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ABSTRACT
Data is a commodity. Recent research has considered the
mathematical problem of setting prices for different queries
over data. Ideal pricing functions need to be flexible –
defined for arbitrary queries (select-project-join, aggregate,
random sample, and noisy privacy-preserving queries). They
should be fine-grained – a consumer should not be required
to buy the entire database to get answers to simple “low-
information” queries (such as selecting only a few tuples
or aggregating over only one attribute). Similarly, a con-
sumer may not want to pay a large amount of money, only
to discover that the database is empty. Finally, pricing
functions should satisfy consistency conditions such as be-
ing “arbitrage-free” – consumers should not be able to cir-
cumvent the pricing function by deducing the answer to an
expensive query from a few cheap queries.

Previously proposed pricing functions satisfy some of these
criteria (i.e. they are defined for restricted subclasses of
queries and/or use relaxed conditions for avoiding arbitrage).
In this paper, we study arbitrage-free pricing functions de-
fined for arbitrary queries. We propose new necessary con-
ditions for avoiding arbitrage and provide new arbitrage-free
pricing functions. We also prove several negative results re-
lated to the tension between flexible pricing and avoiding
arbitrage, and show how this tension often results in unrea-
sonable prices.

1. INTRODUCTION
Datasets provide valuable information but are often ex-

pensive or difficult to generate. As commodities, they can
be bought and sold in marketplaces like Windows Azure [13]
or from individual sellers. Traditionally, data pricing is very
simplistic – often a consumer must choose from a limited
catalog of queries (e.g., a background check on a specific
individual). To get an answer to a query not in this list
(such as histogram of crimes by state from this background-
check database) the consumer would need to buy the entire
dataset.
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Recently, Balazinska et al. [1] considered the research
challenges of developing fine-grained pricing functions, where
users can pay for answers to a wider variety queries without
buying the entire dataset. They proposed the fundamental
requirement that query pricing functions be arbitrage-free.

Intuitively, this requirement means that if q is a query
with price £(q) and q1, q2, . . . , qk are queries whose answers
can be used to answer q, then £(q1) + £(q2) + · · ·+ £(qk) ≥
£(q). That is, one should not be able to circumvent the
pricing function by finding an answer to q while paying less
than £(q) for this information.

The seminal work of Koutris et al. [5] considered how to
price variants of conjunctive queries under a precise math-
ematical definition of arbitrage. Followup work by Li et
al. [8, 7] considered how to price linear aggregate queries
and a special kind of noisy queries using different defini-
tions of arbitrage. An independently developed notion of
a privacy budget, useful for automated management of cer-
tain noisy queries [9], can also be used as a pricing function.
These works have provided a variety of pricing functions for
various classes of queries and with different levels of pro-
tection against arbitrage. Much of this work [5, 8, 6] is
concerned with computational complexity and efficient im-
plementation of pricing algorithms. The complexity side
has been well studied, however many important challenges
remain unsolved. These challenges are the focus of this pa-
per.

The first challenge is consistency. Previously proposed
pricing functions are based on incompatible definitions of
arbitrage, and cannot be combined (under a common defini-
tion of arbitrage) to provide an arbitrage-free pricing scheme
for data access, aggregate, and noisy queries.

The second challenge is coverage. Many queries, such
as retrieving a random sample of tuples, do not have fine-
grained pricing. Either pricing for random samples is not
supported [8, 7, 9] or the price of a random sample of a view
equals the price of the entire view [5].

A third challenge is to ensure reasonable pricing - a cus-
tomer should not be required to pay a large price for a use-
less query answer. This is clearly a subjective principle, but
often we can reach a consensus: consumers shouldn’t pay
much to find out that the database is empty, the price for
the entire database should be much larger than the price of
one record, and in many (but not all) situations, negative
information (such as finding out that a record t1 is not in
the database) should be significantly cheaper than positive
information (such as finding out that a record t2 is in the
database).
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We note that there is a fundamental tension between solu-
tions to these challenges. For example, if the price of a query
does not depend on the database instance, then a consumer
would pay the same amount regardless of the quality of the
database and resultant query answer (e.g., an empty search
result). On the other hand, if query prices do depend on the
database instance, then it may be possible for a savvy con-
sumer to deduce the answer to some queries just by asking
about their price (an arbitrage opportunity).

1.1 Contributions
In order to better understand the possibilities and limita-

tions of arbitrage-free pricing functions for arbitrary queries,
we consider in detail two pricing schemes. The first scheme
prices queries independently of the database instance. The
second scheme prices queries based on the answers they re-
turn. In the latter case, the consumer knows in advance the
pricing function, but not the price (until the query returns
and the consumer’s account is charged). For example, the
price may depend on the number of tuples returned and the
consumer could limit its liability by specifying that at most
20 tuples should be returned. We briefly touch upon a third
scheme, where the query price depends on the database and
is known in advance, and show how query answers can often
be deduced just from their prices (but leave solutions to this
particular issue as an open problem).

For the first two pricing schemes, we catalog arbitrage
opportunities and formulate conditions that must be to sat-
isfied to avoid arbitrage. Since prices are required for ar-
bitrary queries, it turns out that new conditions need to
be added and previously proposed conditions need to be
strengthened/generalized.

We then provide several classes of pricing functions under
these pricing schemes and prove that they are arbitrage-free
according to our criteria (thus they have stronger protec-
tions against arbitrage than prior work).

We generate several important negative results. First, we
show that an appealing query pricing function, which sets
prices base on the number of tuples returned, cannot be
reasonably extended to set prices for arbitrary queries (it
would have to set a high price for letting consumers query
an empty database). Then we consider Bayesian pricing
functions, where the price of a query answer depends on the
resulting posterior distribution a consumer may form. Un-
der general conditions, we show that the prices of retrieving
a few tuples would be comparable to the price of retrieving
an entire table.

In both cases, the negative results arise from the require-
ment that a price must be assigned to certain problematic
(but natural) queries. Due to the need for avoiding ar-
bitrage, this induces undesired dependencies between the
prices of other queries. Thus we provide strong evidence
that a data seller may need to choose 2 out of 3 properties
(generality, arbitrage-free, reasonableness) by either care-
fully restricting the class of possible queries, accepting some
risk of arbitrage, or assigning unreasonable/unfair prices to
certain queries.

1.2 Outline
In Section 2, we introduce key concepts, notation, and

terminology. We review related work and pricing function
vulnerabilities in Section 3. In Section 4, we consider query
pricing functions where the price depends on the query an-

swer. We formulate mathematical conditions for avoiding
arbitrage in Section 4.1 then provide example arbitrage-free
pricing functions and prove negative results in Section 4.2.
We consider pricing functions that are independent of the
database instance in Section 5. Conditions for avoiding arbi-
trage appear in Section 5.1, followed by example arbitrage-
free pricing functions in Section 5.2. We discuss dynamic
pricing (where a query’s price can depend on previously is-
sued queries) in Section 6, issues in eliciting pricing functions
in Section 7, and conclusions in Section 8.

2. NOTATION AND TERMINOLOGY
Let I be the set of all database instances consistent with

the information provided by a data seller (e.g., a schema S,
number of records, etc.). Since our goal is to extend pricing
functions to potentially arbitrary (randomized and deter-
ministic) queries over databases in I, it is more convenient
to model queries in a language-independent way.

We view a query q as a (possibly randomized) function
over I. Whether a query is randomized or deterministic,
the quantity P (q(D) = ω) is well defined for all databases
D ∈ I and answers ω ∈ range(q).

A query bundle [q1, . . . , qk] is a set of queries q1, . . . , qk
that are posed at the same time. Note that a query bundle
is itself just a query that simultaneously returns the results
of several sub-queries (thus we use this notation for bundles
when we want to emphasize the individual queries in the
bundle). We use the notation [ω1, . . . , ωk] to refer to the
bundle of query answers that are returned (thus ωi is the
value returned by qi when executed over the data).

2.1 Pricing Schemes
We will consider three pricing models for query bundles:

instance-independent, up-front dependent and delayed.

Definition 2.1 (Instance-independent pricing). A
pricing function £(·) is instance-independent if it depends
on the query bundle but not the database instance. A con-
sumer will pay £(q) for the result of query bundle q.

An advantage of instance-independent pricing is that the
prices leak no information about the actual database in-
stance. However, consumers will pay the same price re-
gardless of how satisfied they are with the query answer
(such as an empty search result). For this reason, instance-
independent pricing schemes are suitable under the closed-
world assumption, where empty search results (such as a
lack of a criminal record for a potential employee) are mean-
ingful.

Definition 2.2 (Up-front dependent pricing). An
up-front dependent pricing function €(·) depends both on
the query bundle q and the actual database instance D. The
price €(q,D) is available to the consumer, and based on this
price, the consumer can decide whether or not to purchase
the query answers.

