
Reverse k­Ranks Query

Zhao Zhang Cheqing Jin ∗ Qiangqiang Kang
Institute for Data Science and Engineering, Software Engineering Institute,

East China Normal University, Shanghai, China
{zhzhang, cqjin}@sei.ecnu.edu.cn, qqkang@ecnu.cn

ABSTRACT
Finding matching customers for a given product based on
individual user’s preference is critical for many applications,
especially in e-commerce. Recently, the reverse top-k query
is proposed to return a number of customers who regard a
given product as one of the k most favorite products based
on a linear model. Although a few “hot” products can be
returned to some customers via reverse top-k query, a large
proportion of products (over 90%, as our example illustrates,
see Figure 2) cannot find any matching customers.
Inspired by this observation, we propose a new kind of

query (R-kRanks) which finds for a given product, the top-
k customers whose rank for the product is highest among all
customers, to ensure 100% coverage for any given product,
no matter it is hot or niche. Not limited to e-commerce,
the concept of customer-product can be extended to a wider
range of applications, such as dating and job-hunting. Un-
fortunately, existing approaches for reverse top-k query can-
not be used to handle R-kRanks conveniently due to in-
feasibility of getting enough elements for the query result.
Hence, we propose three novel approaches to efficiently pro-
cess R-kRanks query, including one tree-based method and
two batch-pruning-based methods. Analysis of theoretical
and experimental results on real and synthetic data sets il-
lustrates the efficacy of the proposed methods.

Keywords
Ranking query, Reverse ranking, R-kRanks

1. INTRODUCTION
As a fundamental operator in database management, rank-

aware query has been studied extensively in recent years. In
general, the ranking query returns top k tuples with min-
imal ranking scores (or maximal ranking scores under dif-
ferent contexts) by employing a user-defined scoring func-
tion [7, 9, 12, 21, 26, 26]. There exist many kinds of scoring

∗Corresponding author

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st ­ 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 10
Copyright 2014 VLDB Endowment 2150­8097/14/06.

p
1

p
2

p
3

p
4

p
5

p
6

p
9

p
7

p
8

p
10

p
13

p
12

p
11

0
 1
 2
 3
 4
 5

user
 w[price]
 w[distance]
 Top-1

Alice
 0
 1
 p
2

Jim
 1
 0
 p
1

Terry
 0.8
 0.2
 p
1

Mary
 0.2
 0.8
 p
2

Joe
 0.7
 0.3
 p
1

User preferences & Top-1

hotel
 RTop-1

p
1
 Jim, Joe, Terry

p
2

Alice, Mary

p
3,
p
4,
p
5,
p
6,
p
7,
p
8,

p
9,
p
10,
p
11,
p
12,
p
13,

NULL

Reverse Top-1

Biased Set

price(x$50)

d

i
s

t
a

n

c
e

(
m

i
l
e

s
)

Figure 1: An example of ranking queries

functions for rank-aware queries, among which the linear
model is one of the most widely adopted models [9, 21, 26].
In the linear model, each object in the database D is de-
scribed as a d-dimensional point p, and the preference of a
user is described as a weight vector w. Each entry of w, w(i),
is non-negative, and the sum of all entries is equal to 1, i.e,∑d

i=1 w
(i) = 1. For a user with preference w, the ranking

score is defined as
∑d

i=1 p
(i) · w(i) where p(i) represents the

ith entry of p. A linear top-k query aims at returning k
objects in D with smallest scores. Typical examples cover
a wide range of applications, including multimedia search,
streaming data management, Web data analysis, etc.

The top-k query under linear model has been studied
mainly from the perspective of users, aiming at finding a set
of products to match their preferences. Recently, another
rank-aware query has been studied from the perspective of
manufacturers. Assume a manufacturer has a lot of prod-
ucts for sale and the manager wants to know who will be
interested in their products. By employing linear ranking
model, reverse top-k query has been proposed to return al-
l users who treat the given product as one of their top-k
products [21]. See the example below.

Example 1. Figure 1 illustrates a simple example of five
customers and thirteen hotels in a city. Each hotel has t-
wo attributes: price per night and distance to the beach. A
rational customer may prefer a hotel which is cheaper and
closer to the beach. We use a weight vector to describe each
customer’s preference. Jim, Terry and Joe are sensitive to
the price, but Alice and Mary care more about the distance
to the beach. For Alice, the ranking score of p2 (2.5, 0.5) is
computed as: 0× 2.5+ 1× 0.5 = 0.5, which is the minimum
compared with other points. Hence, p2 is the best choice

785

(top-1) for Alice. Similarly, p2 is also the best choice for
Mary, while p1 is the best choice for the remaining customer-
s. The result sets of reverse top-1 query for p2 and p1 are
{Alice,Mary} and {Jim, Joe, Terry} respectively. More-
over, it will return an empty set for the remaining eleven
hotels. See the tables in Figure 1 for reference.

Although capable of finding all users who are interested
in the given product, reverse top-k query cannot deal with
niche products well. In other words, we can find quite a lot of
customers to match popular products, while there may exist
no one to match the less popular (or niche) products since
these products are not in any customer’s top-k product list.
We conduct a simple experiment for the illustration purpose.
Consider a case that each data set (hotel or preference) con-
tains 5,000 tuples with attribute values assigned uniformly
in the domain. Figure 2 shows the different proportions of
hotels that are recommended to at least one customer when
k increases from 10 to 100. Even when k = 100, over 90%
hotels have never been recommended.

 0

 5

 10

 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

of
 h

ot
el

s
re

co
m

m
en

de
d(

%
)

parameter k

Figure 2: Proportion of the hotels with non-empty result set
after executing reverse top-k query

1.1 R­kRanks and Its Variant
As illustrated above, reverse top-k query cannot ensure

100% coverage for any given product. However, it is criti-
cal to return a number of customers (not empty) to match
any given product in many situations. For example, the
manufacturer may expect to find potential customers for all
products. Other examples include job-hunting, dating, and
so on. Job-hunting applications have personal information of
all job seekers, and require employers to build the preference
vectors. Thus, it will try to find some candidate employers
for any job seeker. In the dating sites, each woman or man
describes her or his personal information and the expecta-
tion for the opposite gender, so that the web site can find
some candidates to match her or him best.
Although irrelative to products and customers, the above

applications can also be modeled by utilizing the concept
of customer-product. For example, in the job-hunting appli-
cations, job seekers can be treated as products, while em-
ployers can be treated as customers. Hence, we continue to
use this concept in the following context. Now, the issue
turns to how to describe a set of customers who can best
match a given product. We propose a new query defini-
tion that finds k customers with smallest rank(w, q) values,
where rank(w, q) denotes the number of products ranking
higher than q for w. We name this query reverse k-Ranks
(R-kRanks in abbr.)
A variant of this new query is to find k customers with

smallest ranking scores to the given product q, i.e, returning

Table 1: R-kRanks vs. R-kScores (assuming q = p8)

(a) The ranking scores and ranks

Alice Jim Terry Mary Joe
Ranking score 2.2 4.2 3.8 2.6 3.6

Rank 8 3 5 8 5

(b) Query result

R-kRanks R-kScores
k = 1 Jim Alice
k = 2 Jim, Joe Alice, Mary
k = 3 Jim, Joe, Terry Alice, Mary, Joe

k customers w with smallest
∑

q(i) · w(i). We name the
former reverse k-Ranks (R-kRanks in abbr.), and the latter
reverse k-Scores (R-kScores in abbr.).

Although both query definitions return k customers for
any query product, the result set may differ a lot, especially
for a biased product data set. It’s not our focus to debate
which one is definitely better than the other one. So we just
use a simple example to illustrate the difference. Assume p8
is a query point. Table 1 compares two kinds of queries based
on the biased data set in Figure 1 (w/o p1, p3, p4 and p9).
For example, for Jim, only three objects in the biased set
(p2, p5 and p6) rank higher than p3. The query results differ
a lot under different k values. To some extent, R-kScores is
less reasonable in this case since it treats Alice as the best
customer to match p8, whereas p8 is the last choice for Alice
(see Table 1(a)). More comparisons between R-kRanks and
R-kScores appear in section 8.3.

Moreover, from a technical point of view, R-kScores can
be solved directly in a way similar to traditional top-k query
under linear model by treating each customer as a product,
and the given product as a user’s preference without normal-
ization 1. Hence, we only consider R-kRanks in this paper.

