An Efficient Publish/Subscribe Index for E-Commerce
Databases

Dongxiang Zhang

Chee-Yong Chan

Kian-Lee Tan

Department of Computer Science
School of Computing, National University of Singapore

{zhangdo,chancy,tankly@comp.nus.edu.sg

ABSTRACT

Many of today’s publish/subscribe (pub/sub) systems haenb
designed to cope with a largelumeof subscriptions and high
event arrival rateyelocity). However, in many novel applications
(such as e-commerce), there is an increasarggety of items, each
with different attributes. This leads to a very high-dimienal and
sparse database that existing pub/sub systems can no kunger
port effectively. In this paper, we propose an efficient iamory
index that is scalable to the volume and update of subsonipti
the arrival rate of events and the variety of subscribahtibates.
The index is also extensible to support complex scenariols as
prefix/suffix filtering and regular expression matching. Waduct
extensive experiments on synthetic datasets and two réadeta
(AOL query log and Ebay products). The results demonstteage t
superiority of our index over state-of-the-art methods:index in-
curs orders of magnitude less index construction time, woes a
small amount of memory and performs event matching effiient

1. INTRODUCTION

Publish/subscribe, or pub/sub for brevity, has been watlisd
in the last two decades [3, 6, 9, 16, 20, 22, 26], with deplayme
in a variety of applications including online advertisirig], stock
market [6] and social media monitoring [9]. A pub/sub system-
tains two types of roles, information provider and inforioatcon-
sumer. The information provider publishes informationtia form
of events The information consumer subscribes interesting events
in the form ofboolean expressiormrhese two roles can be intercon-
nected either via a simple client/server model [12,20,@Po2 over
a network of brokers routing events in a distributed panadig, 7,
14]. The system has to ensure a timely delivery of matchimgev
to the subscribers.

Existing pub/sub systems, however, are designed with two fa
tors in mind: a large volume of subscriptions and a high eaent
rival rate. However, pub/sub systems are increasinglygoaitopted
in e-commerce applications with a wide variety of items heaith
different attributes. The database can be modelled as aespad
high dimensional table, and an event is a tuple in this highedi-

This work is licensed under the Creative Commons Attributio
NonCommercial-NoDerivs 3.0 Unported License. To view ayoofghis li-
cense, visit http://creativecommons.org/licenses/oyna/3.0/. Obtain per-
mission prior to any use beyond those covered by the licerGentact
copyright holder by emailing info@vldb.org. Articles frothis volume
were invited to present their results at the 40th Intermati€onference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhawa Ch
Proceedings of the VLDB Endowmevio). 7, No. 8

Copyright 2014 VLDB Endowment 2150-8097/14/04.

613

sional table. To explain this, we use the Amazon productdea
as a working scenario.

EXAMPLE 1. We can model the Amazon product database as
an information provider and customers as information consts.
Since Amazon has launched a Wish List to collect customem-int
tion in product purchasing, we can extend this function faua-
tomer to specify the conditions under which (s)he will pasghthe
item. The event would be either the launch of a new product or a
discounted product on sale. An example of a subscriptiondvou
be in the form of a boolean expression. e.g., (model=iphsmne5
color=silver A price<580). A product is represented by a list of
attribute-value pairs. e.g., (model=iphoneA<olor=silver A stor-
age capacity=16GBn price=550 A contract=no). The customer
will be notified whenever there is a product in the databasissa
ing all the specified constraints. However, there are moan 200
million! items hosted in the Amazon product database. Moreover,
there is a wide variety of products and they may have vergrdift
attributes. The product database can be modelled as a vetg wi
and sparse table. The pub/sub system has to be scalable to the
number of columns as new products are continually beingiede

a

In the following, we summarize several applications witbhi
dimensions of attributes for which a pub/sub system may atldev

e Electronic Commerce Online electronic commerce com-
panies like Amazon, Ebay and TaoBauave large number
of products in many different categories. Information agtr
tion techniques [13] can be adopted to extract attributeeva
pairs from the unstructured web page to support facetedlsear
[8] and pub/sub. For example, Taobao, the largest online
shopping website in China with more than 800 million prod-
ucts’, has integrated faceted search in the system to facilitate
customers filtering from a great number of search results.
Similarly, these systems can allow customers to subscribe
to products they are interested in and receive a timely no-
tification when a match occurs. Such a pub/sub model may
emerge as a new business intelligence model to improve on-
line shopping experience.

Groupon and Deal Websites Groupon and other deal web-
sites have the pub/sub gene in nature. Instead of goingghrou
every deal sent to the registered email address, it would be
more convenient for users to only subscribe the deals they

IThis number is acquired by submitting an arbitrary keywarerg
like “-asdsddafd” to the Amazon product search engine.

2ht t p: / / ww. t aobao. com
Shtt p: // ww. al exa. conl si t ei nf o/ t aobao. com

are interested in using boolean expressions. Similar to the

this manner, the predicates with the same operator areechasso

product database, the deals also show great variety in termsthat we can design specific index to support various operaod

of the subscribable attributes.

Google Basé. Google Base, which later becomes Google
Merchant Center, allows users to upload any structured or
unstructured product feeds in various file format. A reateti
pub/sub system on top of Google Base would be of utmost
importance to business dealers, e.g., to monitor the patent
competitors within an area.

Web Tables and Semantic RDF Databasdn recent years,
harvesting knowledge from the web [11, 24, 25, 28] has at-
tracted more and more attention. For example, Google’s
Freebase [1] has collected and published more than 39 mil-
lion real world entities, with more than 14100 attributes.
These structured or semi-structured harvested resulis-are
valuable. Agents can subscribe to such information for-deci
sion making, just analogous to brokers subscribing to stock
price.

To understand how existing systems cope with boolean expres
sion matching when events come from a sparse and high dimen-
sional table, we conducted an experimental study using &wo r
cently proposed pub/sub index&sk-index [26] and BE-Tree [20,
22]. k-index partitions subscriptions into inverted lists wHB&-
Tree uses hierarchical clustering to organize the dataho@tih
in [20,22],k-index was reported to be inferior to BE-Tree in datasets
with hundreds of attributes, we have new findings when we fur-
ther increase the dimension space. Figure 1 shows the irmtex c
struction time and event matching time for a uniformly disited
dataset when the number of attributes grows from 20K to 601€. T
results shed interesting insights that were not previoteghprted:
The inverted index solution not only significantly outperfs the
BE-Tree in terms of index construction time, but also dernates
better scalability in terms of event matching timdowever, due
to its ineffective partitioning mechanisrik;index consumes more
memory than BE-Tree and supports only a subset of the opsrato
that BE-Tree can handle.

Oplndex
BE-Tree

Oplndex
BE-Tree —5—
K-IND —5—

100000

1000
10000

1000 T e——+
100f——— —=

Build Time (s)

100

Avg Match Time (is)

&l 28
20K 30K 40K 50K 60K
Total Number of Attributes

(a) Index Construction Time (b) Event Matching Time

10

10
20K 30K 40K 50K

Total Number of Attributes

60K

Figure 1: Performance w.r.t. increasing number of attebut

Our findings prompted us to design a more efficient, expressiv
and compact index, which we name Oplndex, to support pub/sub
for e-commerce data that exhibits a large number of dimessio
Oplndex adopts a two-level index structure and organizestite
scriptions using inverted lists. In the first level, we seleivot
attribute for each subscription, and subscriptions with same
pivot attribute are grouped together. In the second lewblssrip-
tions are further partitioned based on their predicateaipes. In

“http:// base. googl e. com

5The implementation of the two indexes was kindly provided by
the authors of BE-Tree.

614

to enhance the subscription expressiveness. The effeetigeis
demonstrated in Figure 1: Oplndex achieves better everttvimag
performance with much smaller construction cost.

In summary, the contributions of this paper include

1. We show that pub/sub applications in e-commerce are be-
coming increasingly important. Furthermore, we identify a
gap in existing pub/sub systems - they cannot cope effec-
tively for applications with very high dimensional table.

2. We propose a novel index structure, Oplindex, which is-scal
able with respect to the volume, velocity and variety of the
data. In particular, OpIndex is more efficient, has low mem-
ory requirement and maintenance cost, and can be easily
extended to support more expressive subscriptions (ae., ¢

support prefix/suffix and regular expression matches).

3. We provide a comprehensive complexity analysis of oun©pl
dex in terms of the memory overhead, and data insertion and
guery processing cost.

