
An Evaluation of the Advantages and Disadvantages of
Deterministic Database Systems

Kun Ren
Northwestern Polytechnical

University, China

renkun nwpu@mail.nwpu.edu.cn

Alexander Thomson
Google

agt@google.com

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT
Recent proposals for deterministic database system designs
argue that deterministic database systems facilitate replica-
tion since the same input can be independently sent to two
different replicas without concern for replica divergence. In
addition, they argue that determinism yields performance
benefits due to (1) the introduction of deadlock avoidance
techniques, (2) the reduction (or elimination) of distributed
commit protocols, and (3) light-weight locking. However,
these performance benefits are not universally applicable,
and there exist several disadvantages of determinism, in-
cluding (1) the additional overhead of processing transac-
tions for which it is not known in advance what data will be
accessed, (2) an inability to abort transactions arbitrarily
(e.g., in the case of database or partition overload), and (3)
the increased latency required by a preprocessing layer that
ensures that the same input is sent to every replica. This
paper presents a thorough experimental study that carefully
investigates both the advantages and disadvantages of deter-
minism, in order to give a database user a more complete
understanding of which database to use for a given database
workload and cluster configuration.

1. INTRODUCTION
There have been several recent proposals for database sys-

tem architectures that use a deterministic execution frame-
work to process transactions [9, 7, 24, 25, 26, 27]. Determin-
istic execution requires that the database processes transac-
tions in a way that guarantees that if the database system
is given the same transactional input, it will always end in
the same final state. This is a much stronger guarantee
than traditional database ACID guarantees, which guaran-
tee only that the database system will process transactions
in a manner that is equivalent to some serial order (but dif-
ferent instances of the database system can process the same
set of input transactions in a way that is equivalent to two
different serial orders).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 10
Copyright 2014 VLDB Endowment 2150-8097/14/06.

Historically, the main advantages that these proposals for
deterministic database systems attempt to achieve are re-
lated to replication and high availability — in deterministic
systems, no communication whatsoever is required between
replicas to keep them consistent (they are guaranteed not to
diverge if they receive the same input).

The main disadvantage of deterministic transaction exe-
cution that is most commonly cited is the reduced processing
flexibility that results from the stronger guarantees that de-
terministic systems need to make. When a thread that is
processing a transaction stalls (e.g., due to a need to wait
until a page on disk is brought into the buffer pool, or a
need to wait for the next command from a user), a deter-
ministic database system has less choice about what other
transactions it can run in order to do useful work during the
stall. This effectively reduces concurrency, which can lead
to lower transactional throughput and longer latencies.

However, as more and more database systems are becom-
ing “in-memory” (most of the working data set can be kept
in memory), and user stalls are becoming increasingly rare
in modern applications, the reduced executional flexibility of
deterministic database systems is becoming less of a burden.
Consequently, the above cited proposals for deterministic
database systems argue that the advantages of determinis-
tic database systems now outweigh the disadvantages.

Unfortunately, the tradeoff is not so simple, and deter-
ministic database systems have both additional advantages
and disadvantages not mentioned above. In addition to the
replication advantage, deterministic databases have several
additional advantages:

• A side-effect of the more constrained processing choices is
deadlock avoidance — deterministic databases never have
to worry about deadlock detection or aborting transac-
tions due to deadlock.

• Nondeterministic events such as node failure cannot cause
a transaction to abort (since different replicas will not ob-
serve the same set of nondeterministic events). Rather,
active replica nodes need to step in on the fly for failed
nodes (or, alternatively, the input log is replayed from a
checkpoint to create a new node that had the same de-
terministic state of the failed node at the time of failure).
Therefore, commit protocols for distributed transactions
(such as two phase commit) that check for node failure
before transaction commit, can be significantly simplified
(or even entirely eliminated in same cases).

On the other hand, in addition to the lack of execution
flexibility disadvantage, deterministic databases have the
following disadvantages:

821

• Deterministic database systems either do not allow con-
currency (to avoid nondeterministic events resulting from
thread scheduling) or only allow concurrency if the system
knows exactly what data will be accessed before the trans-
action begins concurrent execution. The former option
significant reduces execution flexibility, while the latter
option requires either overhead from the user to rewrite
applications to annotate transactions with data access in-
formation, or an automatic process to discover the read-
write set in advance (which incurs certain overhead).

• Transactions cannot be arbitrarily aborted without some
sort of agreement protocol across replicas. At times of
high database load when transactions may need to be
aborted in order to prevent the negative side-effects of sys-
tem overload (and performing agreement protocols across
replicas is particularly difficult in times of high system
load), deterministic database system performance suffers.

• In order for multiple replicas to receive the same input,
there needs to be a layer above the database system that
receives transactions from all clients and forwards these
transactions (usually in batches) to the database system.
If there is enough transactional input such that this pre-
processing layer must include more than one machine,
then an agreement protocol must be performed between
the machines in this layer in order to deterministically
merge the input. Although it does not reduce through-
put, this preprocessing layer does increase latency.

Given these advantages and disadvantages, it is unclear
when a deterministic database system should be used, and
when a more traditional architecture should be used. Al-
though the papers that introduced proposals for determin-
istic database system architectures tend to list (a subset of)
these advantages and disadvantages, the experimental stud-
ies of these papers tend to focus on the advantages, with
little investigation of the disadvantages.

Therefore, the primary contribution of this paper is a more
complete experimental study of the advantages and disad-
vantages of determinism, so that database users and design-
ers can get a better sense of which database architectures
to use for a given target workload. We vary many workload
parameters such as data contention, size of the database
cluster, percentage of distributed transactions, heterogene-
ity of the cluster, percentage of transactions where the data
that will be accessed is known in advance, and transaction
complexity/length or order to gain a thorough understand-
ing of the significance and impact of the above mentioned
advantages and disadvantages.

As expected, the experimental study concludes that dif-
ferent database architectures are appropriate for different
situations. However, some of our results are surprising. We
found that the inability of deterministic database systems
to abort transactions in times of overload is a much larger
disadvantage than the requirement to derive in advance all
items that will be locked. On the other hand, the deadlock
avoidance advantage of deterministic database systems is by
far their greatest advantage for achieving scalable transac-
tional performance.

2. BACKGROUND
In this section we give some background on determinis-

tic database systems and describe the important differences
from traditional database systems.

2.1 Transaction Processing
As mentioned in the introduction, deterministic database

systems must guarantee that they end in only one possible fi-
nal state after processing a set of input transactions. Assum-
ing the set of input transactions are arranged in a sequence
and nondeterministic code inside transactions (such as calls
to RAND or TIME) has been replaced with hard-coded con-
stants (this is usually done by a preprocessing layer), there
have been two primary approaches to accomplishing deter-
ministic execution:

The first approach is to execute transactions one at a time
in this input sequence, since this eliminates nondeterminism
stemming from concurrency control [21]. (Nondeterministic
failures are dealt with by replaying the input transaction
log from a checkpoint to recover state at the time of fail-
ure). Variations on this scheme allow concurrency by divid-
ing both the data and transactional workload into disjoint
partitions, and allowing each partition to run their local par-
titions in serial order1 (which can be done straightforwardly
if there are no multi-partition transactions) [24, 25, 10].

The second approach allows for increased concurrency by
allowing transactions (even inside the same partition) to be
processed in parallel, but carefully restricting lock acquisi-
tion such that locks are acquired in order of a transaction’s
location in the input sequence. This approach ensures that
the resulting equivalent serial order is equal to the input se-
quence, and also ensures that there is no deadlock. For dis-
tributed implementations (where data is partitioned across
different nodes), each database node is provided the same
view of the log of the global transaction input, and ensures
that it acquires its locks in the correct order for any local or
distributed transactions in the log that it is involved in.