Up-front dependent query pricing schemes are flexible enough
to provide a reduced price when the database instance has
low quality (e.g., no search results) and a higher price when
the database instance would provide a high quality query
answer [5]. However, as we show in Section 3, clever con-
sumers can often reconstruct large portions of the dataset
(for free) just from asking about the prices of queries.
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Definition 2.3 (Delayed pricing). A pricing func-
tion ₡(·) is delayed if it depends both on q and on the an-
swer ω computed by query bundle q on the current database
instance. The consumer knows ₡(·) in advance but does
not know ₡(q, ω) until the answer is returned (and the con-
sumer’s account has been charged).

The simplest delayed-pricing scheme (applicable to selec-
tion queries) is to charge based on the number of tuples re-
turned. It is appealing because the size of the query answer
roughly indicates its quality. Furthermore, a consumer can
limit costs by asking queries with restricted outputs such as
SELECT name FROM Recommended Stocks LIMIT 20 or top-
k queries or a fixed size random sample. Unfortunately, as
we show in Section 4.2.1, even attempting to extend this
pricing scheme to simple aggregate queries will lead to un-
desired behavior – either there is no extension (if querying
empty databases should be free) or there will be a large price
associated with learning that the database is empty.

Despite this drawback, delayed-pricing schemes have three
favorable properties. First, unlike instance-independent pric-
ing schemes, the price can be tailored to the quality of the
query answer. Second, unlike up-front dependent pricing,
query prices do not leak new information about the database
instance (since they are revealed simultaneously with the
query answers). Finally, since the pricing function is pub-
lic, consumers can verify from the query answers that their
accounts were charged correctly.

2.1.1 The Probabilistic View
The price of a query bundle depends on what it reveals

about the true database instance. Clearly, the semantics
of a query bundle q are completely captured by the values
P (q(D) = ω) for all D ∈ I and ω ∈ range(q). For example,
suppose the database contains the table T (A,B) and that
the query q and answer ω are such that:

• P (q(D) = ω) = 1 for all D ∈ I in which table T
contain tuples t1, t2 (with t1[A] = t2[A] = 1) and no
other tuples t having t[A] = 1.

• P (q(D) = ω) = 0 for all other database instances D.

Receiving this answer ω from query q is clearly semantically
identical to receiving the set of tuples {t1, t2} in response to
the query SELECT * FROM T WHERE T.A=1.

Thus the price of a query bundle q is really a function of
the probabilities P (q(D) = ω) for D ∈ I and ω ∈ range(q).
More specifically:

• Instance independent pricing functions £(q) are func-
tions of the quantities P (q(D) = ω) for all D ∈ I and
ω ∈ range(q). In other words they are functions of the
entire matrix:


D1 D2 . . .

ω1 P (q(D1) = ω1) P (q(D2) = ω1) . . .
ω2 P (q(D1) = ω2) P (q(D2) = ω2) . . .
ω3 P (q(D1) = ω3) P (q(D2) = ω3) . . .
...

...
...

...


• Up-front dependent pricing functions €(q,D), which

fix D to be the true database instance, only depend on
the vector [P (q(D) = ω1), P (q(D) = ω2), . . . ]. This
vector is the column of that matrix corresponding to
the true database instance D.

• Delayed pricing functions ₡(q, ω) must be functions
of [P (q(D1) = ω), P (q(D2) = ω), . . . ] where we range
over all D ∈ I but ω is fixed (it is the output returned
by q). This vector is the row of the aforementioned
matrix corresponding to the query bundle’s output ω.
Since we will frequently be referring to this vector, we
will use the following notation to represent it:

~P [q(·) = ω] ≡
[
P (q(D1) = ω), P (q(D2) = ω), . . .

]
and hence each delayed pricing function ₡(·) satisfies

₡(q, ω) ≡ f(~P [q(·) = ω]) for some f .

2.2 Avoiding Arbitrage
An arbitrage situation exists when an attacker can obtain

an answer to a query bundle without paying the price set
by the data owner. We now briefly summarize different sce-
narios that can lead to arbitrage. In later sections, we will
formalize the mathematical conditions needed to avoid each
of these situations.

Price-based arbitrage: A consumer may ask for the price
of queries rather than the answers. We must ensure that
query answers cannot be deduced from prices alone.

Separate account arbitrage [5]: Consider the query bun-
dle q = [q1, q2]. If the price of q is larger than the sum
of the prices of q1 and q2 then a consumer could avoid
paying the nominal price for q by opening two separate
accounts, using one account to ask q1 and another to ask
q2. To avoid this arbitrage scenario, the price of q must
be at most the sum of the prices of q1 and q2.1

Post-processing arbitrage [8]: If the answers to a query
bundle q′ can always be deduced from answers to a query
bundle q, then obtaining answers from q should be at least
as expensive as obtaining answers from q′. We do not
consider the computational cost of such post-processing;
this is a direction for future work.

Serendipitous arbitrage: This is a generalization of the
arbitrage concerns in [5]. In general, a query bundle q1
may not always be answerable by a query bundle q2. How-
ever, depending on the actual database instance and pos-
sible randomness in q2, the consumer may get lucky and
get an answer that would let it deduce the answer to q1
as well. For example, if a consumer pays for a query re-
turning the maximum M and minimum m of a numeric
attribute (such as salary) and if m = M for the current
database instance, then the consumer gains the ability
to answer any query about that attribute. If such queries
cost more than what the consumer payed to learn the fact
m = M , then a serendipitous arbitrage opportunity ex-
ists. Another example can occur with random sampling
queries. Suppose a consumer is interested in whether a
database of criminal records contains Bob. If the con-
sumer asks for a random sample of the data and the sam-
ple happens to contain Bob’s record, then a serendipitous
arbitrage occurs if the cost of that specific random sample
is less than the cost of querying about Bob.

Almost-Certain Arbitrage: This situation can arise when
two queries behave almost identically yet have signifi-
cantly different prices. Consider an event that is so rare,

1We shouldn’t require that the costs be equal. For example,
if q1 and q2 are the same deterministic query, then the cost
of q should equal the cost of q1.
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that in practice we dismiss it from consideration (such as
winning every single lottery for the next hundred years).
Let p be the probability of this event. For a query bundle
q, consider an alternate query q̃ that returns the answer to
q with probability 1−p and returns ⊥ with probability p.
For all practical purposes q and q̃ are interchangeable and
so their prices should be nearly the same. The possibility
of this kind of arbitrage was mentioned by Li et al. [7]
but they did not provide criteria that are needed to avoid
it. The previous discussion suggests that some notion of
continuity should be imposed on the pricing function.

We formulate these conditions mathematically for delayed-
pricing functions (over arbitrary queries) in Section 4. Math-
ematical conditions for instance-independent pricing schemes
are presented in Section 5. We defer consideration of upfront-
dependent pricing functions to future work – they are sus-
ceptible to price-based arbitrage (see Section 3), but a so-
lution appears to require the data seller to carefully restrict
the types of queries that can be asked (and hence is out
of the scope of this paper, which investigates fine-grained
pricing for arbitrary queries).

3. RELATED WORK
The vision paper by Balazinska et al. [1] introduced the

problem of arbitrage-free fine-grained query pricing to the
database community. In this section, we outline the im-
portant progress that has been achieved in this area. Our
main contributions with respect to prior work are more ro-
bust guarantees against arbitrage while allowing arbitrary
queries to be priced, along with negative results about the
tradeoff between arbitrage protection, flexible pricing, and
reasonableness of the prices.

Following [1], Koutris et al. [5] introduced a sophisti-
cated up-front dependent pricing scheme and studied the
computational complexity of pricing variations of conjunc-
tive queries. In this pricing scheme, the data seller provides
a fixed set of views V = {V1, . . . , Vk} and their correspond-
ing prices p1, . . . , pk. A query bundle q is said to be an-
swerable by a subset {Vi1 , . . . , Vir} ⊆ V of these views with
respect to the true database instance D if the following is
true: whenever some instance D′ ∈ I matches those se-
lected views (i.e. Vi1(D) = Vi1(D′)∧· · ·∧Vir (D) = Vir (D′))
then q(D) = q(D′) [5]. In this model, the price of q is the
cost of purchasing the subset of views that can answer the
query bundle (when multiple such subsets exist, choose the
cheapest one). This pricing scheme €(·) is not intended for
aggregate queries (the price of the query SELECT COUNT(*)

FROM V1 will generally be equal to the price of V1). To avoid
price-based arbitrage, one should be careful in setting the
prices for the views V1, . . . , Vk and in choosing the queries
that consumers are allowed to ask. For example, suppose the
database instance D contains a relation R(A,B) with key B
and a relation S(B,C) with multi-attribute key (B,C) (so
that tuples are distinct). Suppose that the fixed set of views
(specified by the seller) are the tables themselves. The price
of the table R(A,B) is pR > 0 and the price of S(B,C) is
pS > 0. Consider the queries:

q1 = SELECT A,B FROM R WHERE A=a AND B=b

q2 = SELECT C,B FROM S WHERE C=c AND B=b

q = SELECT A,R.B,C FROM R,S WHERE R.B=S.B AND R.B=b

AND A=a AND C=c

and the following four cases.

