identities. For this
sort of data, it has been shown that approaches that use temporal
information may do better than approaches that do not [12].

EXAMPLE 1.1. Consider a small matching task derived from
the DBLP data set shown in Table 1. Here we would like to match
records according to their authors. In reality, these records de-
scribe three real world authors — e1, e2, and e3 — as indicated by
the eid field of the records. e1, e2 and e3 share the same value on
the name attribute, and they evolve their values on other attributes.
Clearly, if we ignore how entities might evolve over time, we are
likely to separate records that belong to the same real world en-
tity. For example, Table 2 shows a result obtained by a traditional
clustering technique from [11] where records belonging to e1 are
separated into two groups. 2

469

The typical solution to temporal record matching consists of two
major components. The first is a temporal model that captures how
entities might evolve their attribute values, and that is built using
a labeled data set. The second is a temporal clustering algorithm,
which processes records in a time-dependent order and collects ev-
idence of entity evolution. When determining whether two groups
of records refer to the same real world entity, it utilizes both the
usual similarity metrics and the temporal model with the collected
evidence to make its decision.

The accuracy of a temporal model relies on not only the training
data set but, more importantly, the quality of evolution evidence
collected by the temporal clustering algorithm [12]. Evolution ev-
idence, or evidence for short, is the intermediate clustering result
that can be used to infer entity evolution. In the ideal case, each
group of records in the intermediate clustering result should re-
flect the partial history of its associated entity over the time pe-
riod described by the time stamp associated with the records. In
Li’s pioneering work [12], the adjusted binding algorithm, a spe-
cialized fuzzy clustering algorithm that iteratively accumulates and
refines the collected evidence, outperforms existing non-temporal
algorithms with respect to matching accuracy.

However, collecting high quality evidence does not come for
free. The time complexity of adjusted binding is O(N3) in the
worst case, because N input records are compared with N fuzzy
clusters, and each fuzzy cluster contains up to N records. Accord-
ing to their experiments, the algorithm takes more than 10 minutes
to process fewer than 2000 records [12]. At this rate, assuming the
worst case complexity, it could take up to one week to process 20K
records and years to process 200K records. Even if this worst case
performance is unlikely, with linear scaling a 2M record data set
would take about a week. Thus it is not practical for any but the
smallest of data sets.

There are two ways to speed up the clustering process. The first
is to use fewer stages of clustering. However, since evidence from
later records may fix earlier mistakes [12], naive approaches that
use fewer stages of clustering will hurt matching accuracy. The
second is to consider fewer records or to use record signatures (that
summarize groups of records) in similarity computations. How-
ever, since the entities evolve and change states over time, how to
effectively construct a signature accurately that describe such an
evolving entity is non-trivial.

EXAMPLE 1.2. Consider again the example task shown in Ta-
ble 1. This time we use a single-phase temporal clustering algo-
rithm that processes records in increasing time. Then, after we
group r1 and r2 into the same cluster, we might mistakenly group
r3 together with {r1, r2} as we consider the possibility that their
associated author may change his affiliation within two years. This
mistake can be fixed by considering the later evidence described
in r4 and r5, from which we will know that the associated au-
thor is less likely to change his affiliation twice within two years.
However, fixing such mistakes typically requires multiple phases
of clustering. Table 3 shows the example result obtained by early
binding [12]. 2

So a reasonable question is: how can we efficiently cluster tem-
poral records without sacrificing matching accuracy? This paper
tries to answer this question and focuses on efficient temporal clus-
tering algorithms. We present SFDS, a two-phase clustering algo-
rithm that achieves the same matching accuracy as the state-of-the-
art temporal clustering algorithm but takes far less time. Our key
insight is “static first, dynamic second (hence the name SFDS.)”
That is, instead of facing the dynamic world directly, SFDS first
assumes entities do not evolve, as if the world were “static”, and

Table 3: Processing Table 1 by a single-phase temporal clustering
algorithm.

rid eid name affiliation co-authors year
r1 e1 Wang Wei Concordia Univ Swamy M.N.S., Ahmad M.O., Wang Yuke 1999
r2 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O., Wang Y. 2000
r3 e2 Wang Wei Fudan University 2001
r4 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O., Wang Y. 2002
r5 e1 Wang Wei Concordia University Swamy M.N.S., Ahmad M.O. 2002
r6 e2 Wang Wei Fudan University Q. Yuan, Y. Lou, H. Zhou, B. Shi 2002
r7 e1 Wang Wei Univ of W Ontario Swamy M.N.S., Ahmad M.O. 2003
r9 e1 Wang Wei Univ of W Ontario Swamy M.N.S., Ahmad M.O. 2004

r10 e1 Wang Wei Purdue University Swamy M.N.S., Ahmad M.O. 2004
r13 e1 Wang Wei Purdue University Liu S., Bowen F., King B. 2006
r14 e1 Wang Wei Purdue University Liu S., King B. 2007

r8 e3 Wang Wei Zhejiang University Wei G., Song G., Zheng Y., Luan C., Zhu C. 2004
r11 e3 Wang Wei Zhejiang University Zheng Y., Song G. 2005
r12 e3 Wang Wei Zhejiang University Wei G., Wang G., Zheng Y. 2005

focuses on collecting high quality evidence. In its first phase, it
identifies the potential states of each entity by grouping records
without considering the possibility of entity evolution. Then, in
its second phase, SFDS merges clusters from the initial grouping
by determining whether an entity might evolve from the states de-
scribed in one cluster into the states described in a second cluster.

SFDS improves run time efficiency in two main ways. First,
SFDS consists of only two stages of hard clustering: one for col-
lecting evolution evidence and the other for resolving ambiguity
caused by entity evolution. This is in contrast to the state-of-the-
art approach that consists of multiple stages of fuzzy clustering.
Second, SFDS uses signatures to speed up cluster-to-cluster sim-
ilarity computations, while the state of the art approach considers
the entire set of records in similarity computations. SFDS con-
structs a signature for each cluster formed in the first stage. In-
tuitively speaking, because this clustering stage does not consider
the possibility of evolution, these first-phase clusters correspond to
time intervals where entities did not change their states very much.
Then, in the second phase, each cluster maintains a set of signa-
tures. When two clusters are merged, the signature set of the re-
sulting cluster is formed by taking the union of the signature sets
of the two component clusters. Therefore, the hope is that such a
signature set will be able to accurately describe entities that evolve
and have multiple states over time.

Now we return to the question: how does SFDS efficiently match
temporal records without sacrificing matching accuracy? First, since
SFDS first runs an “evidence-collection” pass before handling en-
tity evolution, all evolution inferences are based on evidence col-
lected from all the records. This improves accuracy when determin-
ing whether to merge two groups of records. Second, SFDS divides
a difficult problem (record matching with evolution) into two sim-
pler problems (record matching without evolution, and “evolution
detection” between the resulting clusters).