1.2 Challenges
It is challenging to handle R-kRanks query, since exist-

ing methods for reverse top-k query cannot deal with R-
kRanks query straightforwardly. Representative work for
bichromatic reverse top-k query includes threshold-based al-
gorithm (RTA) [21], grid-based algorithm (GRTA) [21], and
branch-and-bound algorithm (BBR) [25]. With the help of
a small buffer (with a size of k), RTA visits all users one
by one. For each user, if the query product’s rank is lower
than any product in the buffer, the query product is def-
initely out of the user’s top-k list; otherwise, it continues
to compute the exact rank of query product and updates
the buffer. GRTA materializes some reserve top-k views
in memory for efficient processing after dividing the whole
product space into a series of cells. BBR, the most recent
work, uses branch-and-bound idea without accessing each
user’s individual preference [25].

The intrinsic reason why the above methods cannot han-
dle R-kRanks query is that these methods only care about
the customer-product pairs (w, p) such that p is in w’s top-k
product list. Unfortunately, processing R-kRanks will con-
sider different set of customer-product pairs, where p is un-
necessary to be in w’s top-k list. For example, as illustrated
in Figure 2, more than 90% products are out of the top-k

1This method is available if each entry of the product is
non-negative.

786

product list of any customer. Simply enlarging the value of
k is insufficient for any product.
To some extent, the semantic of reverse k-nearest neigh-

bor (RkNN) query is similar to R-kRanks query. It returns
a number of points that treat the given object as one of the k
nearest neighbors. Ranked reverse nearest neighbor(RRNN)
is another similar query, which returns a number of points
that are close to the query point according to the rank [14].
However, both of them use Euclidean distance to describe
the metric dist between two points, while R-kRanks uses
inner product to describe the matching degree between a
query point (a product vector) and a customer vector. In
other words, for a given product, if RkNN and RRNN are
used to find potential users, the preference of each user must
be represented by his or her ideal product. For example, in
Figure 1, Mary’s preference is described as a vector (0.2,
0.8), so that p2 is her favorite hotel. Now, consider anoth-
er way to represent the preference described in RkNN and
RRNN. Assume Mary has visited another city, and she was
satisfied with a hotel with the distance and price as same as
p5. To some extent, her preference can be represented as p5
since then. However, in the new city like Figure 1, the hotel
p2 is significantly better than p5 since p2 is cheaper, and
closer to the beach than p5. Hence, the weight-represented
preference is more insensitive to the environment.

1.3 Contribution
We have made the following contributions in this paper.

• We define a new ranking query (R-kRanks) that re-
turns k customers to match a product. In comparison,
although traditional reverse top-k query works well for
“hot” products, it may return an empty set for non-
popular query products (Figure 2).

• We propose novel solutions to handle R-kRanks query
efficiently since existing approaches cannot be applied
directly. Basically, R-kRanks can be processed by
computing the ranking score of every product-customer
pair. Except for simplicity, this method suffers from
a high time-complexity of O(m · n), where m and n
are the number of customers and products respective-
ly. We develop three novel techniques to significantly
reduce the computation cost in this work. The first
method (TPA) is based on a spatial tree, the second
one (BPA) evaluates the weights group by group, and
the last one (MPA) further reduces the time consump-
tion by maintaining an additional array for marking.

• We conduct extensive experiments over real-life and
synthetic data sets to evaluate the efficacy of the pro-
posed methods.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 defines the new query
formally. Sections 4-6 introduce three novel approaches. Af-
terwards, we provide some extensive discussions in Section
7. Experimental reports are given in Section 8. Finally, we
conclude the paper briefly in the last section.

2. RELATED WORK
Rank-aware query and its variants have been widely used

in many applications. Nowadays, it has many variants. The
most general one is ranking query, which returns a number

of points with minimal ranking scores by using a ranking
function. Recently, some researchers also focus on reverse
ranking query that returns all customers who like a given
product very much. In comparison, ranking query main-
ly concerns from the perspective of the user, while reverse
query mainly concerns in terms of product manufacturers.

Ranking Query Ranking query (top-k query) has been s-
tudied extensively for decades [10]. Fagin’s algorithm (FA)
[6] and Threshold Algorithm (TA) [7] are two of the most fa-
mous algorithms. Given a relation with multiple attributes,
these approaches first sort all tuples by each attribute in
parallel so that only a small proportion of tuples are re-
quired to be fetched. In contrast, TA is more time-efficient
than FA [7]. The research on ranking query has also been
extended to various scenarios, such as distributed environ-
ment [1], streaming applications [19], and uncertain data
situations [11]. One family of algorithms for ranking query
is based on preprocessing, which stores some information af-
ter processing all tuples off-line. Such information can help
to compute the result more efficiently once a new query ar-
rives. Chang et al. proposed Onion technique to index con-
vex hulls for linear optimization queries [3]. Prefer method
proposed by Hristidis et al. materializes views of top-k re-
sult sets [9]. Xin et al. proposed the robust index method
with more elaborate consideration on the minimal possible
rank of each tuple in the database [26].

Reverse NN and reverse skyline Reverse NN (RNN) re-
turns a set of query points that treat a given query point as
the nearest neighbor [13]. There are two kinds of approaches
dealing with RNN query: precomputation-based approaches
and dynamic approaches [14]. The former store some use-
ful information in the system after pre-computing results of
kNN query for each point, so that the executing efficiency of
a future query can be improved [27]. The latter often use an
index structure to accelerate query-processing, such as R-
tree [20]. In [14], Lee et al. studied Ranked Reverse Nearest
Neighbor (RRNN). Given a query point q and a number t,
RRNN returns t points close to q according to the rank. The
bichromatic RRNN is similar to R-kRanks but works in the
different context. Their work uses Euclidean distance to de-
scribe the dist metric between two points, but we use inner
product to describe the matching degree between a query
point (a product vector) and a customer vector. Hence, the
approaches in [14] cannot deal with the issues in this pa-
per. Skyline query is a typical multi-objective optimization
issue [2]. Given a query point (a product), reverse skyline
query returns a number of customers who like the given
product most based on the dominance relationship among
the products [5]. Lian and Chen extended reverse skyline
query to the probabilistic data management [17]. However,
in these literatures, the preference of each user is described
as a data point representing the desirable product. But in
our work, the preference is described as a weight vector.

Reverse ranking query Reverse ranking query aims at
evaluating the rank of a query point based on a prefer-
ence function [15,16,18]. Both reverse top-k and R-kRanks
queries concern the rank of a product under different pref-
erence functions.

The work most related to ours is the reverse top-k query
which aims at finding all customers who treat a given prod-
uct as one of their top-k favorite products [4, 8, 21–25, 28].
Vlachou et al. proposed one solution for monochromatic

787

reverse top-k query and two solutions for bichromatic re-
verse top-k query, namely RTA and GRTA [21]. Afterward-
s, they also studied how to handle monochromatic reverse
top-k query in d-dimensional space and presented more ex-
periments for illustration [22]. Most recently, Vlachou et al.
further improved RTA to process reverse top-k queries by
branch-and-bound algorithm without accessing each user’s
individual preferences [25]. Literature [4] indexed dataset
based on a critical k-polygon for answering monochromatic
reverse top-k queries in two dimensions. Reverse top-k query
can be used to find the most influential data objects that are
preferred by more customers [24]. In [23], some researchers
considered how to monitor reverse top-k queries over mobile
devices. Ge et.al proposed an approach for batch evalua-
tion of all top-k queries by using block indexed nested loops
and view-based algorithm [8]. Literature [28] presented a
dynamic index that supports the reverse top-k query. In
particular, a scalable solution for processing many continu-
ous top-k queries was developed combining this index with
another one for top-k queries. However, none of existing so-
lutions for reverse ranking query can be applied to handle
R-kRanks query directly due to different query semantics.

3. PROBLEM STATEMENT
Let D denote a set containing n points and each point

is described as a d-dimensional vector pi. ∀j ∈ [1, d], p
(j)
i

denotes the value of the j-th attribute of pi. Let W denote a
set containing the weights of the preferences form customers
and each weight is described as a d-dimensional point wi.

∀j ∈ [1, d], w
(j)
i denotes the value of the j-th dimension

of wi. Similarly, ∀i∀j(w(j)
i ≥ 0). Assume the set W has

been preprocessed so that the sum of the weights of each

customer is equal to 1, i.e, ∀i(
∑d

j=1 w
(j)
i = 1). Note that

this preference weight model has been widely adopted in
many literatures [3, 4, 8, 9, 21–26,28].
For any customer with a preference weight w, the scoring

function f(w, p) computes the ranking score of a point p. It
is defined as the inner product of w and p, i.e, f(w, p) =

⟨w, p⟩ =
∑d

i=1 w
(i)p(i). Without loss of generality, we as-

sume that a customer prefers a point with smaller ranking
score in this study 2. Since both top-k and reverse top-k
queries have strong connections with our work, we first re-
view these two queries for reference and then present our
new query.