Case 1: q1(D) 6= ∅ and q2(D) 6= ∅. Then the price €(q) =
pR + pS (since both R and S are needed to answer q).

Case 2: q1(D) 6= ∅ and q2(D) = ∅. Then the price €(q) =
pS because table S does not contain the tuple (b, c) and
so we can answer the join query q (an empty result) just
by examining table S.

Case 3: q1(D) = ∅ and q2(D) 6= ∅. Then the price €(q) =
pR using similar reasoning to Case 2.

Case 4: q1(D) = q2(D) = ∅. Then €(q) = min(pr, pS) us-
ing similar reasoning to Cases 2 and 3.

Note that Case 1 is the only situation where the tuple (a,b,c)
appears in the join and is the only situation where the price
€(q) = pR+pS . Thus a clever consumer can verify (for free)
whether tuples are in the join of R and S simply by checking
the price of parametrized queries such as q. Furthermore, if
pS > pR, we gain additional information about table R: if
the price of q is pS + pR or pS , then either Case 1 or Case
2 is true and tuple (a, b) ∈ R; if the price of q is pR then
Case 3 or Case 4 is true and tuple (a, b) /∈ R. A similar
result holds if pR > pS . Thus repeated probing of the price
function can reveal the join of two tables or even one of the
base tables (more efficient attacks may also exist).

Fixing this vulnerability may require auditing the behav-
ior of consumers along with careful selection of the ini-
tial views V1, . . . , Vk, their prices, and the set of allowable
consumer queries. Alternatively, a seller could switch to
instance-independent or delayed pricing schemes.

An obstacle to practical implementations of query pricing
schemes is the potential worst-case time complexity of com-
puting the pricing functions. Koutris et al. [5] showed that
in many circumstances, their pricing function is intractable.
However, in followup work, Koutris et al. [6] showed that in
practice the prices of many queries can be efficiently com-
puted using ILP solvers. Tang et al [11] studied a related
problem where the base views are individual tuples.

Li and Miklau [8] introduced an instance-independent pric-
ing scheme for linear aggregate queries. A table is repre-
sented as a vector ~x and each query is represented as a vector
~q. The query answer is the dot product ~x · ~q. The definition
of “arbitrage-free” used in this work is based on the linear

span of queries appearing in a query bundle q = [
−→
q1, . . . ,−→qk ]

and hence their pricing functions avoid arbitrage precisely
when consumers use linear algebra to infer query answers.
To see the effect of nonlinear processing techniques, suppose
the data vector ~x is known to be binary-valued (e.g., each
coordinate records a yes/no answer). Consider the query
~q = [1, 2, 4, 8, 16, . . . ]. The query answer ~q · ~x is a number
whose binary representation is precisely ~x. Computing the
binary representation is a nonlinear operation – a consumer
using matrix multiplications and additions cannot do it. We
believe attacks and countermeasures will be an exciting part
of the query pricing literature.

Followup work by Li et al. [7] considers the more general
problem where individuals contribute their data to a mar-
ket maker who allows consumers to ask noisy linear queries
over the data. Consumers pay for these queries and the
market maker distributes micropayments to the individuals
who contributed their data (as compensation for possible
loss of privacy). While specializing their results to linear
queries with Laplace noise, Li et al. [7] point out inherent
difficulties with setting prices for noisy queries - they pro-
vide an example of a noise distribution that has arbitrarily
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high variance yet returns an exact answer with probability
arbitrarily close to 1. Their observation implies that setting
a low price based on the high variance of such a query can
lead to an almost-certain arbitrage opportunity, unless other
precautions were taken. This problem was left open in [7].
Approximate answers were also studied by Tang et al. [10]
but were not explicitly connected to definitions of arbitrage.

The research community has also noted connections be-
tween differential privacy [3] and the price of access to pri-
vate data. To each query q, differential privacy assigns a
value εq (which is nonnegative and possibly equal to ∞),
that indicates (in the worst-case) how much information is
leaked by the query q to an attacker who knows all but one
of the records in a database. For deterministic queries (e.q.
SQL queries) and many randomized queries (such as random
samples or aggregates with Gaussian noise), the leakage is
ε = ∞. For many other queries (such as aggregate queries
with Laplace noise [3]), ε < ∞ and is usually small. Mc-
Sherry [9] popularized the term privacy budget to refer to
the sum of the ε values of a series of queries. As the name
suggests, εq can indeed be used for setting price of a query
q. However, many database queries of interest have εq =∞.

Ghosh and Roth [4] consider the problem of designing
auctions for compensating users when differentially private
(noisy aggregate) queries are run over their data. Other
types of queries (e.g., deterministic database queries) can-
not be priced in this model, but this work has spurred re-
search into designing economic incentives for individuals to
contribute data to a trusted third party.

4. DELAYED PRICING
Delayed-pricing schemes are natural mechanisms for set-

ting query bundle prices. The amount that a consumer pays
depends on the actual answer and is correlated with the an-
swer quality (for example, by charging $1 for each tuple
returned). The consumers have access to the pricing func-
tion (i.e. how a price is determined from a query answer),
but they learn the actual price only after they commit to
purchasing the query answers. This restriction is essential –
otherwise a consumer could recreate much of the database
simply by asking for the prices of queries (as in Section 3).

Despite not knowing the price in advance, consumers can
limit their risk by choosing query bundles intelligently. For
example, in a dollar-per-record pricing system they may ask
for at most 20 records satisfying a SELECT query so that the
most they pay is $20.

The pricing function ₡(·) sets a price ₡(q, ω) based on the
query bundle q and the answer ω it returns. As discussed
in Section 2, this price must be a function of the probabil-
ity vector ~P [q(·) = ω] (i.e. P (q(D) = ω) for all D ∈ I).
In Section 4.1, we present conditions on ₡(·) for avoiding
arbitrage. In Section 4.2 we give examples of arbitrage-free
delayed pricing functions and prove negative results about
assigning reasonable prices to all queries.

4.1 Conditions for Avoiding Arbitrage

4.1.1 Avoiding price-based arbitrage
The price is a function of the query answer and a consumer

learns the price and the answer simultaneously. Hence the
price leaks no additional information (beyond what the con-
sumer paid for) about the true database instance. Thus we
only need to ensure prices are nonnegative (sellers do not

pay consumers to ask queries) and anything the consumer
can figure out with no information is free. Formally,

₡(q, ω) ≥ 0 (for all q and ω) (1)

If P (q(D) = ω) = P (q(D′) = ω) for all D,D′ ∈ I
then ₡(q, ω) = 0 (2)

4.1.2 Avoiding separate-account arbitrage
Let q1 and q2 be query bundles. A consumer who issues

them both at the same time by putting them in a query
bundle q = [q1, q2] will pay £(q) and a sneaky consumer who,
instead, uses separate accounts to issue q1 and q2 will pay
£(q1)+£(q2). Avoiding separate account arbitrage requires:

₡([q1, q2], [ω1, ω2]) ≤ ₡(q1, ω1) + ₡(q2, ω2) (3)

and in general we expect strict inequality to hold (for exam-
ple, when q1 = q2 and both are deterministic).

4.1.3 Avoiding post-processing arbitrage
For post-processing arbitrage, we need to consider the fol-

lowing scenario. A consumer is interested in the answer to a
query bundle q. However, q may be equivalent to a compos-
ite query q2 ◦ q1 that first runs q1 on the data and q2 on the
result. We can think of q2 as a possibly randomized mapping
that converts an output η produced by q1 into an output ω
belonging to the range of q.2 Thus there are several paths to
getting a query answer ω: the data consumer can issue query
bundle q and receive the answer ω while paying ₡(q, ω), or
pose query q1 to get some η at a cost of ₡(q1, η) then com-
pute q2(η) locally to obtain ω. A post-processing arbitrage
will occur if the data consumer is guaranteed to pay less by
posing query q1. Formally, a post-processing arbitrage sce-
nario exists if there exists a q1 and q2 such that q = q2 ◦ q1
and for every ω ∈ range(q) and every η ∈ range(q1) that may
be mapped to ω by q2, the inequalities ₡(q, ω) ≥ ₡(q1, η)
hold (with one of the inequalities being strict). The follow-
ing theorem will be useful for verifying that delayed-pricing
functions avoid this arbitrage scenario:

Theorem 4.1. If I is finite, a continuous delayed-pricing
function ₡(·) avoids post-processing arbitrage if an only if
the following two conditions hold.