4. We conduct extensive experiments on synthetic and réezd ets
(AOL query log and Ebay Products). The results show that
Oplndex is superior in terms of index construction time, mem
ory cost and query processing time.

The remaining of the paper is organized as follows. We ptesen
our boolean expression model and problem definition in Se&i
In Section 3, we review existing pub/sub works. In Sectiowd,
propose Oplndex and analyze the memory consumption and inse
tion cost. Event matching algorithm as well as query praogss
complexity analysis are presented in Section 5. We discuss e
tensions of our index to support complex operators in Sedio
Extensive experiment results are reported in Section 7ti®e8
concludes the paper.

2. BOOLEAN EXPRESSION MODEL

In pub/sub systems, a subscription is represented as aamoole
expression which provides flexibility for users to specifgit in-
terests. In this section, we present the boolean expressioiel as
well as the matching semantics.

2.1 Predicate

The most basic unit in a boolean expression model is a predica
A predicate is determined by three elements: an attriBytan
operatorfop and an operand 0. A predicate accepts an input value
xand outputs a boolean value indicating whether or not theatqe
constraint is satisfied:

p(A fop, 0 (x) — {0,1}

In this paper, we adopt a data model that is more general and ex
pressive than that used in the state-of-the-art index mistfD, 22,
26]. Besides supporting numerical, categorical, andgaitribute
domains with the standard relational operatets<, =, #, >, >),
set operatorsds, &s), and interval operators=(, &) &, our model
can also support complex operators such as the prefix, saffik,
regular expression matching operators for the string domae
discuss how complex operators are supported by our appinach
Section 6.2.

5We make a distinction between the operatees(representing
SQL’s IN operator) ang; (representing SQL's BETWEEN opera-
tor).

2.2 Boolean Expression

A boolean expression is a combination of predicates in eithe
Conjunctive Normal Form (CNF) or Disjunctive Normal Form\B).
To simplify the presentation, we assume that a boolean ssjure
is represented in DNF with a single clause (i.e., simply gum
tion of predicates). We will discuss how to handle more gainer
forms of boolean expressions in Section 6. Thereafter, acsii
tion Sis defined oven predicates as follows:

A

. Afop.
S: P}

Py) A A PR P

P (%)
We refer to the size of a subscripti@hdenoted byS, as the num-
ber of predicates is.

Table 1 shows a small collection of six subscriptions thatile
be using as our running example in the rest of this paper.

7f0p76(x) A

Table 1: Example Subscriptions
A=2ABcs(3,6,9]

A<BAC>2

C=6AB<4AE¢€ [317

A=2

D>12NE<9

Bcs{36] AC<4AD>10AE<7Y

8|40 0| 1|

2.3 Event

An information publisher publishes an event in the form obk ¢
lection of attribute-value pairs. We model an event as aLcartjon
of equality predicates.

E: (A, =a)A (A,

We refer to the size of an event, denotedibgr |E|, as the number
predicates in the evelt. For example, an event about iPhone may
look like the following:

)AL A (A, = On)

(model=iphoné A color =white A price= 800 A size= 16GB)

2.4 Boolean Expression Match

Given a subscriptioand an evenE, Smatche< if it satisfies
two requirements, namely, attribute match and value match.

DEFINITION 1. Attribute Match
There is an attribute match between a subscription S and antev
E if for any attribute occurring in S, it also appears in E.

We useS ~p E to denote an attribute match. For examglé,<
3 A B=2)is not an attribute match &= 2.

DEFINITION 2. Value Match
There is a value match between a subscription S and an evdnt E i
for any attribute A occurring in S and E, we havé P»qg) = 1,
where P for ¢ S and (A=) € E.

We useS~y E to denote a value match. Now we can define the
boolean expression match.

DEFINITION 3. Boolean Expression Match
A subscription S is said to match an event E, denoted K\ES if
S~pE and Svy E.

Given a subscription collectiof and a published everi, our
goal is to find all the subscriptiorse S such thatS~ E.

615

3. RELATED WORK

Pub/sub systems have been extensively studied for oveaaeec
and there has been a lot of focus on indexing support to efflgie
identify matching subscriptions (e.g., [12,26,29]). Thsio idea is
to partition the subscription database into subsets ofigaegs us-
ing some hashing scheme and organize each predicate sshgget u
the inverted list data structure. For each predigate an incom-
ing event, appropriate inverted list indexes are searahétentify
subscription predicates that matphand a counting algorithm is
used to determine matching subscriptions for an event.

Thek-index [26] is the state-of-the-art approach based oniader
list index. The subscription predicates are partitiondd subsets
using a three-level partitioning scheme: the subcriptiaresfirst
partitioned based on their size, and the predicates in acepbs
tion are further partitioned based on the predicate’shaitei and
value. For example, for a predicadel in a subscription of size
3, the predicate will be partitioned into the subset assediaith
the partition key(3,A,1). By using the subscription size as the pri-
mary partitioning key, thé-index is able to prune away inverted-
list searches for subscriptions with size larger than theteevent.

A drawback ofk-index is that a range predicate in a subscrip-
tion needs to be rewritten into a disjunction of equalitydicates,
which increases the size of tkandex with many inverted-list en-
tries for a single subscription predicate. As an examplguré 2
illustrates thek-index entries for our running example subscription
database in Table 1. Note that for the predidats 8 in subscrip-
tion S, assuming the domain & is {1,2,...}, the predicate is
rewritten a A=1) Vv ... Vv (A= 28) which requires eight en-
tries(2,A,i), i € [1,8], to be created in thie-index.

[nJ(Av) JlLst J[n](Av) JLst][n](Av) TJList|
I[A2 [CERRE AD [%
Al | S s | B |'S (B,3) S
A2 | S E..) | S B6) | S
A.) | S E9 |S |[,| €D |s
,| a8 |5 BD S C..) | S
(B3 | B..) | S €4 |s
(B.6) | S B4 | S (D.10) | S
(B9 |S 3| (C6) S (D) | S
€2 | E3 | S ED | S
C..) | < E..) | S E.) | S
D12 | S (E12 | $ EN |S

Figure 2: k-Index for subscriptions in Table 1 (n = subsadoipt
size, A = predicate attribute, v = predicate value)

More recently, a new index method, the BE-Tree, was shown to
outperform thek-index [20, 22]. Unlike thek-index, the BE-Tree
uses a two-phase space-cutting technique and organizeslbhe
scriptions in a hierarchical index. The subscriptions apeatedly
partitioned by attribute followed by a value space pantitig. Fig-
ure 3 shows an example of BE-Tree indexing the subscripfions
Table 1. Thep-directorystores the attributes selected for partition-
ing. In this example, the-directorycontains two attributed and
B, associated with two differem-nodes If an event does not con-
tain attributeA, all the subscriptions in the subtreemphode Acan
be pruned. Then, the subscriptions are partitioned by thecas
ated attribute value. The value space is organized in arblgra
of intervals with different length. Each subscription itaahed to
the smallest interval that can cover the predicate. For piar8s
contains a predicat®<4 and is inserted intp-node=Bwith value
interval[1,4]. Given an evenB =5, all the subscriptions attached
to intervals that are not stabbed By=5 can be prunedS; is in-
serted into another branch because it does not contaibuaé?@
or B. In the leaf nodes, inverted lists of bitmaps are maintained

for efficient evaluation of a predicate. The key of the listhe
attribute-value pair, the same as thakimdex. As the number of
attributes increases, BE-Tree generates rpemedeswhich incurs
higher construction, optimization and access cost. M@gdwth
thek-index and BE-Tree support only the standard basic preslicat
operators but not more advanced matching operators sucteas p
fix/suffix and regular expression matching operators. |rtrest,
our approach can support such complex matching operatobe(t
elaborated in Section 6.2).

p-directory

Figure 3: BE-Tree for subscriptions in Table 1

Index methods to support ranked pub/sub matching, whese onl
the top-k matching subscriptions are returned, have also peo-
posed including score-optimal R-tree [1KJindex [26], and a mod-
ified variant of BE-Tree [21]. Our index focuses on efficieltefi
ing and we plan to support tdppub/sub matching in future. Other
directions in pub/sub subscription matching include supar
XPath-based subscriptions (e.g., [10, 19, 27]), statefehematch-
ing (e.g., [5, 6,9, 15, 16]) where subscriptions may spartipiel
events and efficient routing solutions in a content netwbr6[14,

18, 23]. Since we are interested in the problem of efficieenev
matching without considering network communication, th/p

sub in a content network is beyond the scope of this paper. For
more information, readers can refer to the survey in [2].