In the rest of this paper, we give the problem definition and nec-
essary background in Section 2. Then we introduce SFDS in Sec-
tion 3. Section 4 introduces AFDS, an optimization of SFDS that
addresses a “corner case” not well handled by SFDS. Finally, in
Section 5, we compare our approach with the state-of-the-art ap-
proach on various real world temporal record matching tasks.

2. DEFINITIONS AND BACKGROUND
This section gives the problem definition and briefly reviews the

state-of-the-art technique for temporal record matching proposed
in [12].

2.1 Problem Definition
Here we give the formal definition of temporal record matching:

470

DEFINITION 2.1. (TEMPORAL RECORD MATCHING) Consider
a domainD of entities (not known a priori) and a set R of records.
Each record r ∈ R is of the form 〈x1, ..., xn, t〉, where t is the time
stamp of the record r, and each xi, 1 ≤ i ≤ n, is the value of at-
tributeAi at time t for the associated entity in domainD. The goal
of temporal record matching is to find a clustering of the records in
R such that: 1) records in the same cluster refer to the same entity
in domain D, and 2) records in different clusters refer to different
entities in domain D. 2

As the entities described by a temporal data set may change or
evolve their attribute values over time, a temporal matching tech-
nique must deal with ambiguity caused by this evolution. One of
such ambiguity is within-entity temporal disagreement, or temporal
disagreement for short:

DEFINITION 2.2. (WITHIN-ENTITY TEMPORAL DISAGREEMENT).
Within-entity temporal disagreement arises when two records re-
ferring to the same entity appear to refer to two different entities
because over time their associated entity evolves. 2

For example, a person may change his or her address and phone
number, so two records referring to the same person at different
times may disagree on those attributes.

A second kind of ambiguity is between-entity temporal agree-
ment, or temporal agreement for short:

DEFINITION 2.3. (BETWEEN-ENTITY TEMPORAL AGREEMENT).
Between-entity temporal agreement arises when two records refer-
ring to two different entities appear to refer to the same entity be-
cause over time one of the entities evolved to have the same value
in some attribute as that previously held by the other. 2

Returning to our example, it is possible that one person might get
the phone number of a second person when the first person takes
over the second person’s office.

We say that a function is a disagreement model or an evolution
model, denoted as fd , if it computes the probability that temporal
disagreement applies to a given pair of records or clusters. Like-
wise, we say a function is an agreement model, denoted as fa , if
it computes the probability that temporal agreement applies to a
given pair of records or clusters.

Sometimes we say an entity evolves from one state to another.
We are not proposing a formal definition of the “state of an entity.”
Rather, we use the term informally to refer to periods of time in
which the values in the fields of records referring to the entity tend
to be very similar. Intuitively, this corresponds to times in between
changes in the “life” of an entity. For example, a “state” of a re-
searcher could be the period of time during which she taught at a
particular university. Note that for our algorithm to work we do not
need an externally valid definition of state — indeed, for us, the
“states of an entity” are defined empirically by the clusters that our
algorithm finds during its first phase (described in Section 3.2). We
tie this to the external notion of state only to provide an intuition for
why there will likely be periods of time during which the records
referring to an entity tend to be more similar.

2.2 Existing Temporal Matching Techniques
The typical solution to temporal record matching consists of two

major components: a temporal model and a temporal clustering
algorithm.

A temporal model usually consists of two components: one for
handling temporal disagreement, and the other for handling tem-
poral agreement. For example, in Li et al.’s pioneering work [12],
they proposed the following two components:

DEFINITION 2.4. (DISAGREEMENT DECAY). Let ∆t be a time
distance and A ∈ A be a single-valued attribute. Disagreement
decay of A over time ∆t is the probability that an entity changes
its A-value within time ∆t. 2

DEFINITION 2.5. (AGREEMENT DECAY). Let ∆t be a time
distance and A ∈ A be an attribute. The agreement decay of A
over time ∆t is the probability that two different entities share the
same A-value within time ∆t. 2

As shown in [12] and illustrated in Example 1.2, simply using
such a temporal model in the similarity computation step of ex-
isting record matching algorithms may not produce an acceptable
matching result. In view of this, Li et al. proposed three temporal
record matching algorithms that apply a temporal model in similar-
ity computations and consider records in increasing temporal order.
Specifically, early binding performs a single-phase hard-clustering
that makes eager decisions and merges a record with an already
created cluster if the similarity between the record and the cluster
is sufficiently high; late binding performs instead a single-phase
fuzzy-clustering that keeps all evidence and makes decisions at the
end; and adjusted binding runs multiple phases of fuzzy clustering
that in addition compares records with clusters that are created for
records with later time stamps and iteratively refines the clustering
result. Not surprisingly, adjusted binding outperforms all existing
approaches in matching accuracy but is computationally expensive.

In contrast, as we will see in the next section, our proposed SFDS
approach first assumes entities do not evolve and accumulates evi-
dence by grouping records based on pure attribute value similarity
without using a temporal model. Then, SFDS further merges pos-
sible clusters from the initial grouping by determining whether it
is possible for one entity to evolve from what is described in one
cluster to what is described in the second cluster.

In the rest of this paper, we will explain SFDS in more detail and
explore its performance.

3. THE SFDS APPROACH
We now describe SFDS in detail. SFDS operates in two phases:

static and dynamic (Figure 1). In the static phase (or S-phase for
short), the goal is to collect evidence for later inferring entity evo-
lution in the dynamic phase. This is done by forming an initial
grouping such that records in the same group describe part of its
entity’s history where the entity does not evolve too much. SFDS
achieves this goal by not using any temporal model in similarity
computations. During the S-phase, each cluster maintains a tempo-
ral signature that consists of its earliest and latest records (i.e., the
two with the earliest and the latest time stamps). As each cluster in
the S-phase tends to describe portion of an entity’s history where
the entity has not evolved, such a temporal signature will likely
capture the starting and ending points of that partial history of its
entity. The output of the S-phase is an initial grouping of the input
records and a set of associated temporal signatures.

In the dynamic phase (or D-phase for short), SFDS further merges
possible resulting clusters from the output of the S-phase. It uses
a temporal model to handle entity evolution. For each pair of re-
sulting clusters, SFDS makes the merge decision by determining
whether it is possible for an entity to evolve from the state described
in one cluster to the state described in another cluster. In the D-
phase, each cluster maintains a signature set that is built up from
the temporal signatures created in the S-phase. When two clusters
are merged, the signature set of the resulting cluster will be formed
by taking the union of the signature sets of the two component clus-
ters. By having multiple temporal signatures describing an entity,

471

Figure 1: The SFDS approach

where each signature describes a partial history of the entity, SFDS
is able to improve efficiency without sacrificing accuracy.