1. If q, q† and ω, η1, η2 are such that ~P [q(·) = ω] = ~P [q†(·) =

η1] + ~P [q†(·) = η2], then

₡(q, ω) ≤ max
{
₡(q†, η1), ₡(q†, η2)

}
(4)

and the inequality is strict when ₡(q†, η1) 6= ₡(q†, η2).

2. For every pair of queries q, q∗ where ~P [q(·) = ω] =

c ~P [q∗(·) = η] for some c > 0:

₡(q, ω) = ₡(q∗, ω) (5)

Proof. We first prove that satisfying these conditions
are sufficient to avoid the post-processing arbitrage scenario.
First recall from Section 2 that ₡(q, ω) is a function f of the

2For example, q could be the query SELECT C,COUNT(*)
FROM T WHERE A=a AND B=b GROUP BY C and q1 could be
the query SELECT * FROM T WHERE A=a. In this case, q2
would filter out tuples based on attribute B and then per-
form the group-by. In general, the queries need not be de-
terministic.
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probability vector ~P [q(·) = ω] = [P (q(D1) = ω), P (q(D2) =
ω), . . . ]. Using Equation 4 followed by Equation 5, we have
the following:

₡(q, ω)

=f ([P (q(D1) = ω), P (q(D2) = ω), . . . ])

=f

(∑
η

P (q2(η) = ω)
[
P (q1(D1) = η), P (q1(D2) = η), . . .

])

≤max
η

f
(
P (q2(η) = ω)

[
P (q1(D1) = η), P (q1(D2) = η), . . .

])
=max

η
f
([
P (q1(D1) = η), P (q1(D2) = η), . . .

])
=max

η
₡(q1, η)

with the first inequality being strict if the ₡(q1, η) are not
all identical. It is easy to see that this prevents the post-
processing arbitrage scenario.

We now show that the conditions are necessary. To prove
Equation 4, fix a query q and an ω∗ ∈ range(q). Define
a query q† such that P (q(D) = ω) = P (q†(D) = ω) for
all D ∈ I and all ω ∈ range(q) that are not equal to ω∗.
Let P (q†(D) = η1) and P (q†(D) = η2) be arbitrary subject
to the condition that P (q†(D) = η1) + P (q†(D) = η2) =
P (q(D) = ω∗) for all D ∈ I. Define a processing algorithm
q2 that maps η1 and η2 into ω∗ (and otherwise acts like the
identity). Then it is easy to see that q2 ◦ q† = q. Clearly,
₡(q, ω) = ₡(q†, ω) for all ω 6= ω∗ (since price is a function
of the probability vector). Since q2 maps η1 and η2 into ω∗,
there will be an arbitrage opportunity if ₡(q, ω∗) ≥ ₡(q†, η1)
and ₡(q, ω∗) ≥ ₡(q†, η2) with one of those being strict in-
equality. If ₡(q†, η1) = ₡(q†, η2) then arbitrage can only
be avoided when ₡(q, ω∗) ≤ max

{
₡(q†, η1),₡(q†, η2)

}
. On

the other hand, if ₡(q†, η1) 6= ₡(q†, η2) then arbitrage can
only be avoided when ₡(q, ω∗) < max

{
₡(q†, η1),₡(q†, η2)

}
.

This is precisely the requirement of Equation 4.
We now prove Equation 5. Note that ₡(q, ω) is a function

of the vector ~P [q(·) = ω] = [P (q(D1) = ω), P (q(D2) =
ω), . . . ] and so Equation 5 says that the price is invariant to
arbitrary scaling of the vector. We will first show that this
is true when scaling the vector by 1/k, where k is an integer.
We will then extend it to scaling by rational numbers and
then all numbers.

Fix a q and ω∗ ∈ range(q). As before, define q† such that
P (q(D) = ω) = P (q†(D) = ω) for all D ∈ I and all ω ∈
range(q) that are not equal to ω∗. Let k be a nonnegative

integer. For j = 1, . . . , k set ~P [q†(·) = ηj ] = 1
k
~P [q(·) = ω∗].

Essentially, q† acts like q with the exception that when q out-
puts ω∗, q† will output one of η1, . . . , ηk with equal proba-
bility. Define qA to be the function that maps η1, . . . , ηk into
ω∗ (and otherwise acts like the identity). Clearly q = qA◦q†.
Also define the randomized function qB that maps ω∗ to η1
with probability 1/k, to η2 with probability 1/k, etc. Then
it is easy to see that q† = qB ◦ q. Thus q and q† are essen-
tially equivalent and there should be no preference among
them. Since the vectors ~P [q†(·) = ηj ] (for j = 1, . . . , k) are
all the same, the prices ₡(q†, ηj) are all the same, and it is
clear that to avoid arbitrage, we need ₡(q†, ηj) = ₡(q, ω∗).

Now choose a rational number k1
k2

. Define queries qA, qB

and outputs ω1, ω2 such that: ~P [qA(·) = ω1] = k1
k2
~P [qB(·) =

ω2]. Clearly there exists some query qC and output ω3 such

that 1
k1
~P [qA(·) = ω1] = ~P [qC(·) = ω3] and 1

k2
~P [qB(·) =

ω2] = ~P [qC(·) = ω3]. Thus ~P [qC(·) = ω3] is an integer
rescaling of the other two vectors and by the previous results,
we must have ₡(qA, ω1) = ₡(qB , ω2) = ₡(qC , ω3). Thus
price is invariant under rescaling the probability vector by a
rational number. We extend this to real numbers using the
continuity of the pricing function together with the finite
dimensionality of the vector space (~P [q(·) = ω] is a finite
dimensional vector with dimensionality | I |).

4.1.4 Almost-certain arbitrage
One of the prerequisites for avoiding almost-certain arbi-

trage is continuity, so that a small change in the probabilistic
behavior of a query bundle results in small changes to the
price. Since price is determined by the vector ~P [q(·) = ω)],
a necessary condition is that the pricing function should be
continuous with respect to each component of the vector.
Once continuity is established, it is up to the data owner to
decide what is the maximal allowable change in price due
to a small change in probabilities (for example, by requiring
an upper bound on the derivative of the pricing function).

4.1.5 Serendipitous Arbitrage
In the case of serendipitous arbitrage, the consumer issues

a query bundle q∗ = [q1, . . . , qk] and receives the (possibly
noisy) bundled answers ω∗ = [ω1, . . . , ωk]. We need to en-
sure that any fact the consumer can deduce from these an-
swers has a price that is at most ₡(q∗, ω∗). We can formalize
this idea by considering whether a query q with answer ω
provides any additional information about the true database
beyond what we know from query bundle q∗ with output ω∗.
This concept can be conveniently expressed using Bayesian
inference. We need the following definition:

Definition 4.2. A prior distribution θ over databases D ∈
I is non-exclusionary if Pθ(D) > 0 for all D ∈ I.

Given a non-exclusionary prior θ, let Pθ(· | (q1, ω1)) be the
posterior distribution over databases conditioned on the fact
that query bundle q1 returned ω1. Then a new query bundle
q2 with output ω2 provides no new information if it does
not change the posterior distribution.3 When the answer
to q2 provides no new information then, one can argue, it
should not have a higher price. This condition for avoiding
serendipitous arbitrage is formalized as:

If Pθ(· | (q1, ω1)) = Pθ(· | (q1, ω1) ∧ (q2, ω2))

then ₡(q2, ω2) ≤ ₡(q1, ω1) (6a)

for some non-exclusionary prior θ. Which one should be
used? It turns out that this does not matter, as they all will
produce the same conditions:

Theorem 4.3. The condition in Equation 6a is unaffected
by the choice of the non-exclusionary prior θ. More specifi-
cally the condition in Equation 6a is equivalent to the con-
dition ₡(qa, ωa) ≤ ₡(qb, ωb) where:

• P (qa(D) = ωa) = c (for some fixed constant c) for all
databases D where P (qb(D) = ωb) > 0, and

• P (qa(D) = ωa) can be arbitrary for all databases D
where P (qb(D) = ωb) = 0

3Non-exclusionary priors rule out pathological situations
where a query bundle q returns an answer ω that can only
be derived from databases that have Pθ(D) = 0.
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Proof. Intuitively, these two conditions mean that qa
behaves identically on all databases for which query qb might
provide the answer ωb, therefore when qa returns ωa it does
not tell us which of the possible input databases is more
likely.

