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ABSTRACT
Querying complex graph databases such as knowledge
graphs is a challenging task for non-professional users. Due
to their complex schemas and variational information de-
scriptions, it becomes very hard for users to formulate a
query that can be properly processed by the existing sys-
tems. We argue that for a user-friendly graph query engine,
it must support various kinds of transformations such as
synonym, abbreviation, and ontology. Furthermore, the de-
rived query results must be ranked in a principled manner.
In this paper, we introduce a novel framework enabling

schemaless and structureless graph querying (SLQ), where
a user need not describe queries precisely as required by
most databases. The query engine is built on a set of trans-
formation functions that automatically map keywords and
linkages from a query to their matches in a graph. It auto-
matically learns an effective ranking model, without assum-
ing manually labeled training examples, and can efficiently
return top ranked matches using graph sketch and belief
propagation. The architecture of SLQ is elastic for “plug-in”
new transformation functions and query logs. Our experi-
mental results show that this new graph querying paradigm
is promising: It identifies high-quality matches for both key-
word and graph queries over real-life knowledge graphs, and
outperforms existing methods significantly in terms of effec-
tiveness and efficiency.

1. INTRODUCTION
Graph querying is widely adopted to retrieve informa-

tion from emerging graph databases, e.g., knowledge graphs,
information and social networks. Searching these real-life
graphs is not an easy task especially for non-professional
users: either no standard schema is available, or schemas be-
come too complicated for users to completely possess. For
example, a single knowledge graph could have more than
10K types of entities, as illustrated in Table 1, not to men-
tion the different presentations of entity attributes.
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Knowledge graphs node types relation types entities
DBpedia [1] 359 800 3.7M
YAGO2 [3] 6,543 349 2.9M
Freebase [2] 10,110 9,101 40.3M

Table 1: Knowledge graphs

This kind of complexity contrasts to the impatience of
web users who are only interested in finding query answers
in a short period. The existing structured query techniques
such as XQuery [6] and SPARQL [22] are barely able to
address such challenge. Keyword queries (e.g., [11, 14, 27])
were proposed to shield non-professional users from digest-
ing complex schemas and data definitions. Unfortunately,
most of keyword query methods only support a predefined
similarity measure, such as approximate string matching [18]
and ontology-based matching [30]. A general, systematic ap-
proach that automatically supports multiple measures (e.g.,
synonym, abbreviation, ontology, and several more summa-
rized in Table 2) all together is lacking.

In this paper, we present a principle that could take multi-
ple matchings into account and demonstrate its great poten-
tial. Under this principle, given a query Q, query evaluation
is conducted by checking if its matches in a graph database
G can be “transformed” from Q through a set of transfor-
mation functions.

Q G
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(Born in 1980)

Figure 1: Searching with transformations

Example 1: To find a movie star in a knowledge graph, a
graph query Q is issued (Figure 1), which aims to find an
actor whose age is around 30 (“30 yrs”), graduated from
UC Berkely (“UCB”), and may relate to movie “Mission:
Impossible” (“M:I”). One may identify a match for Q as
shown in Figure 1. The match indicates that “30 yrs” in
Q refers to an actor “Chris Pine” who was born in 1980,
“UCB” is matched to the University of California, Berkeley,
and “M:I” refers to the movie “Mission:Impossible”. Tra-
ditional keyword searching based on IR methods or string
similarity cannot identify such matches. �

Given a few transformation functions, one might find
many matches of Q in a graph database. A transformation-
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Transformation Category Description Example

First or Last token String take the first/last token ‘Anne Hathaway’→ ‘Anne’, ‘Justin Bieber’→ ‘Bieber’

Abbreviation String initials of all but last ‘Jeffrey Jacob Abrams’ → ‘J.J. Abrams’
Drop String drop the last token ‘US Airways Company’ → ‘US Airways’
Bag of words String entity described by the keyword ‘Yankees hat’ → ‘Tom Cruise’ (‘. . . signs Yankees hat’)

Prefix String take prefix (e.g., 3 letters) ‘Street’ → ‘Str’
Acronym String initials of each token ‘International Business Machines’ → ‘IBM’
Synonym Semantic replaced by synonym ‘lawyer’ → ‘attorney’
Ontology Semantic replace using ontology ‘teacher’ → ‘educator’
Date Gap Numeric year gap of two dates ‘2010’ → ‘3 yrs ago’ (as of, e.g., 2013)

Date Abbreviation Numeric simplify date ‘2008.8.8’ → ‘2008.8’
Range Numeric find numbers in a range ‘∼30 yrs’ → ‘33 yrs’

Unit Conversion Numeric convert measurements ‘0 Celsius’ → ‘32 Fahrenheit’, ‘3 mi’→ ‘4.8 km’

Distance Topology edge to shortest path ‘Pine’-‘M:I’ → ‘Pine’-‘J.J.Abrams’-‘M:I’

Table 2: Transformations

friendly query engine must address the following two ques-
tions: (1) how to determine which match is better? (2) how
to efficiently identify the top ranked matches?

Intuitively, the selectivity, the popularity, and the com-
plexity of transformation functions shall be considered and
used as a ranking metric for these matches. How to choose,
from many possible transformations, an appropriate rank-
ing metric that leads to good matches? First, a searching
algorithm should be deployed to determine the best trans-
formation for different portions of a query. For example,
“UCB” should be automatically transformed to entities us-
ing it as acronym, rather than string edit distance. This
requires a weighting function for various transformations.
Second, to identify such a function, manual tuning should
be reduced to a minimum level. Instead of asking users
to tune the weights, learning to rank [15, 25] is more ap-
propriate. Unfortunately, it usually needs manually labeled
training data, again a daunting task for end users. Finally,
since there could be too many matches to inspect, it is im-
portant to only return top-k results. While desirable, this
top-k search problem is much more challenging due to the
presence of different transformations, compared to its single
transformation counterpart.

Contributions. This work proposes a first-kind of graph
querying framework that answers all these questions.

(1) We propose a new, generalized graph searching problem:
Given a query Q, a graph G and a library of transformation
functions L, where there are multiple matches in G that can
be transformed from Q by applying L, it is to find the top-
k ranked matches for Q. In contrast to traditional graph
searching using single, predefined similarity metric such as
string similarity, we use a metric combining transformations
of various kinds. The metric itself is automatically learned.

(2) We propose SLQ, a general graph query framework for
schemaless and structureless querying. It consists of two
phases: offline learning and online query processing.

(a) Given multiple matches transformed from Q, how to de-
cide a proper ranking metric? Certainly a manually picked
combination function, e.g., averaging, is not going to work
elegantly. We show that this problem can be solved by a
parameterized ranking model. In this work, we adopt condi-
tional random fields [24], as it not only gives a good ranking
model, but also indicates a fast matching search algorithm.
In the offline learning phase, the framework needs to solve
the cold-start problem, i.e.,, where to find training samples

to train the model. Manually labeled matches might be too
costly for a few sample queries. A systematic approach is
hence introduced to create sample queries and answers by
extracting subgraph queries from G, inject transformations
to these queries, and form query-answer pairs for training.