Unfortunately, if a local transaction comes before a dis-
tributed transaction in the global order, a node must acquire
locks for the local transaction before the distributed trans-
action. Therefore, other nodes that require a remote read
from a slow node must wait until it completes all conflicting
local transactions ahead of the current transaction before it
can acquire the read lock and send the data to the faster
node. This effectively results in the entire cluster process-
ing transactions at the same speed as the slowest node if
there are even a moderate number of distributed transac-
tions involving the slow node. If there are faster replicas of
the slow node, read-only queries can be sent to the faster
replica, which helps to alleviate this problem; however, if
there are no read-only queries or no faster replicas, the sys-
tem will always run at the speed of the slowest node.

Nondeterministic systems will also observe throughput
slowdown if there is a continuous stream of distributed trans-
actions involving a slow node; however, they have more re-
course to deal with such an issue (e.g., aborting or reordering
local transactions).

2.2 Concurrency
Another disadvantage of acquiring locks in transaction or-

der is reduced transactional scheduling flexibility. The next
transaction in the transaction order cannot begin execution
until all of the locks of the previous transaction have been
requested. Therefore, while nondeterministic systems are

1In some cases transactions can be executed out of order
using speculative execution techniques [8]

822

allowed to request locks for transactions in parallel, deter-
ministic systems must serialize this process, potentially re-
sulting in a new bottleneck. Furthermore, in order to reduce
the overhead of the lock request process and to allow trans-
actions later in the input sequence to get started, determin-
istic systems typically request all locks for a transaction in
a single batch quickly at the beginning of the transaction.

In practice, this means that the transaction needs some
way to know in advance all items that it will need to access,
so that it can make all the needed requests at the beginning
of the transaction. For many transactions, especially those
in which records are accessed through a primary key, a static
analysis of the transaction request is sufficient to deduce
which records will be accessed. However, records accessed
through a secondary index are problematic for static analysis
and other techniques must be used.

Thomson et. al. propose an optimistic protocol, called
OLLP, for determining which records need to be locked [26].
The basic idea is to do a test run for transactions that can
not be statically analyzed. The test run does not write any
data to the database — it just performs enough of the trans-
action to get a sense of what records are accessed. The
transaction is then annotated with the records that were ac-
cessed, and locks are requested for these records when the
transaction begins to be officially processed. In some cases,
the set of records that the transaction actually needs to ac-
cess are different than the records accessed in the trial run
(e.g., if there was an update to the secondary index in the
meantime). In that case, each replica will run into the same
problem (since they all have the same deterministic view
of the database state at the time a transaction begins) and
they will each independently decide to abort the transaction
and restart it with a new set of lock requests.

This optimistic protocol to handle transactions that can-
not be statically analyzed automates the process of deducing
in advance which records will be accessed by a transaction.
However, it adds latency (the time to do the trial run) and
reduces throughput (the trial run is done by the same worker
nodes that are processing official transactions, so it con-
sumes limited resources). Therefore, workloads with many
transactions that fit into the category of being unable to be
statically analyzed are potentially problematic for determin-
istic database systems.

2.3 Agreement on Input
Another disadvantage of deterministic database systems

is the need to have global agreement on the sequence of
input transactions. Whether the deterministic system pro-
cesses transactions serially or whether it uses the lock ac-
quisition protocol described above, the order of transactions
that the system must guarantee serializable equivalence to
must be agreed upon across all nodes within and across repli-
cas. There have been several proposals in the literature for
how to do this:

• Have one machine that accepts all incoming transactions
[26, 30]. This machine collects all incoming transactions
and broadcasts them (in batches) to each database node.
The machine actively replicates its state to a hot-backup
to avoid being a single-point of failure.

• Allow any node in the cluster to accept transactions, and
when the node receives a transaction, it is immediately
given a timestamp based on the local clock of the node
[24]. The concatenation of the local timestamp with the

node id provides a global timestamp. Transactions are
forwarded to relevant nodes, which wait a certain delay
and then execute all transactions in order of global times-
tamp. Tuning this delay appropriately is critical — if the
delay is too short, it is possible to receive transactions
with a timestamp that precedes a transaction that the
node has already executed, and if the delay is too long,
transactions have high latency.

• Have a preprocessing layer that receives incoming trans-
actions and runs an agreement protocol that concatenates
transactions into a input transaction log which is for-
warded to the database cluster [28].

Of these approaches, the first approach can only scale to
the rate one machine can receive network messages with
transactional input, the second approach may result in cas-
cading aborts and other significant problems stemming from
delayed network messages, and the third approach results in
additional transactional latency due to the agreement pro-
tocol in the preprocessing layer. In practice, the first and
third approaches are most commonly used2, where the first
approach is used for smaller scale deployments and the third
approach is used for larger scale deployments.

2.4 Commit Protocols
Despite the long list of significant disadvantages of de-

terminism described above, determinism does have several
advantages. Perhaps the least obvious of these is the ability
of deterministic database systems to shorten (or eliminate)
distributed commit protocols. To understand why this is
the case, consider that the two primary purposes of commit
protocols are to (1) guarantee atomicity by ensuring that all
nodes involved in processing a transaction are prepared to
commit and (2) guarantee durability by ensuring that the
results of a transaction have reached stable storage and that
a failure of a node during the protocol will not prevent its
ability to commit the transaction upon recovery.

Due to the differences in the way failures are handled in
deterministic database systems, much of the effort of tradi-
tional commit protocols is unnecessary. Unlike a traditional
database system where all transactions running on a failed
node are aborted, deterministic database systems do not
have this as an option, since failures are nondeterministic
events, and replicas processing the same transactions at the
same time may not fail. Therefore transactions running on a
failed node are not aborted — they simply can not continue
to be processed at that node until the node recovers.

The failed node recovers its state at the time of the crash
by loading a checkpointed snapshot of database state, and
replaying the input transaction log deterministically from
that point [26, 28, 15, 14]. If replicas of this failed node re-
main active, then the rest of the database nodes do not need
to wait for the failed node to recover — they can proceed
with transaction processing and if they need data stored on
the failed node as part of a distributed transaction, they can
reroute that request to live replicas of the failed node that
are processing transactions in parallel.

The key thing to note from this recovery process is that
nondeterministic failure (no matter the reason for the fail-
ure, e.g., a failed node, corrupt memory, out-of-memory/disk,

2VoltDB recently switched from the second approach to a
variant of the first where local transactions can sometimes
avoid being sent to the central aggregator node [30].

823

Feature of Determinism Advantage Disadvantage
No nondeterministic aborts Simplified commit protocols Cannot arbitrarily abort transactions in times

of overload or local problems such as out-of-
memory/disk

Input transactions placed in sequence Transaction sequence becomes
redo log, simplifying recovery

Increased latency due to preprocessing layer
that does the transaction sequencing

Acquires locks in transaction order No deadlocks Reduced concurrency

Table 1: Many distinguishing characteristics of determinism come with both advantages and disadvantages

etc.) will not result in a transaction being aborted, since the
database can always recover by replaying the input trans-
action log in order to eventually commit a transaction (in
the case of out-of-memory/disk, it may need to replay this
log on a new/larger database server node). Therefore, a
distributed commit protocol does not need to worry about
ensuring that no node fails during the commit protocol, and
it does not need to collect votes from nodes involved in the
transaction if the only reason why they would vote against
a transaction committing is due to node (or any other type
of nondeterministic) failure. Put a different way: the only
thing a commit protocol needs to check is whether there was
any node that executed code that deterministically could
cause an abort (e.g an integrity constraint being violated).