This section first reviews the process of learning temporal mod-
els. Then, it describes the two phases of SFDS. The next section
(Section 4) describes AFDS — an optimized version of SFDS —
which handles a special case not optimally handled by SFDS.

3.1 Preliminary: Learning Temporal Models
A temporal matching algorithm must use a temporal model to

evaluate the probabilities that record attribute values might or might
not evolve in specific ways. As the choice of temporal model is
orthogonal to the clustering algorithm that employs the model, in
this work we simply choose an existing temporal model, and we
describe how it works in this section. Discovering better temporal
models is an interesting problem outside the scope of this current
paper.

We follow the approach in [12] to learn the temporal agree-
ment and disagreement models, using the statistics of attribute life
spans given a training data set. Consider an entity E and records
r1, ..., rn that refer to E and are arranged in increasing order of
time stamp. We call a point in time τ a change point of an A-value
in E if there exists some i, 1 < i ≤ n, such that ri.t = τ and
ri−1.A 6= ri.A. The intervals between consecutive change points
are called full life spans of A-values. Before the first change point
of E and after the last change point of E, we are unable to ob-
serve the exact life span of its A-value. We only know that E does
not change its A-value within these intervals. These intervals are
called partial life spans. From the training data set, we only learn
the observed time interval for each partial life span indicating the
lower-bound of a potential full life span.

Let L̄Af denote the bag of lengths of full life spans on A-value
of a given data set and L̄Ap denote the bag of lengths of observed
partial life spans respectively. The temporal disagreement function
fd is formed by considering all the full life spans and the partial
life spans with at least length ∆t:

fd(A,∆t) =
|{l ∈ L̄Af |l ≤ ∆t}|

|L̄Af |+ |{l ∈ L̄Ap |l ≥ ∆t}|
(1)

The temporal agreement function fa is computed based on the
bag of span distance |L̄A|. If two entities ever share the same value
on attribute A, then their span distance on attribute A is defined
as the time interval between the time periods when the two entities

Figure 2: An example of signature update in the S-phase.

share the same value on attribute A. Otherwise, the span distance
is defined as∞.

fa(A,∆t) =
|{l ∈ L̄A|l ≤ ∆t}|

|L̄A|
(2)

The bags of full life spans, partial life spans, and span distances
can be obtained by iterating through all the records in the given data
set in increasing temporal order. Thus the temporal agreement and
disagreement functions can be learned based on the above equa-
tions.

3.2 Static Phase: Evidence Collection
We now return to our proposed temporal clustering approach

SFDS; specifically, the static phase. Given a set of records from the
original input, the S-phase considers records in increasing temporal
order based on their time stamps. For each record, the S-phase ei-
ther merges the record with an already created cluster if it finds one
that is sufficiently similar, or creates a new cluster otherwise. When
determining whether two clusters of records should be merged, the
S-phase computes the “static similarity” between the two clusters
using any standard distance metric for record matching.

Specifically, consider record r and a set C = {C1, ..., Cn} of
clusters created earlier in the S-phase, where n ∈ N is the number
of already created clusters. The S-phase proceeds in the following
steps:

1. Compute the static similarity sims between r and eachCi, 1 ≤
i ≤ n without using any temporal model (subscript s stands
for static).

2. Let Cmax ∈ C be the cluster with the highest similarity to
r. If sims(r, Cmax) < θS , where θS is a learned threshold
indicating high similarity, then create a new cluster Cn+1 =
{}, append Cn+1 to C, and let Cmax = Cn+1.

3. Append r to the end of the chosen cluster Cmax. As the S-
phase considers records in time order, simply appending r to
the end of the clusterCmax will keep records inCmax sorted
in increasing temporal order.

4. Update the temporal signature sCmax of cluster Cmax for r.
The temporal signature consists of the earliest and the latest
records of its associated cluster, so this step can be done by
simply replacing its latest record with r (Figure 2).

472

Note that since the S-phase processes records in increasing tem-
poral order, the resulting set of clusters has the following proper-
ties: 1) records in each cluster are sorted by their time stamps in
increasing order; 2) clusters in C are sorted by their starting time
stamps (the earliest time stamp of its records) in increasing order.

We now describe the temporal signature and the similarity com-
putation part in Step 1 and the threshold learning part in Step 2.
Temporal signature: Let C = {r1, r2, ...rn} be a cluster contain-
ing n records. The cluster signature sC of C consists of the two
member records with the earliest and the latest time stamps:

sC = {rf , rl} (3)

rf = arg min
r∈C

r.t (4)

rl = arg max
r∈C

r.t (5)

Since the S-phase considers records in increasing temporal order,
the update of signature can be done by simply replacing rl by the
incoming record.
Similarity computation: the S-phase computes the “static similar-
ity” between a record and a cluster without using a temporal model.

Specifically, consider a record r and an already created cluster
C, the “static similarity” sims between r and C is computed as
the average record similarities between r and the records in C’s
signature:

sims(r, C) =

∑
r′∈sC

sims(r, r
′)

|sC |
(6)

where the static similarity sims(r, r
′) is defined as the average of

their attribute value similarities:

sims(r, r
′) =

∑
A∈A

simA(r.A, r′.A)

|A| (7)

where simA is the similarity metric for attribute A and A denotes
the set of all attributes.
Threshold learning: We use the following heuristic with a cus-
tomizable parameter minR indicating a minimum recall to learn
the threshold θS for the S-phase. If the minimum recall can be
reached, then θS is set to the threshold that leads to the highest
precision. Otherwise, it is set to the one that leads to the highest
recall.

Specifically, given a set of training data with known ground truth
and a specified minimum recall minR, we first figure out whether
there exists a threshold that can lead to a recall higher than the
specified value minR. If the answer is no, then θS is set to the
threshold that yields the highest recall. Otherwise, θS is set to the
threshold that yields the highest precision with its recall higher than
minR. Based on our experiments, a 0.2 to 0.3 minimum recall is
suggested. Note that the final result quality does not heavily rely
on the specified minR. We report detailed results on how minR
might affect the final matching accuracy in Section 5.4.4.

PROPOSITION 3.1. The S-phase runs in timeO(|R|·|C|), where
|R| is the number of input records and |C| is the number of clusters
created in the S-phase. 2

For each input record, the S-phase compares it with every already-
created cluster. Since the S-phase assumes no entity evolution and
uses only the latest record of a cluster in record-to-cluster similar-
ity computations, each record-to-cluster comparison runs in O(1),
and there are O(|R| · |C|) of such comparisons.