(b) Given a ranking metric, how to efficiently find top ranked
matches? For general graph queries and keyword queries, we
prove that the problem is np-hard. We propose a polynomial
time heuristic top-k algorithm for online query processing.
The problem is tractable for tree-structured queries, and
an exact, polynomial time algorithm is developed. Both
algorithms stop once k best matches are identified, without
inspecting every match. In practice, they run very fast.

(3) Using several real-life data/knowledge graphs, we ex-
perimentally verify the performance of our graph query-
ing engine. It outperforms traditional keyword (Spark [18])
and approximate graph searching (NeMa [12]) algorithms in
terms of quality and efficiency. For example, it is able to
find matches that cannot be identified by the existing key-
word or graph query methods. It is 2-4 times faster than
NeMa, and is orders of magnitude faster than a naive top-k
algorithm that inspects every match.

To the best of our knowledge, these results are among the
first efforts of developing a unified framework for schemaless
and structureless querying. SLQ is designed to help non-
professional users access complex graph databases in a much
easier manner. It is a flexible framework capable of finding
good matches when structured query languages do not work.
New transformations and ranking metrics can be plugged in
to this framework easily. The contribution of this study is
not only at providing a novel graph querying paradigm, but
also at the demonstration of unifying learning and searching
for much more intelligent query processing. The proposed
techniques can be adapted easily to a wide range of search
applications in databases, documents and the Web.

2. PRELIMINARY

Property graph model. We adopt a property graph
model [23]. A graph G = (V,E) is a labeled graph with
node set V and edge set E, where each node v ∈ V has
a property list consisting of multiple attribute-value pairs,
and each edge e ∈ E represents a relationship between two
entities. The model is widely adopted to present real-life
schemaless graphs To simplify our presentation, we will first
treat all the information associated with nodes and edges as
keywords, and then differentiate type and value in Section 7.
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Queries. We formulate a query Q as a property graph
(VQ, EQ). Each query node in Q describes an entity, and
an edge between two nodes, if any, specifies the connectivity
constraint posed on two query nodes. Q could be discon-
nected when a user is not sure about a specific connection.
This query definition covers both keyword query [27] (query
nodes only) and a graph pattern query [7] (connected query
graph). For the ease of discussion, we first focus on the query
that is connected. How to handle disconnected queries in-
cluding keyword queries is given in Section 7.
Traditional graph querying assumes structured queries

formulated from well-defined syntax and vocabulary (e.g.,
XPath and SPARQL). This work considers general queries
that might not exactly follow the structure and semantic
specifications coded in a graph database.

Transformations and matches. To characterize the
matches of Q, we assume a library L of transformation func-
tions (or simply transformations). A transformation f can
be defined on the attributes and values of both nodes and
edges of Q. The transformation functions can be specified in
various forms, e.g., (string) transformation rules [4]. Table 2
summarizes several common transformations. These trans-
formations consider string transformation, semantic trans-
formation, numeric transformation, and topological trans-
formation (as edge transformations). For example, “Syn-
onym” allows a node with label “Tumor” to be mapped to
the node “Neoplasm”. All these transformations are sup-
ported in our implementation. New transformations, such
as string similarity (e.g., spelling error) [17] and Jaccard dis-
tance on word sets [12] can be readily plugged into L. The
focus of this work is to show a design combining different
transformations, not to optimize a specific transformation.
A node or edge in Q matches its counterparts in a data

graph G with a set of transformed attributes/values, spec-
ified by a matching (function) φ. A match of Q, denoted
as φ(Q), is a connected subgraph of G induced by the node
and edge matches. In this work, for each attribute/value,
we only consider one-time transformation, as the chance for
transforming multiple times is significantly lower.

3. SCHEMALESS AND STRUCTURELESS
QUERYING

In this section, we provide an overview of SLQ, and its
three key components: matching quality measurement, of-
fline learning, and online query processing.

Matching quality measurement. Given Q and a match-
ing φ of Q, we need to measure the quality of φ(Q) by
aggregating the matching quality of corresponding nodes
and edges. Intuitively, an identical match should always
be ranked highest; otherwise, φ(Q) shall be determined by
the transformations, as well as their weights to indicate how
“important” they are in contributing to a reasonable match.
One possible strategy is to assign equal weight to all trans-
formations. Certainly, it is not the best solution. For ex-
ample, given a single node query, “Chris Pine”, nodes with
“C. Pine” (Abbreviation) shall be ranked higher than nodes
with “Pine” (Last token). A predefined weighting function
is also not good, as it is hard to compare transformations of
different kinds. In this work, we introduce a novel learning
approach to figure out their weights (Section 4).
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Figure 2: SLQ: graph querying framework

Offline model learning. There might exist multiple
matches for Q in a graph G using different transformations.
An advanced model should be parameterized and be able
to adjust the weights of all possible transformations. If a
historical collection of queries and user-preferred answers
is available, through a machine learning process, one can
automatically estimate weights so that the user-preferred
answers could be ranked as high as possible.

As suggested from previous work [15], the best practice
for learning a model is to employ a query log generated by
real users. However, the log might not be available at the
beginning. On the other hand, the system does need a set of
good-quality query-answer pairs to have its weights tuned.
This becomes the chicken or the egg dilemma. In Section 4.2,
we introduce a method to automatically generate training
instances from the data graph.

Online top-k searching. Once the parameters of the rank-
ing function are estimated in the offline learning, one can
process queries online. Fast query processing techniques are
required to identify top ranked matches based on the ranking
function. This becomes even more challenging when multi-
ple transformations are applicable to the same query, and
the answer pool becomes very large. While the problem is
in general intractable, we resort to fast heuristics. The idea
is to construct a small sketch graph by grouping the matches
in terms of Q and the transformations. The algorithm first
finds the matches in the sketch graph that are likely to con-
tain the top-k answers. It then “drills down” these matches
to extract more accurate matches from the original graph G.
This design avoids the need of inspecting all the matches.

Putting the above components together, Figure 2 illus-
trates the pipeline of SLQ. It automatically generates train-
ing instances from data graphs and any available query log.
Using the training set, it learns a ranking model by estimat-
ing proper weights for the transformations. In the online
stage, it applies efficient top-k searching to find best matches
for new queries. A user can provide feedback by specifying
good answers in the top-k matches, which can be put back
to the query log to further improve the ranking model. In
the following sections, we discuss each step in detail.

4. OFFLINE LEARNING
Given G and a library L of transformations, the offline

learning module generates a ranking model, without resort-
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ing to human labeling efforts. In this section, we present
two key components, the parameter estimation and auto-
matic training instance generation.