Definition 1 (Top-k query, TP (k,w)). Given a point
set D, a user preference w and a positive integer k, the top-
k query returns a set S of points, S ⊆ D, |S| = k, and
∀pi ∈ S,∀pj ∈ (D − S), we have: f(w, pi) ≤ f(w, pj).

Definition 2 (Reverse top-k query [21]). Given a
point set D, a weight set W , a positive integer k, and a
specified query point q, reverse top-k query returns a set S
of weights, S ⊆ W . For each w ∈ S, q ∈ TP (k,w); but for
each w ̸∈ S, q ̸∈ TP (k,w).

As we mentioned before, reverse top-k query will return a
non-empty set only for a small fraction of products. Con-
sequently, we propose a new query type, namely reverse

2For the case where the users may prefer great values in
some attributes, we can replace values of such attributes
with their additive inverse to adapt to this model.

Table 2: Important symbols
Symbol Description
D,W The product set, the preference weight set
k A parameter in R-kRanks query
q The query point
w The preference weight of a customer
R R-tree constructed by data points
r An MBR in R-tree

r.U, r.L The top right and bottom left corners of r
H Histogram of weight vectors
Hi A bucket in the weight histogram

Hi.U,Hi.L The top right and bottom left corners of Hi

P(Hi, q) The hyperplane family for Hi and q
g The affected dimension of PoN (or NeN)
u The split dimension of a weight bucket Hi

c Each bucket Hi has a width of 1
c

k-Ranks (R-kRanks), and its variant, reverse k-Scores (R-
kScores). Given a query point q, R-kScores query returns
top k customers (say, w) with the smallest f(w, q), while
R-kRanks query returns top k customers (say, w) with the
smallest rank(w, q) values. Here, the subroutine rank(w, q)
computes the number of products with smaller ranking score
than q for a given customer w.

Definition 3 (rank(w, q)). Given a point set D, a weight
vector w, and a query point q, the rank of q for w is rank(w, q) =
|S|, where |S| is the cardinality of S, a subset of D. ∀pi ∈
S, we have f(w, pi) < f(w, q); ∀pj ∈ (D − S), we have
f(w, pj) ≥ f(w, q).

Definition 4 (Reverse k-Ranks query, R-kRanks).
Given a point set D, a weight set W , a positive integer
k, and a query point q, R-kRanks query returns a set S,
S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
rank(wi, q) ≤ rank(wj , q) holds.

Definition 5 (Reverse k-Scores query, R-kScores).
Given a point set D, a weight set W , a positive integer
k, and a query point q, R-kScores query returns a set S,
S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
f(wi, p) ≤ f(wj , p) holds.

We focus on R-kRanks query in this work due to the lim-
itation of R-kScores. We develop three novel solutions to
process R-kRanks query in Section 4-6, including TPA, B-
PA and MPA. Moreover, it is not hard to devise a straight-
forward solution by exploring the whole space. Let q denote
the query point. For any weight w in W and any product p
in D, we compute rank(w, p) one by one, and keep k weight-
s with the smallest rank(w, q) for query point q. The time
complexity is O(m · n) where m and n are the number of
customers and products respectively. The space complexi-
ty is O(k). This method also acts as the baseline approach
(Naive Approach, NA in abbr.) in Section 8.

Important symbols are summarized in Table 2.

4. TREE­BASED PRUNING APPROACH (T­
PA)

The naive approach (NA) needs to evaluate every product-
customer pair, which will consume huge amounts of com-
putation resources in datasets with a large number of cus-
tomers and products. Fortunately, parts of computations

788

Algorithm 1: Tree-based Pruning Approach (TPA)
(R,W, q⃗, k)

1 Let Q and Q′ denote two queues;
2 Let A denote an array to record the rank of each weight;
3 minRank ← the number of objects in R;
4 foreach wi in W do
5 Clear Q and Q′; enqueue(Q, R.root);
6 while ((r = dequeue(Q)) ̸= ∅) do
7 if (f(wi, r.U) < f(wi, q)) then
8 A[wi]← A[wi] + |r| ;
9 else if (f(wi, q) < f(wi, r.L)) then continue ;

10 else
11 if (r is a leaf node) then enqueue(r,Q′);
12 else ∀r′ (r′ is r’s child), enqueue(r′, Q) ;

13 if (A[wi] ≤ minRank) then
14 foreach r in the queue Q′ do
15 foreach point p in r do
16 if f(wi, p) < f(wi, q) then
17 A[wi]← A[wi] + 1;

18 minRank ← the kth minimal value in A;

19 return k smallest entries in A;

can be avoided with the help of an R-tree. At first, we re-
view the dominance relationship between two points, which
has been adopted in many literatures, including skyline [2]
and reverse top-k query processing [21].

Definition 6 (Dominance). We say point p1 domi-
nates p2 (denoted as p1 ≺ p2) if and only if the following

two conditions hold: (i)∀l, p(l)1 ≤ p
(l)
2 ; (ii) ∃j, p(j)1 < p

(j)
2 .

Let f(w, p) denote a scoring function that returns inner
product of w and p. Since ∀i, wi ≥ 0, we have f(w, p1) <
f(w, p2) when p1 ≺ p2. We build an R-tree to index all
products. Let r denote a minimal bounding rectangle (M-
BR) in R-tree. Let r.L and r.U denote the bottom left and
top right points of r respectively. We have two facts below.

Fact 1. Given a query point q, a weight vector wi, and
an MBR r in R-tree, if f(wi, q) < f(wi, r.L), ∀p ∈ r, we
have f(wi, q) < f(wi, p).

Fact 2. Given a query point q, a weight vector wi, and
an MBR r in R-tree, if f(wi, r.U) < f(wi, q), ∀p ∈ r, we
have f(wi, p) < f(wi, q).

Algorithm 1 illustrates the main steps of our tree-based
pruning approach (TPA). Assume all products have been
indexed by an R-tree R off-line. Initially, two queues, Q
and Q′, are created. During processing, it computes the
ranking score for each preference weight vector wi in W by
traversing R-tree. For each node r in the tree, the algorith-
m computes the ranking scores of r.L and r.U with respec-
t to wi. According to Fact 1 and 2, the nodes satisfying
f(wi, q) < f(wi, r.L) or f(wi, r.U) < f(wi, q) can be pruned
safely. Otherwise, all child nodes of r (if r is a non-leaf n-
ode) are appended to Q for further processing. The queue
Q′ keeps track of all unpruned leaf nodes (at lines 10-12).
The subroutine enqueue appends an entry to the tail of a
queue and dequeue returns the head entry in the queue (will
remove this entry afterward).

p
1

p
2

p
3

p
4

p
5

p
6

p
9

p
7

p
8

p
10

p
11

p
12

p
13

r
3

r

5

r
6

r

4

r

7

J
o
e

 r

1

r

2

0

Figure 3: An example of TPA algorithm

Let minRank denote a global variable to describe the k-
th minimal entry in the array A. In other words, at least
k users treat q as one of his or her top-minRank favorite
objects till now. If the new customer wi does not treat q as
one of his or her top-minRank objects, it is unnecessary to
visit Q′ any more. Otherwise, we continue to compute its
ranking score by exploring all entries in Q′ (at lines 14-17).
Finally, the algorithm returns k smallest entries in A.

Figure 3 illustrates how TPA works in 2-D space, where
p5 is the query point. The solid line crosses p5 and is per-
pendicular to Joe(0.7,0.3), so that the ranking score of any
product in this line is identical to p5 for Joe. TPA then
visits MBRs in the R-tree. For example, r3, r4, r6 and r7
can be pruned by checking two corner points. But r5 needs
further processing since it is across the solid line. Hence, the
rank of p5 is at least 2 (= |r3|). Subsequently, the algorithm
continues to traverse Q′ (Q′ = {r5}). Finally, rank(p5) = 3.
TPA processes other customers similarly.

TPA prunes computations from the perspective of data
points. Compared with NA, TPA reduces time complexity
from O(m·n) to O(mr ·n) at the cost of R-tree’s construction
for D off-line, where m = |D|, n = |W | and mr = |R| .
Generally, mr ≪ m.

5. BATCH PRUNING APPROACH (BPA)
The advantage of TPA is that similar products can be

evaluated together after being represented by MBRs. How-
ever, the performance is limited when encountered with a
large weight data set since all preference weights need to be
evaluated one by one, which inspires us to eliminate redun-
dant computation after grouping similar weights.