Algorithm 1 S-PHASE(R, θS)

Input:
R, a list of records sorted in increasing temporal order.
θS , a threshold to make merge decision.
Output:
C, the clustering of records in R
SC , the set of cluster signatures corresponding to C, each cluster in
C has a signature in SC .
1: C = {}
2: for all r ∈ R do
3: for all C ∈ C do
4: compute sims(r, C) // static similarity (Eq.12, 6)
5: end for
6: // if true, then merge to the best possible cluster
7: if maxC∈Csims(r, C) ≥ θS then
8: Cmax = arg max

C∈C
sims(r, C)

9: Cmax ← Cmax ∪ r // append r to Cmax
10: rl ← arg max

r∈Cmax
r.t // O(1) since sorted by time

11: sCmax ← sCmax \ rl // remove the last record
12: sCmax ← sCmax ∪ r // append r as the last record
13: else
14: let Cmax = {r} // create a new cluster
15: let sCmax = {r} // initialize the signature for Cmax
16: C ← C ∪ Cmax
17: SC ← SC ∪ sCmax
18: end if
19: end for
20: return C,SC

Note that in terms of time complexity, the S-phase never per-
forms slower than an ordinary clustering approach, which typically
compares all pairs of records and runs in O(|R|2). In the worst
case where records never match with any already-created cluster,
|C| will degrade to |R|. In this situation, the run time performance
of the S-phase will not take advantage of cluster signatures and de-
grades to O(|R|2).

We give the algorithm of the S-phase in Algorithm 1.

EXAMPLE 3.1. Figure 3 shows a step-by-step example of how
the S-phase forms an initial grouping from the example task shown
in Example 1.1. Records that are part of the signatures of their
clusters are underscored. In the example, we can see that r1, r2, r4,
r5, r7, r9 and r10, which are associated with entity e1, are merged
together due to their high similarity on the affiliation and co-author
attributes. However, r13 and r14, which are also associated with
entity e1, are grouped into another cluster. 2

3.3 Dynamic Phase: Evolution Detection
The D-phase further merges some of the clusters generated by

the S-phase. In the input of the D-phase, each cluster maintains
exactly one signature, which describes one state of its associated
entity. In addition, we may have multiple clusters associated with
the same entity. Unlike the S-phase, the D-phase 1) takes a list of
clusters as input instead of a list of records, 2) computes “dynamic
similarity”, which further uses temporal agreement and disagree-
ment models, and 3) allows each cluster to have multiple temporal
signatures.

Specifically, given a set C = {C1, ..., Cm} of clusters obtained
from the S-phase, where m ∈ N denotes the number of clus-
ters, and clusters in C are sorted by their starting time stamps in
increasing temporal order. Consider a cluster C ∈ C and a set

473

Figure 3: A step-by-step example of applying the S-phase on the matching task shown in Table 1.

D = {D1, ..., Dn} of clusters created earlier in the D-phase. The
D-phase proceeds in the following steps:

1. Compute the dynamic similarity simd between cluster C
and each already-created cluster Di, 1 ≤ i ≤ n using both
temporal agreement and disagreement models.

2. Let Dmax ∈ D be the cluster with the highest similarity to
C. If their similarity simd(C,Dmax) is less than the learned
threshold θE , then create a new cluster Dn+1 = {}, append
Dn+1 to the set D of the already created clusters in the D-
phase, and let Dmax = Dn+1.

3. Merge C with Dmax. The merge process is done by simply
appending all records in C to cluster Dmax as their ordering
will not be used in the rest of the clustering process.

4. Update the signature set SDmax ofDmax by taking the union
of the cluster signature sets of C and Dmax (Figure 4).

We now turn to the details of the signature update, similarity
computation, and the threshold learning processes in the D-phase.
Signature update: In the D-phase, the signature set SC of a cluster
C consists of a set of temporal signatures created in the S-phase
(Eq. 3) where each component signature describes one state of its
referred entity:

SC = {s1, s2, ..., sm} (8)

When merging two clusters C and D, the D-phase updates the
signature set S of the resulting cluster by taking the union of the
signature sets SC and SD from the two component clusters C and
D:

S = SC ∪ SD (9)

Similarity computation: Given two clusters C and D and their
signature sets SC and SD , the D-phase computes their “dynamic
similarity” by taking the average of the filtered dynamic similari-
ties of the record pairs chosen from SC and SD , where only those
record pairs carrying evidence that supports at least one of the fol-
lowing statements are considered:

Figure 4: An example of signature update in the D-phase.

• both clusters C and D describe at least one state of the same
entity in common, or

• at least one evolution of the same entity is described in the
union of the two clusters C and D but in neither of the two
clusters alone.

Specifically, given records r1 and r2, their dynamic similarity is
defined as the weighted average of their attribute value similarities
where the weight is determined by the complement of the level of
temporal agreement and disagreement estimated by the temporal
model. The intuition is: the higher the level of temporal agreement
or disagreement on one attribute is, the less we are able to trust the

474

Figure 5: A step-by-step example of the D-phase, continued from Figure 3 and Example 3.1.

similarity on that attribute:

simd(r1, r2) =

∑
A∈A

wd (A,simA(r1.A,r2.A),|r1.t−r2.t|)·simA(r1.A,r2.A)∑
A∈A

wd (A,simA(r1.A,r2.A),|r1.t−r2.t|)

(10)

wd(A, s,∆t) =

{
1− fa(A,∆t) when s ≥ θA
1− fd(A,∆t) otherwise (11)

where fd and fa are temporal disagreement and agreement func-
tions respectively (Eq. 1 and Eq. 2). A ∈ A again denotes an
attribute, simA is the similarity metric for attribute A, wd is a
weighting function to determine the importance of an attribute, and
θA is a threshold for determining whether two records describe the
same state on attribute A. θA can be learned from a labeled data
set.

Finally, the D-phase computes the dynamic similarity simd be-
tween clusters C and D by taking the average of the filtered dy-
namic similarities of the record pairs chosen from their cluster sig-
natures SC and SD that are above the learned threshold θD:

simd(C,D) =

∑
〈r1,r2〉∈RC,D,θD

simd(r1, r2)

|RC,D,θD |
(12)

RC,D,θD =

〈r1, r2〉
∣∣∣∣∣∣
∃si ∈ SC s.t. r1 ∈ si ∧
∃sj ∈ SD s.t. r2 ∈ sj ∧
simd(r1, r2) ≥ θD

 (13)

where RC,D,θD is a set of record pairs chosen from SC SD which
dynamic similarity is higher than the learned threshold thetaD in-
dicating it supports at least one of the required conditions men-
tioned above.
Threshold learning: As the D-phase is the final step of SFDS,
given a labeled data set, θE is set to the threshold that leads the
highest F-1 score (defined in Section 5.1.4) in the labeled data set.

PROPOSITION 3.2. The D-phase runs in time O(|C|2) where
|C| is the number of clusters created the S-phase. 2

Since the D-phase uses temporal signatures, comparing a input
cluster with all the already created clusters is equivalent to com-
paring a input clusters with all the already created temporal sig-
natures. In addition, the total number of signatures is equal to

the total number of clusters created in the S-phase. As a result,
each cluster-cluster similarity computation in the D-phase runs in
O(|C|), and there are |C| of such computation. This gives time
complexity O(|C|2).