Let θ be a non-exclusionary prior. The condition in Equa-
tion 6a can be restated as

Pθ(Da | (q1, ω1))

Pθ(Db | (q1, ω1))
=

Pθ(Da | (q1, ω1), (q2, ω2))

Pθ(Db | (q1, ω1), (q2, ω2))

for every Da, Db ∈ I where P (q1(Da) = ω1) > 0 and
P (q1(Db) = ω1) > 0, since no change in the posterior dis-
tribution means that the ratio of the posterior probabilities
of possible input databases is unchanged. Equivalently, this
means:

Pθ(Da)P (q1(Da) = ω1)

Pθ(Db)P (q1(Db) = ω1)

=
Pθ(Da)P (q1(Da) = ω1)P (q2(Da) = ω2)

Pθ(Db)P (q1(Db) = ω1)P (q2(Db) = ω2)

and, since Pθ(D) > 0 for all D ∈ I (θ is non-exclusionary),

P (q1(Da) = ω1)

P (q1(Db) = ω1)
=

P (q1(Da) = ω1)P (q2(Da) = ω2)

P (q1(Db) = ω1)P (q2(Db) = ω2)

for Da, Db ∈ I where P (q1(Da) = ω1) > 0 and P (q1(Db) =
ω1) > 0. It easily follows that P (q2(D) = ω2) = c (for
some fixed constant c) whenever P (q1(D) = ω1) > 0 (and
the behavior of q2 can be arbitrary on databases for which
P (q1(D) = ω1) = 0). Note that this is true regardless of
which non-exclusionary θ was used.

The proof in the other direction is obvious.

Consider the following example relating Theorem 4.3 to Equa-
tion 6a.

Example 4.4. Consider the query q1=SELECT name FROM

T WHERE grade=’A’ with the answer ω1 = {Bob,Alice}. Let
q2 be the query that always returns 1 if table T contains a
tuple with name=“Bob” and grade=“A,” and for all other
tables it returns a random integer from the Poisson distri-
bution. Clearly, for every database where q1 returns ω1, q2
behaves in exactly the same way (it returns 1 with probabil-
ity 1). By Theorem 4.3, if we know that q1 returned ω1 then
we learn nothing if we are told q2 returns 1. Indeed, if we
already know q1 returns ω1, we can already predict that q2
will return 1. Hence, this answer to q2 should not cost more
than that answer to q1 – by the condition in Equation 6a,
₡(q2, 1) ≤ ₡(q1, ω1).

While this condition is appealing, it turns out that it is too
strong – a continuous delayed pricing function ₡(·) that sat-
isfies Equation 6a will assign the same price to all non-trivial
outputs of all deterministic query bundles (e.g. retrieving
one tuple or the whole database will cost the same).

Theorem 4.5. Let I be finite with | I | ≥ 2. If ₡(·) is
continuous and satisfies Equation 6a then there exists a con-
stant c such that ₡(q, ω) = c for all deterministic query bun-
dles q and nontrivial4 ω ∈ range(q).

4We say that ω is trivial if P (q(D) = ω) is the same for all
D; since a trivial ω provides no information about the true
dataset, it should have 0 cost according to Equation 2.

Proof. For any proper set S ⊂ I, define qεS to be the
query such that qεS(D) = 1 for D ∈ S and for D /∈ S,
qεS(D) = 1 with probability ε and 0 with probability 1 − ε
(thus qεS is a probabilistic approximation of the indicator
function of S). If SA and SB are disjoint, then according
to Theorem 4.3 and Equation 6a, ₡(qεSA

, 0) ≤ ₡(q0SB
, 1).

By continuity ₡(q0SA
, 0) ≤ ₡(q0SB

, 1). Similarly, ₡(qεSA
, 1) ≤

₡(q0SB
, 1) and by continuity ₡(q0SA

, 1) ≤ ₡(q0SB
, 1). Revers-

ing the roles of SA and SB (and later interchanging 0 and
1), we see that if SA and SB are disjoint, then ₡(q0SA

, ω1) =

₡(q0SB
, ω2) for all ω1, ω2 ∈ {0, 1}

Now let SA and SB be proper subsets of I that are not
necessarily disjoint. Choose a DA ∈ I \SA and DB ∈ I \SB .
Our results show that

₡(q0SA
, ω1) = ₡(q0{DA}, ω2) = ₡(q0{DB}, ω3) = ₡(q0SB

, ω4)

In other words, all answers to Boolean queries have the same
price.

Now let q be a deterministic query bundle with nontrivial
output ω. Let S = {D : q(D) = ω}. Then ~P [q(·) = ω] =
~P [q0S(·) = 1] and hence ₡(q, ω) = ₡(q0S , 1). Since q0S is
a Boolean query, this means that all nontrivial answers to
deterministic queries have the same price.

The key to Theorem 4.5 is that we must assign prices
for certain randomized queries qS (in the proof they were
variations of randomized response [12] but other queries can
also be used). Continuity (for avoiding almost-certain arbi-
trage) and Equation 6a created relations between the prices
of answers to qS and the prices of deterministic query bun-
dles. It turned out these relations had undesirable conse-
quences. This is a typical occurrence in the negative results
we demonstrate in Section 4.2.

In light of this result, we can slightly weaken our require-
ments for avoiding serendipitous arbitrage by insisting that
q2 be deterministic:

If Pθ(· | (q1, ω1)) = Pθ(· | (q1, ω1) ∧ (q2, ω2)) and q2 is

deterministic then ₡(q2, ω2) ≤ ₡(q1, ω1) (6b)

for some non-exclusionary prior θ. The motivation for this
relaxed condition is that if q2 is deterministic, then a query
answer ω2 tells us which databases are possible (i.e. all D
where q2(D) = ω2). We can obtain the same type of infor-
mation from a randomized query q1 with output ω1 by deter-
mining {D : P (q1(D) = ω) 6= 0}. So if the query/answer
pair (q2, ω,2 ) does not rule out any additional possible worlds,
then its price should not be more than that of the query/answer
pair (q1, ω1). Note that Equation 6b covers standard deter-
ministic notions about logical inference about queries: if,
from the query/answer pair (q1, ω1) we can deduce that q2
will return ω2, the ₡(q2, ω2) ≤ ₡(q1, ω1).

4.2 Pricing Functions & Negative Results
We first provide a positive result – a nontrivial class of

arbitrage-free delayed-pricing functions that have an intu-
itive motivation.

Definition 4.6. For each D ∈ I, let wD be a nonneg-
ative weight. For any query bundle q and possible output
ω ∈ range(q), define:

₡max(q, ω) =
∑
D∈I

wD

1− P (q(D) = ω)

max
D′∈I

P (q(D′) = ω)



763



If I is countably infinite, the sum of the wD must be finite.
In case I has a continuous domain, then the summations
are replaced with integrals.

A pricing function of this form assigns a value wD to the
piece of knowledge that the true database is not D. If q is a
deterministic query bundle and ω is one of its outputs, then
the price ₡max(q, ω) is equal to the sum of the weights of
databases D that have been ruled out (i.e. for which q(D) 6=
ω). In the case of a randomized query bundle q∗, which
tells us which databases are more likely than others, the
price ₡max(q∗, ω) depends on the degree to which a database
becomes less likely to produce ω.

Theorem 4.7. The delayed pricing function ₡max(·) sat-
isfies Equations 1, 2, 3, 4, 5, and 6b.

Proof. It is clear that ₡max(·) satisfies Equations 1, 2,
and 5. To prove it satisfies Equation 3, let q∗ be the query
bundle [q1, q2]. Then P (q∗(D) = [ω1, ω2]) = P (q1(D) =
ω1)P (q2(D) = ω2) and so ₡max(q∗, [ω1, ω2]) equals:

∑
D∈I

wD

1−
P (q1(D) = ω1)P (q2(D) = ω2)

max
D′∈I

P (q1(D′) = ω1)P (q2(D′) = ω2)


≤

∑
D∈I

wD

1−
P (q1(D) = ω1)P (q2(D) = ω2)

max
D1∈I

P (q1(D1) = ω1) max
D2∈I

P (q2(D2) = ω2)


≤

∑
D∈I

wD

2−
P (q1(D) = ω1)

max
D1∈I

P (q1(D1) = ω1)
−

P (q2(D) = ω2)

max
D2∈I

P (q2(D2) = ω2)


=₡max(q1, ω1) + ₡max(q2, ω2)

where the last inequality comes from the fact 1 − ab ≤
2 − a − b when a, b ∈ [0, 1]. For Equation 4, suppose that
q, qA, qB and ω are such that P (q(D) = ω) = P (qA(D) =
ω) + P (qB(D) = ω) for all D ∈ I. Then ₡max(q, ω) equals:

∑
D∈I

wD

1−
P (qA(D) = ω) + P (qB(D) = ω)

max
D′∈I

[P (qA(D′) = ω) + P (qB(D′) = ω)]