For transactions that do not contain code that could cause
a transaction to deterministically abort, no commit proto-
col whatsoever is required in deterministic database systems.
For transactions that do contain code that could result in
a deterministic abort, nodes involved in those transactions
can vote ’yes’ as soon as they can be sure that they will not
deterministically abort the transaction. Therefore, transac-
tions do not need to wait until the end of processing before
initiating the commit protocol.

2.5 Summary
In this section we have described the advantages and dis-

advantages of determinism. As summarized in Table 1, in-
dividual design decisions of deterministic database systems
often lead simultaneously to benefits and performance haz-
ards. The next section attempts to quantify these advan-
tages and disadvantages, in order to give database designers
and users a better sense of when deterministic database sys-
tems should be used, and when they should not be used.

3. EXPERIMENTAL EVALUATION
All the experiments measuring throughput were conducted

on Amazon EC2 using m3.2xlarge (Double Extra Large) in-
stances, which have 30GB of memory and 26 EC2 Compute
Units–8 virtual cores with 3.25 Compute Units each. Ex-
periments were run on a shared-nothing cluster of 8 of these
Double Extra Large EC2 instances, unless stated otherwise.
Although the EC2 virtual machines were usually similar in
performance to each other, we did notice some variation.
We discuss this phenomenon further in Section 3.8. We have
made the source code we used for our experiments available
at: https://github.com/yaledb/calvin.

3.1 Benchmarked Systems
Although there have been several proposals and imple-

mentations of deterministic databases over the past decade,

we preferred to experiment with more recent code since get-
ting decade-old code to compile and run on modern hard-
ware can be challenging. The code for the H-Store and
Calvin deterministic prototypes were both available to us;
in the end we decided to use the Calvin codebase for our
implementation, since the Calvin codebase has an option
to turn off locking and process transactions using H-Store’s
completely serial execution (per-partition) model.

Furthermore, since Calvin has a fully functioning lock
manager, we were able to reuse the lock manager code for the
two-phase locking implementation in the traditional database
prototype. This is important: we wanted to avoid an apples-
to-oranges comparison as much as possible, so we went to
great effort to build the traditional database implementation
inside the Calvin codebase (reusing the same code for shared
components such as client communications, thread handling,
admission control, network messaging and handling, storage
layer, etc). Therefore, the only difference between the two
prototypes are the relevant details around deterministic vs.
nondeterministic execution: the deterministic prototype has
a preprocessing layer, a worker thread in charge of acquiring
locks in the correct deterministic order, and code for running
the optimistic lock prediction protocol, while the nondeter-
ministic prototype has a two-phase locking implementation,
deadlock detection and elimination, and two phase commit
code. The prototype is implemented in C++.

Of the 8 cores on each EC2 instance, we devote 3 cores to
the shared database components that are equivalent for both
the deterministic and nondeterministic prototypes (e.g., client
communications, inter-node communications, etc), and the
remaining 5 cores are allocated to worker threads that pro-
cess transactions in a deterministic or nondeterministic way.

3.1.1 Deterministic implementation
For the deterministic prototype we allocate one core to a

lock acquisition thread and the remaining 4 cores to threads
that actively process transactions. This is because the deter-
ministic database system requires that locks are acquired in
the correct order, and our implementation achieves this by
only allowing one thread to perform lock acquisition for all
transactions. Since no worker thread can proceed without
acquiring its locks, we wanted to ensure that the lock ac-
quisition thread has no competition for CPU resources, and
therefore dedicated a core to this thread. Unfortunately,
this means that when transactions are “long” and lock ac-
quisition is a small percentage of actual transaction work,
dedicating an entire core to lock acquisition is wasteful, and
this core runs at far less than 100% utilization.

In order not to overlook the consequences of this design
decision, we experiment with both “short” transactions that
only perform one read/write action per each item that is
locked (thereby resulting in the lock acquisition thread being

824

fully utilized, and in some cases, even being a bottleneck)
and “long” transactions which perform a set of computations
totaling 15 µs of CPU work for each record that is accessed.
In practice this resulted in over 30% of transaction execution
time being spent acquiring locks for “short” transactions (an
unusually high number) and 16% of transaction execution
time being spent acquiring locks for “long transactions” (a
number that Harizopoulos et. al. report is typical in modern
database systems on OLTP workloads [5]).

The Calvin prototype comes with two different lock man-
agers: one that acquires and releases locks using a tra-
ditional hash-table based lock manager that tracks which
transactions are waiting for which locks, and one that ac-
quires locks using the VLL protocol [20] — a lighter-weight
lock manager implementation for deterministic systems. We
found that VLL only improved throughput over the tra-
ditional hash-table based lock manager when the lock ac-
quisition thread described above is a bottleneck; otherwise
the performance of both lock managers are nearly identical.
Where relevant, we present results below for both lock man-
agers; however, when the results are identical (or close to
identical) we present results for just VLL.

3.1.2 Nondeterministic implementation
There have been many recent promising proposals for

(nondeterministic) scalable transactional database systems
[1, 3, 10, 12, 13, 18, 22, 29, 31]. These proposals are for com-
plete system designs, and therefore differ from each other
and from traditional database designs in many dimensions
(not just determinism vs. nondeterminism). Furthermore
some of these designs do not use 2PL-based approaches for
concurrency control; for example, HANA uses MVCC [13],
Hekaton uses optimistic MVCC [3], and Google F1 uses
OCC (in addition to some pessimistic locking) [22]. Since
deterministic versions of MVCC and OCC have not yet been
proposed in the literature, it is impossible to do a direct
comparison of deterministic vs. nondeterministic versions of
these approaches. Therefore, we focus our comparisons on
deterministic vs. nondeterministic lock-based concurrency
control within a single prototype, as discussed above.

In contrast to the deterministic prototype (where one of
the 5 worker cores is dedicated entirely to lock management),
for the nondeterministic prototype, each of the 5 worker
cores contain threads that are actively processing transac-
tions. In our initial version of our nondeterministic proto-
type, we used a traditional thread-per-DBMS worker process
model (according to the language of Hellerstein et. al. [6]),
both with and without a thread pool. However, we found
that with many distributed transactions, many threads were
sitting idle waiting for network messages. When we used a
thread pool, it was not uncommon for every thread in the
pool to be idle waiting for messages, rendering the entire sys-
tem idle until at least one of these messages arrive. In order
to maximize throughput of our system, we had to use a very
large thread pool, but this resulted in many threads being
active, and the constant switching between them yielded a
noticeable overhead that limited system throughput.