PROPOSITION 3.3. SFDS runs in time O(|C| · |R|), where |C|
is the number of clusters created in the S-phase and |R| is the num-
ber of input records.

SFDS performs |C| · |R|+ |C|2 comparisons in average. In the
worst case, it runs in time O(|R|2) and performs 2 · |R|2 compar-
isons.

We give the algorithm for the D-phase in Algorithm 2.

EXAMPLE 3.2. We continue with our running example described
in Example 1.1, where we have generated the initial grouping in
Example 3.1 shown in Figure 3. Figure 5 shows the step-by-step
result of applying the D-phase to further merge clusters from the
initial grouping. In the step-by-step result, we can see that the clus-
ter {r13, r14}, which describes entity e1, is now correctly merged
into the cluster {r1, r2, ..., r10}, which also describes e1, with a
dynamic similarity 0.60 higher than the learned threshold θD =
0.55. Note that we are unable to correctly merge r13 in the S-phase
even if we lower the threshold θS as its best match cluster is {r3},
which describes entity e2 instead. With the initial grouping created
in the S-phase based on the states of the entities, we are able to
reduce incorrect merges in the D-phase. 2

4. THE AFDS — AN OPTIMIZED VERSION
OF SFDS

As we have noted, the first phase of SFDS ignores evolution and
considers neither between-entity temporal agreement nor within-
entity temporal disagreement. Ignoring within-entity temporal dis-
agreement is in a sense “safe” because the errors it will make (split-
ting one entity into multiple clusters) have a chance of being rec-
tified later (when the dynamic phase merges these clusters). How-
ever, ignoring between-entity temporal agreement is “dangerous”
because this might include the records from two entities in a single
cluster (because only between-entity temporal agreement provides
the insight that similar attribute values in two records separated by
time might not mean the records refer to the same entity). This is

475

Algorithm 2 E-PHASE(C,SC , θE)

Input:
C, the clustering result of the S-phase.
SC , the set of cluster signatures associated with C.
θE , a threshold to determine whether to merge two records.
Output:
D, the final clustering result
1: D = {}
2: for all C ∈ C do
3: SC = {sC} // pack its signature into a signature set
4: for all D ∈ D do
5: compute simd(C,D) // dynamic similarity (Eq.12, 10)
6: end for
7: if maxD∈Dsimd(C,D) ≥ θE then
8: Dmax ← arg max

D∈D
simd(C,D)

9: Dmax ← C ∪Dmax // merge to the best
10: SDmax ← SC ∪ SDmax // update signature
11: else
12: D ← D ∪ C // keep the original cluster
13: end if
14: end for
15: return D

dangerous because at the end of the “S” phase, the clusters are re-
placed by signatures, so there is no chance of undoing such errors
later.

Our experiments in Section 5.4.5 show that this is a small but real
danger — typically it lowers F1 score by a few percentage points.
Our “fix” is to add temporal agreement modeling to the clustering
in the “S” phase. We call this optimization of the SDFS approach
AFDS — agreement first, dynamic second.

In the rest of this section, we describe the only difference be-
tween AFDS and SFDS: the similarity computation in the first phase
(the S-phase).

4.1 Similarity Computation
As the first phase of AFDS considers the possibility of between-

entity temporal agreement, the “static similarity” between two records
is defined as the weighted average of attribute value similarities,
where the weight of each attribute is a function of temporal agree-
ment.

Consider records r1 and r2 for which we would like to compute
static similarity. When r1 and r2 have a high similarity on attribute
A, this indicates that the two records might either describe the same
state of the same entity or describe similar states of different enti-
ties. In this case, the weight of their similarity on attribute A is
determined by the complement of the level of between-entity tem-
poral agreement estimated by a temporal agreement function fa .
Otherwise, a full weight will be assigned as it is less possible for
r1 and r2 to describe the same state of the same entity given their
low attribute value similarity on A.

To put it all together, AFDS uses the following equations to com-
pute the static similarity between two temporal records:

sims(r1, r2) =

∑
A∈A

ws (A,simA(r.A,r′.A),|r.t−r′.t|)·simA(r.A,r′.A)∑
A∈A

ws (A,simA(r.A,r′.A),|r.t−r′.t|)

(14)

ws(A, s,∆t) =

{
1− fa(A,∆t) when s ≥ θA
1 otherwise (15)

where the subscripts s and a stand for static and temporal agree-
ment respectively, A ∈ A is an attribute, simA is the similarity

Figure 6: The AFDS approach — an optimized version of SFDS

metric for attribute A, ws is the weighting function to determine
the importance of an attribute, and θA is a threshold for determin-
ing whether it is possible for the two records to describe the same
state on attribute A. θA can be learned from a labeled data set.

As for the static similarity between a record and a cluster, AFDS
simply replaces the static record similarity sims(r, r

′) in Equa-
tion 6 by Equation 14.

The reader may wonder at this point if considering disagreement
modeling during this first phase might improve things still further.
The answer is “no” — while it might improve the clustering pro-
duced during the first phase, as we will see in our experiments, it
actually harms the final clustering after the second phase (merging
clusters based on their signatures). Again, this is because if dis-
agreement modeling makes a mistake that merges two entities into
one cluster during the first phase, there is no opportunity to rem-
edy this mistake in the second phase, since the clusters of records
will have been replaced by signatures and cannot subsequently be
“re-split.” In addition, without having an evidence collection phase
before resolving the temporal within-entity disagreement caused
by entity evolution, we are more likely to make early mistakes that
could be fixed by the evidence described in the “later” records, as
illustrated earlier in Example 1.1.

PROPOSITION 4.1. AFDS runs in time O(|C| · |R|), where |C|
is the number of clusters created in its first phase and |R| is the
number of input records.

5. EXPERIMENTAL EVALUATION
This section describes experimental results on four temporal match-

ing tasks from two real world data sets: a European patent data
set [1] and three subsets of the DBLP data set [2]. Table 4 summa-
rizes the matching tasks used in our experiment.

We first describe the experiment settings. In the main part of
this section, we first present and discuss the run time efficiency of
different approaches as the main focus of this work is on improving
scalability. Then, we evaluate the matching accuracy of different
approaches using the usual measures: precision, recall, and F-1
score.

5.1 Experiment Settings
This section gives the settings of our experiments.

476

Table 4: Temporal matching tasks

Name # Records # training Attributes Years Note
(|R|) records

DBLP-100K 103059 5945 (5%) author’s name, conference venue,
paper title, co-authors

1957 - 2012 not well labeled; included only for scalability ex-
periment.

DBLP-Ambi 2664 888 (33%) author’s name, affiliation (manually
filled), paper title, co-authors

1987 - 2012 258 authors share only 21 names, most authors
evolve on all other attributes.