4. INDEX STRUCTURE

In this section, we present our new index method, na®pbh-
dex to efficiently retrieve matching subscriptions for a givien
put event. Oplndex uses a novel, two-level partitioningescé
to organize the subscription predicates into disjoint stdgach
of which is independently and efficiently indexed to minimthe
number of candidate subscriptions accessed for event mgtdn
this way, our index design provides a highly efficient anceaxt
sible approach for subscription matching which can suppomt-
plex predicate matching operators beyond the standarchtopsr
supported in current state-of-the-art methods [20, 22, 26]

In Oplndex, each subscriptio8 in the database is associated
with a judiciously selected attribute termed fiisot attribute de-
noted byds, which is one of the attributes contained $n The
subscriptions are partitioned using a two-level partitigrscheme
as follows: first, the subscriptions in the database aretjosed
based on their pivot attributes into subscription lists] #re pred-
icates in each subscription list are then further parté@mbased
on the predicate operator into predicate lists. Each paggliist is
then independently indexed using an efficient method thegtjso-
priate for the predicate operator. Given an input eventr@piate
predicate lists are accessed via their corresponding éxjlend a

616

counting-based approach is used to identify the matchibgcsip-
tions.

For convenience, Table 2 summarizes the key notations ased i
this paper.

Table 2: Notation Table

PA-Tor,© T A predicate defined over attribufewith operatorfop and
operand o

S A subscription

E An event

ds The pivot attribute of subscriptio®

d The total number of distinct attributes (or dimensions)

N The number of subscriptions in the subscription database

r The number of predicates in a subscription

m The number of attributes in an event

6] The cardinality of an attribute domain

w The number of bits in a segment signature

4.1 Level 1: Subscription Partitioning

In the first level of partitioning, the subscriptions in thetabase
S are partitioned into disjoint subscription lists based loa pivot
attribute of each subscription as follows:

S L<A1> U L(A2> U...u L(Ad>
L<A¢> {9SeSAds=A}

Here, each_(n, denote the subscription list associated with the
pivot attributeA;.

From the definition of attribute match, we know that if a sub-
scriptionS matches an eveti, then all the attributes i& have to
appear irg. Clearly, if Scontains an attributé; that does not oc-
cur inE, thenSwill definitely not matchE. Thus, giverE, we only
need to consider the subscriptions whose pivot attributeirscin
E as stated in the following result.

LEMMA 1. Given an event E, the candidate matching subscrip-
tions for E are contained in the subscription lifts) [A € E}.

To minimize the number of candidate matching subscriptions
be accessed for an input stream of evétthe problem of select-
ing the pivot attribute for a subscripti®is modeled as a visibility
minimization problem [17]. LeA(A) denote the frequency of an
attributeA in an event strearfi. We choose attributé to be the
pivot attribute for a subscriptio8if A appears the least frequently
in E among all the attributes i i.e.,

@)

We can computé\(.) based on an event log or using the subscrip-
tion databasé to approximate the attribute frequency distribution
inE.

The following result establishes a desirable property ofpdot
attribute selection criteria.

Os = argacsMInA(A)

LEMMA 2. Given a stream of published everffits usingds =
arghesMInA(A) to select pivot attributes for partitioning subscrip-
tions minimizes the number of candidate matching subsonipt
accessed to match the event&in

PrROOF ByLemma 1, we know that the candidate matching sub-
scriptions are contained ifiL 5)| Ai € E}. Let f(A;) represents the
frequency of attribute An E. Given a subscription S, if the pivot
attribute for S is A then the subscription S will be accessedj
times in order to match all the eventslih Since we want ()
to be as small as possible, we define the pivot attribute tchee t
attribute with the minimum visibility to everlis

EXAMPLE 2. Figure 4 depicts the first-level partitioning of the
subscriptionsS in Table 1 into three lists of subscriptions. In this
exampleA(.) is derived based on the attribute frequencg which
results in the three pivot attributes A, C, and D being seléct
Thus, given an event HA = 2) A (B = 6), the subscriptions in¢
and Lp are guaranteed not to match E; therefore, the subscriptions
in these two lists need not be accessed for matching event E.

Sub | Pivot Attribute

S.
L)
)L

S
Figure 4: The first level partitioning of subscriptions irbla 1

S5
Se

OO = Q=

4.2 Level 2: Predicate Partitioning

In the second level of partitioning, the predicates in eadh s
scription listL s, are further partitioned based on the predicate

operator into predicate lists; i.e.,
L<65> L<6S=f0p1> U L(5S‘f0p2> U...u L(5s~fog(>
Lsefy) = {Plfon €PAPES ASELpy}

Each predicate Iisit<5s7foq> is then independently indexed using an
efficient method appropriate for the predicate operator.

Our approach supports both the standard predicate ope(ator
<, <,=,%4,>,>, €s,¥s, €i,¢i) as well as more complex match-
ing operators (to be discussed Section 6.2). In the follgvdis-
cussion, we shall explicitly consider only the three mosthown
relational operators={, <,>) to simplify the presentation. Other
relational operators=,/4,>) are treated similarly and are omit-
ted here. Predicates with set or interval comparison opesatre
rewritten using the common relational operators. For exarBes
{3,6,9} isrewrittenagB=3 vV B=6 v B=9), andE ¢ 3,12
is rewritten agE > 3 A E < 12)7.

Inthe rest of this section, we discuss how a predicateé Jits,).
where fop € {=,<,>}, is organized as an inverted-list structure
to efficiently process an evet: (A ="0. Given a global order-
ing of attributes, we use the pdif;, 9 as the sorting key and the
predicated®™:or: 0in each predicate lidt 5 ,,) are sorted in non-
descending order df;, 9. In other words, the predicates are first
sorted by the attribute and ties are broken by the compa$on
operand. In this way, the matching of an event(A =0 against
a predicate IisL<55_,fop>, wherefop € {=,<, >}, is performed effi-
ciently using arange scan tu, fop) - Specifically, iffopis ‘=", we
perform an equality search wilf#\, 9; if fopis ‘<’, we perform
a range scan witf(A, 9, (A,+)]; and if fop is *>’, we perform
a range scan witl(A, —), (A, 9]. Here, —» and+c, denote,
respectively, the minimum and maximum values of attritute

In our implementation of the inverted list structures, we tv8o
optimizations to speed up range scans on predicate lists fifd
optimization splits the attribute space iftcsegments and uses a
directory withb entries to index each predicate lisg, ¢,). Each
entry corresponds to a contiguous segment of predicatée ilist.

7In contrast to thé-index approach, our approach does not rewrite
an interval-operator predicate into a disjunction of etjygredi-
cates and therefore avoids the problem of generating matexin
entries for an interval-operator predicate.

617

The predicates having the same attribute will belong to trees
segment iri_(és.fop% In this way, given an everk : (A=10, we
only need to access the segment containing attriBut&he sec-
ond optimization introduces @-bit signature for each segment:
for each predicat®”-for:%in a segment, we apply a hash function
hon (A, fop, 0 to select a bit position iw; the selected bit in that
segment’s signature is then set to 1. The hash fundtichde-
fined as follows: iffp is ‘=’, thenh is a function of bothA; and o;
otherwise h is a function of onlyA;. The intuition is that a pred-
icate matching on equality operator requires both thebaitiei and
operand to be identical. However, operators and ‘>’ are less
restrictive and we cannot take advantage of the operandtioiny

in the hash function.

ExampLE 3. Consider the matching of an event:EA =0
against a predicate list |5, _,. We apply the first optimization by
using attribute A to search the directory onsL_, to determine
the segmentin f5, _ that possibly contain predicates for attribute
A. Next, we apply the second optimization by computing tea ha
value HA,=,"0 to determine a bit position and check if the selected
bit is turned on in the selected segment’s signature. If tihésb
off, then we conclude that there are no matching predicatethe
eventin L<557:>; otherwise, we perform a range scan on the selected
segment in ks,) to search for matching predicates. a

4.3 Index Construction

Our Oplndex for a subscription database consists of two cemp
nents. The first component is a collection of predicate ﬁtsgﬁl’:w
Lias<)r Liag)r - Liag =) Liag<)r Liag,>)} derived from the
two-level partitioning scheme that we have described. Tieel-p
icate lists are used to search for matching subscriptiodipmees
during event processing. The second component is a calfecti
of counter arraygVa,, ..., Va, }, corresponding to the collection
of subscription lists{L(a, ..., Liay}. The counter arrays are
used by a counting-based algorithm to detect matching sipbsc
tions for an event. For each subscriptiBpin L 4, the counter
valueVp [j] represents the number of predicateSjrthat have not
been matched during the processing of an event. These counte
values are initialized to the number of predicates in thpeetve
subscriptions before the start of an event matching, anddteter
value for a subscriptios; is decremented by one for each pred-
icate inSj that matches the event being processed. Thus, a sub-
scriptionS; in Ly matches an event ifa [j] is reduced to zero.