4.1 Ranking Function
Given Q and φ(Q), a node matching cost function

FV (v, φ(v)) is introduced to measure the transformation cost
from a query node v to its match φ(v). It aggregates the
contribution of all the possible transformations {fi} with
corresponding weight {αi},

FV (v, φ(v)) =
∑

i

αifi(v, φ(v)) (1)

where each fi returns a binary value: it returns 1 if its
two inputs can be matched by the transformation, and 0
otherwise. Analogously, an edge matching cost function is
defined as

FE(e, φ(e)) =
∑

i

βifi(e, φ(e)) (2)

which conveys the transformation(s) from a query edge e to
its match φ(e). φ(e) can be a path in φ(Q) with the two
endpoints matched with those in e. {fi} can be extended to
support real-valued similarity functions. We instantiate our
querying framework with a set of commonly used transfor-
mations, as in Table 2. Other user-specified transformations
can be plugged in too.
We now introduce a ranking function that could combine

multiple nodes and edges matches together. There are two
important factors to consider. First, using training data, it
shall be able to optimize parameters {αi} and {βi} for good
ranking quality. Second, the ranking function shall have a
mechanism to search top-k matchings quickly. Enumerating
all possible matches of a query graph and then sorting their
scores is not a good mechanism. In this work, we give a prob-
abilistic formulation that satisfies both requirements. The
superior performance of SLQ can already be demonstrated
by this formulation. We leave the search and comparison of
various probabilistic models in terms of ranking quality and
query response time to future work.
Given Q and a match φ(Q), we use probability P (φ(Q)|Q)

as a measure to evaluate the matching quality,

P (φ(Q)|Q) =
1

Z
exp(

∑

v∈VQ

FV (v, φ(v)) +
∑

e∈EQ

FE(e, φ(e)))

(3)

where Z is a normalization function so that P (·) ∈ [0, 1].
The ranking function P (φ(Q)|Q) can be naturally inter-

preted with conditional random fields (CRFs), a widely ap-
plied graphical model (see [24] for more details). In our for-
mulation, the nodes and edges in each query Q are regarded
as the observed nodes and structures in CRFs; the nodes and
edges in each match φ(Q) to be predicted are regarded as
the output variables. CRFs directly models the distribution
of the output variables given the observed variables, which
naturally serves as our matching quality measure.

Example 2: Recall the Q and a match φ(Q) (Figure 3).
Each node, e.g., 30 yrs, may have multiple matches via
multiple transformations, as remarked earlier. The quality
of the match P (φ(Q)|Q) is computed by aggregating the
quality of each node and edge match in φ(Q), determined
by a weighted function of all transformations. �

University 
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Impossible

Q
Φ(Q)
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...

...
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"Acronym" 
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Figure 3: Ranking function

Two key differences between SLQ and the existing graph
query algorithms are (1) we support multiple transforma-
tions; and (2) the weight of these transformations are
learned, rather than user-specified. The probabilistic rank-
ing function is a vehicle to enable these two differences.

4.2 Transformation Weights
To determine the weights of transformations W =

{α1, α2, ...;β1, β2, ...}, SLQ automatically learns from a set
of training instances. Training instances can be regarded
as past query experiences, which can teach the system how
to rank the results when new queries arrive. Each training
instance is a pair of a query and one of its relevant answers.
Intuitively, we want to identify the parameters W that can
rank relevant answers as high as possible for a given query
in the training set T . We choose parameters such that the
log-likelihood of relevant matches is maximized,

W = argmax
W

∑

T

logP (φ(Q)|Q) (4)

Optimizing objective functions like Eqn. 4 has been stud-
ied extensively in machine learning community [24]. We
adopt the standard Limited-memory BFGS (L-BFGS) [16]
algorithm, as it requires less memory than other approaches.

Complexity. Based on the analysis of [24], the worst time
complexity of training CRFs in our problem setting is
O(N |Q||Vm|2|T |), where (1) N is the number of gradient
computations performed by the optimization, (2) |Q| is the
size of the largest query in the training set, (3) |Vm| is the
largest number of the matches a query node or edge may
have, and (4) |T | is the number of training instances. Exper-
imental results (Table 4 in Section 8) show that its training
time is affordable for large real-life graphs, as only a small
sample of the graph is needed. |Vm|2 is also not an issue
here as one can avoid using less-selective queries.

4.3 Automatic Training Instance Generation
A key issue in SLQ is how to cold-start the system when

no user query log is available. We developed an innovative
strategy to generate artificial training instances. It turns out
that this strategy works far better than just giving equal
weight to all transformations. Our system first randomly
extracts a set of subgraphs from the data graph and treat
them as query templates. For each template Q̂, it injects
a few transformations to Q̂ and generates a set of training
queries Q. Intuitively, each training query Q should have Q̂
as its good match, since Q can be transformed back to Q̂.
The system also identifies exact matches of Q in G. Conse-
quently, the matches identical to Q form training instances
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too. The weights of transformation functions are learned by
ranking Q̂ as high as possible in the matches of Q, but below
those identical matches of Q in G.
The identical matches play a key role of determining the

weight of transformations. For example, with respect to
a query template “Barack Obama”, a match “B. Obama”
is more preferred than “Obama” as there are less identi-
cal matches of “B. Obama” (i.e., with higher selectivity).
Therefore, by populating the training instances with ran-
dom queries and results, the method can gauge the impact
of transformations automatically in terms of selectivity. The
second reason for this cold-start strategy to work well is that
it covers different cases comprehensively, as it randomly and
uniformly samples subgraphs from the data graph.

5. ONLINE QUERY PROCESSING
In this section, we introduce the online query processing

technique that finds top-k ranked matches for Q in G with
the highest scores. To simplify the discussion, we assume
that each transformation fi checks if a query node (resp.
edge) matches a node (resp. path) in G in constant time.
The query processing problem is in general np-hard, as

one may verify that subgraph isomorphism [21] is its spe-
cial case. To precisely compute P (φ(Q)|Q), one has to in-
spect every possible match, which is a daunting task. A
straightforward algorithm identifies the match candidates
for query node/edge via all transformations in O(|Q||G||L|)
time, enumerates all possible result matches, and computes
their rank scores to find top-k ones. Its complexity is
O(|Q||G||L|+ |G||Q|), which does not scale over large G.
Observing the hardness of the exact searching (e.g., sub-

graph isomorphism), one shall not expect a fast solution
with complete answers (except for tree queries). Instead,
we resort to two heuristics. The first one leverages an infer-
ence technique in graphical models that has been verified to
be efficient and accurate in practice [31] (Section 5.1). The
second one further improves it by building a sketch of G so
that low-score matches can be pruned quickly (Section 5.2).
Our top-k algorithm based on these two techniques (Sec-
tion 5.3) could reduce the query processing time in orders
of magnitude, while only small loss of answer quality is ob-
served (less than 1% in our experiments). Moreover, it can
deliver exact top-k matches when Q are trees (Section 5.4),
which is desirable as many graph queries are indeed trees.
Section 5.1 briefly introduces the first heuristic, LoopyBP,

which needs some background knowledge to digest [28]. The
readers may skip it without difficulty in understanding the
remaining sections.