Therefore we allowed threads in the thread pool to work
on multiple transactions at once; in this way there could be
more active transactions than threads in the thread pool.
We found this approach often yielded much higher maximum
throughput than the traditional thread-per-DBMS process
model. Each worker thread maintains a C++ struct, called

ActiveTxnMap, that stores the context of all of the transac-
tions assigned to it that are waiting for network messages.
As soon as a transaction needs to block to wait for a net-
work message, that transaction’s context is placed in the
ActiveTxnMap, and the thread starts working on a different
transaction. When the network message arrives, the thread
retrieves the transaction’s context from the ActiveTxnMap
and continues to work on that transaction. The lock man-
ager also contains two C++ structs containing transaction
context. The first, called BlockedTxnMap, contains trans-
actions that are blocked, waiting to acquire locks. The lock
manager continues to update the context of transactions
in the BlockedTxnMap as they acquire locks over time; as
soon as all locks for a transaction have been acquired, the
transaction is moved from the BlockedTxnMap to the sec-
ond struct maintained by the lock manager: the ReadyTxn-
Queue. Both the BlockedTxnMap and the ReadyTxnQueue
are thread safe, and any worker thread can retrieve the con-
text of a transaction from the ReadyTxnQueue and exe-
cute it (however, working on transactions in their own Ac-
tiveTxnMap that are now able to run take priority).

For the experiments in this paper, we allowed both the
deterministic and nondeterministic prototypes to use either
the traditional thread-per-worker process model or our more
advanced process model, and selected the best results for
each particular data point (in every case, both the deter-
ministic and nondeterministic prototypes agree on the opti-
mal process model for that data point, so differences in the
process model do not affect our experimental results).

Although the deterministic prototype is guaranteed to be
deadlock-free, the nondeterministic prototype can result in
deadlock. We spent a long time experimenting with multi-
ple different deadlock detection and elimination protocols.
In general, while we found that it was possible to keep the
overhead of deadlock detection and elimination low for dead-
locks local to a single machine using timeout-based dead-
lock detection (optionally Dreadlocks optimizations can be
used for local deadlock [11]), dealing with distributed dead-
lock is much more challenging due to the unpredictable wait
time for remote messages. Timeout-based techniques do not
work well for distributed deadlock, and therefore the wait-
for graph implementation from Gray [4] and Stonebraker
[23] remain the state of the art. We therefore used this im-
plementation for distributed deadlock detection in the non-
deterministic prototype.

The nondeterministic prototype uses traditional two phase
commit for distributed transactions. However, in order to
understand how much of a contribution the overhead of two
phase commit adds to the results, and to account for pro-
posals that optimize two phase commit in various ways, we
also present results for what the nondeterministic prototype
would be able to achieve if there were no commit proto-
col whatsoever3. Optimized two-phase commit implementa-
tions therefore fall somewhere between these two extremes.

3.2 Benchmarks
Our goal in this paper is not to validate determinism as

an execution strategy—rather, we want to classify the trans-

3We present these results to illustrate performance reper-
cussions only—the resulting system does not preserve ACID
semantics, as nondeterministic execution protocols rely on
a distributed protocols to ensure atomicity for distributed
transactions.

825

 0

 100000

 200000

 300000

 400000

 500000

 0 5 10 15 20 30 40 50 60 70 80 90 100

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

% distributed transactions

Deterministic w/ VLL, low contention
Deterministic w/ VLL, high contention

Deterministic, low contention
Deterministic, high contention

Nondeterministic, low contention
Nondeterministic, high contention

Nondeterministic w/o 2PC, low contention
Nondeterministic w/o 2PC, high contention

(a) Throughput of “short” transactions vs. fre-
quency of distributed transactions.

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 30 40 50 60 70 80 90 100

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

% distributed transactions

Deterministic w/ VLL, low contention
Deterministic w/ VLL, high contention

Deterministic, low contention
Deterministic, high contention

Nondeterministic, low contention
Nondeterministic, high contention

Nondeterministic w/o 2PC, low contention
Nondeterministic w/o 2PC, high contention

(b) Throughput of “long” transactions vs. fre-
quency of distributed transactions.

 0

 100000

 200000

 300000

 400000

 500000

 0.0001 0.001 0.01 0.1

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

contention index
Deterministic w/ VLL 0% distributed
Deterministic w/ VLL 5% distributed

Deterministic w/ VLL 20% distributed
Deterministic w/ VLL 50% distributed

Nondeterministic 0% distributed
Nondeterministic 5% distributed

Nondeterministic 20% distributed
Nondeterministic 50% distributed

(c) Throughput of “short” transactions vs. con-
tention index.

 0

 50000

 100000

 150000

 200000

 250000

 0.0001 0.001 0.01 0.1

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

contention index
Deterministic 0% distributed
Deterministic 5% distributed

Deterministic 20% distributed
Deterministic 50% distributed

Nondeterministic 0% distributed
Nondeterministic 5% distributed

Nondeterministic 20% distributed
Nondeterministic 50% distributed

(d) Throughput of “long” transactions vs. con-
tention index.

Figure 1: Microbenchmark throughput experiments.

actional workloads for which deterministic execution out-
performs traditional methods and those for which it does
not. Therefore, we created our own microbenchmarks that
carefully test specific workload characteristics in a way that
we can vary parameters for maximum flexibility. However,
we also include results for the TPC-C benchmark since we
modified the Calvin prototype to perform the experiments in
this paper, but want to verify that our prototype still yields
the same trends as previously published work (our results
should be compared to an equivalent experiment published
in VLDB 2013 [20]).

3.3 Microbenchmark Experiments
We use a simple microbenchmark to explore the effects of

various parameters that are likely to have an effect on the
determinism/nondeterminism tradeoff: likelihood of trans-
actions to lock the same records, percentage of transactions
that are distributed, number of partitions spanned that par-
ticipate in each distributed transaction, and length of time
transactions take to execute their internal logic.

Each EC2 instance in our shared-nothing cluster of ma-
chines contains a database partition consisting of 1,000,000
records. Each transaction reads and updates a number of
records (10 records unless otherwise specified). Our mi-
crobenchmark does not contain read-only transactions be-
cause there is no difference between how our deterministic
and nondeterministic prototypes handle read-only transac-
tions — therefore we focus only on types of transactions
where there is a difference between the systems.

In order to carefully vary the contention of the workload,
we divide the data set into “hot records” and “cold records”.
Unless otherwise specified, each transaction accesses one hot
record at each partition that participates in its execution;
and all remaining accesses are to cold records. Cold record
accesses have negligible contention, so the contention of any
particular experiment can be finely tuned by varying the
size of the hot record set. If there are K hot records at each
partition, then the probability of any two transactions con-
flicting at that partition is 1/K, since this is the probability
that they will attempt to access the same hot record. We re-
fer to this probability as the contention index (CI): 100 hot
records per partition implies a contention index CI = 0.01,
10,000 implies a contention index of CI = 0.0001.

3.3.1 Contention Experiments
In Figures 1(a) and 1(b), we plot the maximum through-

put that each system was able to obtain vs. the percentage
of transactions that are distributed. Each of these plots
shows measurements for CI = 0.01 (“high contention”) and
CI = 0.0001 (“low contention”) for each of our four Calvin
configurations: deterministic execution (with the default
lock manager), deterministic execution with VLL, nonde-
terministic execution (with 2PC) and nondeterministic exe-
cution without 2PC. (Figures 1(c) and 1(d) vary contention
index in order to get more than 2 data points for contention
index).

As explained in the previous section, short transactions
spend over 30% of transaction processing time acquiring

826

locks. This is sufficient for the 4 cores running worker threads
to overwhelm the one core performing lock acquisition for
the deterministic prototype, and lock acquisition therefore
becomes a bottleneck. However, by reducing the overhead
of the lock manager by a factor of 2.3, VLL eliminates this
bottleneck. Therefore, there are significant differences in
performance of the deterministic system for the two differ-
ent lock managers when transactions are short. However,
when transactions are longer, the lock manager thread is
not a bottleneck in either case, and both deterministic sys-
tems perform similarly.