To facilitate the efficient updating of these counter valdeseach
predicatep in a predicate list, we also store a pointer to the counter
array entry corresponding to the subscription that costpin

Algorithm 1 shows the algorithm to insert a new subscriptn
into an Oplndex. IfS contains any set/interval predicate operator,
we first rewriteSin terms of the standard relational operators as de-
scribed in Section 4.2. Next, we determine the subscrijstionot
attributeds and append a new entgyin the counter arrays_ for
S For each predicatB”-for:9c S we insert the predicate along
with a pointer toe into the predicate list 5, fop)- The directory on
L (B, fop) and the appropriate segment signature are updated as fol-

lows. If PA-for: ©hecomes the first predicate in its inserted segment
in L5 t,,), We update the directory oy, ¢,y to reflect this. In
addition, we compute the hash valbg;, fop, 0 to select a bit in
the segment’s signature and set this bit to 1.

ExAamMPLE 4. Figure 5 shows the Oplndex for the subscription
database in Table 1. The subscriptions are first partitioned
three subscription lists) L<C>, and L<D>; and each subscription
list is further partitioned into three predicate lists cesponding to

Algorithm 1: Insert (SubscriptionS)

1. Determine the pivot attributés
2. Append a new entrgin Vs

3. for each predicat®”:or-9c Sdo
4 Insert(PNfow 9 ptr) into L (3s, fop) whereptr is a pointer to
e

Update the directory fol 5 ¢,

segment’s signature f@*: for: 0

o

) & the appropriate

e [0010] 0111] [pa]wawa[ea] 6]
6s=A |2 NN
® T
O [olow]
@ -

© [Jooooo110]) \ ©6) f/

7 o, ,
@r{nwhooo‘ ‘164i‘lE7i‘(E%"

7y

‘ 1010;‘ (0,12) ‘

[0000] 1010]

I I I
I I I
Pivot Attribute | Segment Directory | Segments | Counter Array
I I I
| | |

Figure 5: Index Structure

the predicate operators=", ‘ <’, and ‘>'. Each list is split into
two segments stored contlguously: one with attributdsC,E}
and the other witf B,D}. Each segment is associated witd-&it
signature and the predicates in it are sorted (#, 9. There are
three counter arrays ¥, \c, and \6, corresponding to the three
pivot attribute partitions, and each entry in the segmentex a
pointer to its subscription’s counter array entry. ad

4.4 Space and Construction Complexity

We now analyze the space and construction complexity of Opin
dex. To facilitate the analysis, we make the following asstioms:

e The number of predicatdsin a subscription follows a uni-
form distribution in[1,may, wherel max is the maximum
subscription size. Thus, the average subscription sizg/is=

Imax

e Each attributed; occurs at most once in a subscription and
the probability ofA; occurring in a predicate follows a uni-
form distribution.

o Allthe attributes are associated with domirno]. The prob-
ability of an operand @[1,0] occurring in a predicate fol-
lows a uniform distribution.

e There are three possible predicate operatets X' and ‘>,
each of which is equally likely to appear in a predicate.

e The size of a segment signaturensits and each predicate
list is organized intd segments, whereis a small number.

LEMMA 3. The number of predicates in a segment is M?%g

618

PROOF. The average number of predicates in a partitin }-is

'—a‘r -Tavg. Since there are three operators with the same frequency,
after the partition by operator, the number of predicatesm’fw

is %‘lg Since each predicate is equ.ally likely to be insert.ed into
any of the b segments of,;lzl‘w% the size of each segmentrjs=

NI avg

=5

The following result establishes the linear space compled
Oplndex.

LEMMA 4. The space complexity of OpIndex i$ND ayg).

PROOF Oplndex consists of four data structures: predicate lists,
counter arrays, segment directories and segment signatBmce
there is one counter entry for each subscription, the sizéhef
counter arrays is @N) given N subscriptions. Since each predi-
cate is inserted into a unique predicate list, the space irequent
of the predicate lists is IN[avg). The space requirement for the
segment pointers and signatures i€@) and can be ignored com-
pared to that of predicate lists. Therefore, the final spameolex-
ity of OpIndex is @NI ayg).

The insertion procedure consists of three steps: find thet piv
attribute, append an entry in the counter array and insett sab-
scription predicate into the apprpriate predicate listokterall time
complexity to insert a subscription is given by the follogiresult.

LEMMA 5. The time complexity of inserting a subscription is
O(T avglogn)

PROOF. The cost of the pivot attribute selection ig[Qyg) to
find the attribute with the maximum frequency in the everéecol
tion. The append cost in the second step (¢)&ince the counter
array is not required to be sorted and we can simply appen@ithe
try to the end of the array. Finally, for each predicate, ikés Q1)
to find the corresponding segment to insert the predicaféodD)
to insert the predicate in order and(®) to update the segment sig-
nature. Therefore, to insert a subscription witlilQyg) predicates,
the time complexity is @ avglogn). a

5. QUERY PROCESSING

Algorithm 2 provides an overview of how Oplndex retrievedcha
ing subscriptions for an input evelit Before the start of the match-
ing, we initialize the set of matching subscriptioR4o be empty,
and each counter array value to its respective subscripizen

To search for matching subscription predicates, we enumera
the candidate pivot attribute®; from the set of distinct attributes
appearing in the everif (step 3). IfAj is indeed a pivot attribute,
we enumerate each attribute-value p@r, 9 in E to search the
predicate list. a, 1.y, fop € {=,<,>}, for predicates that match
A =0. To speed up the range-scan searchds<,gr} the two
optimizations described in Section 4.2 are applled (steqnsd78)
For each matching predicaRereturned by the scan, we decrement
the appropriate counter array valg [ptr] using the subscription
pointer ptr associated wittP. If the counter value reduces to zero,
we have a matching subscription férwhich is added to the result
setR.

ExAMPLE 5. Consider the processing of the evéBt=6 A
C =3 A E =9) using OplIndex in Figure 5. Among the three at-
tributes in the event, only attribute C is used as a pivotiladite.
Therefore, only the three predicate listgL, Lic <), and Lic >y
are searched for matching predicates. This example derrrm«ast

Algorithm 2: Match (EventE)

1. Initialize R+ {}

2. Initialize the counter array values
3. for each distinct attributé\j appearing irE do
4. if Ajis a pivot attributehen

5 for each & =q) € E do

6. for each operatofop € {=,<,>} do
7

8

9

Determine the segmeséegin L(a;,fop) COITP. tOA;

if theh(A;, fop,f;)th bit of seds signature is seghen
for each matching entrgP, ptr) in the scan ofeg

do
10. Decrement/a, [ptr] by one
11. if Vs, [ptr] = Othen
12. Add the subscription corrp. i, [ptr] into
R

13. return R

the effectiveness of partitioning subscriptions usingpattributes
to minimize the number of accessed subscriptions: althcud
scriptions $ and § partially match the event, they are not ac-
cessed at all because they are stored in subscription listsses
pivot attributes do not appear in the event. In contrast,kkindex
approach would have accessed all the three partially matgkub-
scriptions. a

5.1 Query Processing Complexity

In the following, we analyze the query processing compjexit
based on the same assumptions in Section 4.4. First, weadstim
the matching probability between a predicgfe for-9and an event
predicated; =7q.

LEMMA 6. The probability of a predicate 42 fer:0 matching
A =Gisk=1(1+2).