5.1 Finding Matches
The idea of LoopyBP is to treat Q as a graphical model,

where each node is a random variable with a set of matches
as possible assignments. It finds top assignments (matches)
that maximizes the joint probability for Q (with highest
matching quality). To this end, LoopyBP leverages inferenc-
ing techniques [28], which iteratively propagates “messages”
among the nodes to estimate the matching quality.
Given Q, LoopyBP identifies a match φ(Q) that maximizes

P (φ(Q)|Q) by seeking maxui b(ui) [31]. For each node vi ∈
VQ and its match ui, b(ui) is formulated as:

b(ui) = max
ui

FV (vi, ui)Πvj∈N(vi)m
(t)
ji (ui), (5)

for each match ui of vi and each vj in the neighborhood set

N(vi) of vi in Q. Here m
(t)
ji (ui) is a message (as a value) sent

to ui from the matches of vj ∈ N(vi) at the tth iteration:

m
(t)
ji (ui) =max

uj

FV (vj , uj)FE((vj , vi), (uj , ui)) (6)

·
∏

vk∈N(vj)\vi
m

(t−1)
kj (uj),

for each match uj of vj . (uj , ui) represents the match of
the query edge (vj , vi). Intuitively, the score b(ui) is de-
termined by the quality of ui as a node match to vi (FV ),
the quality of edge matches, e.g., (uj , ui), attached to ui

(FE), and the match quality of its neighbors uj as messages
(mji(ui)). Hence the node u with the maximum b(·) and
its “surrounded” node and edge matches naturally induce a
match with good quality in terms of matching probability.

Algorithm. Based on the formulation, LoopyBP finds top
matches in three steps. (1) It first initializes the messages

of each node m(0)(·) = 1. (2) It iteratively updates b(·)
following message propagation until none of b(·) in succes-
sive iterations changed by more than a small threshold. (3)
LoopyBP identifies best node matches u = argmaxub(u), and
then extracts top-k matches φ(Q), following a backtrack-
ing strategy [31]. More specifically, LoopyBP first selects
a match u with the highest score b(·), and induces a top 1
match φ(Q)1 following the node matches with top b(·) scores
connected to u. It then finds a next best match by perform-
ing two message propagations: (a) it identifies a match u′ of
a node v in Q with the second highest score b(·) among all
the matches and is not in φ(Q)1, and then performs a prop-
agation to find a top match φ(Q)2, fixing φ(v) = u′; (b) it
performs a second round of propagation where φ(v) �= u′,
to “trace back” to an earlier state of the scores in (a), and
prepare to extract a next best match. It repeats the above
process until k matches are identified (see details in [31]).

Complexity. The propagation only sends messages follow-
ing edge matches as paths of bounded length d constrained
by edge transformation in L. Thus each propagation tra-
verses, for each match u of v, up to the set Vd of d hops of u
in G. The algorithm takes O(I|Q||V ||Vd|) time for message
propagation in total I iterations, where a single iteration
completes when each node exchanges a message with each of
its neighbors. In addition, it takes O(|Q|) time to construct
a best (top-1) matching φ for Q. Putting these together, the
process of finding one match takes overall O(I|Q||V ||Vd|)
time. To find k matches, at most 2k rounds of propagation
are conducted with backtracking, where each round denotes
the start to the convergence of a propagation. Hence it iden-
tifies top k matches in O(k ∗ I|Q||V ||Vd|) time. Note that
d is typically small: Edges are usually matched with short
paths as observed in keyword and graph searching [12,14].

5.2 Sketch Graph
With LoopyBP, one still needs to inspect a large number of

node and edge matches. Observe that these matches can be
naturally grouped in terms of transformations: Each match
contributes the same matching score when it conducts the
same type of transformation. Following this, we construct a
sketch graph Gh from G induced by Q and L. The idea is
to efficiently extract matches from a much smaller Gh, and
then drill down to find more accurate “lower level” ones.
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Figure 4: Graph sketch and top-k searching

We denote as σi the set of all matches for a node vi
in Q. (1) A match partition of σi is a set of partitions
{σi1, . . . , σin} of σi, such that for any two nodes in σij , they
can be mapped to vi via the same transformation fj ∈ L.
(2) The sketch graph Gh of G contains a set of hyper nodes,
where each hyper node u(vi,fj) denotes a match set σij of vi
in Q induced by fj . There is an edge connecting two hyper
nodes u(vi,fm) and u(vj ,fn) if and only if (vi, vj) is an edge
of Q. Thus the match score of an edge in Gh establishes an
upper bound of its underlying edge matches in G, since any
edge in Gh is an exact match of an edge in Q. Intuitively,
Gh sketches G by grouping the matches of each query node
as a single node, as long as they can match to the query
node by the same transformation. Note that a sketch graph
Gh can also be queried by LoopyBP. We denoted as GR

an “upper level match” from Gh, and distinguish it from a
“lower level match” Gr as a subgraph of G. Gr is contained
in GR if each node of Gr is in a hyper node of GR.
One may verify that the rank score of each upper level

match GR indicates an upper bound of the rank scores of all
the lower level matches it contains:

Lemma 1: For any upper level match GR (specified by
matching φR) and any lower level match Gr contained in GR

(specified by φr), maxφr(vi) b(φr(vi)) ≤ maxφR(vi) b(φR(vi)),
where vi ranges over the query nodes in VQ. �

Proof sketch: We prove by induction on the iterations

that for any vi ∈ VQ at any iteration t, m
(t)
ji (φr(vi)) ≤

m
(t)
ji (φR(vi)). (1) Let t = 1. Since FV (vi, φr(vi)) =

FV (vi, φR(vi)) and FE(e, φr(e)) ≤ FE(e, φR(e)), we have

m
(1)
ji (φr(vi)) ≤ m

(1)
ji (φR(vi)), by the definition of GR and

Eqn. 6. (2) Assume m
(t)
ji (φr(vi)) ≤ m

(t)
ji (φR(vi)) for t < n.

When t = n, one can verify that mn
ji(φr(vi)) is no larger

than mn
ji(φR(vi)), again with Eqn. 6. Hence, by Eqn. 5,

b(φr(vi)) ≤ b(φR(vi)). The Lemma hence follows. �

Note that the size of Gh is independent of |G|: it is
bounded by O(|Q|2|L|2) where |Q| and |L| are typically
small. Moreover, Gh can be efficiently constructed using
indexing techniques (Section 6).

Example 3: A sketch graph Gh is illustrated for the query
Q in Figure 4. A node UCB with label “Acronym” in Gh

points to a group of matches via transformation “Acronym”.
Given Q and Gh, LoopyBP provides an upper level match
GR1 , which contains two lower level matches φ1(Q) and
φ2(Q), with rank scores bounded by that of GR1 . �

Input: Graph G, query Q, transformations L, integer k;
Output: a list L of top k ranked matches.

1. top k list L := ∅; terminate:=false;
2. for each node v of Q do
3. initialize valid match candidates w.r.t. L;
4. construct sketch graph Gh;
5. GR := LoopyBP(Gh);
6. while terminate = false do
7. update L with top k matches from LoopyBP(GR);
8. GR := LoopyBP(Gh);
9. update terminate;
10.return L;

Figure 5: Algorithm topK

5.3 Top-k Search
Using LoopyBP and sketch graph as building blocks, we

next present our top-k searching algorithm. The algorithm,
denoted as topK, is illustrated in Figure 5.

Given Q, G, L and integer k, topK initializes a top k
match list L, and a Boolean flag terminate to indicate if
the termination condition (as will be discussed) is satisfied
(line 1). It next constructs a sketch graph Gh (lines 2-4).
Given G, Q and Gh, it dynamically updates L with newly
extracted matches, by applying LoopyBP over the sketch
graph Gh and G iteratively (lines 5-9). More specifically,
topK repeats the following two steps, until the termination
condition is satisfied (terminate = true).