DBLP-WW 738 246 (33%) author’s name, affiliation (manually
filled), co-authors

1991 - 2010 all authors share the same name and mostly
evolve on all other attributes, also used in [12]

Euro-Patent 1871 623 (33%) author first name initial, author last
name, affiliation

1978 - 2003 fewer evolving entities, also used in [12]

5.1.1 Settings for Scalability Experiments
To compare the scalability of different approaches, we consider

the DBLP-100K matching task that contains around 100K records.
This matching task is created by selecting multiple groups of records
from the DBLP data set, where each group contains multiple au-
thors sharing the same name. Although this is not a particularly
temporally challenging matching task, for completeness we will
also report the matching accuracy of different approaches. For this
purpose, we compare the output of each approach with the silver
standard provided by DBLP. However, in this test, our goal is not
to test the quality of the result, rather it is to test the scalability of
the approaches.

5.1.2 Settings for Matching Accuracy Experiments
To evaluate the matching accuracy of different approaches, we

consider three subsets from two real world data sets: a benchmark
of European patent data [1] and the DBLP data set [2]. Two of
the tasks, Euro-Patent and DBLP-WW, are the tasks used in Li’s
work [12]. Table 4 summarizes the high level facts about the match-
ing tasks, and we will detail necessary properties of each task when
analyzing the matching accuracy of different approaches.

5.1.3 Implementation
We implemented the following clustering techniques:
• PARTITION: the partitioning algorithm from [11], a single

pass, non-temporal clustering approach that clusters records
based on pairwise record similarity while ensuring transitive
closure.
• ADJUST: a specialized multi-stage fuzzy clustering approach

proposed in [12], the current state-of-the-art for matching
temporal records.
• AFDS: the optimized version of SFDS described in Section 4

based on Section 3.
For the temporal model used in ADJUST and AFDS, we use the
agreement- and disagreement-decay models proposed in [12].

We implemented all the techniques as single-threaded Java pro-
grams, and we ran the experiments on a Linux machine with 2.40
GHz Intel CPU and 4GB of RAM.

Attribute similarity metrics: For matching accuracy experi-
ments, we followed the settings used in [12] that 1) use editing
distance metricfor single-value attributes, 2) apply Jaccard similar-
ity metricfor multi-value attributes, and 3) put equal weight on all
attributes.

For scalability tests, we reused the settings of similarity metrics
for the matching accuracy experiments except the weight of each
attribute was learned from a training data set based on the discrim-
inability of each attribute. Here we omit the details of how we
weight the importance of each attribute as, again, the main purpose
of this experiment was scalability.

Models and thresholds learning: For scalability experiments,
we used a 5% sample of the records in the DBLP-100K data set to
learn the temporal models and the thresholds and then tested with
the whole data set.

For the other matching tasks: Euro-Patent, DBLP-WW and DBLP-
Ambi, we used a three-fold cross-validation, which divides the data
set into three disjoint partitions of nearly equal size. We learned
temporal models and thresholds from one partition at a time and
used them to test with the remainder of the data set.

Parameter settings: We followed the parameter settings used
in [12] for ADJUST, and we used a minimum recall minR = 0.2
for the first phase of the proposed AFDS in our experiments.

5.1.4 Metrics
We compared pairwise matching decisions with the ground truth

and measured the quality of the result by precision (P), recall (R),
and F-1 score (F). We denote the set of false positive pairs by FP ,
the set of false negative pairs by FN , and the set of true positive
pairs by T . Then, P = |T |

|T |+|FP |
, R = |T |

|T |+|FN |
, and F = 2PR

P+R
.

5.2 Scalability
First, we evaluate the scalability of the different techniques by

running them with different fractions of the DBLP-100K data set.
The experiment has two parts. In the first part, we ran all tech-
niques with at most 10,000 records from the DBLP-100K data set
and compare their run-time. The results in Figure 7a show that
while both our approach AFDS and the traditional clustering tech-
nique PARTITION finish 10,000 records within 5 minutes, the state-
of-the-art temporal clustering algorithm ADJUST takes 3 hours to
finish the same amount of data. At the 10,000 records mark, our
AFDS provides 60X improvement in run time over AFDS: AFDS
finishes in 3.36 minutes while ADJUST finishes in 199.78 minutes,
and the traditional approach PARTITION finishes in 3.99 minutes.

To further analyze the difference in scalability, we ran AFDS and
PARTITION with the full DBLP-100K data set, and ran ADJUST
with as many portion of the DBLP-100K data set as possible and
stopped when it requires more than a day to perform the matching
task. From the results shown in Figure 7b, we observe that ADJUST
takes around a day to process 25k records, while AFDS and PARTI-
TION is able to finish the full set of DBLP-100K matching task in
6.2 hours and 7.5 hours respectively.

The differences on time complexity between different approaches
are also reflected in the scalability results. First, our AFDS runs
slightly faster than the traditional approach PARTITION. This matches
with the fact that AFDS runs in timeO(|R| · |C|) while PARTITION
runs in time O(|R|2), where |R| is the number of input records
and |C| is the number of clusters created in the first phase of AFDS
respectively. Second, based on the run-time curves of ADJUST, it
performs faster than its worst caseO(|R|3) but slower than its ideal
case O(|R|2).

477

0 2.5k 5k 7.5 10K

0

1

2

3

Number of records

E
xe

cu
tio

n
tim

e
(i

n
ho

ur
s)

PARTITION ADJUST AFDS

(a) on 10% DBLP-100K

0 25k 50K 75 100K

0

6

12

18

24

Number of records

(b) on full DBLP-100K

Figure 7: Scalability test results on DBLP-100K matching task.

0.7

0.8

0.9

1

F-
1

Sc
or

e

PARTITION ADJUST AFDS

(a) on 10% DBLP-100K

0.7

0.8

0.9

1

(b) on full DBLP-100K

Figure 8: Reference results on matching accuracy for the scalability
on the DBLP-100K data set.

For completeness, we also provide the result qualities of all dif-
ferent approaches in Figure 8a and Figure 8b, although recall that
this is not a particularly challenging case from a temporal perspec-
tive.

5.3 Results on Matching Accuracy
We now turn investigate whether or not AFDS sacrifices effi-

ciency in its search for performance. To do so, we compared our
AFDS approach with the existing approaches on three different tem-
poral record matching tasks. The results are shown in Figures 9a,
9b, and 9c. Here we briefly discuss the results on different match-
ing tasks.
DBLP-Ambi and DBLP-WW Matching Tasks: There are two
important facts about this two matching tasks: 1) different entities
are likely to have the same name; 2) most entities evolve their val-
ues on on all other attributes. As a result, the key to high matching
accuracy is to resolve the ambiguity on name by handling evolu-
tion on all other attributes. The results in Figures 9a and 9b show
that both AFDS and ADJUST improve up to 15% over the tradi-
tional non-temporal approach PARTITION, and our AFDS produces
matching accuracy similar to ADJUST.
Euro-Patent Matching Task: Unlike the previous two matching
tasks, in this data set there are relatively fewer entities that evolve
over time. This has a two-fold effect. First, all approaches have less
trouble separating records belonging to the same entity. Second,
because fewer entities evolve over time, there are relatively fewer
temporal clues for a temporal model to exploit. The results in Fig-
ure 9c reflect such an effect: all three approaches have acceptable
matching accuracy while the two temporal clustering algorithms —
AFDS and ADJUST — still improve matching accuracy by handling
entity evolution.