PROOF There are three cases to consider depending on the pred-ONF:

icate operator. If §pis '=’, then there is a match if iG= 0; if fop
is '<’, then there is a match if ‘@ [g,0]; and if fop is '>’, then
there is a match if ‘@ [1, g]. Since the domain of each & [1, 0],
the predicate operand 0 and operatgp, fire each uniformly dis-
tributed, the probability for a predicate to match an evengiven
byk as

11 %21 Q1 1, 2
“=3lt 2ot 20731

O

By Lemma 6, the number of predicates matching an event is
given byQﬂcj“‘ﬁ(1+ M@)) O

LEMMA 8. Given an event E of size m, the query processing
costis QP -logn(1—(1—)" +y).

PROOF. Based on Algorithm 2, the number of predicate lists
that needs to be searched for processing E (81). In each pred-
icate list, a segment hasg predicates (by Lemma 3), and the size
of each segment signature is w bits. The probability thattarbi
a segment signature is not set is given(ly- v%,)”. Therefore, the
probability that a segment needs to be searched for an evedt p
icate A=0isl—(1— v—lv)”. If the search cannot be pruned by
the signature, the time complexity to search for the firstatmay
predicate in a segment is(@gn) using binary search. For each
matching predicate found, we incur a constant cost to update
corresponding subscription counter. By Lemma 7, the taiat -
curred to update the subscription counters of matching isedds
is given byy. Therefore, the overall time complexity to process an
event E is given by @7 -logn(1—(1— £)") +).

O

6. DISCUSSIONS

In this section, we discuss how Oplndex can be extended to han
dle general CNF/DNF subscriptions as well as support mone co
plex predicate operators.

6.1 Handling General CNF/DNF Subscriptions

Our discussion so far has considered only simple boolepression
subscriptions consisting of a conjunction of predicatese Mw
discuss how our approach can be extended to handle moreagener
boolean expressions in DNF or CNF:

DNF: (P11 AP2A... AP) V...V (Pt APm2 A ... APmn,)

(P11VP12V...VPn)A... A (Pt VP2 V...V Pon,)

For subscriptions in DNF, we can consider each conjunctaese
in such a subscription as a simple subscription; 8e-,S, VS Vv
...V & with each§ = Py A... ARp,. ThereforeSis a matching
subscription so long as ar§y is a matching subscription. Thus, a
set of DNF subscriptions is simply decomposed into a cabdact
of simple subscriptions which can be handled by Opindex.s Thi
straightforward approach to handle DNF subscriptions wddt
bothk-index and BE-Tree as well.

Our approach can also be generalized with two extensions to
handle subscriptions in CNF. The first extension deals wiltbtp

Next, we estimate the number of predicates matching a query attribute selection and subscription partitioning. Toreotly de-

eventE.

LEMMA 7. Given an event E, the expected number of matching

predicates for E igp = O(TNK (14 (Mo D)y

PROOF Given a query event E of size m, we need to access

m subscription list{L(a,),....L(a, }, where{Aq, ..., An} are the
attributes in E that are also pivot attributes. Clearly, dasub-
scription in Ly, must contain a predicate with attribute.ASince
each subscription list ha% subscriptions, there ar% predicates
in L4 that contain attribute A Since the average subscription

size isl avg, there are(l"ayg— 1)%! predicates in Iﬁ that do con-

tect matching CNF subscriptions, each subscripde now as-
sociated with a set of pivot attributes (instead of a singtetpat-
tribute) since it is not necessarily the case that therdsaispecific
attribute inSthat must occur in every event that matc8e$o min-
imize the number of pivot attributes associated with a stijp$on
S= S A...ASn we choose the disjunctive clauSein Swith the
least number of predicaésand all the attributes i form the set
of pivot attributes ofS. Thus, a subscription with a set 6fpivot
attributes will appear iff subscription lists.

The second extension for subscriptions in CNF generalizes t
counting-based approach to detect matching subscriptiemsain-
tain am-bit bitmap (instead of an integer counter value) for each

tain attribute A, and each of these predicates has a probability of - subscription, wherenis the maximum number of disjunctive clauses
Tg- to contain an attribute in E. Therefore, the expected num- in a subscription. For a subscripti@with k disjunctive clauses,

ber of predicates in L, that contain attributes in E is C%(l+
(M=1)(Tavg—1)
)

619

8To break ties, we pick the disjunctive clause that minimites
sum of its attribute frequency.

k < m, its bitmap is initialized and updated as follows. The first
bits in the bitmap ofS, which are used to represent whether khe
disjunctive clauses iB have been matched by an event, are initial-
ized to ones and the remaining bits are initialized to zeYdben-
ever any predicate in thé" disjunctive clause of is matched,
the bitmap is updated by setting it§ bit to zero. ThereforeS
is a matching subscription iff its bitmap value is 0. Notetttés
bitmap scheme is also applicable for thendex approach to han-
dle CNF subscriptions. For the BE-Tree approach, which eem h
dle only DNF subscriptions, a CNF subscription would neetleo
rewritten to DNF which would result in a more complex subscri
tion with an increased matching overhead.

6.2 Supporting Complex Predicate Operators

One key advantage of Oplndex’s two-level partitioning aagh
is that each predicate Ii$1<5s.’f0p> can be indexed independently
with an efficient method that is appropriate for the prediagiera-
tor fop. In Section 4.2, we have presented an inverted-list strectu
organization to efficiently suppofbp € {=,<,>}. In this section,
we illustrate Oplndex’s extensiblity feature by considgrhow to
support the prefix-match operator for string values.

The prefix-match operator is a useful string matching operat
which is also supported in SQL in the fornLI KE ' xyz% to re-
trieve records where the value of attribdtéegins with ‘xyz’. An
efficient approach to index string values for the prefix-rhatp-
eration is the well-known trie index. We can apply the trider
to index subscription predicates involving the prefix-rhatper-
ator as follows. Given a prefix-match predicate with attiéd
and prefix string ‘0, we map this predicate into a string ofdha
“A# 0", where ‘# denote a special delimiter that does nqtesp in
the attribute name and the attribute’s domain values. Theatimn
of transformed strings are then indexed using a trie index.

Figure 6(a) shows a hypothetical implementation interfate
a trie index. Here) t emdefines the structure of an index entry,
i nsert is afunction to insert a new entry into the index, amtich
is a function to retrieve all index entries that satisfiesygut prefix-
match query (represented by the structQuery). Figure 6(b)
shows the modifications to the index’s interface for the inte
be integrated into OpIndex’s framework. To index the trarmsied
strings for OpIndex, the new structukew t emnot only contains
the transformed predicate string (representedtt®m) but also the
identifier of the subscription that contains the indexeddjmate
(represented bgi d) and a pointer to the subscription’s counter
array (represented bgi d). In addition, there is also a new func-
tion mat chSub which calls the originatat ch function to retrieve
matching subscription predicates and update their caoretipg
counter values; matching subscriptions are added to ¢kel t
variable.

Similarly, we can apply the above ideas to support other com-
plex predicate operators such as the regular expressiochimgt
(RE-match) operator. Specifically, given a predicate list the

RE-match operator, we can apply index methods such as the RE-

Tree [4] to index the collection of predicates in the list. dar
experiments, we shall evaluate the performance of Oplndex f
prefix-match predicates using the trie index.

7. EXPERIMENTS

This section presents results of an extensive performandy s
of our proposed Oplndex in comparison wiftindex and BE-Tree.
The implementation ok-index and BE-Tree was kindly provided
by the authors of BE-Tree and in the form of binary executable
We also compare with the unoptimized version of Opindex, de-
noted as Oplndex-BS, which does not use bucket and signature

620

class | ndex{
void insert(Newtemiten;
vector<lten> match(Query query);

struct Iten{

struct New ten{ class | ndex{

int eid; void insert(Newtemiten;
int sid; vector<lten> match(Query query);
Itemitem vect or<i nt> mat chSub(Query query){

} for(Newtemitem: match(query))
if(--counter[item eid]==0)
result.add(itemsid);
return result;

(b)

Figure 6: Example to illustrate the extensibility of Oplrde

improve performance. All the indexes are memory residediirmn
plemented in C++. We conduct the experiments on a server with
128GB memory, 64KB L1 cache and 512KB L2 cache, running
Centos 6.

7.1 Data Generator

To generate synthetic datasets, we implemented our own data
generator instead of using BE-Gen [20]. This provides ub -
ter flexibility to customize the generator for our specifiquie-
ments such as generating datasets with prefix operator. rior u
formly distributed datasets, the generator follows theiaggions
in our complexity model in Section 4. All the attributes aneoands
in a subscription are randomly selected. Three operators <’
and >’ are supported. An input paramet@f controls the per-
centage of~’ operators with the remaining percentages distributed
equally between the<’ and ‘>’ operators. The performance with
respect to the set operatats’ and interval operatorée;’ will be
evaluated on the real datasets. The generator also gendaddsets
in which both the attribute and operand follow the Zipf distition.