We use a d-dimensional histogram to group all weights.
Each dimension is divided into c equi-width intervals, de-
noted as [0, 1

c
], [1

c
, 2
c
], · · · , [c−1

c
, 1], resulting in cd buckets.

However, some buckets (called invalid buckets) contain no

preference weight, due to the constraint:
∑d

l=1 w
(l) = 1. It

is only necessary to consider the remaining valid buckets.
Let Hi.L and Hi.U denote the bottom left and top right
corners of an arbitrary bucket Hi. A bucket Hi is invalid if
either

∑d
l=1 Hi.L

(l) ≥ 1 or
∑d

l=1 Hi.U
(l) ≤ 1 holds 3. For

simplicity, all the valid buckets are denoted as H1, H2, · · · .

5.1 Four Kinds of Relationships
3In fact, when

∑d
l=1 Hi.L

(l) = 1 (or
∑d

l=1 Hi.U
(l) = 1), this

bucket still contains one valid preference weight, Hi.L (or
Hi.U). The reason we treat the bucket invalid is because
the special point will also appear in other valid bucket.

789

We then study the relationship between a bucket Hi and
an MBR r given a query point q. At first, we review the
hyperplane concept in d-dimensional space. Given a weight
vector w and a point q, there exists one (d-1)-dimensional
hyperplane, P (w, q), which (i) is perpendicular to w and
(ii) contains q. The ranking score of each point in the hy-
perplane is equal to f(w, q). Furthermore, given a query
point q and a weight bucket Hi, we can derive a hyperplane
family, P(Hi, q), which contains all hyperplanes based on
all valid weight vectors in Hi. We summarize four kinds
of relationships between an MBR r and a hyperplane fam-
ily P(Hi, q) below. For example, belowP(r,Hi)=TRUE (or
aboveP(r,Hi)=TRUE) means the MBR r is entirely below
(or above) the hyperplane family P(Hi, q). If withinP(r,
Hi)=TRUE, it means for any point p in r, we can always
find a hyperplane in P(Hi, q) that contains p and q simul-
taneously. Otherwise, acrossP(r, Hi) returns TRUE.

• belowP(r,Hi). It returns TRUE if and only if ∀p ∈ r :
[∀w ∈ Hi : f(w, p) < f(w, q)] always holds.

• aboveP(r,Hi). It returns TRUE if and only if ∀p ∈ r :
[∀w ∈ Hi : f(w, p) ≥ f(w, q)] always holds.

• withinP(r, Hi). It returns TRUE if and only if ∀p ∈ r :
[∃w ∈ Hi : f(w, p) ≤ f(w, q) ∧ ∃w′ ∈ Hi : f(w′, q) ≤
f(w′, p)] always holds.

• acrossP(r, Hi). It returns TRUE if and only if none of
the above three operators returns TRUE;

We further explore the semantics of these operators. The
lower bound of q’s rank, rank(w, q), is the cardinality of the
union of all MBRs satisfying belowP relationship. Symmet-
rically, the upper bound of q’s rank is the cardinality of the
union of all MBRs satisfying aboveP relationship. An MBR
with acrossP relationship only has potential pruning capa-
bility, since parts of its descendant nodes may be below or
above the hyperplane family. But if withinP(r, Hi)=TRUE,
we need to visit all points in r if necessary.
Figure 4 illustrates a 2-D case. Let c = 5. There are 52 =

25 weight buckets, but only five of them are valid: ([0, 0.2],
[0.8, 1]), ([0.2, 0.4], [0.6, 0.8]), ([0.4, 0.6], [0.4, 0.6]), ([0.6, 0.8],
[0.2, 0.4]), and ([0.8, 1], [0, 0.2]). Assuming p3 is the query
point, we derive five hyperplane families: P(H1, p3), · · · ,
P(H5, p3). Hence, we have: aboveP(r6, H4) = TRUE,
withinP(r7, H3) = TRUE, accossP(r5, H4) = TRUE, and
belowP(r3, H5) = TRUE.

5.2 Implementations of Relationships
According to Definition 6, any other point in r domi-

nates r.U , but is dominated by r.L. Let UB(Hi) denote
the maximal ranking score difference between r.U and q for
any weight w in Hi.

UB(Hi), max
∀w∈Hi

(
f(w, r.U)− f(w, q)

)
= max

∀w∈Hi

(
d∑

l=1

w(l) ·
(
r.U (l) − q(l)

))
(1)

If belowP(r,Hi) = TRUE holds, then UB(Hi) < 0.

Lemma 1. Let Hi denote a valid weight bucket. To com-
pute UB(Hi), there exists one dimension u (1 ≤ u ≤ d)

such that: (i) ∀l, 1 ≤ l < u : w(l) = Hi.U
(l), (ii) w(u) ∈

p
1

p
2

p
3

p
4

p
5

p
6

p
9

p
7

p
8

p
10

p
11

p
12

p
13

r
3

r

5

r
6

r

4

0

r
7

H
1

H
2

H
3

H
4
 H
5

 r

1

r

2

Figure 4: Illustrations of hyperplane families

(Hi.L
(u), Hi.U

(u)], and (iii) ∀l, u + 1 ≤ l ≤ d : w(l) =

Hi.L
(l).

Proof. The correctness comes from the following steps.
First, for each dimension l, 1 ≤ l ≤ d, we assign: w(l) ←
Hi.L

(l) to conform to the basic requirement. Second, we
reassign: w(l) ← Hi.U

(l) for the dimensions with great-
est e(l) coefficients as many as possible with the constraint:∑d

l=1 w
(l) < 1. Finally, assuming u−1 dimensions have been

reassigned in the above step, and u ≤ d, we reassign: w(u) ←
1−

∑u−1
l=1 Hi.U

(l) −
∑d

l=u+1 Hi.L
(l) to make

∑d
l=1 w

(l) = 1

hold. Note that w(u) is in (Hi.L
(u), Hi.U

(u)].

For simplicity, we assume all coefficients of w (say, {r.U (l)−
q(l)}) are sorted in descending order and let e(l) =

(
r.U (l)−

q(l)
)
for short. UB(Hi) is computed below.

UB(Hi) =

u−1∑
l=1

(
Hi.U

(l) · e(l)
)
+

d∑
l=u+1

(
Hi.L

(l) · e(l)
)

+

(
1−

u−1∑
l=1

Hi.U
(l) −

d∑
l=u+1

Hi.L
(l)

)
· e(u) (2)

where

u = argmaxj

 j∑
l=1

Hi.U
(l) · e(l) +

d∑
l=j+1

Hi.L
(l) · e(l) < 1

+1

Symmetrically, let LB(Hi) denote the minimal ranking
score difference between r.L and q for any weight w in Hi.

LB(Hi) , min
∀w∈Hi

(f(w, r.L)− f(w, q))

= min
∀w∈Hi

(
d∑

l=1

w(l) ·
(
r.L(l) − q(l)

))
(3)

If aboveP(r,Hi) = TRUE holds, then LB(Hi) ≥ 0.

Lemma 2. Let Hi denote a valid weight bucket. To com-
pute LB(Hi), there exists one dimension u, such that: (i)

∀l, 1 ≤ l < u, w(l) = Hi.L
(l), (ii) w(u) ∈ (Hi.L

(u), Hi.U
(u)],

and (iii) ∀l, u+ 1 ≤ l ≤ d, w(l) = Hi.U
(l).

790

We omit the proof due to space limitations.

LB(Hi) =

u−1∑
l=1

(
Hi.L

(l) · e(l)
)
+

d∑
l=u+1

(
Hi.U

(l) · e(l)
)

+
(
1−

u−1∑
l=1

Hi.L
(l) −

d∑
l=u+1

Hi.U
(l)) · e(u) (4)

where

u = argminj

 j∑
l=1

Hi.L
(l) · e(l) +

d∑
l=j+1

Hi.U
(l) · e(l) < 1

−1
Definition 7 (Split dimension). The split dimension

refers to u in Lemma 1 and 2.

Note that the value of u in Lemma 1 and 2 (also called
the split dimension) may be different.
For summarization, assume:

UB(Hi)
′ , min

w∈Hi

(f(w, r.U)− f(w, q)) (5)

LB(Hi)
′ , max

w∈Hi

(f(w, r.L)− f(w, q)) (6)

Note that UB(Hi)
′ and LB(Hi)

′ can be computed similarly.
The four operators can be implemented in the following way.

• Implement belowP(r,Hi). If and only if UB(Hi) < 0
holds.

• Implement aboveP(r,Hi). If and only if LB(Hi) ≥ 0
holds.