Nondeterministic execution, however, suffers from two per-
formance setbacks compared to deterministic execution: (1)
the overhead of (and increased contention caused by hold-
ing locks during) the two-phase commit protocol (2PC) and
(2) the possibility of deadlocks. To understand the signifi-
cance of the first factor (2PC), Figures 1(a) and 1(b) include
a nondeterministic scheme that skips the two-phase commit
protocol, illustrating the isolated throughput costs that non-
deterministic execution schemes incur. From these figures,
it is clear that the requirement to perform 2PC can signif-
icantly reduce throughput — sometimes by as much as as
30%. However, this factor alone does not explain the per-
formance difference between the deterministic and nondeter-
ministic prototype. Furthermore the reduction in through-
put caused by 2PC counter-intuitively gets smaller with a
higher percentage of distributed transactions and high con-
tention. Clearly, distributed deadlocks are the more signifi-
cant performance hazard for the nondeterministic system.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

nondeterministic/low-contention

nondeterministic/high-contention

nondeterministic/deadlock

deterministic/low-contention

deterministic/high-contention

%
 o

f
T

ra
n

s
a

c
ti
o

n
 L

if
e

ti
m

e

Transaction execution
Lock acquisition

Deadlock detection/handle

Two-phase commit
Waiting time

Other(batch,queue etc)

Figure 2: Performance breakdown of each variant.

To better understand the performance difference between
the systems (and especially how distributed deadlocks effect
throughput), we investigated how much time is spent in our
prototype doing useful transaction work vs. how much time
is spent (1) acquiring locks (2) detecting/handling deadlock
(3) performing two-phase commit and (4) spinning with
nothing to do (if all active transactions are either waiting
for locks or waiting for remote data). Figure 2 presents the
results of the performance breakdown for the data points
from Figure 1(b) along the vertical axis of 20% distributed
transactions. For the nondeterministic system we show three
different breakdowns of how time is spent in the different
components of the system. The first two show the perfor-
mance of the system under low and high contention when

distributed deadlock is not present in the system. The third
bar in the figure shows how the performance breakdown
changes (relative to the second bar) when distributed dead-
lock is present (distributed deadlock was very rare for the
low contention workload, so we only show the breakdown
for high contention).

As can be seen in Figure 2, the baseline deadlock detec-
tion/handling code is very small. When there is distributed
deadlock in the system, this code becomes slightly most
costly, but the main reason why the percentage of time spent
doing useful transaction work plummets in the third bar in
the figure is because of the increased “waiting time”. This
is caused by other transactions getting stuck behind dead-
locked transactions. Any transaction whose lock set overlaps
with a deadlocked transaction becomes blocked; any trans-
action whose lock set overlaps with either the deadlocked
transaction or the newly blocked transaction just mentioned
becomes blocked; and so on for subsequent transactions.
Eventually most of the hot data in the database becomes
locked and the database becomes clogged. As soon as the
deadlock is discovered and the transaction is aborted, the
database de-clogs. However, the database becomes clogged
faster than the inherent delay involved in sending messages
over the network to create the “waits-for” graph and dis-
cover the deadlock. Therefore, the average time the system
spins with nothing to do increases sharply when distributed
deadlock is present.

3.3.2 Multi-node distributed transactions
Past papers on deterministic systems experimented with

distributed transactions. However, a transaction needs only
to involve two nodes for it to be called a “distributed trans-
action”, and indeed the distributed transaction experiments
in previously published papers only involve two nodes. We
therefore now run experiments on workloads in which dis-
tributed transactions span more than two nodes.

Remember that in our microbenchmark, each distributed
transaction conflicts with other transactions with proba-
bility CI at each participating node. Therefore, a 4-node
transaction conflicts with approximately twice as many other
transactions as a 2-node transaction. We therefore expect
to see a corresponding drop in throughput due to the higher
contention.

Indeed, Figures 3(a) and 3(b) show how throughput is
affected as we increase the number of nodes involved in
distributed transactions, from 2 to 4 nodes. When there
are no distributed transactions, throughput is unaffected,
since it does not matter how many nodes are involved in
a distributed transaction if they do not exist. The more
distributed transactions, the greater the relative drop in
throughput as those distributed transactions span more par-
titions. In the most extreme cases that we measured (50%
distributed transactions), the step from two- to four-partition
distributed transactions decreased throughput by a factor of
approximately two for both systems.

The most important conclusion to draw from Figures 3(a)
and 3(b) is that although throughput drops with more nodes
involved in distributed transactions, the slope of the lines for
the corresponding deterministic and nondeterministic pairs
are the same. This indicates that these two factors — deter-
minism and distributed transaction size — are independent
of each other.

827

 0

 50000

 100000

 150000

 200000

 250000

 2 3 4

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

% #partitions that accessed by distributed transaction
Deterministic 0% distributed
Deterministic 5% distributed

Deterministic 20% distributed
Deterministic 50% distributed

Nondeterministic 0% distributed
Nondeterministic 5% distributed

Nondeterministic 20% distributed
Nondeterministic 50% distributed

(a) Throughput vs. participants per distributed
transaction. Long transactions, low contention
(ci=0.0001).

 0

 50000

 100000

 150000

 200000

 250000

 2 3 4

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

% #partitions that accessed by distributed transaction
Deterministic 0% distributed
Deterministic 5% distributed

Deterministic 20% distributed
Deterministic 50% distributed

Nondeterministic 0% distributed
Nondeterministic 5% distributed

Nondeterministic 20% distributed
Nondeterministic 50% distributed

(b) Throughput vs. participants per distributed
transaction. Long transactions, high contention
(ci=0.01).

Figure 3: Throughput vs. number of partitions accessed by distributed transactions (low and high contention).

3.4 TPC-C
For our TPC-C benchmark experiments, each EC2 in-

stance contains 20 warehouses. In order to vary the percent-
age of distributed transactions, we vary the percentage of
New Order and Payment transactions that access a remote
warehouse. The average contention index (CI) for TPC-C
is approximately 0.01.

Figure 4 shows the results of our experiments on the TPC-
C benchmark. Since the transaction logic of TPC-C is com-
plex, and the contention index is high, the results are simi-
lar to our microbenchmark experiments using long transac-
tions under high contention. However, throughput drops less
significantly (relative to our previous experiments) as the
percentage of distributed transactions increase. This is be-
cause in our microbenchmarks, each distributed transaction
touches one “hot” key per partition, whereas in TPC-C, each
distributed transaction in TPC-C touches one “hot” key to-
tal (not per partition). Therefore with more distributed
transactions, the contention index actually decreases.

When there are no distributed transactions, the nondeter-
ministic system outperforms the deterministic system. This
is because TPC-C transactions perform even more computa-
tion per item locked than the “long” transactions in the mi-
crobenchmark. This results in fewer locks requested per sec-
ond, and thus reduced work for the lock acquisition thread.
Our decision to devote an entire core to lock acquisition in
the deterministic system is therfore costly in this case —
this core is significantly underutilized, and potential CPU
resources are wasted. In contrast, the nondeterministic sys-
tem is able to fully utilize all CPU resources. Since the
2PC and distributed deadlock disadvantages of nondeter-
ministic database systems are not present when there are
no distributed transactions, the better CPU utilization of
the nondeterministic system results in it outperforming the
deterministic system. However, as the percentage of dis-
tributed transactions increase, the advantages of determin-
ism become increasingly present.