≤

∑
D∈I

wD

1−
P (qA(D) = ω) + P (qB(D) = ω)

max
D1∈I

P (qA(D1) = ω) + max
D2∈I

P (qB(D2) = ω)



=(
∑
D∈I

wD)−

∑
D∈I

wDP (qA(D) = ω) +
∑
D∈I

wDP (qB(D) = ω)

max
D1∈I

P (qA(D1) = ω) + max
D2∈I

P (qB(D2) = ω)

≤
∑
D∈I

wD

−min


∑
D∈I

wDP (qA(D) = ω)

max
D1∈I

P (qA(D1) = ω)
,

∑
D∈I

wDP (qB(D) = ω)

max
D2∈I

P (qB(D2) = ω)


=max{₡max(qA, ω),₡max(qB , ω)}

Finally, for Equation 6b, choose a non-exclusionary prior
θ, two queries q1 and q2 (where q2 is deterministic) and
answers ω1, ω2 such that

Pθ(· | (q1, ω1)) = Pθ(· | (q1, ω1) ∧ (q2, ω2))

It is easy to see that this implies:

{D : P (q2(D) = ω2) = 1} = {D : P (q2(D) = ω2) > 0}
⊇ {D : P (q1(D) = ω1) > 0}

Since q2 is deterministic, ₡(q2, ω2) is the sum of the weights
of the databases for which q2(D) 6= ω2. Now, ₡(q1, ω1) is

at least as large because of the form of the pricing function
and the fact

{D : q2(D) = ω2} ⊇ {D : P (q1(D) = ω1) > 0}
⇒ {D : q2(D) 6= ω2} ⊆ {D : P (q1(D) = ω1) = 0}

Computing the price, especially in the presence of database
constraints, is computationally challenging and appropriate
approximation algorithms are an area of future work.

4.2.1 Extending Tuple-based Pricing
A pay-per-tuple pricing scheme [1] is a simple coarse-

grained scheme where a user purchases a subset of tuples
from a table and pays c units for every tuple returned. In
this section, we provide a negative result for fine-grained
arbitrage-free pricing functions that extend pay-per-tuple
pricing to general queries.

First, we formalize what it means to extend the pay-per-
tuple pricing scheme.

Definition 4.8. Let T UP be the domain of tuples. For
any set A ⊆ T UP, let QA(T ) be the query that returns
“true” if table T contains all tuples from A and “false” oth-
erwise.

Definition 4.9. A delayed pricing function ₡(·) is a pay-
per-tuple extension if there exists a constant c > 0 such that
₡(QA, “true”) = c|A| for all nonempty sets of tuples A.

We feel that these are minimal conditions needed to de-
fine pay-per-tuple pricing schemes since they formalize the
condition that it costs ck units to learn that k specific tu-
ples are in a database. By examining the probability vector
~P [q(·) = ω], it is clear that these conditions are satisfied
when we charge c units for each tuple returned by a SELECT

query.
As a motivating example, consider the following method

for generating a pay-per-tuple extension ₡(·) that can price
arbitrary queries: figure out the subset of tuples that are
needed to answer the query and charge the consumer c times
the size of this subset (effectively forcing the user to buy all
of those tuples). For example, an answer to the count query
SELECT COUNT(*) FROM T WHERE T.state=’NY’ would cost
the same as the answer to the more detailed query SELECT *

FROM T WHERE T.state=’NY’ because the set of tuples from
New York is the smallest set from which the count query
can be answered. By similar reasoning, to obtain the size
of the table (SELECT COUNT(*) FROM T), a consumer would
have to pay c times the size of the table. Under this pricing
scheme, aggregate queries are quite expensive and a con-
sumer is better off asking for subsets of the tables instead
(more information for the same price).

It turns out that aggregate queries are even more problem-
atic than this example illustrates. A pay-per-tuple extension
₡(·) that avoids arbitrage will have to set a high price for
any query answer that reveals that a table is empty. As the
proof of the following theorem shows, the conclusion follows
because of the prices that need to be assigned to certain
aggregate queries.

Theorem 4.10. Let T UP be a finite tuple domain and
let the set of all database instances I be the collection of all
subsets of T UP (so that each database instance is a table
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T with distinct rows). Let ₡(·) extend pay-per-tuple-pricing
with constant c (as in Definition 4.9). Let N be the size of
the tuple domain. Then, if T is an empty table, the price of
learning that T contains no tuples is at least c(N − 1).

Proof. Without loss of generality, let ₡(·) extend pay-
per-tuple pricing with constant c = 1. Consider the ag-
gregate queries q1 =SELECT abs(N/2 - count(*)) FROM T

and q2 =SELECT count(*) FROM T. The query/answer pair
(q2, 0) implies the pair (q1, N/2) (that is, if we know q2 re-
turned 0 then we can determine that q1 will return N/2).
Similarly the query/answer pair (q2, N) implies the pair
(q1, N/2). By the condition in Equation 6b, we must have

₡(q2, 0) ≥ ₡(q1, N/2)

₡(q2, N) ≥ ₡(q1, N/2)

Furthermore,

₡(q2, N) = N

since it is equivalent to a query/answer pair (QT UP , true)
(see Definition 4.8) which tells us that every tuple is in the
table and so must have price N .

Now, for any tuple t∗, let Q{t∗} be the query that returns
true if table T contains tuple t∗ (note that ₡(Q{t∗}, true) =
1). Now, receiving the answer N for query q2 is equivalent
to the query bundle [q1, Q{t∗}] returning the bundled an-
swers N/2 and true. To avoid separate-account arbitrage
(Equation 3), we therefore must have

₡(q2, N) ≤ ₡(q1, N/2) + ₡(Q{t∗}, true)

Combined with our previous results, we get:

N ≤ ₡(q1, N/2) + 1

₡(q2, 0) ≥ ₡(q1, N/2) ≥ N − 1

Therefore learning that the table is empty (q2 returning 0)
has a substantial cost. We note that various additional vari-
ations of this result are possible, such as when the database
size n is already known.

4.2.2 Bayesian Pricing
Given an answer ω to a query bundle q, we can use prob-

abilistic inference to learn about the original database D.
Often this inference comes in the form of a posterior distri-
bution P (D | (q, ω)). Can we use such a posterior distribu-
tion to set prices for query answers?

In this section, we answer the question with a negative
result. We show that under general conditions, a delayed
pricing scheme ₡(·) that can be computed from the poste-
rior distribution will either fail to protect against separate-
account arbitrage, or set a large price for queries about a
small number of tuples (relative to the price of the entire
database). We first formally state the theorem, and then
illustrate its consequences.

Theorem 4.11. Let the finite set of database instances I
have size ≥ 3. Let Pθ be a non-exclusionary prior over I
and let Pθ(· | (q, ω)) denote the posterior distribution over
I (conditioned on q returning ω). Let ₡(·) be a continuous
delayed pricing function such that ₡(·) is a function of the
posterior probability – that is, there exists a function f such
that ₡(q, ω) = f(Pθ(· | (q, ω)) for all query/answer pairs

(q, ω).5 If ₡(·) prevents separate-account arbitrage (Equa-
tion 3), then

₡(q1, ω1) ≤ ₡(q2, ω2) + ₡(q3, ω3)

for every collection of 3 deterministic pairwise incompatible
query/answer pairs (q1, ω1), (q2, ω2), (q3, ω3).6

Proof. Define the sets I1 = {D : q1(D) = ω1}, I2 =
{D : q2(D) = ω2}, I3 = {D : q3(D) = ω3} (and note that
they are pairwise disjoint). Define the query/answer pairs
(qε2, ω

ε
2) and (qε3, ω

ε
3) so that

P (qε2(D) = ωε2) =


ε if D ∈ I1
1 if D ∈ I2
0 if D ∈ I3

P (qε3(D) = ωε3) =


ε if D ∈ I1
0 if D ∈ I2
1 if D ∈ I3

First, note that q1 is deterministic and also ₡(q1, ω1) =
₡([qε2, q

ε
3], [ωε2, ω

ε
3]), because of the equality of the posterior

distributions: Pθ(· | (q1, ω1)) = Pθ(· | ([qε2, q
ε
3], [ωε2, ω

ε
3])).

Second, by continuity of ₡(·), both ₡(qε2, ω
ε
2) → ₡(q2, ω2)

and ₡(qε3, ω
ε
3)→ ₡(q3, ω3) as ε→ 0.

Thus, by Equation 3 (for avoiding separate-account arbi-
trage)

₡(q1, ω1) = ₡([qε2, q
ε
3], [ωε2, ω

ε
3])

≤ ₡(qε2, ω
ε
2) + ₡(qε3, ω

ε
3)

The result follows by taking the limit as ε→ 0.