• Implement withinP(r,Hi). If and only if (UB(Hi) ≥
0) ∧ (UB(Hi)

′ ≤ 0) ∧ (LB(Hi) ≤ 0) ∧ (LB(Hi)
′ ≥ 0)

holds.

• Implement acrossP(r,Hi). Returns TRUE once all the
above three operators return FALSE.

The implementations of the first two operators are straight-
forward due to the definitions of UB(Hi) and LB(Hi), while
the implementation of withinP is a bit sophisticated. Note
that r.U and r.L are two special points in r: ∀w ∈ Hi, r.U
and r.L have the greatest and the smallest ranking scores
respectively. Since both points meet the semantic (see with-
inP relationship in Section 5.1), all the remaining points in
r also meet the semantic.

5.3 Algorithm Description
Our batch pruning algorithm (BPA, Algorithm 2) has two

phases. At the first phase, it checks each bucket Hi to com-
pute the lower and upper rank bounds (Hi.lb and Hi.ub) of
any weight in the bucket (at lines 3-21). In other words,
any customer w in Hi prefers at least Hi.lb (at most Hi.ub)
other products to q. Hence, we can avoid computing the
exact rank value for each weight in the bucket. At the sec-
ond phase, we compute the exact rank of each weight in all
remaining buckets if the first phase is insufficient (at lines
22-23).
At the first phase, Algorithm 2 traverses R-tree in a BFS

(breadth first search) manner. The upper (or lower) rank
bound is updated if r is above (or below)Hi. But if r is with-
in the range of Hi, the bounds cannot be updated for now,
so we append r to the local queue QHi for future processing.

Algorithm 2: Batch pruning approach (BPA)
(R,H, q, k)

1 Let Q denote a global empty queue, QHi denote a
queue for bucket Hi to record some MBR references;

2 minRank ← MAXVALUE;
3 foreach (valid Hi in H) do
4 clear Q and QHi ; enqueue(Q, R.root);
5 Hi.lb← 0; Hi.ub← |D|; // D is the data set
6 while ((r = dequeue(Q)) ̸= ∅) do
7 if (belowP(r,Hi)) then
8 Hi.lb← Hi.lb+ |r|;
9 if (Hi.lb > minRank) then

10 Drop QHi ; break;

11 else if (aboveP(r,Hi)) then
12 Hi.ub← Hi.ub− |r|;
13 else if (withinP(r,Hi)) then
14 enqueue(QHi , r);
15 else
16 foreach (child node r′ of r) do
17 if (withinP(r′, Hi)) then
18 enqueue(QHi , r

′);
19 else
20 enqueue(Q, r′);

21 Update minRank by using {Hi.ub};
22 Remove all Hi in H such that Hi.lb > minRank;
23 Compute the exact rank of each weight in all remaining

Hi’s by using {QHi};
24 return k weights with smallest ranks;

Otherwise (r is across Hi), we append the child nodes to the
global queue Q or local queue QHi respectively, according
to the result of withinP operator. The minRank refers to a
global threshold value, which ensures at least k weights have
a rank value smaller than minRank. Formally, considering
triples like (|Hi|,Hi.lb,Hi.ub) where |Hi| denotes the num-
ber of weights in Hi, the value of minRank is computed as:

minRank = argminx

(
(
∑

Hi.ub≤x |Hi|) ≥ k
)
.

Example 2. Figure 5 shows the number of weights and
the rank bounds of five histograms (H1 · · ·H5) for Figure 4.
Here, H3 contains 5 weights, H3.lb = 5 and H3.ub = 9.
Let k = 3, then minRank = 6. Hence, H1 and H2 can be
pruned, while H3 cannot due to H3.lb < minRank.

BPA prunes computations from the perspectives of both
data points and weight vectors. In comparison with TPA,
BPA reduces the time complexity from O(m·n) to O(mr ·nb)
where mr = |R| and nb = |H|. Generally, mr ≪ |D| and
nb ≪ |W |.

6. MARKED PRUNING APPROACH (MPA)
BPA needs to evaluate each (Hi, r) pair with O(d · log d)

cost for an arbitrary valid bucket Hi and an MBR r in the
queue (Algorithm 2). This cost cannot be ignored for a large
R-tree and a large weight histogram, which inspires us that
the execution performance can be even improved after re-
moving this kind of overhead. Recall that for an MBR r,
UB(Hi) describes the maximal ranking score difference be-
tween r.U and q for any weight in Hi. We find the value

791

|H
 2
| = 4

|H
 1
| = 3

|H
 3
| = 5

|H
 4
| = 1

|H
 5
| = 2

minRank

Rank

1
 3
 5
 7
 9
 11
 13

Figure 5: Computing minRank

of UB(Hj) can be computed with O(1) cost after given the
value of UB(Hi), where Hj is a neighbor of Hi, i.e, they only
differ at one dimension. The discussion of LB(Hi) is sym-
metric. In this section, we first analyze the computations of
UB(Hj) and LB(Hj), and then the algorithm details.

6.1 Analysis
We first define two neighborhood relationships between a

pair of weight buckets: positive neighbor (PoN) and negative
neighbor (NeN).

Definition 8 (Positive Neighbor, PoN). Let Hi and
Hj denote two weight buckets. Hj is Hi’s positive neigh-
bor if and only if (i) ∃g : Hj .L

(g) = Hi.L
(g) + 1

c
, and (ii)

∀l, l ̸= g : Hi.L
(l) = Hj .L

(l). We call g the affected dimen-
sion.

Definition 9 (Negative Neighbor, NeN). Let Hi and
Hj denote two weight buckets. Hj is Hi’s negative neighbor
if and only if Hi is Hj’s positive neighbor. The affected
dimension is defined as aforementioned.

The difference between a bucket (say, Hi) and its PoN (or
NeN) (say, Hj) is only one dimension, the affected dimension
g. Hence, it enables us to compute UB(Hj) (or LB(Hj))
efficiently after computing UB(Hi) (or LB(Hi)) in advance.

Theorem 1. Assume Hj is the PoN of Hi. Let g and u
denote Hi’s affected dimension and split dimension respec-
tively, and ∆ = w(u)−Hi.L

(u). Then, UB(Hj) and LB(Hj)
are computed by Equation (7)-(8).

UB(Hj) = UB(Hi)+
e(g) − e(u−1)

c
+∆ ·

(
e(u−1)−e(u)

)
(7)

LB(Hj) = LB(Hi)+
e(g) − e(u+1)

c
+∆ ·

(
e(u+1)−e(u)

)
(8)

Proof. The coefficients {e(l)} are firstly used in Equa-
tion (2). We study four cases to show the correctness of
Equation 7.
Case i (g < u ∧ g ̸= u − 1): We raise w(g) by 1

c
, reduce

w(u) by ∆, and reduce w(u−1) by 1
c
−∆.

Case ii (g = u − 1): We raise w(u−1) by ∆, and reduce

w(u) by ∆.
Case iii (g = u): We raise w(u) by 1

c
− ∆, and reduce

w(u−1) by 1
c
−∆.

Case iv (g ≥ u + 1): We raise w(g) by 1
c
, reduce w(u) by

∆, and reduce w(u−1) by 1
c
−∆.

In all cases, Equation 7 holds. Since the proof of Equation
8 is similar, we omit it due to space limitations.

Theorem 2. Assume Hj is the NeN of Hi. Let g and
u denote Hi’s affected dimension and split dimension, and
∆ = Hi.U

(u) − w(u). Then, UB(Hj) and LB(Hj) are com-
puted by Equation (9)-(10).

UB(Hj) = UB(Hi)+
e(u+1) − e(g)

c
+∆ ·

(
e(u)−e(u+1)) (9)

LB(Hj) = LB(Hi)+
e(u−1) − e(g)

c
+∆·

(
e(u)−e(u−1)) (10)

We omit the proof due to space limitations.