(1) The algorithm topK first performs LoopyBP over Gh,
and produces a best upper level match of Q, e.g., GR, as
a subgraph of Gh (line 5). Note that GR corresponds to
a subgraph of G, induced by all the nodes in G that are
contained in the hyper nodes of GR following edge matches.

(2) topK then “drills down” GR to obtain the subgraph it
corresponds to, and conducts LoopyBP over the subgraph to
update L with more accurate lower level matches (line 7).
Matches in L are replaced with new matches with higher
scores. In addition, topK also performs necessary propa-
gation over the subgraphs from earlier upper level matches,
if they contain nodes with updated scores due to messages
from the updated matches in L. It updates L with new
lower level matches from these subgraphs, if any, until no
more new matches can be identified to update L. It next
extracts a next upper level match GR from Gh (line 8).

The above steps (lines 7-8) complete a round of process-
ing. At the end of each round, topK checks if the termination
condition below is satisfied (line 9): (a) L already contains
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k matches, and (b) the match ranked at k in L already has
a score higher than the next upper level match GR (if any)
from Gh. If the condition is satisfied (or all possible matches
in G are visited), topK terminates and returns L (line 10).
Otherwise, it extracts a new high level match from Gh, and
repeats steps (1) and (2).

Analysis. topK always terminates, as the message (value)
propagation stops when the change of the value is below a
threshold. Moreover, the top k matches returned by topK
will be the same as those returned by LoopyBP if sketch
graph is not involved, due to Lemma 1.
For the complexity, one may verify the following. (1) It

takes O(|VQ||V ||L|) time to identify all the partition sets,
and construct Gh (lines 2-4). Note that we assume ev-
ery transformation checking is done in constant time, as
remarked earlier. (2) The total runtime consists of two
parts: the upper level LoopyBP (over Gh) and the lower
level LoopyBP (over G) . The upper level LoopyBP (line 5,8)
takes in total O(I1|L|2|Q|3) time, since Gh has in total
|VQ||L| nodes, and it takes O(I1|Q|(|L||VQ|)2) time for upper
level LoopyBP, where I1 denotes the total number of upper
level iteration. Note that the performance of upper level
LoopyBP is independent of the size |G|. (3) The lower level
LoopyBP (line 7) takes in total O(I2|Q||Vt|2) time, where I2
is the iteration number for lower level LoopyBP, and |Vt| de-
notes the total number of nodes in G visited by lower level
LoopyBP when topK terminates. Putting these together,
algorithm topK takes in total O(|VQ||V ||L| + I(|Q|3|L|2 +
|Q||Vt|2)) time, for in total I (i.e., I1+I2) iterations.
In practice, |Q| and |L| are typically small. Moreover,

indexing techniques to efficiently identify node matches
(lines 2-4) can be readily applied, reducing its time complex-
ity from O(|VQ||V ||L|) to O(|VQ|) (see Section 6). Our ex-
periments show that topK achieves near-linear runtime w.r.t.
graph size (see Figure 11 in Section 8). A possible reason is
that most of possible node matches are not connected with
each other in terms of edge matches. The number of mes-
sage passing among them is much smaller than the worst
case |Vt|2. They cannot form a high quality subgraph that
matches the entire query graph. In the first few iterations,
they are quickly pruned by LoopyBP.

Example 4: Consider the query Q in Figure 4. The al-
gorithm topK finds top 2 matches for Q in G as follows.
(1) topK first computes a sketch graph Gh of G as show
in Fig. 4. (2) It then computes a top ranked result GR1

from Gh, where the node UCB in Q is matched (via trans-
formation “Acronym”) with a hyper node that contains the
node University of California, Berkeley . topK then
computes a top K list by drilling down GR1 (Figure 4),
and identifies two lower level matches φ1(Q) and φ2(Q)
from GR1 (Figure 4), indicating actors in the movie “mis-
sion:impossible”. (3) It next identifies a second high level
match GR2 , specified by “Bag of words” and “Acronym”.
Without drilling-down to lower level matches, topK iden-
tifies that the ranking score of GR2 is already lower than
φ2(Q). This indicates that no lower level matches better
than φ2(Q) can be found. topK thus returns φ1(Q) and
φ2(Q) as the top 2 matches. �

5.4 Exact Matching for Trees
When Q is a tree, which is quite common in practice, topK

can be readily revised, leading to efficient exact top-k search.
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Algorithm. The algorithm topK for tree queries iteratively
performs LoopyBP over Gh and G, similarly as for general
graph queries. The difference is that it uses a simplified
propagation: it only performs two passes of propagation to
extract an optimal match [28]. More specifically, given a tree
query Q, it designates a root in Q, and denotes all nodes as
leaves. topK then computes a top ranked match by conduct-
ing two passes of propagation: one from the matches for all
leaves to those of the root, and the other from the matches
of the root to all the matches of the leaves. It repeats the
process to fetch top k best results.

Correctness and Complexity. Following [28], the two
passes of propagation in topK for a tree query Q is guaran-
teed to converge in at most m steps, where m is the diameter
of Q, i.e., the length of the longest shortest path between
two nodes in Q. Moreover, the propagation computes the
exact rank value P (φ(Q)|Q) (Section 4). The correctness of
topK hence follows. One may verify that topK is in total
O(|VQ||V ||L| + |Q|3|L|2 + |Q||Vt|2) time over tree queries,
with (a) 2 passes of propagations, and (b) each propagation
directs messages up to a few steps in both Gh and G. Here
Vt is similarly defined as its counterpart for general queries.

6. INDEXING
The remaining issue is to find transformed matches of

query nodes quickly. For example, a node in Q with la-
bel “Chris Pine” shall be matched to a node in G has a
label “Chris,” “Pine,” “C. Pine,” etc. A straightforward
method rewrites each label l from Q to a label set using all
possible transformations, and inspects every node label in
G to find matches. Obviously, scanning the entire graph is
expensive. For each (or each category of) transformation,
an appropriate index is needed to support fast search.

Several indices are adopted in SLQ, in accordance with
the category of the transformations it supports in Table 2.
Nevertheless, experimenting various kinds of indexing tech-
niques is not the focus of this work.

(1) String index, StrIdx, is built for all the string labels in G.
The index contains a list of key-value pairs <l, Sl>, where
(a) each key is a distinct label l, and (b) Sl is a node set, such
that each node v in Sl has a label lv, such that fi(l, lv) = 1
for string transformation fi. In other words, Sl corresponds
to the matches of nodes who have labels that can be trans-
formed from label l via string transformations. The nodes
in Sl are further grouped in terms of their associated trans-
formations to form a partition of Sl.

Let D be the set of all the labels in G. To construct
StrIdx, each transformation is applied on each label of all
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the nodes in G. The transformed label set is denoted as
Λ, which hence forms the keys in StrIdx. For each key l,
nodes with labels associated to l via a transformation are
grouped as a set Sl. The pair <l, Sl> is then inserted to
StrIdx as an entry. One may verify that (1) the construc-
tion of StrIdx takes O(|L||D|) time, and (2) the space cost
of StrIdx is in O(|L||Λ||V |) for at most |L| string transfor-
mations. SLQ does not necessarily build a specific index for
each transformation. (1) Transformations can be grouped
according to their category (e.g., “String”), supported by a
single index (e.g., StrIdx). (2) Searching for some transfor-
mations, e.g., Unit Conversion, can be trivially performed as
direct mapping. As demonstrated in Section 8, the worst
case space cost is seldom demonstrated. The index size can
be further reduced by index optimization e.g., [29].