Let us explore the consequences of this theorem. Suppose
the database contains a table T and let ta, tb be arbitrary
tuples. Let q2 be a query about the truth value of the for-
mula ta ∈ T ∧ tb /∈ T . Let q3 be a query about the truth
value of ta /∈ T ∧ tb ∈ T . Finally, let q1 be the query about
the truth value of T = D (for some specific set D of tuples
that contains neither ta nor tb). The query/answer pairs
(q1, true), (q2, true), (q3, true) are all mutually exclusive.

Our first observation is that queries q2 and q3 only affect
a small number of tuples. Consequently we may set low
prices for answers to these queries, such as ₡(q2, true) =
₡(q3, true) = 1 (similarly, we can set ₡(q2, false) and
₡(q3, false) to be small).

Now, what price should we charge for answers to q1? If
q1 returns true then an entire table is revealed. Hence,
this answer should be expensive. However, if we set prices
based on posterior distributions, then modulo its technical
conditions, Theorem 4.11 says that the most we can charge
is ₡(q2, true) + ₡(q3, true) = 2.

Clearly this is an undesirable pricing function, which leaves
us the following alternatives:

• Consider many posterior distributions (each one built
from a different prior over I), and somehow set the
price to be a function of all of them (however, the
negative results in the theorem can be generalized to
many different classes of priors).

5A possible example of such an f can be f(P (· | (q, ω))) =
maxD∈I P (D | (q, ω)).
6That is, in addition to being deterministic, for all D ∈ I
and i 6= j, if qi(D) = ωi then qj(D) 6= ωj (qi and qj can
never simultaneously return the answers ωi and ωj on the
same database.)
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• Consider priors where only 2 databases are possible
(hence, effectively setting | I | = 2).

• Weaken our requirements to sometimes allow various
arbitrage situations.

• Use a restricted query language, and only set prices for
those queries. Naturally, this language should not in-
clude the problematic queries such as qε2 from the proof
of Theorem 4.11 (it is a variation of the commonly used
randomized response [12]) because such can queries
can force undesirable relations between other queries.

5. INSTANCE-INDEPENDENT PRICING
Recall from Section 2 that in instance-independent pric-

ing, the pricing function £(·) depends on the query bundle
but not the true database instance. As such, it must be a
function of the probabilities P (q(D) = ω) (for all D ∈ I
and ω ∈ range(q)). Furthermore, £(·) is publicly available,
so that consumers can determine the prices of any query
bundles they choose. This means that if £(·) has tunable pa-
rameters, they should be chosen independently of the data
(to avoid leaking information). For such cases we explain
how to select the pricing function parameters in Section 7.

We first formulate conditions needed for £(·) to avoid ar-
bitrage situations described in Section 2.2, and then provide
pricing functions satisfying those conditions.

5.1 Conditions for Avoiding Arbitrage
Instance-independent pricing has been studied before [8,

7], so many of the conditions (for pricing functions defined
over arbitrary queries) that appear in this section are di-
rect extensions of previously proposed conditions. However,
prior work [8, 7] relaxed those conditions and developed pric-
ing functions for those relaxed conditions. Hence our main
contributions for this pricing scheme are pricing functions
that satisfy the more stringent conditions for preventing ar-
bitrage.

5.1.1 Avoiding price-based arbitrage
Clearly, instance-independent pricing schemes avoid price-

based arbitrage if the following conditions are satisfied for
all query bundles q:

£(q) ≥ 0 (7)

£(q) = 0 if q ignores its input. (8)

5.1.2 Avoiding separate-account arbitrage
The condition for avoiding separate account arbitrage is

straightforward:

£([q1, q2]) ≤ £(q1) + £(q2) (9)

5.1.3 Avoiding post-processing arbitrage
We now consider post-processing arbitrage. Let q1 and q2

be query bundles such that q2 operates on the output of q1.
Since the output of the composite query bundle q ≡ q2 ◦ q1
is q2(q1(D)), this output can be computed from q1(D). A
consumer who wants the answer to q should not pay less than
£(q). Thus, avoiding post-processing arbitrage requires:

£(q2 ◦ q1) ≤ £(q1) (10)

Note that this requirement is also known as answerability
[8]. However, the pricing scheme in [8] uses a weaker version

of Equation 10 (where q1 is a linear function of the data and
q2 is linear in the output of q1).

5.1.4 Almost-certain arbitrage
As with delayed pricing, we require that instance-independent

pricing functions be continuous with respect to the quantity
P (q(D) = ω) for each D and ω. Again, it is up to the data
owner to decide what is the maximal allowable change in
price due to a small change in probabilities.

5.1.5 Serendipitous Arbitrage
Avoiding serendipitous arbitrage for instance-independent

query pricing is a tricky matter: the price is unrelated to
the actual database instance D, but (as discussed in Section
2.2) conditions for the arbitrage opportunity are related to
D and the answers returned by queries. Thus it is challeng-
ing to formally express the appropriate conditions for £(·)
using instance-independent language. Because of these no-
tational difficulties, we propose an indirect route where pro-
tections are “inherited” from some delayed-pricing function
₡(·) by defining £₡(q) = maxω∈range(q) ₡(q, ω), the maxi-
mum delayed-price cost of any output of q. First, we show
that previously mentioned arbitrage protections are also in-
herited.

Theorem 5.1. Let £₡(q) = maxω∈range(q) ₡(q, ω). If ₡(·)
prevents price-based arbitrage (Equations 1 and 2), separate-
account arbitrage (Equation 3), and post-processing arbi-
trage (Equations 4 and 5), then the instance-independent

pricing function £₡(·) will satisfy Equations 7, 8, 9 and 10.

Proof. Equations 7 and 8 clearly follow from Equations
1 and 2, respectively. To verify Equation 9, let q = [q1, q2]
and use the condition that ₡(·) satisfies Equation 3:

£₡(q) = max
ω∈range(q)

₡(q, ω) = max
ω1∈range(q1)
ω2∈range(q2)

₡([q1, q2], [ω1, ω2])

≤ max
ω1∈range(q1)
ω2∈range(q2)

(₡(q1, ω1) + ₡(q2, ω2))

= max
ω1∈range(q1)

₡(q1, ω1) + max
ω2∈range(q2)

₡(q2, ω2)

= £₡(q1) + £₡(q2)

To verify Equation 10, let q = q2 ◦ q1. Now, P (q(D) =
ω) =

∑
η∈range(q1) P (q1(D) = η)P (q2(η) = ω). Therefore

~P [q(·) = ω] =
∑
η∈range(q1)

~P [q1(·) = η]P (q2(η) = ω). Since

₡(·) satisfies Equations 4 and 5, we can conclude ₡(q, ω) ≤
maxη∈range(q1) ₡(q1, η). Thus

£₡(q2 ◦ q1) = max
ω∈range(q)

₡(q) ≤ max
η∈range(q1)

₡(q1, η) = £₡(q1)

Thus, properties that can be notationally expressed in terms
of £₡(·) are indeed inherited from ₡(·). Any additional
protections (such as protections against serendipitous arbi-
trage) that are provided by ₡(·) also extend in the worst-case

to £₡(·) because of the use of max in the definition.
On the other hand, if the data owner is unconcerned with

serendipitous arbitrage (e.g., by deeming it unlikely), then
this construction would not be needed, and the owner would
only expect £(·) to satisfy Equations 7, 8, 9 and 10. We give
examples of such pricing functions in Section 5.2.
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Example 5.2. To illustrate the difference in the two ap-
proaches, consider the queries q1 =SELECT COUNT(*) FROM

T, q2 =SELECT * FROM T, and the query q3 which returns
the result of q1 with probability 0.99 and returns the result
of q2 with probability 0.01. The pricing approach suggested
by Theorem 5.1 would minimize the seller’s downside risk –
query q3 would be priced the same as q2 because of the possi-
bility (however remote) that q3 would return the entire table.
The consumer, of course, will generally not be happy to pay
a large price for a query that usually just returns the size of
the table.

On the other hand, if the seller uses a pricing function
from Section 5.2, the price of q3 will be a weighted average
of the prices of q1 and q2. In fact, it will be closer to the price
of q1 because most of the time, q3 will act like a simple count
query. The consumer may be happier because sometimes
a large amount of information (the entire table) would be
returned for a small price.

The tradeoffs in the previous example are another illustra-
tion of the theme in this paper that flexible/fine-grained
query pricing is a double-edged sword – on the one hand
consumers should only pay for the information they need
(specified by the queries they choose), but letting them ask
arbitrary queries will create unreasonable prices (if we wish
to eliminate arbitrage). As a result, we believe that a middle
ground can be achieved if the data seller wisely restricts the
possible queries that can be issued. Such a general, but not
too general, set of queries is a direction for further research.