Putting the results on scalability and matching accuracy together,

F-1 Score Precision Recall
0.5

0.6

0.7

0.8

0.9

1

(a) on DBLP-Ambi

F-1 Score Precision Recall
0.5

0.6

0.7

0.8

0.9

1

(b) on DBLP-WW

F-1 Score Precision Recall
0.5

0.6

0.7

0.8

0.9

1

PARTITION

ADJUST

AFDS

(c) on Euro-Patent

Figure 9: Result quality of different approaches on three different
matching tasks.

our algorithm AFDS improves run time by an order of magnitude
while providing equivalent matching accuracy.

5.4 Analysis and Discussion
Now we give a more detailed analysis of our proposed strategy.

5.4.1 Evaluation of “Static First, Dynamic Second”
We verified the effectiveness of our “static first, dynamic sec-

ond” strategy in two ways. First, we checked whether a single pass
clustering algorithm with the use of temporal models could achieve
equivalent or better accuracy over our proposed AFDS strategy. In
this experiment, we considered using temporal models in a single
stage hard clustering algorithm. The hard clustering algorithm we
considered is identical to the S-phase described in Section 3.2 ex-
cept the threshold is set to the value that leads to the highest F-1
score in the training data set:

1. AGREE: uses only temporal agreement model.

2. DISAG: only temporal disagreement model.

3. MIXED: uses full temporal model.

From the results shown in Figure 10a, we first observed that
AFDS and MIXED improve result quality over AGREE and DISAG
on all matching tasks. This finding indicates that when between-
entity temporal agreement and within-entity temporal disagreement
apply to part of the input data set, considering both types of ambi-
guity will improve result quality over handling only a single type of
ambiguity. In addition, we also found that our proposed AFDS im-
proves result quality over MIXED. This result shows by having an
evidence collection phase before the handling of entity evolution,
we can improve overall matching accuracy.

In the second experiment, we compared AFDS with the follow-
ing two phase strategies, which handles temporal agreement and
disagreement in different orders by running them with three differ-
ent matching tasks:

1. DFAS: the inverse version of AFDS.

478

EURO-PATENT DBLP-WW DBLP-AMBI

0.5

0.6

0.7

0.8

0.9

1

F-
1

Sc
or

e
AGREE DISAG

MIXED AFDS

(a) with single-stage clusterings.

EURO-PATENT DBLP-WW DBLP-AMBI

0.5

0.6

0.7

0.8

0.9

1

DFAS MIXED2P

AFDS

(b) with two-staged clusterings.

Figure 10: Comparison between different uses of temporal models
and AFDS.

EURO-PATENT DBLP-WW DBLP-AMBI

0.5

0.6

0.7

0.8

0.9

1

F-
1

Sc
or

e

AFDS-FR AFDS

(a) Matching accuracy

0 50K 100K

0

5

10

of records

E
xe

cu
tio

n
tim

e
(i

n
ho

ur
s)

AFDS-FR AFDS

(b) Scalability

Figure 11: Comparison between the use of signatures and the use
of the full set of records.

2. MIXED2P: uses full temporal model in both phases.

Note that for all approaches, we use the same strategy to cluster
records and construct cluster signatures as described in Section 3.
The results in Figure 10b first indicate that AFDS yields better re-
sults than its complement — DFAS. This result indicates by con-
sidering temporal between-entity agreement, we can collect higher
quality evidence than considering temporal within-entity disagree-
ment. This result also suggests that resolving temporal within-
entity disagreement requires more accurate evidence than resolving
temporal between-entity agreement. Second, the result also shows
that AFDS produces better matching quality than MIXED2P, which
handles both types of ambiguity in both phases. This also supports
our proposed “Static First, Dynamic Second” strategy that runs ev-
idence collection phase by assuming no evolution before the han-
dling of entity evolution instead of jumping into the dynamic world
directly.

5.4.2 Effectiveness of Temporal Signature
We verified the effectiveness of our proposed temporal signature

by comparing AFDS with its variation AFDS-FR that considers full
sets of records without using signatures in similarity computations.
We give the results on matching accuracy and scalability in Fig-
ure 11a and 11b. The results indicate that AFDS and AFDS-FR
achieve equivalent matching accuracy, but AFDS improves 2X in
run time efficiency over AFDS-FR.

5.4.3 Results on Similarity Computation Strategies

EURO-PATENT DBLP-WW DBLP-AMBI
0.5

0.6

0.7

0.8

0.9

1

AFDS-AVG AFDS-FAVG

Figure 12: Result quality (F-1 score) comparison between different
cluster similarity estimation strategies on different data sets.

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

specified minimum recall minR in the initial phase

F-
1

sc
or

e

EURO-PATENT DBLP-WW DBLP-AMBI

Figure 13: Results of varying minimum recall minR in the initial
phase of AFDS.

This experiment compares different strategies for computing tem-
poral cluster similarity. In particular, we consider the following
strategies:

1. AVG: directly averages record similarities.

2. FAVG: stands for filtered average, the proposed approach de-
scribed in Equation 12.

Both strategies are paired with our AFDS approach and run on dif-
ferent matching tasks. The results shown in Figure 12 indicates
that by using our proposed strategy — FAVG, which considers only
those record pairs with high similarity that provide strong evolu-
tion evidence, we can make better inferences on entity evolution
and improve matching accuracy.

5.4.4 Results on Robustness
This experiment analyzes how the minimum recall parameter

minR (Section 3.2), used to learn the threshold θS in the first phase
of our AFDS algorithm, affects the final matching accuracy. We
give the results in Figure 13. The results indicate that (1) the final
matching accuracy of AFDS does not heavily rely on the parameter
minR; (2) in our experiments, a minimum recall minR between
0.2 to 0.3 produced the best result quality.

5.4.5 Comparison between SFDS and AFDS
We compared the matching accuracy between SFDS and its op-

timized version (AFDS). The results show that we can improve up
to 2% in matching accuracy by considering temporal agreement in
the first phase (Figure 14a), and we observe no significant run-time
difference between the two.