(2) Semantic index, OntIdx, leverages the indexing tech-
niques in [30] and [13], to help identify the matches based
on semantic transformations, e.g., Ontology and Synonym.

(3) Numeric index, NumIdx, is constructed for searching in-
volving labels with numeric values, e.g., ≤ 35 yrs (Range).
SLQ builds NumIdx as B+ tree over numeric values.
Figure 6 illustrates the above indexing techniques. As an

example, for a node v1 with label “Chris Pine” in G, StrIdx
performs string transformations, e.g., Last token, and iden-
tifies the label “Pine” as a key. It then insert node v1 into
the value entry corresponding to key “Pine”. Analogously,
the nodes, e.g., “Robert Pine” and “Peter Pine”, in G will
be mapped to the same entry, associated with key “Pine”
and transformation Last token.
For each label l in every query node, SLQ searches for the

node match candidates by looking up the label (key) in the
indices StrIdx, NumIdx and SemIdx. The candidates for label
l refer to all the entry values in the indices corresponding to
the key l. Thus, it takes onlyO(|VQ|) to find the transformed
match candidates. Indeed, as verified in Section 8, with the
indices, the time for finding transformed match candidates
accounts for less than 2% of the total search time.

7. EXTENSIONS
The architecture of SLQ can also support typed queries,

and partially connected queries.

Typed queries. Users may pose explicit type constraints
on queries. For example, the query node “30 yrs” (Fig-
ure 1) can be specified with a type “actor”. To cope with
typed queries, SLQ defines a type feature function for a query
node v and its type sv as

FS(v, φ(v)) =
∑

i

γifi(sv, sφ(v)) (7)

with the transformations {fi} applied to the node types.

Partially connected queries. A partially connected
query Q contains several connected components. Note that
a keyword query is a case of partially connected queries.
A user submits partially connected queries when he is not
clear about the connection among these nodes. To cope with
such queries, a new query Q′ is constructed by inserting a
set Ẽ of implicit edges, where each edge ẽ bridges a pair of
nodes from different components. An implicit edge feature
function can be readily introduced as

FẼ(ẽ, φ(ẽ)) =
∑

i

δifi(ẽ, φ(ẽ)) (8)

Both FS(v, φ(v)) and FẼ(ẽ, φ(ẽ)) can be plugged into the
ranking function Eq. 3, where {γi} and {δi} can be learned
using the same training strategy.

8. EXPERIMENTAL EVALUATION
In this section, we perform a set of experiments using real-

life large graphs, to demonstrate SLQ framework in terms of
effectiveness, efficiency and scalability.

8.1 Experimental Settings

Datasets. We use the following three datasets. (1) DBpe-
dia [1] is a knowledge base. Each node represents an entity
associated with a set of properties, (e.g., name=‘california’,
type=‘place’, area=‘163,696 sq mi’). The labeled edges in-
dicate various relationships. (2) YAGO2 [3] is a knowledge
base gathered from several open sources. Similarly as DBpe-
dia, its nodes and edges preserve rich information. (3) Free-
base [2] is a collaboratively created graph base that has over
40M topics (nodes) and 1.2B facts. As public repositories,
these graphs are maintained by multiple communities, con-
taining highly diverse and heterogeneous entities, attributes
and values. The following table gives a summary.

Graph Nodes Edges Node types Relation Size
DBpedia 3.7M 20M 359 800 40G
YAGO2 2.9M 11M 6,543 349 18.5G
Freebase 40.3M 180M 10,110 9,101 88G

Transformations. Our system integrated all of the trans-
formations in Table 2 including ontology [30]. More trans-
formations can be seamlessly adopted.

Queries. In the experiments, two sets of query benchmarks
are employed. (1) The DBPSB benchmark [19] is derived
from DBpedia. The benchmark is a set of 25 query templates
that are originally expressed in SPARQL format. The tem-
plates resemble real query workload and cover queries with
different complexity. The queries can be converted to graph
queries. (2) The templates in DBPSB have limited types
(e.g., “Person”) and simple topology (e.g., tree). We hence
designed a second set of 20 templates that explore more di-
verse topics and complex (e.g., cyclic) graph structures.

In offline learning, query templates are generated by in-
stantiating the query benchmarks with the labels from the
data graphs. Here a label can be any property of the corre-
sponding entity. These instances also serve as ground truth
for the queries. We then perform transformations on ran-
domly selected labels in each query instance, which yield
training queries. We show three such queries and their
matches in Figure 7. Query 1 is to find an athlete in foot-
ball team “San Francisco 49ers” who is about 30 years old.
Query 2 is to find a person who served in the Union army
and attended a battle, and these information maybe related
with “Missouri”. Query 3 identifies a current US senator at
his 60 who lives in “NJ” and knows “F. Lautenberge”.

Algorithms. We chose the CRFs model as defined in Eq. 3
and developed SLQ in Java. For comparison, the following
algorithms are also developed with the best effort.

Baselines. To compare the match quality, we consider
the following state-of-the-art techniques. (1) Spark [18], a
keyword-based search engine. It supports IR-style ranking
heuristics. Since Spark only supports exact string matching,
we modified it to accept transformed matches. Spark does
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Figure 7: Case study: querying knowledge graphs

not consider edge information in a query as it is keyword
oriented. (2) Unit is a variant of SLQ. The only difference
is it uses a revised ranking model with equal weight for all
the transformations; (3) Card also implements SLQ, while
revises its ranking model with weights equal to the selectiv-
ity of the transformations as 1

card(f)
. Here card(f) refers

to the average size of the matches for a randomly sampled
node (or edge) in the graph using transformation f .
For efficiency comparison, we compare SLQ with (1) Exact,

which enumerates all possible matches based on the sub-
graph search algorithm [14, 21], and then rank them with
the learned ranking model. This strategy ensures that all
the matches including the ground truth can be obtained
and ranked. (2) Approximate searching in NeMa [12]. The
method directly applies a propagation strategy similar to
LoopyBP over data graphs. Note that NeMa only extracts
the most probable result, i.e., top 1 match. We enhanced it
by applying the techniques in [31] to identify top-k results.
For fair comparison, the above baselines are also equipped
with our predefined transformations and the indices.