5.2 Generating Pricing Functions
There is a very strong connection between data pricing

and information theory. In particular, it turns out that mu-
tual information [2] can serve as an instance-independent
pricing function satisfying Equations 7, 8, 9 and 10. If we
view the database instance as a random variable and a query
answer as a random variable, then after some mathematical
simplifications, their mutual information is equal to:

Definition 5.3. For each database instance D ∈ I, let
wD be a nonnegative weight such that

∑
D∈I wD = 1. For

any query q, define:

£MI(q) =∑
D∈I

∑
ω∈range(q)

wDP (q(D) = ω) log
P (q(D) = ω)∑

D′∈I
wD′P (q(D′) = ω)

Note that for query pricing applications, the weights wD
should not be interpreted as the estimated probabilities of
database instances. The reason is that probabilities are of-
ten estimated based on the actual database instance D. In-
cluding these estimated probabilities in a publicly-available
pricing function leaks information about D and can lead to
arbitrage. In Section 7 we discuss how to set the weights
wD based on anticipated query workloads.

Theorem 5.4. For any choice of nonnegative wD (for
each D ∈ I) that sum up to 1, £MI(·) is continuous and
satisfies Equations 7, 8, 9 and 10.

Proof. Continuity, Equations 7 and 8 are well-known
properties of mutual information. Equation 10 follows di-
rectly from the data-processing inequality for mutual infor-
mation [2]. To prove Equation 9, let X be a random vari-
able such that P (X = D) = wD for D ∈ I. Let Y be

the random variable corresponding to the output of q1 (i.e.
P (Y = ω) =

∑
D∈I P (X = D)P (q1(D) = ω)) and similarly

let Z be the random variable corresponding to the output
of q2. Finally let V be a random variable corresponding to
the output of the bundle [q1, q2], which is the joint distri-
bution of Y and Z (i.e. P (Z = [ω1, ω2]) =

∑
D∈I P (X =

D)P (q1(D) = ω1)P (q2(D) = ω2)). Letting H represent
entropy and I represent mutual information and using stan-
dard facts about them [2],

£MI([q1, q2]) = I(X;V ) = H(V )−H(V |X)

= H(Y,Z)−H(Y,Z|X)

= H(Y,Z)−H(Y |X)−H(Z|X) (11)

≤ H(Y ) +H(Z)−H(Y |X)−H(Z|X)

= I(X;Y ) + I(X;Z) = £MI(q1) + £MI(q2)

The equality in Equation 11 is true because the joint dis-
tribution P (X,Y, Z) = P (X)P (Y |X)P (Z|X) means that Y
and Z are conditionally independent given X.

Another class of parametrized pricing functions is:

Definition 5.5. For every pair of database instances D,D′,

let wD
′

D be a nonnegative weight (possibly equal to 0). Define:

£abs(q) =∑
ω∈range(q)

∑
D,D′∈I

wD
′

D

∣∣P (q(D) = ω)− P (q(D′) = ω)
∣∣

Theorem 5.6. For any choice of nonnegative weights wD
′

D

(for all database instances D,D′), the function £abs(·) is
continuous and satisfies Equations 7, 8, 9 and 10.

Proof. Continuity is obvious and clearly Equations 7
and 8 hold. For Equation 9, note that if q = [q1, q2] then
P (q(D) = [ω1, ω2]) = P (q1(D) = ω1)P (q2(D) = ω2). Thus

£abs(q)=
∑

(ω1,ω2)∈
range(q1×q2)

∑
D,D′∈I

wD
′

D

∣∣∣ P (q1(D)=ω1)P (q2(D)=ω2)

−P (q1(D
′)=ω1)P (q2(D

′)=ω2)

∣∣∣
≤
∑

(ω1,ω2)

∑
D,D′∈I

wD
′

D P (q1(D) = ω1)
∣∣∣P (q2(D)=ω2)

−P (q2(D
′)=ω2)

∣∣∣
+

∑
(ω1,ω2)

∑
D,D′∈I

wD
′

D P (q2(D′) = ω2)
∣∣∣P (q1(D)=ω1)

−P (q1(D
′)=ω1)

∣∣∣
=

∑
ω2∈range(q2)

∑
D,D′∈I

wD
′

D

∣∣∣P (q2(D)=ω2)

−P (q2(D
′)=ω2)

∣∣∣
+

∑
ω1∈range(q1)

∑
D,D′∈I

wD
′

D

∣∣∣P (q1(D)=ω1)

−P (q1(D
′)=ω1)

∣∣∣,
which equals £abs(q1) + £abs(q2). To prove Equation 10, let
q = q2◦q1 and note that, by definition, range(q) ⊆ range(q2).

£abs(q) =
∑
ω∈

range(q2)

∑
D,D′∈I

wD
′

D

∣∣∣P (q(D) = ω)− P (q(D′) = ω)
∣∣∣

=
∑
ω

∑
D,D′∈I

wD
′

D

∣∣∣∣∣ ∑
ω′∈range(q1)

(
P (q1(D) = ω′)P (q2(ω′) = ω)

−P (q1(D′) = ω′)P (q2(ω′) = ω)
)∣∣∣∣∣
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≤
∑
ω

∑
D,D′∈I

wD
′

D

∑
ω′∈range(q1)

∣∣∣∣∣P (q1(D) = ω′)P (q2(ω′) = ω)

−P (q1(D′) = ω′)P (q2(ω′) = ω)

∣∣∣∣∣
(pulling out the P (q2(ω′) = ω) term and summing over ω)

=
∑
ω′

∑
D,D′∈I

wD
′

D

∣∣∣P (q1(D) = ω′) − P (q1(D′) = ω′)
∣∣∣

= £abs(q1)

6. DYNAMIC PRICING
In arbitrage free pricing, the price of a query bundle q =

[q1, . . . , qk] is often strictly less than the sum of the prices of
the individual queries qi in the bundle [5, 8]. Often, a con-
sumer may purchase the answer to q1 and then realize that
they also need the answer to q2. At this point, the consumer
may feel regret [8, 6] because it would have been cheaper to
purchase q1 and q2 as a bundle instead of separately. As a
favor to the consumer, the seller may keep a history of the
consumer’s purchases and dynamically adjust prices to avoid
this regret. The standard solution also applies to the pricing
functions we have been investigating. Suppose a user pre-
viously purchased query q1 and obtained answer ω. In the
case of instance-independent pricing, the user has already
paid £(q1), and so the dynamically set price for q2 would be
£([q1, q2]) − £(q1). Similarly, for delayed-pricing, the price
would be ₡([q1, q2], [ω1, ω2]) − ₡(q1, ω1). In both cases the
cost of purchasing q1 and then q2 at some later time is the
same as the cost of purchasing them together.

7. ELICITING PRICING FUNCTIONS
The delayed and instance-independent pricing functions

we discussed in Sections 4.2 and 5.2 all had tunable param-
eters. For example, the pricing function £MI(·), based on
mutual information, had parameters wD that could be in-
terpreted as prior probabilities over database instances D.
However, we shouldn’t use the true database instance D∗

to estimate the data-generating distribution (via statistical
inference) and use it to assign probabilities wD to all pos-
sible database instances D. The reason is that the pricing
function and hence each wD parameter is public knowledge
(therefore these parameters could leak information about
the true database instance D∗ from which they were de-
rived). We provide an alternative.

Given an estimated workload of queries q1, . . . , qk, the
value

∑k
i=1 £(qi) is the amount the seller will earn from

this workload. The seller may wish to choose parameters to
maximize this sum. In the case of mutual information pric-
ing £MI(·), this sum is a concave function of the parameters
wD and hence convex optimization algorithmic frameworks
can be used to derive algorithms for setting the parameters.

This strategy will not work for tuning delayed-pricing
functions ₡(·) because, in addition to the query workload,
we would need to use query answers.7 However, there are
other possibilities. Recall that a consumer may choose to
7Obviously we cannot use the answers that would be gen-
erated on the true database instance, since that would leak
information about the database.
minimize worst-case cost by issuing queries that limit their

output (such as restricting the output to at most 20 tuples).
If the seller can specify, for each qi in the workload, the
answers that should have similar prices (e.g., they return
the same number of tuples), one can set up an optimization
problem of choosing the parameters that minimize the dis-
similarity in price. We plan to explore this option in future
work.

8. CONCLUSIONS
In this paper, we studied the security implications of query

pricing – how to set prices for data queries while protect-
ing the seller’s revenue (preventing arbitrage). We investi-
gated a variety of pricing schemes, proposed arbitrage-free
pricing functions, and proved negative results concerning
pricing flexibility, reasonableness, and arbitrage-prevention.
The negative results stem from the fact that certain queries,
when assigned a price, caused undesirable interactions be-
tween the prices of other queries. These results point to the
need for future research on how to carefully choose a sub-
set of queries that should be priced and made available to
consumers.
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