3.5 Resource Constraints
Next, we explore the effects of variable resource availabil-

ity on nondeterministic vs. deterministic systems. Here,
we are trying to model the effects of server overloading,
poor performance isolation between virtual machines, net-
work flakiness, and heterogeneous hardware environments—

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 30 40 50 60 70 80 90 100

th
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

% distributed transactions

Deterministic with 20 warehouses per node
Nondeterministic with 20 warehouses per node

Figure 4: TPC-C throughput.

situations in which one or more servers might start running
with suddenly reduced performance.

To implement this, we modified one machine out of the
eight machines in the cluster in order to slow it down. Specif-
ically, we introduced a number of additional threads in the
Calvin process that ran continuous CPU-intensive tasks on
the same set of cores that were otherwise reserved for the
lock manager and worker threads.

Figure 5(a) illustrates how transactional throughput is af-
fected when one node in the cluster has increasingly limited
CPU resources. The biggest difference between these plots
and the plots of the previous sections is the extremely sharp
drop that appears between 0% and 5% multi-partition trans-
actions when one machine in the cluster is forced to slow
down due to resource contention. As described in Section 2,
in deterministic systems, it is often impossible for machines
to get very far ahead of the slowest machine, since new trans-
actions may have data dependencies on previous ones that
access data on that slow machine and which it has not yet
processed. Since deterministic transaction execution disal-
lows on-the-fly transaction reordering, the faster machines
have no choice but to wait for the data dependency to be
satisfied by the slower machine before proceeding.

With no distributed transactions, the effect of slowing
down one machine is relatively minor, because as that one
machine lags further behind in processing requests from the
input log, none of the other machines ever depend on it.

828

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 30 40 50 60 70 80 90 100

th
ro

u
g
h

p
u

t
(t

x
n
s
/s

e
c
)

% distributed transactions

Deterministic, 0 background threads
Deterministic, 1 background threads
Deterministic, 2 background threads
Deterministic, 4 background threads

Nondeterministic, 0 background threads
Nondeterministic, 1 background threads
Nondeterministic, 2 background threads
Nondeterministic, 4 background threads

(a) Throughput with background threads on slow
node (Long transactions under contention=0.0001).

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 25 30 35 40 45

th
ro

u
g
h

p
u

t
(t

x
n
s
/s

e
c
)

time (seconds)

Deterministic, 5% distributed
Deterministic, 100% distributed

Nondeterministic, 5% distributed
Nondeterministic, 100% distributed

Nondeterministic w/ throttling, 5% distributed

(b) Throughput vs. time when disruptive tasks are
started on one machine in a cluster.

Figure 5: Heterogenous cluster experiments (one node runs slowly due to concurrent background processes).

The mild performance decline here represents only a change
in throughput for the one affected server. However, as soon
as there are as few as 5% multipartition transactions, data
dependencies on the slow node cause all nodes to slow down.
This effect increases with more multi-partition transactions
and more background threads on the slow node.

Nondeterministic systems do not have the constraint on
transaction reordering, and are actually free to change exe-
cution order. Surprisingly, this flexibility yielded very little
benefit in practice for our nondeterministic implementation.
This is because it does not take long for all threads in the
thread pool on any particular node (even when we effectively
increase the size of the thread pool to over 500 threads via
our variation of the thread-per-worker process model de-
scribed above) to become dependent on data on the slow
node, and once this happens throughput of all nodes pro-
ceed at the speed of the slowest node.

However, in addition to being able to reorder transac-
tions, nondeterministic systems are also able to arbitrarily
abort inconvenient transactions on the fly. To illustrate the
protection afforded by this freedom, we implemented an ex-
tended version of the nondeterministic system that was de-
signed to “notice” if one machine started having problems
and begin to throttle single-partition transaction requests
at that partition by preemptively aborting a random subset
of single-partition transactions at that machine. This might
look like “partial unavailability” since a specific subset of
database clients (i.e. those who happened to be interested
in data on that particular machine) would suddenly experi-
ence very poor performance. However, overall throughput
would return to near-normal, since the slow machine could
devote a larger percentage of its limited resources to execut-
ing the transactions that are critical for other machines.

Figure 5(b) shows throughput over time when disruptive
CPU-intensive tasks are started on one machine in a cluster.
For the nondeterministic implementation with the throttling
optimization, the slow machine quickly ‘notices’ that it is
falling behind and begins to abort an increasing percent-
age of its single-partition transactions, reaching equilibrium
once it aborts 70% of its local transactions. As a result, the
slow machine was able to focus most of its reduced resources
on processing the distributed transactions that other parti-
tions relied upon to make immediate progress. The slow
machine was therefore able to avoid impacting the perfor-

mance of the other seven machines in the cluster4. In con-
trast, the deterministic implementation and the nondeter-
ministic implementation without the throttling optimization
were severely impacted by the slow node5.

Note that we have discussed workloads so far that consist
exclusively of read-modify-write transactions. Real-world
applications often contain a mix of transactions and read-
only queries. In a replicated system, it would be possible
for a deterministic mechanism to approximate the above-
described throttling behavior by allowing slow machines to
reject read requests, forcing the user to retry at a different
replica. However, such a technique has some fundamental
drawbacks and limitations compared to the above-described
mechanism. First, for write-heavy workloads, redirecting
read traffic may not be sufficient to reduce usage at a resource-
constrained node enough to allow it to keep up with (un-
rejectable) write requests. Second, if the constrained re-
source is not CPU, but rather something that is in the crit-
ical path for only for writes (such as write bandwidth on an
old and poorly wear-leveled flash-drive), rejecting reads may
not help transaction throughput at all. Third, it is common
for applications to have very stringent latency requirements
(especially tail latencies) for read-only operations, while tol-
erating greater delays for writes. This makes it more desir-
able in many circumstances to throttle throughput of read-
modify-write transactions rather than read throughput.

We conclude from these experiments that unpredictable
resource constraints represent a significant hazard to deter-
ministic transaction processing systems’ performance and
reliability.

3.6 Dependent Transactions
As described in Section 2, deterministic locking protocols

require a priori knowledge of transactions’ read- and write-
sets in order to know what locks to request, which requires
additional machinery. For some transactions, such as those

4We chose to throttle only local transactions because it
made this extension very simple to implement and test in
the Calvin framework. This technique can also be applied
in which the throttled node also aborts some distributed
transactions as well, by immediately (or even preemptively)
sending abort votes to 2PC coordinators.
5In theory, it may be possible to perform throttling in de-
terministic systems in the preprocessing layer, but such an
optimization is beyond the scope of this paper.

829

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.01 0.1 1 10 100

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

index entry volatility

Deterministic, 0% dependent
Deterministic, 20% dependent
Deterministic, 50% dependent
Deterministic, 100% dependent

Nondeterministic, 0% dependent
Nondeterministic, 20% dependent
Nondeterministic, 50% dependent

Nondeterministic, 100% dependent

(a) %0 distributed transactions

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.01 0.1 1 10 100

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

index entry volatility

Deterministic, 0% dependent
Deterministic, 20% dependent
Deterministic, 50% dependent

Deterministic, 100% dependent
Nondeterministic, 0% dependent

Nondeterministic, 20% dependent
Nondeterministic, 50% dependent

Nondeterministic, 100% dependent

(b) %100 distributed transactions

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20 30 40 50 60 70 80 90 100

th
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

% work that have to be done before index lookup

Deterministic
Nondeterministic

(c) Dependent transactions with variable-
sized reconnaissance phases

Figure 6: Throughput for transactions in which read/write sets are not known in advance.

that involve secondary index lookups, the determination of
the read- and write-sets cannot be done via a static analysis.
We refer to such transactions as “dependent transactions”.