Table 3 summarizes the parameters and their settings, kgth t
default values highlighted in bold in our synthetic dataseiVe
vary the subscription number from 1 million to 40 million test
the scalability. The subscription size tends to be smdiian event
size. Moreover, we var max from 4 to 20 andn from 20 to 120.
The default number of attributes in the synthetic dataset®i to
20,000. In our implementation, we set the number of segments in a
directory to be 32 and the number of bits in a machine word is 64

Table 3: Parameters and Settings on Synthetic Datasets
Number of subscriptionhl 1M, 10M, 20M, 30M, 40M
Number of dimensiond 20K, 30K, 40K, 50K, 60K
Maximum subscription sizEmax | 4, 8, 12, 16, 20
Maximum event sizen 20, 40, 60, 80, 100, 120
Percentage of equal operafar | 20%,40%, 60%, 80%, 100%
Value space 50, 200, 800, 3200, 12800
Zipf 0,0.2,04, 06,08, 10

Besides the synthetic datasets, we also design two data-gene
ators from real datasets. The first generator uses the AOty que
log 2 to simulate keyword subscriptions. A keyword query is trans
formed into a boolean expression. Each keyword is treatethas
attribute. Its operator is=’ and the operand is set to 1. For ex-
ample, the query “vldb hangzhou” will be converted(td db=1

Sht t p: / / www. gr egsadet sky. con aol - dat a/

A hangzhou=1) . In this way, the model serves as a filtering con-
dition of AND semantics used in keyword search. Moreover, we
can extend the model to consider the term frequency as arfigter
condition. For example(vl db&;[5,20] A hangzhouegi[2, 8])

is a more precise filtering condition. At the publisher side,use
two datasets, Twitter and Wikipedia, as the event sourcesraiv
domly select 10000 documents from each dataset to publish. The
average event length (in terms of the number of keywords)4s 5
in Twitter and 123 in Wikipedia. In our implementation, wesfir
extract the 50000 most frequent keywords. The reason is that BE-
Tree crashes when the dimension is too high and we ugg080

as an upper bound. For both datasets, we generated two ti/pes o

subscriptions. One uses operator ‘=" and the other usesvatte
operator £;’. The combination of subscription operators and event
sources results in four different datasets: Twittefwitterc, Wiki—

and Wikig; .

The second data generator uses Ebay product informatianto g
erate subscriptions and events. In each web page of proeuct d
scription, there is a section hamétlem speci fi cs which con-
tains structured information of the product. It lists theportant
attributes and values about the product. We crawled@8® prod-
ucts from Ebay and extracted, D4 unique attributes. To generate
a subscription, we follow the assumption that the more commo
an attribute is, the more likely it will be used as a filteringne
dition. However, the attribute distribution in Ebay is rattskew.
For example, 31 percent of products are associated wititoutter
brand and 17 percent with attributeountry of manufacture.
Hence, we count the frequendyA) for each attribute, take the
log(f(A)), which is similar to handling f-idf and normalize it
to form a probability distribution. The attributes in thengeated
subscriptions will follow this distribution. At the publisr side,
we assume that the information provider publishes new ptsdu
to subscribers. Therefore, we randomly pick@@ products with
different number of attributes to publish.

7.2 Performance Trade-off in BE-Tree

In [20], BE-Tree was reported to be not highly sensitive te th
node capacity parameter (the maximum number of entriegdtor
in a leaf node). However, we observed that, when the number
of dimensions grows to very large, this parameter plays groim
tant role in the trade-off between index construction cost@ent
matching performance. In Figure 7, we vary the node cap#oity
5 to 250 and report the build time and average matching tinze in
uniformly-distributed dataset. When the node capacityvgrisom
510 150, the index construction becomes 15 times fastehbuyter-
formance of query processing degrades 15 times as wellOlnif2
is suggested that the parameter should be set based on ttie- mat
ing rate (the number of matching subscriptions in terms efttal
number of subscriptions). Since in very high dimensionalcsp
the matching rate is smaller than 1%, we set the node capadity
in the following experiments. We note that this essentiblhsed
the experimental comparison in favor of BE-Tree.

7.3 Experiments on Synthetic Datasets

The first set of experiments was conducted on the synthetsea
We first report the memory usage and index construction tirhen,
we evaluate the matching performance with respect to pdaeame
S, Fmax M, 81 ando, followed by an experiment using the Zipf
distribution.

7.3.1 Memory Consumption

Recall that all the indexes are memory-resident. Our fist ta
is to examine the memory consumption. However, since we only

621

12
8000

6000

4000

Build Time (s)

2000

Avg Match Time (ms)

o N A O ©

50 100 150 200 250
Node Capacity

(a) Index Construction Time

5

5 50 100 150

Node Capacity

(b) Event Matching Time

200 250

Figure 7: Increasing node capacity of BE-Tree

have the binary executable files for our comparison methads,
cannot report the exact index size. As an approximation,wae r
the algorithms and report the memory usage in the event ingtch
stage for BE-Tree anktindex. For our index, we do not deallocate
the memory occupied by the subscriptions after reading them
input file, although our matching algorithm does not neeccteas
them any longer. Thus, we report our memory usage in the worst
case which is in favor of the two comparison indexes. For this
experiment, we are interested in examining two parametéend
0. The results are shown in Figure 8(a) and Figure 8(b).

When the number of subscriptioms increases from 1 million
to 40 million, BE-Tree and our index demonstrate similatgrats
in memory usage. Their memory cost slowly grows and the con-
sumption by BE-Tree is around 2 times more than our index. How
ever, the performance é&findex degrades dramatically, taking up
7 times more memory. If the operator in a predicate is got k-
index has to transform it into multiple predicates of therigk ="0.
This replication causes the index to quickly run out of memor

The value space also plays an important role. As shown in Fig-
ure 8(b), when we increagefrom 50 to 12800, k-index runs out
of memory and the usage when= 3200 ando = 12,800 cannot
be reported. The performance of BE-Tree also degrades itdot.
memory usage grows from 1GB to 10GB. This is because koth
index and BE-Tree maintain attribute-value inverted léstd more
inverted lists are built whew increases. Our Oplndex partitions
the subscriptions into predicate lists whose key is thetgittoibute
and operator. Its memory consumption is not affected lgiways
0.2 GB in Figure 8(b)).

70

T 60| BhTee © 350 Bhe
% 50 K-IND % 30 K-IND
3 S 25
=] 2 20
g E 15
5 § 10
= = 5 . i
- 0 S et me B .
iM 10M 20M 30M 40M 50 200 800 320012800
Number of Subscriptions Max Attribute Value
(a) IncreasingN (b) Increasingy
Figure 8: Memory Consumption
7.3.2 Index Insertion Time

In this experiment, we use the index insertion time to approx
imately represent the update cost. The reason is that tteeybin
executable files do not provide the command to support upiate
erations. If we consider an update as a deletion followedrby a
insertion, the update cost will be around two times of theiitisn

cost. We report the performance with respectNtoand ™ max in
Figure 9(a) and Figure 9(b).