Metrics. Given a query workload Q as a set of queries Q,
we adopt several metrics for the rank evaluation: (1) Preci-
sion at k (P@k), the number of the top-k answers that con-
tain the ground truth; (2) Mean Average Precision (MAP

@k), which means MAP@k = 1
|Q|

∑
Q∈Q

1
k

∑k
i=1

AveP (i)
R

,

where AveP (i) = 1
i
when the ith result is a true answer and

AveP (i) = 0, otherwise. R is the number of the answers;
(3) Normalized Discounted Cumulative Gain (NDCG@k), as

NDCG@k = 1
|Q|

∑
Q∈Q Zk

∑k
i=1

2ri−1
log2(i+1)

, where ri is the

score of the result at rank i. Following convention, we set
ri as 3 for the good match, 1 for the relevant match and 0
for the bad match. Zk is a normalization term to let the
perfect ranking have score 1. We also tested other metrics,
such as SoftNDCG [25]. They share similar intuition and
thus are not elaborated. In the experiments, unless other-
wise specified, each query workload refers to 1, 000 randomly
generated queries using different query templates. Note that
the set of training queries is different from that for testing.

Setup. We compressed each data graph, e.g., same predi-
cates in the RDFs, and built index based on the transforma-
tions. The indexing time and the size is: 61.8min/1.02GB
(DBpedia), 37.4min/0.78GB (YAGO2), 263min/12.91GB
(Freebase). All the experiments were performed on a ma-
chine with Intel Core i7 2.8GHz CPU and 32GB RAM. For
each test, we report the average value over 5 runs.

8.2 Case Study: SLQ vs. IR-based search
We provide a case study using DBpedia. Consider the

three queries in Figure 7. For each query, SLQ identifies

meaningful matches of high quality. For example, for Query
2, a historical figure, Colonel J.B. Plummer, is identified to
match Person who fought in the Battle of Fredericktown
during the Civil War in Missouri. Our framework is able to
tell the importance of different transformations: for Person,
Ontology is a proper transformation; while for Union, Bag
of words is promoted in the ranking. Missouri is selected
as an exact match. In addition, the match suggests a direct
connection between Missouri and Battle in Query 2, indi-
cating a refinement of Query 2 in future. In all cases, Spark
gives low IR score and cannot identify matches for Query 2.

8.3 Experimental Results

Exp-1: Manual evaluation. We first conduct manual
evaluation on 75 queries that are randomly constructed from
the three datasets. 10 students help evaluate the results
returned by our search algorithm. For each result, a label,
i.e., Good, Relevant or Bad, was assigned by the students
regarding the query. The labels are thus considered as the
ground truth. The students were not trained beforehand and
thus the labels were assigned merely based on their intuition.
The metric, NDCG@k, can be calculated based on the rank
order of the results and the corresponding labels. Table 3
presents the quality of top-5 returned answers. The result
confirms that SLQ shows a substantial improvement over
the baselines. In terms of answer quality, it is very close to
the exhaustive search algorithm, Exact. On the other hand,
SLQ is up to 300 times faster than Exact (see Exp-3 for query
processing time comparison).

Graph Spark Unit Card SLQ Exact
DBpedia 0.707 0.790 0.858 0.935 0.935
YAGO2 0.682 0.849 0.852 0.926 0.928
Freebase 0.636 0.751 0.768 0.859 0.865

Table 3: Manual evaluation (NDCG@5)

In the following experiments, we verify the performance
of our algorithms by varying query size and transformation
ratio. Since finding good matches manually is very costly, we
focus on two kinds of intuitively good matches: the original
subgraph from which a query is transformed from, and all
the identical matches of the query. A good algorithm shall
at least rank these good matches as high as possible.

Exp-2: Effectiveness of ranking. This experiment ex-
amines the answer quality of SLQ. There are several factors,
such as query size, query topology, transformation ratio and
data graph, that may affect the ranking. We first study
the impact of the query size and topology while fixing the
others. The following test is based on the evaluation of the
query workload that are randomly sampled from the data
graph w.r.t. the query templates. Each query is modified
by applying random transformations with the ratio α = 0.3.
The ranking model was trained beforehand for each graph
(see Exp-4 for the report on offline training).

Given the queries and the corresponding results, we em-
ploy MAP@k as the metric to evaluate the rank and plot
the scores in Figure 8(a-b) for DBpedia and YAGO2, re-
spectively. The results tell us that the methods Unit, Card
and SLQ significantly outperform the IR based technique,
Spark. The ranking model in Spark only considers a linear
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Figure 8: Effectiveness of ranking (MAP@5)

combination of keywords’ IR scores. It does not take the se-
lectivity of different transformable conventions and the rela-
tions (connections) of the keywords into account. SLQ also
achieves better ranking result than its two variants, Unit and
Card, indicating that automatic learning of transformation
weights could improve answer quality. Figure 8(a-b) also
show that when the query size increases, the score increases
for all the methods. This is due to the fact that a query with
larger size provides more evidences, which help identify good
matches easily. This phenomenon implies great potential of
the schemaless and structureless querying model: As long as
a user provides enough evidences, she can find the answer
even her query does not fully comply with the schema and
the structure of the underlying graph database.
We next validate the ranking quality with respect to the

transformation ratio α. In this test, we derive a set of query
workload by varying α of the queries from 0.2 to 0.6. In-
tuitively, to raise the transformation ratio will increase the
“ambiguous” level of the query, making it more difficult to
find the true match in the top-k matches. The result is de-
picted in Figure 8(c-d). As expected, the performance of all
the algorithms degrades along with the increase of α. How-
ever, our algorithm is still the best. We also examined the
performance of Exact, which is slightly better (by ≤ 1%)
than SLQ and thus is not shown in Figure 8 for simplicity.

Exp-3: Efficiency of top-k search. In this experiment,
we demonstrate the runtime improvement of SLQ over Exact
and NeMa. SLQ employs graph sketch to quickly skip the
low-quality matches. We choose k = 20, and use the same
query workload as in the previous experiment. The runtime
examined here also contains the index search time, which
accounts for less than 2% of the total time and thus is not
analyzed separately. The runtime of Unit and Card is not
reported as it is close to that of SLQ.
Figure 9(a-b) shows the runtime with varying query size,

and fixed transformation ratio (0.3). For both graphs, SLQ
and NeMa are 5-50 times faster than Exact. This advantage
is achieved by top-k search and the merit of approximate
search (LoopyBP). Meanwhile, SLQ is 2-4 times faster than
NeMa. It implies the graph sketch method can indeed avoid
some unnecessary verification. We also evaluate the run-
time of SLQ by varying the transformation ratio from 0.2
to 0.6. Figure 9(c-d) show a clear advantage of SLQ over
other approaches. For most queries, SLQ can finish the exe-
cution within 1 second. Its runtime can further be reduced
by employing a multi-thread implementation.
Figure 10(a-b) plots the search time with different k values

for DBpedia and YAGO2, respectively. The test queries are
randomly generated with transformation ratio 0.2 ∼ 0.6.
Our algorithm again demonstrates outstanding performance
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(b) Top-k search: YAGO2

Figure 10: Search time: effect of k (20 ∼ 100)

on runtime, which is up to 1/3 of the time by NeMa.

Exp-4: Offline learning. We study the impact of sam-
ple size and offline training on the quality of ranking. Re-
call that the training queries along with the ground truth
are randomly sampled from the graph, the coverage of the
queries plays a pivotal role in the training. The coverage of a

query workload Q is defined as C(Q) =
|⋃Q∈Q Q|

|G| . Since the

graphs are highly heterogeneous, we speculate with larger
coverage, the learned model would have a better ranking
result. To inspect the effect, we conduct two tests with
different workload coverage: 0.5% ∼ 2.0% (DBpedia) and
0.05% ∼ 0.2% (Freebase). The queries in each training work-
load are generated from randomly selected query templates.