For such dependent transactions, it is necessary to auto-
matically predict what locks will be requested.One mecha-
nism for doing this is called Optimistic Lock Location Pre-
diction (OLLP), which was described in Section 2. In OLLP,
each transaction’s execution is broken down into two phases—
a “reconnaissance” phase and an “execution” phase. The
reconnaissance phase performs any necessary reads, at no
isolation, that are needed to determine the transaction’s full
read-/write-sets. The transaction request is then resubmit-
ted, annotated with the lock location predictions from the
reconnaissance phase. These predictions are used by the ex-
ecution phase to determine what locks to acquire. If these
predictions turn out to be incorrect (e.g. due to an update
of a secondary index between the reconnaissance and exe-
cution phases), the transaction must be (deterministically)
aborted and restarted.

To examine the effect of the presence of dependent trans-
actions in a workload, we ran a modified microbenchmark
in which certain transactions had to perform a secondary
index lockup (which may incur a remote read) in order to
determine which 10 records to process. Meanwhile, we con-
currently updated the values in that index at various rates.
To be as consistent as possible across all measurements, we
devoted one core to the thread that updates secondary in-
dexes, and reduced the number of cores available for use by
the other execution engine threads from 5 to 4. We use the
term “volatility” to refer to the frequency with which each
index entry is updated.

In our experiments, we varied the percentage of transac-
tions that were dependent transactions, the percentage of
transactions that were distributed, and the index volatil-
ity, and we measured both total throughput capacity and
latency distributions. We used “long” transactions under
“low” contention in order to maximize the detrimental ef-
fects of multiple OLLP restarts while minimizing the effects
of other purely contention-based performance hazards.

Figure 6(a) shows our measurements when transactions
are never distributed. The narrow lines that appear at the
top of this figure serve as a baseline and correspond ex-
actly to the left-most points from Figure 1(b)—except that
throughput is 20% lower since only 4 cores are allocated to
transaction execution, rather than 5. Figure 6(b) shows the
same experiment, but with 100% distributed transactions.

In these plots, nondeterministic systems are unaffected

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Latency (ms)

Deterministic non-dependent single-partition
Deterministic non-dependent distributed

Deterministic dependent single
Deterministic dependent distributed

Nondeterministic single-partition
Nondeterministic distributed

Figure 7: Latency distributions.

by volatility, since they do not require all transactions to
predeclare their read- and write-sets, and simply perform
the requisite index lookup during execution, before locking
each record. However they are slightly affected by the per-
centage of dependent transactions, since in our experimen-
tal setup, dependent transactions do more work (an extra
index lookup) relative to “ordinary” microbenchmark trans-
actions.

For the deterministic system, when index volatility is low,
OLLP requires relatively few transactions to be aborted and
restarted. As index volatility rises, increasingly many trans-
actions must be restarted due to inaccurate predictions from
the reconnaissance phase, reducing throughput.

Two additional important observations should be made.
First, the two plots look very similar. In other words, al-
though the cost of dependent transactions depends heavily
on index entry volatility, it does not depend on the number
of transactions that are distributed. The performance costs
of OLLP are therefore independent of the performance costs
of processing distributed transactions.

Second, index entry volatilities shown here are much higher
than those that one might expect to see for secondary in-
dexes in real-world workloads. Recall that an index volatil-
ity of 10 does not mean that the secondary index experiences
10 total updates per second—rather, each entry in the in-
dex is updated 10 times per second. For most real-world
volatility levels, OLLP yields very few transaction restarts.

Our previous experiment involved dependent transactions
in which the secondary index lockup occurs as the first ac-
tion in the transaction logic—before any other read/write
operations. This limits the cost of the reconnaissance phase

830

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 8 16 24 32 40 48

p
e
r

n
o
d
e
 t
h
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

number of machines

Deterministic, low contention, 20% 2-partition transactions
Deterministic, low contention, 100% 2-partition transactions
Deterministic, high contention, 20% 2-partition transactions

Deterministic, high contention, 100% 2-partition transactions
Nondeterministic, low contention, 20% 2-partition transactions

Nondeterministic, low contention, 100% 2-partition transactions
Nondeterministic, high contention, 20% 2-partition transactions

Nondeterministic, high contention, 100% 2-partition transactions
Deterministic, high contention, 20% 4-partition transactions

Deterministic, high contention, 100% 4-partition transactions

Figure 8: Per-node throughput scalability

in OLLP since it does not need to run the entire transac-
tion — once it performs the index lookup, it can immediate
resubmit the transaction since there are no more dependent
reads in the transaction after the index lookup. Figure 6(c)
shows how performing dependent reads later in a transac-
tion can affect the cost of OLLP. Here, dependent trans-
actions are doing the same total work, but operations are
rearranged so that the first X% of the transaction logic does
not depend on the secondary index lookup and is arranged
to occur prior to the lookup.

As Figure 6(c) shows, as the amount of work that needs
to be done before all dependencies have been resolved in-
creases, the cost of the reconnaissance step increases and
throughput decreases. At the extreme, the reconnaissance
step must perform the entire transaction, and therefore over-
all throughput is halved, since each transaction in-effect
must be processed twice (once in reconnaissance and once
for actual transaction processing)6.

3.7 Transaction Latency
Next, we measure execution latencies for the deterministic

and nondeterministic execution mechanisms. Figure 7 shows
cumulative distribution functions for latencies observed for
long transactions with low contention. It is clear that in
general, nondeterministic transactions have lower latencies
than deterministic transactions. This is because determin-
istic transactions must go through a preprocessing layer be-
fore being processed by the database system. Even with the
increased cost of 2PC for distributed transactions, nonde-
terministic distributed transactions are usually faster than
deterministic distributed transactions, because they do not
require a preprocessing layer. Dependent transactions fur-
ther slow down latency for the deterministic database sys-
tem, because of the reconnaissance phase. Note the log scale
used in this plot — there is a often a factor of two difference
between nondeterministic latency and deterministic latency.

3.8 Scalability experiments
Finally, we extended several of our measurements to clus-

ters containing up to 48 machines, each containing a parti-
tion of the database. Figure 8 shows per-node throughput

6Our implementation did not contain the optimization that
the reconnaissance phase only has to occur at one replica.
Had we implemented this, and spread out the reconnaissance
work for different transactions across replicas, the overall
cost of reconnaissance would be correspondingly smaller.

measurements for low contention (CI = 0.0001) and high
contention (CI = 0.01) workloads. For each contention
rate, we measured performance when 20% of transactions
were distributed and when all transactions were distributed.
We find that deterministic execution scales gracefully up to
48 machines, even under high contention. The per-machine
throughput decrease as the number of machines grows was
due to the phenomenon of execution progress skew. Each
machine occasionally falls behind briefly in execution due
to random variation in workloads, random fluctuations in
RPC latencies, etc., slowing down other machines (see Sec-
tion 3.5); the more machines there are, the more likely that
at least one machine is experiencing this at any time. Under
higher contention and with more distributed transactions,
there is more sensitivity to other machines falling behind
and being slow to serve those reads (see Section 3.5), so
the effects of execution progress skew are more pronounced
in these scenarios, resulting in performance degradation as
more machines are added.

Despite the deterministic database being more sensitive
to execution progress skew, it still scales better overall than
the nondeterministic system. This is because there is an in-
creased number of distributed deadlocks with an increased
number of nodes, and as investigated in Section 3.3, dis-
tributed deadlocks are a major performance hazard for the
nondeterministic system. As contention and/or the percent-
age of distributed transactions increase, the scalability of the
nondeterministic system is increasingly poor.