Oplndex
Oplndex-BS
BE-Tree i
K-IND &5

100000 Oplndex

1e+007 BE-Tree &

1e+006
100000
10000
1000
100

10

10000

1000

Build Time (s)
Build Time (s)

100

A W r By b 10 g S
1M 10M 20M 30M 40M 4 8 12 16 20
Number of Subscriptions Max Subscription Size

(a) IncreasingN (b) Increasind max

Figure 9: Index Insertion Time

The index insertion time of Oplindex is three orders of magni-
tude better than BE-Tree and one order of magnitude betiakkth
index. This is because in our index, the three operatorsaated
in a uniform manner. The partition scheme is effective ardidta
structure is scalable. The optimized version takes skgbthger
construction time than Opindex-BS as it needs to build biscked
maintains additional fieldsk-index generates multiple predicates
when the operator is<’ or * >', which incurs much higher insertion
overhead. When the number of dimensions is very high, BE-Tre
incurs long processing time in attribute selection and rotpi-
mization techniques to guarantee a good matching perfarenan

7.3.3 Matching time with increasing

— 1000
@ 10000 o— 0
= > OplIndex =
g /" Oplndex-BS g o
i BE-Tree —5— | i N
< 1000}/ KIND —&—3 = 100¢——o— ~
g : 5 —— & e bndor T}
o e =) Oplndex-BS
z 100 i z BE-Tree —H—
10 K-IND —6—
M 10M 20M 30M 40M 4 8 12 16 20
Number of Subscriptions Max Subscription Size
(a) IncreasingN (b) Increasing” max
— P — Oplndex
a @) BE-Tree ———
> 10000 o —< % 1000 } KIND —&—
€ o £ V7o o
= o =
= 1000} - I c
S ¢ 55— 5 _
g B g 100 85— g
s h— - Oplndex s
o 100 Oplndex-BS > =N
z BE-Tree —H— z i
10 K-IND 10
20 40 60 80 100 120 20 40 60 80 100
Event Size Percentage of Equal Operator (%)
(c) Increasingm (d) Increasingd;
1000
. Oplndex s Oplndex
&) b——6—RE-Tree —5— £ 10000 BE-Tree —H—
oy KIND —&— @ KIND —6— o
£ E g
= = _
£ 00—z —a a4 § 1000 ey b
5 g J P
¢ =
> o 1005 = o
< <
10 10

125 500 2000 8000 32000

Max Attribute Value

(e) Increasingo

0.2 0.4 0.6

Zipf

0.8 1.0
(f) Increasingzipf
Figure 10: Matching time on synthetic datasets

The performance of pub/sub matching with increasing sijpscr
tion number is reported in Figure 10(a). Our index achiebes t

622

best event matching time, which is more than 10X better than
index. The optimized version scales better than Opindexb8S
cause when data size increases, the inverted list becongey land
the cost of binary search is more expensive. It becomes rffere e
tive to reduce the number of binary searchiesndex loses badly
for three reasons. First, partitioning by subscriptiores¬ as
effective as partitioning by pivot attribute. Second, itsmber of
inverted lists is much larger than Oplndex, leading to hidbekup
cost. Third, its update of counter array is more expensivié res
quires random access on the whole array, whose size is the num
ber of subscriptions. In comparison, our counter arraysvareh
smaller and can be fit in the cache. BE-Tree scales well beazfus
the hierarchical clustering and the optimization mechanis

7.3.4 Matching time with increasinghax

The running time of increasinGmax on the three indexes are
shown in Figure 10(b). Our Opindex demonstrates the beki-sca
bility due to its data structures and optimized matchingatgm.
The running time ok-index increases linearly withnayx. For BE-
Tree, its performance slightly improves at the beginninglater
degrades dramatically whénnaxincreases to 20.

7.3.5 Matching time with increasing

As shown in Figure 10(c), all the indexes are sensitivento
Whenm increases, the running time of Opindex scales similarly
to BE-Tree. The Opindex-BS does not scale as well and its per-
formance degrades to become close to BE-Tree whés large.
k-index performs the worst and does not scale well with

7.3.6 Matching time with increasirgy

Figure 10(d) shows the matching time when the percentage of
‘=" operator increases. The performance of all the indexes be-
comes better because™has high pruning power whea is large,
resulting in a small matching result set. Furtherméradex and
BE-Tree are more sensitive to this parameter than Oplnaderod-
strating a dramatic performance improvement wlBerbecomes
large. The reason is that they both need to maintain inveiged
whose key is a pair of attribute name and value which nausaib-
ports operator £” and requires operator transformation for other
operators as discussed in Section 3.

7.3.7 Matching time with increasing

As shown in Figure 10(e), the event matching time stays atabl
in all the three indexes for increasing value space. BE-arek
k-index guarantee the filtering performance at the expenssooé
memory resource and index construction cost. For our intex,
number of matching predicates barely changes whéncreases
from 50 to 12800. This can be verified by our complexity analysis
in which the matching probability is estimatedias- + 2 and
decreases from.B466 to 03334.

7.3.8 Matching time with increasirgpf

We also test the performance when the attribute and valugbef s
scriptions and events follow the Zipf distribution. Theukén Fig-
ure 10(f) shows that when we gradually increase the skewrfess
datasets, OplIndex always achieves the best performancales
better thark-index.

7.4 Experiments on AOL Search Log

The subscriptions derived from AOL query log support twoetyp
of operators: equal operater® and interval operatore;’. We vary
the number of subscriptions from 1 million to 5 million angbost
the index construction time in Figure 11(a) and Figure 11{#then

only operator =’ appears in the subscriptions, the build timekef
index and our index is close. However, when interval operato
is involved, index construction is longer flwindex. BE-Tree does
not scale well in the very high dimensional space. It requiveo
orders of magnitude more insertion time than our index inréa
datasets.

The running time of matching tweets and Wikipedia articles u
ing different operators is shown in Figures 11(c)-11(f). Thmit-
ter dataset, the event is small in length. Our index achigeeg
good matching performance: the running time of Oplndex & 4-
times faster than BE-Tree and two orders of magnitude betser
k-index. When the event length grows to more than 100, as shown
in the results of Wikipedia datasets, our index still sholes lhest
performance. The results show that our index works well when

the attribute distribution is skew. The pivot attribute ffeetive in
pruning.
100000 100000
Oplndex Oplndex
BE-Tree 5% BE-Tree
@ 10000 N g 10000 s
[[}
g 1000 g 1000
F F
h] 100 b} 100
=1 =3
o]
10 10
=
1 i] 1
iM 2M 3M 4M 5M iM 2M 3M 4M 5M
Number of Subscriptions Number of Subscriptions
(a) Operator<’ (b) Operator &’
10000 ————— -
= G =4 .— Oplndex
% 1000 Optndex — 1 o 1000 o BE-Tree —=—
E KIND —— | £ ¢ K-IND —&—
— g —H8— S —
5 100 5 e & R
o <
g g 100
g 2
< <
1 10
M 2M 3M am 5M M 2M 3Mm am 5M
Number of Subscriptions Number of Subscriptions
(c) Twitter— (d) Twitterg,
1e+007
—~ L b ~ e
&L 1e+006 uf;) I g 1e+006 - 7
o) & pIndex @ Oplndex
£ BE-Tree —5—{ E &
£ 100000 KIND —&—1 & 100000 B 5
s]
g 10000 = 1 g
B8 —
2 1000 o 1000 B
< < b
100 1000
M 2M 3M 4M 5M M 2M 3M 4M 5M
Number of Subscriptions Number of Subscriptions
(e) Wiki— (f) Wiki ¢

Figure 11: Matching time with increasirgjin AOL

7.5 Experiments on Ebay Dataset

The experiment results, including index construction s
event matching time, on Ebay dataset are reported in Figlire 1
Again, k-index spends similar construction time to our index and
orders of magnitude better than BE-Tree. Wirand M max in-
crease, Oplndex always demonstrates the best event n@min
formance. We also note thatBsncreases, the performance advan-
tage over BE-Tree is more significant. This is because owxind
first partition the subscriptions based on the pivot attabiWhen
maxincreases, it is more likely to find a pivot attribute with $hma
frequency in the event sources to improve the pruning power.
Figure 12(f), the performance of BE-Tree shows a clearlyatig

623

ing pattern. The set operatek is less powerful than operaterin
pruning. It takes more time to prune a longer subscription.

1e+006 1e+006
Oplndex Oplndex
100000 { BE-Tree 100000 | BE-Tree &
o 10000 i > 10000
£ g £
= 1000 [= 1000
] L]
5 100 & = 100
@ 5 @
10 o 10
it ko 1
10M 15M 20M 25M 30M 10M 15M 20M 25M 30M
Number of Subscriptions Number of Subscriptions
() Build Time in Ebay (b) Build Time in Ebay,
~ — 100000 ———
g 0000} o ™ o °
= q =< q
o o Oplndex
E 1000 Oplndex E 10000 BE-Tree —H—
= BE-Tree —=—1 7 KIND —o—
S KIND ——1 §
o <
g 100 - e = 1000 4
> — 2 485
< <
10 100
10M 15M 20M 25M 30M 10M 15M 20M 25M 30M
Number of Subscriptions Number of Subscriptions
(¢) IncreasingN in Ebay- (d) IncreasingN in Ebay:,
—F—o——9 ——-o—o°—9
2 10000 O
i‘ Oplndex g‘
£ BE-Tree —03 g 00 Oplndex
= 1000 KAND =S = BE-Tree ——
S - 4 G K-IND —6—
2 —a—a—a—9 8 10 R
2 100 2 B
=2 = 82
> >
< <
10

10

4 6 8
Max Subscription Size

(e) Increasing” maxin Ebay:,

10 4 6 8

Max Subscription Size

(f) Increasing” maxin Ebay-

10

Figure 12: Experiment Results on Ebay

7.6 Experiments on CNF and DNF Matches

As discussed in Section 6, Oplndex can be extended to support
CNF and DNF matching. Since the implementation of BE-Tree
andk-index does not support general CNF and DNF matches, we
only report the matching performance of Opindex in Figure 13
The default maximum number of clauses is set to 5. When we
vary the number of subscriptions from 1 million to 20 millighe
matching time of DNF scales better than CNF because a CNF may
be inserted into multiple pivot attribute partitions, indog more
scanning cost. When the number of clauses increases, tohinmat
time of CNF scales better because it has a higher probatulftyd
a clause with only one predicate. In that case, there is Hizatp
insertion.