6.2 Algorithm Description

Algorithm 3: Marked Pruning Approach (MPA)
(R,H, q, k)

1 Initialize all entries in B to UNKNOWN;
2 Empty a queue Q;
3 minRank ← the number of objects in R;
4 foreach valid Hi in H do
5 clear Q; enqueue(Q, R.root);
6 Hi.lb← 0; Hi.ub← the number of objects in R;
7 while ((r = dequeue(Q)) ̸= ∅) do
8 if (B[r,Hi] = BELOW) then
9 Hi.lb← Hi.lb+ |r| ;

10 else if (B[r,Hi] = ABOV E) then
11 Hi.ub← Hi.ub− |r| ;
12 else if (belowP(r,Hi)) then
13 Hi.lb← Hi.lb+ |r| ;
14 mark(Hi, BELOW, r) ;

15 else if (aboveP(r,Hi)) then
16 Hi.ub← Hi.ub− |r|;
17 mark(Hi, ABOV E, r) ;

18 else
19 if (r is non-leaf node) then
20 ∀r′ (r′ is r’s child), enqueue(r′, Q);

21 if (Hi.lb > minRank) then break;

22 Update minRank by using {Hi.ub};
23 Remove all Hi in H such that Hi.lb ≥ minRank;
24 Compute the rank of each weight in all remaining Hi’s;
25 return k weights with smallest rank;

Algorithm 3 illustrates the main steps of our Marked Prun-
ing Approach (MPA). Although similar to Algorithm 2 in
shape, MPA still has significant improvement. We use a
2-D array B (with a size of |R| × |H|) to record all rela-
tionships, where R is the R-tree and H is a set containing
all valid weight buckets. With the help of B, the lower and
upper rank bounds of a weight bucket Hi can be set more
efficiently. We also use the subroutine mark (Algorithm 4, to
be discussed later) to mark the entries in B with a low cost.
There are four kinds of relationships: ABOVE, BELOW,
UNKNOWN, and OTHER. Initially, all entries in B are set
UNKNOWN since the exact relationships are unknown in
advance. The BELOW (or ABOVE) flag is set if the rect-
angle r is below (or above) the corresponding hyperplane
family. Similarly, the OTHER flag refers to the withinP or
acrossP relationship aforementioned.

For each entry Hi, we check each MBR r in R iteratively.
At first, if B[r,Hi] has been set to BELOW or ABOVE,

792

Algorithm 4: mark(Hi, GF, r)

1 Let Q′ denote an empty queue ;
2 enqueue(Hi, Q

′) ;
3 while (Hi = dequeue(Q′) ̸= ∅) do
4 foreach Hj, the Hi’s neighbor do
5 if (Hj .F lag = UNKNOWN) then
6 if (GF = BELOW) then
7 Update UB(Hj) by Equation (7), (9) ;
8 FLAG← (UB(Hj) < 0);

9 else
10 Update LB(Hj) by Equation (8), (10) ;
11 FLAG← (LB(Hj) ≥ 0);

12 if (FLAG = TRUE) then
13 B[r,Hj]← GF ;
14 enqueue(Hj , Q

′) ;

15 else
16 B[r,Hj]← OTHER;

we update Hi.lb or Hi.ub immediately (at lines 9 and 11).
Otherwise, we need to invoke belowP or aboveP and then
mark (at lines 12-17). Finally, if r is a non-leaf node and the
relationship is neither ABOVE nor BELOW, we will push
every child node of r into the queue Q for further processing.
Algorithm 4 shows how to mark the relationships between

an MBR r and the neighbors of a bucket Hi in the BF-
S (breadth-first search) manner. The input parameter GF
refers to a global flag in {ABOVE, BELOW}. The algo-
rithm will try to mark all neighbors of Hi (say, Hj) iter-
atively if the relationships have not been marked yet, i.e,
Hj .F lag = UNKNOWN . Assuming GF = BELOW ,
it first computes UB(Hj) by using Equation 7 (if Hj is
PoN), or Equation 9 (if Hj is NeN) to mark B[r,Hj]. If
UB(Hj) < 0 (at line 8), we set B[r,Hj] ← BELOW (at
line 13). Similarly, assuming GF = ABOV E, we will com-
pute LB(Hj) by using Equation 8 or 10 to mark B[r,Hj] if
possible. Finally, if the relationship is neither BELOW nor
ABOV E, B[r,Hj] is set to OTHER (at line 16).
Although the time complexity of MPA (O(mr ·nb)) is the

same as BPA, MPA runs faster than BPA in most situations
due to the elimination of significant overheads. Since MPA
needs to maintain a 2-D array B to reserve marking informa-
tion that costs O(|R| × |H|), the overall space consumption
of MPA is also O(|R| × |H|).

7. DISCUSSION
Summarization of Four Approaches. Table 3 compares
four approaches. Without building any index in advance,
NA just scans the product and weight data sets linearly. In
contrast, all three other methods maintain an R-tree index
upon all products. Moreover, BPA and MPA also maintain
a histogram index upon all weights.
There is actually a tradeoff between time and space com-

plexities. For example, NA runs the slowest, but meanwhile
it only consumes tiny memory space. BPA and MPA are
faster than the other two approaches, after maintaining an
additional Histogram index. In addition, MPA maintains a
2-D array to record marking information during execution.

Table 3: The Summary of Four Approaches
With index Time complex. Space complex.

NA None O(m · n) O(k)
TPA R-tree O(mr · n) O(mr)
BPA R-tree + Hist. O(mr · nb) O(mr + nb)
MPA R-tree + Hist. O(mr · nb) O(mr · nb)

Notations: (i) m: the number of products, (ii) n: the
number of weights, (iii) mr: the number of MBRs in R,
and (iv) nb: the number of buckets in H.

Although MPA has the largest space consumption, the
total cost is affordable since each entry in the 2-D array only
costs 2 bits (there are four kinds of relationships). Detailed
evaluation of memory consumption is shown in 8.2.

Counting the number of Valid Buckets. As mentioned
in Section 5, a valid bucket Hi conforms to the constraint:
(
∑d

l=1 Hi.L
(l) < 1) ∧ (

∑d
l=1 Hi.U

(l) > 1). It is equal to find

all buckets Hi such that
∑d

l=1 Hi.L
(l) ∈ (1 − d

c
, 1), since∑d

l=1(Hi.U
(l)−Hi.L

(l)) = d
c
. LetN(s, d) denote the number

of buckets in d-dimensional space satisfying
∑d

l=1 Hi.L
(l) =

s
c
. We derive that N(s, d) =

(
s+d−1
d−1

)
. Since

∑m
i=1

(
k+m

k

)
=(

k+m+1
k+1

)
, the number of valid buckets is computed as:

c−1∑
s=c−d+1

N(s, d) =

(
c+ d− 1

d

)
−

(
c

d

)
(11)

Distributed design of R-kRanks The distributed de-
sign is important to deal with large-scale data. Fortunately,
all the proposed solutions can be adapted to the distributed
environment since they process each weight or bucket one by
one. We draft the distributed solution briefly. Consider a
distributed system with one master and several workers. At
first, the master node generates an R-tree for all products
(for TPA, BPA and MPA) and a weight histograms (for BPA
and MPA). Next, the master sends R-tree to each worker.
Subsequently, it divides all weights (or all buckets) into sev-
eral groups, and then send each group to different workers.
Each worker can execute the algorithm independently. Fi-
nally, all workers send the results back to the master. Details
are omitted due to the lack of enough space.

8. EXPERIMENTS
We report experimental reports in this section. All codes

are written in JAVA, and run on a stand-alone computer
with an Intel CPU/2GHz and 8GB memory. In each exper-
iment, we implement the queries for 1,000 times, each with
a randomly selected query point, and report the average.

8.1 Dataset and setting
We use two kinds of data sets in this study, including

product set D and customer set W .

Product data set D: We use synthetic and real-life prod-
uct data sets.

• Synthetic datasets: We generate three synthetic dataset-
s, which follow uniform (UN), correlated (CO) and
anti-correlated (AC) distributions respectively. See [2]
for detailed generation methods.

793

 1

 10

 100

2 3 4 5

T
im
e
 (
s
)

Dimension (d)

 1

 10

 100

2 3 4 5

T
im
e
 (
s
)

Dimension (d)

AC UN CO

 1

 10

 100

2 3 4 5

T
im
e
 (
s
)

Dimension (d)

AC UN CO

 1

 10

 100

2 3 4 5

T
im
e
 (
s
)

Dimension (d)

AC UN CO

NA

TPA

BPA

MPA

(a) Average time

10
5

10
6

10
7

10
8

10
9

10
10

10
11

2 3 4 5

P
a
ir
w
is
e
 C
o
m
p
u
ta
ti
o
n
s

Dimension (d)

10
5

10
6

10
7

10
8

10
9

10
10

10
11

2 3 4 5

P
a
ir
w
is
e
 C
o
m
p
u
ta
ti
o
n
s

Dimension (d)

AC UN CO

10
5

10
6

10
7

10
8

10
9

10
10

10
11

2 3 4 5

P
a
ir
w
is
e
 C
o
m
p
u
ta
ti
o
n
s

Dimension (d)

AC UN CO

10
5

10
6

10
7

10
8

10
9

10
10

10
11

2 3 4 5

P
a
ir
w
is
e
 C
o
m
p
u
ta
ti
o
n
s

Dimension (d)

AC UN CO

MPA

BPA

TPA

NA

(b) Pairwise comp.