4. RELATED WORK
Most of the published work on comparisons of determin-

istic vs. nondeterministic transaction processing have come
in the context of the papers introducing new deterministic
mechanisms, and therefore focus on workloads that are well-
suited for determinism. In contrast, this paper presents a
more thorough experimental comparison, examining a wide-
range of factors, and focusing on workloads that are both
well and poorly-suited for determinism. In particular, the
Postgres-R paper experimented with multi-node distributed
transaction throughput, transaction latencies, and system
scalability [9]. However, they did not vary data contention,
size of the transaction, nor number of nodes involved in
distributed transactions. Furthermore, they did not look
at heterogenous clusters with nodes running unexpectedly
slowly. Pacitti et. al. varied transactions size and measured
transactions latencies, but did not present any throughput
results [17]. Stonebraker et. al. measured throughput on
TPC-C, but did not present results on other benchmarks
[24]. Therefore, they did not vary data contention, size of
the transaction, or percentage of distributed transactions.
They also do not experiment with heterogeneous clusters or
measure transaction latency. Jimenez-Peris et. al do not
present experimental results [7]. Thomson et. al. vary con-
tention, present results on TPC-C, and measure scalability
of the system [28]. However, they do not vary the size of the
transaction, nor number of nodes involved in distributed
transactions. Furthermore, they did not measure perfor-
mance of dependent transactions where the read/write sets
are not known in advance, nor experiment with heteroge-
nous clusters.

Our experiments on dependent transactions relied on the
OLLP technique to predict what items a transaction will
access (and need to lock) [26]. Predicting access patterns

831

of transactions in order to optimize processing has been an
area of recent focus in the research community, and sev-
eral promising techniques have emerged, including the use
of Markov models [19], static analysis and profiling [2], and
run-ahead execution [16].

As mentioned above, there have been many recent pro-
posals for scalable transactional database systems [1, 3, 10,
12, 13, 18, 22, 29, 31]. While these systems present promis-
ing approaches to improving nondeterministic transactional
throughput, most of the techniques introduced are orthog-
onal to the question of deterministic vs. nondeterministic
transaction processing. Therefore implementing determinis-
tic versions of these systems and comparing them with the
original nondeterministic implementations remains an inter-
esting avenue for future work.

5. CONCLUSION
In this paper, we presented an in-depth study that com-

pares deterministic and nondeterministic systems. It is clear
that for some workloads deterministic database systems are
appropriate, and for some workloads they are not. For
latency-sensitive applications, the extra latency required to
“preprocess” transactions in deterministic systems can be
problematic, and nondeterministic systems may be a bet-
ter fit. Furthermore, the inability of deterministic database
systems to arbitrarily abort transactions to deal with node
overload can also limit throughput when there is no other
way to reduce the load on a node. However, deterministic
database systems are clearly able to scale to higher through-
puts of distributed transactions, due largely to their ability
to avoid distributed deadlock. Therefore, for workloads that
require extreme transactional scalability and do not mind
paying the extra latency costs, deterministic database sys-
tems are potentially a good fit.

6. ACKNOWLEDGMENTS
This work was sponsored by the NSF under grants IIS-

0845643 and IIS-1249722, and by a Sloan Research Fellow-
ship. Kun Ren is also supported by National 973 project
under Grant 2012CB316203 and National Natural Science
Foundation of China under Grant 61033007.

7. REFERENCES
[1] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a

transactional record manager for shared flash. In CIDR,
pages 9–20, 2011.

[2] A. Cheung, S. Madden, O. Arden, and A. C. Myers.
Speeding up database applications with pyxis. In SIGMOD,
2013.

[3] C. Diaconu, C. Freedman, E. Ismert, P. ke Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: Sql server’s memory-optimized oltp engine. In
SIGMOD, 2013.

[4] J. Gray. Notes on database operating systems. Operating
System, An Advanced Course. Springer-Verlag,Berlin, 1979.

[5] S. Harizopoulos, D. J. Abadi, S. R. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. In SIGMOD, 2008.

[6] J. M. Hellerstein, M. Stonebraker, and J. Hamilton.
Architecture of a database system. Found. Trends
databases, 1(2):141–259, Feb. 2007.

[7] R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo.
Deterministic scheduling for transactional multithreaded
replicas. In IEEE SRDS, 2000.

[8] E. P. C. Jones, D. J. Abadi, and S. R. Madden.
Concurrency control for partitioned databases. In
SIGMOD, 2010.

[9] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-r, a new way to implement database replication.
In VLDB, 2000.

[10] A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis,
H. Muhe, T. Muhlbauer, and W. Rodiger. Transaction
Processing in the Hybrid OLTP/OLAP Main-Memory
Database System HyPer. In IEEE Data Engineering
Bulletin, June 2013.

[11] E. Koskinen and M. Herlihy. Dreadlocks: Efficient deadlock
detection. In Proc. of SPAA, pages 297–303, 2008.

[12] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. Patel,
and M. Zwilling. High-performance concurrency control
mechanisms for main-memory database. PVLDB, 2011.

[13] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka1,
H. Plattner, J. Krueger, and M. Grund. High-performance
transaction processing in sap hana. In IEEE Data
Engineering Bulletin., June 2013.

[14] N. Malviya. Recovery Algorithms for In-Memory OLTP
Databases. MS thesis, MIT, 2012.

[15] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.
Rethinking main memory oltp recovery. In Proc. of ICDE,
2014.

[16] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient
processing in runahead execution engines. In ISCA, 2005.

[17] E. Pacitti, M. T. Ozsu, and C. Coulon. Preventive
multi-master replication in a cluster of autonomous
databases. In Euro-Par, 2003.

[18] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB,
3(1):928–939, 2010.

[19] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive
modeling for optimizing transaction execution in parallel
oltp systems. PVLDB, 5(2):85–96, 2012.

[20] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking
for main memory database systems. PVLDB, 2013.

[21] F. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Comput. Surv.,
22(4), 1990.

[22] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littleeld, D. Menestrina,
S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte.
F1: A distributed sql database that scales. In VLDB, 2013.

[23] M. Stonebraker. Concurrency control and consistency of
multiple copies of data in distributed ingres. IEEE
Transactions on Software Engineering, SE-5, 1979.

[24] M. Stonebraker, S. R. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end of an
architectural era (it’s time for a complete rewrite). In
VLDB, Vienna, Austria, 2007.

[25] M. Stonebraker and A. Weisberg. The voltdb main memory
dbms. In IEEE Data Engineering Bulletin., June 2013.

[26] A. Thomson and D. J. Abadi. The case for determinism in
database systems. VLDB, 2010.

[27] A. Thomson and D. J. Abadi. Modularity and scalability in
calvin. In IEEE Data Engineering Bulletin., June 2013.

[28] A. Thomson, T. Diamond, P. Shao, K. Ren, S.-C. Weng,
and D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In SIGMOD, 2012.

[29] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
Proc. of SOSP, SOSP ’13, pages 18–32, 2013.

[30] A. Weisberg. Voltdb 3.x features and performance. A few
more amps. hemptember 30 2012.
ttp://www.afewmoreamps.com/2012/09/voltdb-3x-
features-and-performance.html.

[31] J. L. om, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila.
Ibm soliddb: In-memory database optimized for extreme
speed and availability. In IEEE Data Engineering
Bulletin., June 2013.

832