1000 1000
. CNF s CNF
(%) [%2)
& 800 DNF & 800 DNF
(] [}
£ £
£ 600 £ 600
E= =
[} [}
T 400 g 400
s =
2 200 2 200
Z z
0 0
M 5M 10M 15M 20M 1 2 3 4 5

Number of Clauses

(b) Increasing number of clauses

Number of Subscriptions

(a) Increasing N

Figure 13: Performance of CNF and DNF matches

7.7 Experiments on Prefix Operator

In the last experiment, we examine the performance of our in-
dex on the prefix operator. We use the words in Wikipedia for
dataset generation. The dataset contains 1 million sydtenTs
with 10,100 attributes, among which 10 attributes are numeric
and the remaining 100 are string. The operators include ‘egly
and ‘prefix’. Since BE-Tree ankiindex cannot support the prefix
operator, we only report the running time of our index witkgect
to increasing percentage of prefix operator and increasiafjxp
length in Figure 14. We can see that the running time inceease
more prefix operators appear in the subscription. This isse
‘prefix’ is a more expensive operator than’: However, it still
takes less than.@ms, which is considered acceptable, to match an
event when all the subscriptions are based on prefix opekaftoen
the prefix length increases, the performance is stable, Sigitly
improved due to fewer matching subscriptions.

(6]
(7]
(8]
El

[10]

(11]

[12]

(23]

1000 1000

[14]

800 800

600 600

400 400 [15]

200 200

Avg Match Time f1s)
Avg Match Time (1s)

0
40 60 80 100 1 2 3 4 5
Percentage of Prefix Operator (%) Prefix Length

(a) Increasing ratio (b) Increasing prefix length

0
20 [16]

[17]
Figure 14: Performance of prefix operator

(18]
8. CONCLUSION

In this paper, we tackled the problem of efficient pub/subcmat
in E-commerce databases where the volume, velocity and espe
cially variety are tamed together. Existing solutions carmope ef-
fectively for applications with very high dimensional tabl Thus,
we proposed an efficient, scalable and extensible indexstwadopts
a two-level partitioning scheme and can be extended to stippo
complex scenarios such as prefix/suffix and regular exmessatches.
Extensive experiments were conducted in synthetic andie¢atets.
The results showed that our index achieved the best perfaena
terms of memory consumption, index construction and quesy p
cessing cost.

[19]

[20]

[21]

[22]

[23]

9. ACKNOWLEDGEMENT

This work is funded by the NEXT Search Centre (grant R-252-
300-001-490), supported by the Singapore National Relsé&aman-
dation under its International Research Centre @ Singepame-
ing Initiative and administered by the IDM Programme Office.

[24]

[25]

10. REFERENCES [26]

[1] Freebase Data Dumps. https://developers.googlefoeaivase/data.

[2] R. Baldoni and A. Virgillito. Distributed event routinig
publish/subscribe communication systems: a survey. Teghn
Report 15-05, Dipartimento di Informatica e Sistemistidajversita
di Roma “La Sapienzia”, Rome, ltaly, 2005.

[3] A. Carzaniga and A. L. Wolf. Forwarding in a content-base
network. INSIGCOMM pages 163-174, 2003.

[4] C.Y.Chan, M. N. Garofalakis, and R. Rastogi. Re-tree:effitient

index structure for regular expressionsMhDB, pages 263-274,

2002.

B. Chandramouli, J. Phillips, and J. Yang. Value-basetifination

conditions in large-scale publish/subscribe system¥LIDB, pages

878-889, 2007.

[27]

(28]

[29]

(5]

624

B. Chandramouli and J. Yang. End-to-end support forgam
large-scale publish/subscribe syste¥LDB, 1(1):434—-450, 2008.
A. K. Y. Cheung and H.-A. Jacobsen. Load balancing carbarsed
publish/subscribe system&CM Trans. Comput. Sys28(4):9, 2010.
W. Dakka and P. G. Ipeirotis. Automatic extraction of fudéacet
hierarchies from text databases.|GDE, pages 466—475, 2008.
A.J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M.it&/h
Towards expressive publish/subscribe systemEDBT, pages
627-644, 2006.

Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M.ggher. Path
sharing and predicate evaluation for high-performancefittating.
ACM Trans. Database Sys28(4):467-516, 2003.

H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvestialgtional
tables from lists on the weB.VLDB, 2(1):1078-1089, 2009.

F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, KRAss, and

D. Shasha. Filtering algorithms and implementation foy\fast
publish/subscribe. ISIGMOD Conferencgrages 115-126, 2001.
R. Ghani, K. Probst, Y. Liu, M. Krema, and A. E. Fano. Texhing
for product attribute extractiorsIGKDD Explorations8(1):41-48,
2006.

A. Gupta, O. D. Sahin, D. Agrawal, and A. El Abbadi. Meglott
Content-based publish/subscribe over p2p networkslitiuleware
pages 254-273, 2004.

M. Hong, A. J. Demers, J. Gehrke, C. Koch, M. Riedewald] a

W. M. White. Massively multi-query join processing in
publish/subscribe systems. 5iGMOD Conferencepages 761-772,
2007.

A. Machanavajjhala, E. Vee, M. N. Garofalakis, and

J. Shanmugasundaram. Scalable ranked publish/subsekithéB,
1(1):451-462, 2008.

M. Miah, G. Das, V. Hristidis, and H. Mannila. Standingtan a
crowd: Selecting attributes for maximum visibility. IBDE, pages
356-365, 2008.

T. Milo, T. Zur, and E. Verbin. Boosting topic-based
publish-subscribe systems with dynamic clusteringSIBMOD
Conferencepages 749-760, 2007.

B. Mozafari, K. Zeng, and C. Zaniolo. High-performarmamplex
event processing over xml streamsIGMOD Conferencepages
253-264, 2012.

M. Sadoghi and H.-A. Jacobsen. Be-tree: an index stradb
efficiently match boolean expressions over high-dimeraidiscrete
space. IrSIGMOD Conferencepages 637—648, 2011.

M. Sadoghi and H.-A. Jacobsen. Relevance matters:t&apig on
less (top-k matching in publish/subscribe).|GDE, pages 786797,
2012.

M. Sadoghi and H.-A. Jacobsen. Analysis and optimizator
boolean expression indexingCM Trans. Database Sys88(2):8,
2013.

W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and ABBchmann.
A peer-to-peer approach to content-based publish/sidesdn
DEBS 2003.

P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Sikekiyu,

G. Miao, and C. Wu. Recovering semantics of tables on the web.
PVLDB, 4(9):528-538, 2011.

G. Weikum and M. Theobald. From information to knowledg
harvesting entities and relationships from web sourceBODS
pages 65—76, 2010.

S. Whang, C. Brower, J. Shanmugasundaram, S. Vas&ilyiE. Vee,
R. Yerneni, and H. Garcia-Molina. Indexing boolean expmess
PVLDB, 2(1):37-48, 2009.

E. Wu, Y. Diao, and S. Rizvi. High-performance compleeet
processing over streams. iGMOD Conferencepages 407-418,
2006.

W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a probatdis
taxonomy for text understanding. 8iIGMOD Conferencgpages
481-492, 2012.

T. W. Yan and H. Garcia-Molina. Index structures foremtive
dissemination of information under the boolean mod€M Trans.
Database Syst19(2):332—-364, 1994.