Figure 6: Performance by varying d [NA (the longest bar)
vs. TPA (the second longest bar) vs. BPA (the third longest

bar) vs. MPA (the shortest bar)]

 0

 20

 40

 60

 80

 100

10k 20k 30k 40k 50k

M
em

or
y

S
iz

e
(M

B
)

Scalability with |D|

BPA
MPA

(a) Synthetic dataset

 0

 20

 40

 60

 80

 100

 10 20 30 40 50

M
em

or
y

S
iz

e
(M

B
)

Top K

BPA
MPA

(b) Real dataset

Figure 7: Memory consumption

• Real datasets: We use two real datasets. The first
dataset, namely Bank dataset, contains 45,211 record-
s and is related to direct marketing campaigns (phone
calls) of a Portuguese banking institution, including
customer’s age, balance, duration etc 4. The second
data set, namely Taobao dataset, contains 51,026 record-
s and is related to the product information in Taobao
(http://www.taobao.com), the most popular e-commerce
web-site in China, including current price, sold amoun-
t, the lowest price and so on. We choose 3 and 5 nu-
meric dimensions from these datasets respectively for
further testing.

Preference weight data set W : We generate two syn-
thetic data sets, which are also used in [21,22,24,25].

• Uniform distribution (UNI): We repeatedly select one
vector from d-dimensional space, and then normalize
it to a standard form.

• Clustered distribution (CLU) : This data set is created
based on two parameters: g and σ2. We first randomly
select g cluster centroids in d-dimensional space. Then
we generate some weights around the centroids with a
variance of σ2 in each dimension.

8.2 Experimental Reports
Time-efficiency: Figure 6 illustrates the performance of
four methods (NA, TPA, BPA and MPA) when varying the
number of dimensions. We use UNI weight set and three
product sets, including UN, CO and AC. We set |D| = 20K,
|W | = 400K and k = 10. Each query point is randomly s-
elected in the domain. The y-axes of Figure 6(a) and (b)
represent the executing time and the total number of pair-
wise computations (refers to computing the ranking score for

4http://archive.ics.uci.edu/ml/datasets/Bank+
Marketing.

 1

 10

 100

100K
 200K
 300K
 400K
 500K

T
im

e
(s

)

Scalability with |W|

MPA
BPA

TPA
NA

(a) Time for |W |

106
107
108
109

1010
1011
1012

100K
 200K
 300K
 400K
 500K

P
ai

rw
is

e
C

om
pu

ta
tio

ns

Cardinality |W|

MPA
BPA

TPA
NA

(b) Computations for |W |

 1

 10

 100

 1000

10K
 20K
 30K
 40K
 50K

T
im

e
(s

)

Scalability with |D|

MPA
BPA

TPA
NA

(c) Time for |D|

105
106
107
108
109

1010
1011
1012

10K
 20K
 30K
 40K
 50K

P
ai

rw
is

e
C

om
pu

ta
tio

ns

Cardinality |D|

MPA
BPA

TPA
NA

(d) Computations for |D|

 1

 10

 100

 10 20 30 40 50

T
im

e
(s

)
Top k

MPA
BPA

TPA
NA

(e) Time for k

105
106
107
108
109

1010
1011
1012

 10 20 30 40 50

P
ai

rw
is

e
C

om
pu

ta
tio

ns

Top k

MPA
BPA

TPA
NA

(f) Computations for k

Figure 8: Scalability of four approaches [NA vs. TPA vs.
BPA vs. MPA]

a product-customer pair) respectively. The longest, the sec-
ond longest, the third longest and the shortest bars represent
the performance of NA, TPA, BPA and MPA respectively.

TPA, BPA and MPA outperform NA for at least one
order of magnitude, since NA has the time complexity of
O(m · n), while the other three algorithms can reduce the
number of comparison operations efficiently by employing
different pruning rules. TPA prunes some unnecessary pair-
wise computations from the perspective of data points, while
BPA and MPA simultaneously prune unnecessary pairwise
computations from the perspectives of both data points and
weight vectors, avoiding scanning all w ∈W and p ∈ D. B-
PA performs worse than MPA, since MPA maintains a 2-D
array to avoid unnecessary computations. In general, Figure
6(a) shows that efficiencies of TPA, BPA and MPA decrease
with the increment of d. Figure 6(b) shows the pairwise
computations are insensitive to the number of dimensions
because the number of pairwise (w, p) is almost unchanged
when d increases.

Space-efficiency: We employ Jprofile 5 to monitor memo-
ry consumption of BPA and MPA. By default, we set |W | =
100k and use CLU weight dataset. Figure 7(a) uses UN
product dataset (d = 3). We can observe that BPA is more
space-efficient than MPA, since MPA uses a 2-D array to
reduce the processing time. In addition, such kind of space
overhead is also not so significant, because each entry is tiny.

Scalability: Figure 8 reports the scalability of NA, TPA,
BPA and MPA under different |D|, |W | and k. The metrics
are time cost and pairwise computations. By default, |D| =
5http://www.ej-technologies.com/products/
jprofiler/overview.html

794

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50

T
im

e
(s

)

Top k

MPA-UNI
MPA-CLU

(a) Synt. dataset(UN)

 0.2

 0.4

 0.6

 0.8

 10 20 30 40 50

T
im

e
(s

)

Top K

MPA-UNI
MPA-CLU

(b) Synt. dataset (AC)

 0.1

 0.2

 0.3

 10 20 30 40 50

T
im

e
(s

)

Top k

MPA-UNI
MPA-CLU

(c) Real dataset (Bank)

 0

 1

 2

 3

 4

 10 20 30 40 50

T
im

e
(s

)

Top k

MPA-UNI
MPA-CLU

(d) Real dataset (Taobao)

Figure 9: Performance of MPA for various data set D

 0

 5

 10

 15

 4 5 6 7

T
im

e
(s

)

Dimensions (d)

MPA
BPA

(a) The effect of d (UN)

 0

 0.5

 1

 1.5

 2

2 3 4 5 6 7 8 9 10

T
im

e
(s

)

The value of (c)

MPA BPA

(b) The effect of c (Bank)

Figure 10: the factors: d and c

20K, k = 10, |W | = 400K and c = 10. In different series of
experiments, |D| varies from 10K to 50K, |W | varies from
100K to 500K, and k varies from 10 to 50.
Figures 8(a)-8(b) show the performance changes when |W |

increases from 100K to 500K. For all methods, the process-
ing time will rise when |W | increases. We also observe that
NA and TPA are more sensitive to the value of |W |. Ac-
cording to Table 3, for NA and TPA, the processing cost is
linear to the number of weights. Meanwhile, both BPA and
MPA maintain a weight histogram for pruning, so that the
processing cost increases much slower than NA or TPA.
Figures 8(c)- 8(d) show the performance changes when |D|

increases from 10K to 50K. For all methods, the processing
time will rise when |D| increases. Moreover, NA is more
sensitive to |D|. According to Table 3, the processing cost
of NA is linear to the number of products. Meanwhile, TPA,
BPA and MPA maintain an R-tree for pruning, so that the
processing cost increases much slower than NA.
Figures 8(e)-8(f) show the time consumption and pairwise

computations of NA remain almost unchanged when k in-
creases, because the time complexity of NA is O(m · n) for
any k. TPA, BPA and MPA are also insensitive to k, since
in general k ≪ |W |.
The effect of weight data set: Assuming |W | = 10K
and c = 4, Figure 9 illustrates the behaviors of MPA when
using different weight datasets (UNI, CLU) when k increas-
es. MPA behaves better on the uniform weight set (UNI)
than the clustered weight set (CLU) under all settings, since
MPA can mark more neighbor buckets and thus prune more
buckets when the weight set is clustered.

The effect of dimensionality and cell width: Assuming
|D| = 20K, |W | = 100K, k = 10, d = 3, and c = 4.
We use CLU weight dataset in this series of experiments.
Figure 10(a) shows the execution time when varying the
number of dimensions d upon the UN product dataset. In all
situations, MPA outperforms BPA. Figure 10(b) illustrates
the execution time when varying the cell width (c) upon the
Bank dataset. It is interesting that the peak performance is
obtained when c = 7, neither too small nor too great. The
reason is that the filtering capability is insufficient when c
is small. Meanwhile, the overhead of evaluating all valid
buckets will rise when c increases.