5.4.6 Will EM-styled AFDS produce better accuracy?
We developed an expectation-maximization version of our AFDS,

where given a specific number I of iterations, we perform an EM-
style S-phase in the first half of the iterations and an EM-style D-
phase in the second half of the iterations. In our experiment, we

479

EURO-PATENT DBLP-WW DBLP-AMBI

0.5

0.6

0.7

0.8

0.9

1

F-
1

Sc
or

e
SFDS AFDS

(a) SFDS vs. AFDS

EURO-PATENT DBLP-WW DBLP-AMBI

0.5

0.6

0.7

0.8

0.9

1

EM-AFDS AFDS

(b) EM-Styled AFDS vs. AFDS

Figure 14: Comparison between different versions of AFDS.

set I = 10 for EM-AFDS. Surprisingly, we found that even with
more stages of clustering, we did not produce noticeable improve-
ment (> 1%) on matching accuracy. Detailed results can be found
in Figure 14b.

6. RELATED WORK
In [8, 10, 15], the authors proposed different record matching

/ de-duplication techniques, but their techniques all assume value
difference are due to different representations of the same value
and record values do not change over time. Shao et al. [13] com-
bined time series similarity with density-based clustering, but the
technique is for finding the optimal alignment of two time series,
not for identifying possible evolution between time series. Yakout
et al. proposed behavior based linkage [16]. While like our work
they make cluster merging decisions by examining whether the re-
sulting clusters form a reasonable entity history, our approach does
not try to find periodical entity evolution patterns. Li et al. [12] pro-
posed several clustering approaches for matching temporal records.
Our approach differs from their approaches in the following ways.
First, our approach resolves temporal agreement and disagreement
in two distinct phases while their approaches mixes the two types
of ambiguity in all phases. Second, the proposed clustering neither
processes in EM-style nor in a fuzzy way. Finally, our approach al-
lows one cluster to have multiple signatures while their approaches
use either no signatures or a single signature per cluster. Both [5]
and [6] used a temporal function to reduce the effect of older tuples
on data analysis, but their definitions and the use of temporal func-
tions are different from us. While [12] proposed temporal models,
our focuses are not on temporal models but on clustering algorithm
and signature construction instead.

7. CONCLUSION AND FUTURE WORK
We have proposed an efficient strategy to match temporal records

with high accuracy. The key insight of our strategy is “static first,
dynamic second,” which allows simple, efficient clustering to do
well. Our experimental results indicate that the proposed approach
achieves the same level of result quality (within 1.0% in our exper-
iments) as the state-of-the-art approach while providing an order of
magnitude improvement (up to 60X at 10,000 records in our exper-
iments) in run-time.

Substantial room for future work remains. One key issue is the
blocking operator. Blocking is a common technique which speeds
up clustering algorithms by partitioning the input data according
to some key attributes. However, it is unclear how to apply block-
ing to a data set where the entities might change values on those
key attributes over time. Here it would be interesting to see if our
proposed “static first, dynamic second” strategy might work with
existing blocking operators.

Other future work includes a more general model combining in-
formation from various dimensions such as spatial and temporal
domains to enable deeper and wider data analysis.

8. ACKNOWLEDGEMENT
This material is based upon work supported by the National Sci-

ence Foundation under grant no. IIS-1018792.

9. REFERENCES
[1] Academic patenting in Europe (APE-INV).

http://www.esf-ape-inv.eu/.
[2] The DBLP computer science bibliography. http:

//www.informatik.uni-trier.de/˜ley/db/.
[3] Fec-standardizer - an experiment to standardize individual

donor names in campaign finance data. https:
//github.com/cjdd3b/fec-standardizer.

[4] Twitter - an online social networking and microblogging
service. https://twitter.com/.

[5] E. Cohen and M. Strauss. Maintaining time-decaying stream
aggregates. Journal of Algorithms, 59(1):19–36, 2006.

[6] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu.
Forward decay: A practical time decay model for streaming
systems. In IEEE 25th International Conference on Data
Engineering (ICDE), pages 138–149. IEEE, 2009.

[7] A. Doan, A. Halevy, and Z. Ives. Principles of Data
Integration, chapter Data Matching. Elsevier Science, 2012.

[8] P. Domingos. Multi-relational record linkage. In Proc. of the
KDD-2004 Workshop on Multi-Relational Data Mining.
KDD, 2004.

[9] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate
record detection: A survey. IEEE Transactions on
Knowledge and Data Engineering, 19(1):1–16, 2007.

[10] I. Fellegi and A. Sunter. A theory for record linkage. Journal
of the American Statistical Association, pages 1183–1210,
1969.

[11] O. Hassanzadeh, F. Chiang, H. Lee, and R. Miller.
Framework for evaluating clustering algorithms in duplicate
detection. Proceedings of the VLDB Endowment,
2(1):1282–1293, 2009.

[12] P. Li, X. Dong, A. Maurino, and D. Srivastava. Linking
temporal records. Proceedings of the VLDB Endowment,
4(11):956–967, 2011.

[13] J. Shao, K. Hahn, Q. Yang, C. Bohm, A. Wohlschlager,
N. Myers, and C. Plant. Combining time series similarity
with density-based clustering to identify fiber bundles in the
human brain. In IEEE International Conference on Data
Mining Workshops (ICDMW), pages 747–754. IEEE, 2010.

[14] G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou,
A. Benczúr, S. Kirkpatrick, P. Rigaux, and M. Williamson.
Longitudinal analytics on web archive data: It’s about time!
In Proceedings of the 5th biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA,
January, pages 9–12, 2011.

[15] W. Winkler. Methods for record linkage and bayesian
networks. Technical report, Statistical Research Division, US
Census Bureau, Washington, DC, 2002.

[16] M. Yakout, A. Elmagarmid, H. Elmeleegy, M. Ouzzani, and
A. Qi. Behavior based record linkage. Proceedings of the
VLDB Endowment, 3(1-2):439–448, 2010.

480

http://www.esf-ape-inv.eu/
http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
https://github.com/cjdd3b/fec-standardizer
https://github.com/cjdd3b/fec-standardizer
https://twitter.com/

	Introduction
	Definitions and Background
	Problem Definition
	Existing Temporal Matching Techniques

	The SFDS Approach
	Preliminary: Learning Temporal Models
	Static Phase: Evidence Collection
	Dynamic Phase: Evolution Detection

	The AFDS — An Optimized Version of SFDS
	Similarity Computation

	Experimental Evaluation
	Experiment Settings
	Settings for Scalability Experiments
	Settings for Matching Accuracy Experiments
	Implementation
	Metrics

	Scalability
	Results on Matching Accuracy
	Analysis and Discussion
	Evaluation of ``Static First, Dynamic Second''
	Effectiveness of Temporal Signature
	Results on Similarity Computation Strategies
	Results on Robustness
	Comparison between SFDS and AFDS
	Will EM-styled AFDS produce better accuracy?

	Related Work
	Conclusion and Future Work
	Acknowledgement
	References