DBpedia
Sample Time P@5
0.5% 795s 0.650
1.0% 1, 588s 0.715
2.0% 3, 028s 0.722

Freebase
Sample Time P@5
0.05% 1, 695s 0.685
0.1% 3, 125s 0.712
0.2% 5, 828s 0.725

Table 4: Training: sample coverage

The training time and the quality of ranking (P@k) are
shown in Table 4. The transformation ratio for each training
set is controlled by a 5-fold cross validation. Note the test
queries are different from those for training. For both of
the two datasets, the training time is nearly linear w.r.t.
C(Q). It can be seen that with higher coverage, we can
achieve a clear better ranking performance, with the cost
of extra training time. For DBpedia, when the coverage
increases from 1.0% to 2.0%, the improvement is marginal,
i.e., ≤ 1.0%. The same effect can be observed for Freebase,
when we increase the coverage from 0.1% to 0.2%. The
experiment validates that only a small sample of the raw
data for offline training is enough for good performance.

Exp-5: Scalability w.r.t. graph size. We next evaluate
the scalability of SLQ by varying the size of the Freebase
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(a) Varying query size: DBpedia
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(b) Varying query size: YAGO2
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(c) Varying ratio: DBpedia
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(d) Varying ratio: YAGO2

Figure 9: Efficiency of top-k search (k = 20)
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Figure 11: Scalability evaluation: Freebase

graph. Specifically, we initialize a subgraph G1 from Free-
base with size (10M, 51M) (i.e., 10M nodes and 51M edges)
and gradually grow it to G4(40M, 180M). This setting will
test the performance of SLQ in a streaming mode. Fig-
ure 11(a) depicts the result. Specifically in the figure, SLQ
shows the performance of the ranking model trained only
based on the initial graph (G1), while SLQinc shows the
performance of the ranking model with incremental update
based on the growing graph. The test queries are gener-
ated separately for each graph. With the growing of the
graph, the rank performance generally decreases since there
are more data to confuse top-k ranking. Among the four
algorithms, SLQinr is the best. Moreover, although it de-
grades w.r.t. SLQinr, SLQ still outperforms the other meth-
ods dramatically, indicating a comparatively stable result.
In terms of search time, to illustrate the significant time

difference, we plot the runtime increasing ratio,
TimeGi
TimeG1

, in

Figure 11(b), for top-k search (k = 20). All the algorithms
take more time for searching larger graphs. Moreover, de-
spite the significant difference on the search time on G1,
i.e., T imeG1 as shown in the legend of Figure 11(b), SLQ
achieves near-linear runtime increase regarding the size of
the graph. It takes up to 25% of the time by NeMa and
is at least one order of magnitude faster than Exact. We
also inspect the runtime of SLQinr. Recall that the model
in SLQinr is continuously updated, the training time is neg-
ligible. With the setting of 0.1% training sample coverage
and 1000 test queries, the amortized runtime of SLQinr is
at least as twice as that of SLQ and thus is not shown in
Figure 11(b) for simplicity.

Exp-6: Training on YAGO2 and querying Freebase.
Finally, we do a bold experiment: Can we apply the model
trained on one graph and query another graph? To an-
swer this question, we test the model trained on YAGO2
by ranking the results of queries on Freebase (SLQY G), and
compare it with the models trained on Freebase (SLQFB).
Figure 12(a) reports the result by varying the query size.
The transformation ratio is 0.3. The model in SLQY G is the
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Figure 12: Cross query evaluation on Freebase

same as that trained for YAGO2 in Exp-2. It shows SLQY G

still works, and is even slightly better than CardFB . This is
a strong evidence showing that the knowledge learned (the
weights of different transformations) can be transferred be-
tween different graph databases. A similar result is also
observed when we vary the transformation ratio, as shown
in Figure 12(b).

9. RELATED WORK
Graph searching is studied for structured queries (e.g.,

XQuery, SPARQL), keyword queries [11, 14, 27] and graph
pattern queries (e.g., [5]). These methods focus on fixed
schemas and ranking functions. To relax the constraints of
schema and structure, approximate matching is studied, for
e.g., graph pattern matching [7,12], and for keyword queries
over knowledge graphs [11]. The searching semantics are
relaxed to identify more meaningful matches with similar
structures or similar attributes to a given query.

Closer to our work is NeMa [12] and NAGA [11]. (1) NeMa
defines node similarity by comparing the neighborhood sim-
ilarity of two nodes, and iteratively infer the matching qual-
ity using similarity propagation as in a graphical model. (2)
NAGA supports keyword querying over the YAGO knowl-
edge base. It defines match quality with confidence, infor-
mativeness and compactness, and ranks the answers based
on probabilistic models, where the parameters in the ranking
model are tuned by users. Nevertheless, all of these stud-
ies use predefined ranking metrics. This significantly limits
the power of these methods as it is hard to justify them.
Our work shows that a ranking model shall be learned auto-
matically through the existing queries and their associated
answers, not given beforehand.

Top-k search is also extensively studied in the database
community. Fagin’s algorithms [9] read attributes from
sorted lists, construct tuples, and perform random access to
find missing scores. They stop when k tuples are constructed
from the top-ranked attributes that have been seen, thus al-
lowing early termination with approximate top-k matches.
Top-k graph searching is studied for e.g., twig queries [10]

575



and graph patterns [7]. These algorithms are developed for
fixed schemas and vocabularies. In contrast to these stud-
ies, we do not assume sorted list of matches and monotonic
ranking functions. Moreover, how to select a proper ranking
metric is not discussed in these studies.
Machine learning techniques are leveraged to find matched

entity pairs by combining multiple similarity metrics. For
example, weights of various transformation rules are learned
for object identification [26]. These methods differ from ours
in the following. (1) Time-consuming manual labeling and
training data. In contrast, our system requires no manual
effort for generating training examples. (2) Homogeneous
data. Thus, they can not be easily extended to deal with
heterogeneous graphs as studied in this work.
There are several other topics complementary to this

work. Query disambiguation [20] is an effort to identify
the search intent from the query context. Query interpreta-
tion [8] provides a user with multiple plausible interpreta-
tions of a query. These techniques can play as add-ons for
our framework to further improve the result quality.

10. CONCLUSION
We identified a key problem that frustrates nonprofes-

sional users for accessing emerging graph databases. We
argued that a user-friendly query engine must support vari-
ous kinds of transformations directly, such as synonym, ab-
breviation, and ontology. We developed a novel searching
framework, SLQ, to (a) learn a ranking model that com-
bines multiple transformations, which does not require man-
ually labeled training instances; and (b) efficiently find top-k
matches for graph and keyword queries. As verified by our
experiments, SLQ achieves much better query results in com-
parison with the existing approaches, and is able to process
queries quickly. Better still, SLQ can be readily extended to
integrate new transformations, indices and query logs. Sur-
rounding this new query paradigm, there are a few emerging
topics worth studying in future, e.g., comparison of differ-
ent probabilistic ranking models, compact transformation-
friendly indices, and distributed implementation.
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