8.3 Effectiveness
We use a real dataset (Dianping) 6 to test the effectiveness

of R-kRanks, in comparison with R-kScores. The dataset
contains millions of rating records about a large number of
restaurants in Shanghai from Jan. 2009 to Dec. 2013. Each
record has four numeric scores in four dimensions: average
cost per person (ac), taste (ta), environment (en) and service
(se). The training set contains records in the first four years,
while the testing set contains records in the last year. In
every set, each user has at least 10 rating records .

• product dataset consists of 9,800 restaurants rated at
least ten times. The value in each dimension is com-
puted as the average score of all corresponding records.

• preference dataset refers to 3,096 users who have rated
at least ten times. In general, a user prefers a restau-
rant with low average cost per person, but high taste,
environment and service. Hence, the weight of a di-
mension should be set low if a user does not care about
that dimension. For example, it is reasonable to set a
low weight on average cost per person for a user who
often choose expensive restaurants. Let sac, sta, sen
and sse denote the average scores of a user in four
dimensions, and ϕac, ϕta, ϕen and ϕse denote the pro-
portions of restaurants lower than the corresponding s-
core. The weight vector is represented as (1−ϕac

sum
, ϕta

sum
,

ϕen
sum

, ϕse
sum

), where sum = 1− ϕac + ϕta + ϕen + ϕse.

We evaluate the precision of two query types upon all hot
restaurants with at least 100 ranking records, where preci-
sion is defined as the proportion of users who have visited
the query restaurant. Figure 11(a) shows R-kRanks out-
performs R-kScores significantly in all situations: the pre-
cision of R-kRanks is at least 1.2 times greater than that
of R-kScores. Figure 11(b) reports the effect after divid-
ing all restaurants into two groups: expensive (with average
cost per person ≥ 100 RMB) and inexpensive (with average
cost per person < 100 RMB). For the expensive restaurants,
R-kRanks and R-kScores behave similarly, but for the oth-
er group, R-kRanks is significantly better than R-kScores.
The reason is that R-kScores only works well for a small part
of restaurants (especially expensive ones), while R-kRanks
works well for all restaurants. Table 4 explains this phe-
nomenon below.

We also test the impact of different query restaurants. A-
long each dimension, we first sort the restaurants and then s-
plit them into three groups of equal size, denoted asH (high-
est ones), M(middle ones) and L (lowest ones). We select

6http://www.dianping.com, one of the biggest lifestyle and
group buying websites in China

795

 0

 2

 4

 6

 8

 10

 10 20 30 40 50

P
re

ci
si

on
 (

%
)

Top k

R-kRanks
R-kScores

(a) All hot restaurants

 0

 2

 4

 6

 8

10 20 30 40 50

P
re

ci
si

on
 (

%
)

Top k

R-kRanks-expensive
R-kScores-expensive

R-kRanks-inexpensive
R-kScores-inexpensive

(b) Two groups

Figure 11: Effectiveness of R-kRanks

Table 4: Query Results on Dianping Dataset
R-kRanks R-kScores

ac ta en se ac ta en se
R1 L H L L H H H H
R2 M L L L H H H H
R3 H M H M H H H H
R4 H H H H H H H H

four different restaurants, R1(L,H,L,H), R2(M,L,L, L),
R3(M,M,M,M) and R4(H,H,H,H). For example, R4 de-
scribes an expensive restaurant with good taste, environ-
ment and service. Table 4 lists users most likely returned
by R-kRanks and R-kScores where k = 10. For example,
given R2 as the query restaurant, most of users in the result
set are (M, L, L, L). The users returned by R-kRanks are
more matchable with the query restaurant compared with
other users, while R-kScores tends to return the users who
prefer expensive restaurants with good taste, environment
and service, since their ranking scores are low.

9. CONCLUSION
R-kRanks, proposed in this paper, is critical in various ap-

plications, such as job-hunting and dating. We devise three
pruning-based methods to answer R-kRanks query efficient-
ly. Tree-based pruning approach (TPA) eliminates some un-
necessary pairwise computations from the perspective of da-
ta points. Batch pruning approach (BPA) reduces unneces-
sary pairwise computations from both perspectives of data
points and weight vectors. Besides the two pruning rules
above, marked pruning approach (MPA) also reuses previ-
ous computation results of some buckets to further reduce
the time consumption. Thereafter, we conduct extensive
experiments on real and synthetic data sets to verify the
effectiveness and efficiency of the proposed methods.
There are two possible pieces of future work. The first

one is to devise approximate solutions for R-kRanks query.
The second one is to devise distributed solutions. Such two
directions are helpful to handle large-scale data.

Acknowledgement
Our research is supported by the 973 program of China (No.
2012CB316203), NSFC (61321064, 61370101 and 61033007),
Shanghai Knowledge Service Platform Project (No. ZF1213).

10. REFERENCES
[1] B. Babcock and C. Olston. Distributed top-k monitoring.

In Proc. of ACM SIGMOD, pages 28–39, 2003.
[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline

operator. In Proc. of ICDE, pages 421–430, 2001.
[3] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L.

Lo, and J. R. Smith. The onion technique: Indexing for
linear optimization queries. In Proc. of ACM SIGMOD,
pages 391–402, 2000.

[4] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides.
Indexing reverse top-k queries in two dimensions. In Proc.
of DASFAA (1), pages 201–208, 2013.

[5] E. Dellis and B. Seeger. Efficient computation of reverse
skyline queries. In Proc. of VLDB, pages 291–302, 2007.

[6] R. Fagin. Combining fuzzy information from multiple
systems. In Proc. of PODS, pages 216–226, 1996.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proc. of PODS, pages
102–113, 2001.

[8] S. Ge, L. U, N. Mamoulis, and D. Cheung. Efficient all
top-k computation - a unified solution for all top-k, reverse
top-k and top-m influential queries. IEEE Trans. Knowl.
Data Eng., 25(5):1015–1027, 2012.

[9] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer:
A system for the efficient execution of multi-parametric
ranked queries. In Proc. of ACM SIGMOD, pages 259–270,
2001.

[10] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comput. Surv., 40(4):11:1–11:58, Oct. 2008.

[11] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin.
Sliding-window top-k queries on uncertain streams. Proc. of
the VLDB Endowment, 1(1):301–312, 2008.

[12] W. Jin, M. Ester, and J. Han. Efficient processing of
ranked queries with sweeping selection. In Proc. of PKDD,
pages 527–535, 2005.

[13] F. Korn and S. Muthukrishnan. Influence sets based on
reverse nearest neighbor queries. In Proc. of ACM
SIGMOD, pages 201–212, 2000.

[14] K. C. Lee, B. Zheng, and W.-C. Lee. Ranked reverse
nearest neighbor search. IEEE Trans. Knowl. Data Eng.,
20(7):894–910, 2008.

[15] K. C. K. Lee, M. Ye, and W.-C. Lee. Reverse ranking query
over imprecise spatial data. In Proc. of COM.Geo, 2010.

[16] C. Li. Enabling data retrieval: by ranking and beyond. PhD
thesis, University of Illinois at Urbana-Champaign, 2007.

[17] X. Lian and L. Chen. Reverse skyline search in uncertain
database. ACM TODS, 35(1):3:1–3:49, 2010.

[18] X. Lian and L. Chen. Probabilistic inverse ranking queries
in uncertain databases. VLDB J., 20(1):107–127, 2011.

[19] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous
monitoring of top-k queries over sliding windows. In Proc.
of ACM SIGMOD, pages 635–646, 2006.

[20] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi.
Discovery of influence sets in frequently updated databases.
In Proc. of VLDB, pages 99–108, 2001.

[21] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørv̊ag.
Reverse top-k queries. In Proc. of ICDE, pages 365–376,
2010.

[22] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørv̊ag.
Monochromatic and bichromatic reverse top-k queries.
IEEE Trans. Knowl. Data Eng., 23(8):1215–1229, 2011.

[23] A. Vlachou, C. Doulkeridis, and K. Nørv̊ag. Monitoring
reverse top-k queries over mobile devices. In Proc. of
MobiDE, pages 17–24, 2011.

[24] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and Y. Kotidis.
Identifying the most influential data objects with reverse
top-k queries. Proc. of VLDB, 3(1):364–372, 2010.

[25] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and Y. Kotidis.
Branch-and-bound algorithm for reverse top-k queries. In
Proc. of ACM SIGMOD, pages 481–492, 2013.

[26] D. Xin, C. Chen, and J. Han. Towards robust indexing for
ranked queries. In Proc. of VLDB, pages 235–246, 2006.

[27] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In Proc. of ICDE, pages
28–39, 2001.

[28] A. Yu, P. K. Agarwal, and J. Yang. Processing a large
number of continuous preference top-k queries. In Proc. of
ACM SIGMOD, pages 397–408, 2012.

796

