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ABSTRACT

This paper analyzes the performance of three systems for in-memory

data management: Memcached, Redis and the Resilient Distributed

Datasets (RDD) implemented by Spark. By performing a thorough

performance analysis of both analytics operations and fine-grained

object operations such as set/get, we show that neither system han-

dles efficiently both types of workloads. For Memcached and Redis

the CPU and I/O performance of the TCP stack are the bottlenecks

– even when serving in-memory objects within a single server node.

RDD does not support efficient get operation for random objects,

due to a large startup cost of the get job. Our analysis reveals a set

of features that a system must support in order to achieve efficient

in-memory data management.

1. OBJECTIVE AND EXPERIMENTAL

METHODOLOGY
Objective. Given the explosion of Big Data analytics, it is im-

portant to understand the performance costs and limitations of ex-

isting approaches for in-memory data management. Broadly, in-

memory data management covers two main types of roles: (i) sup-

porting analytics operations and (ii) supporting storage and retrieval

operations on arbitrary objects. This paper proposes a performance

study of both analytics and key-value object operations on three

popular systems: Memcached [2], Redis [3] and Spark’s RDD [7].

Workloads setup. To test the analytics performance, we use the

PageRank algorithm implemented in a Map/Reduce style. In the

Map phase, we compute the contributed rank for the neighbors of

every web page, and distribute this information to other nodes. In

the Reduce phase, each node computes the new ranks for the local

web pages based on the contributed ranks.

Spark naturally supports Map/Reduce computations, and we use

the default PageRank implementation shipped as part of Spark 0.8.0

examples. RDDs are persisted into memory before we use it. We

use Spark 0.8.0/Scala 2.9.3 with Java 1.7.0.

Memcached is a key-value store that only supports operations

such as set/get. To implement PageRank algorithm on top of Mem-

cached, we implement a driver program to do the computations.

The driver uses Sypmemcached Client 2.10.3 [4] to connect to the
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Figure 1: Analytics Architecture over Memcached and Redis

Memcached servers. Specifically, a driver program is hosted inside

each Memcached server node to manage its local server and com-

municate with remote servers. We coordinate all driver programs

with a master program that instructs the drivers into map and reduce

steps. The TCP protocol is used for the communication between

all Memcached servers and the drivers. We use Memcached 1.4.15

compiled using gcc 4.6.3 with the default settings. Figure 1 shows

the architecture of the analytics operations on top of Memcached.

Like Memcached, Redis is a key-value store with basic set/get

operations and a set of advanced functions such as pipelined oper-

ations, server-side scripting, and transactions. A similar setup as

Memcached is used for Redis, as described in Figure 1, termed Re-

dis client-side. The driver uses Aredis Client 1.0 [1] to connect to

the servers. Unlike Memcached, Redis supports server-side script-

ing. Thus, the PageRank processing can be done directly by the

Redis servers via Lua scripts, without relying on a driver program.

We refer to this manner as Redis server-side data analytics. We use

Redis 2.6.16 compiled using gcc 4.6.3 with the default settings.

The implementation of PageRank in both Memcached and Redis

requires one key-value object to hold the neighborhood information

of each node in the graph, and one for the PageRank information

of each node. Spark’s PageRank implementation uses two RDDs.

The first RDD stores each graph edge as a key-value object, and the

second stores the computed PageRanks.

Memcached and Redis servers, and RDD worker are configured

with cache size of 5 GB; Redis persistence is disabled during the

experiments. We use the default number of threads for all the server

systems (e.g. 4 threads for Memcached). To stress-test the perfor-

mance of Memcached/Redis servers, we use drivers that support

multi-threaded asynchronous connections to the servers. Based

on a tuning experiment, we select the thread configurations that

achieve the best performance: five threads for Memcached driver,

and six threads for the Redis driver.

Datasets. We run PageRank for 10 iterations using two datasets.

The first dataset is Google Web Graph Dataset [5] of 875,713 nodes

and 5,105,039 edges. The size of this dataset on disk is 72 MB.

When loaded into a single node’s memory, it takes 85 MB in Redis,

135 MB in Memcached and 3.9 GB in RDD. The second dataset is

Pokec Social Network Dataset [5] consisting of 1,632,803 nodes

and 30,622,564 edges. On disk this dataset takes 405 MB, and
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Figure 2: Execution time of PageRank - Memcached/Redis

when loaded in RDD, it exceeds the maximum cache size of 5 GB

of a single node. The second dataset is only used to show the scal-

ability of RDD, since the first one is too small for RDD.

In Memcached/Redis, the data distribution among cluster nodes

is based on the hash of the graph node id. Due to the hashing

mechanism, Memcached/Redis cluster nodes are storing datasets

of equal sizes. RDD uses Spark’s default partition mechanism.

Systems setup. We use two types of systems for performance

measurements:

1. Cluster setup. We perform scalability analysis on a cluster with

16 Intel Xeon X3430 nodes, each with 4 cores/4 hardware threads,

8 GB DDR3 RAM, 256 KB L1 Cache, 1 MB L2 Cache, 8 MB

L3 Cache, inter-connected using 1Gbps Ethernet, and running

64-bit Linux kernel 2.6.18.

2. Single-node setup. For efficiency analysis, we need to remove

the network I/O bottleneck, and perform the experiments inside

a single server node. The node has two Intel Xeon X5650 pro-

cessors, each with 6 cores/12 hardware threads, and 24 GB of

DDR3 RAM. The memory architecture is Non Uniform Mem-

ory Access, where each processor directly connects to 12 GB of

RAM, and the two processors are interconnected by a fast In-

tel QuickPath bus that can support transfers at 25.6 GB/s. We

control the CPU affinity such that we use one processor to host

the server and the other processor to host the client/driver. This

ensures that the two programs do not interfere with each other,

thus approximating the execution over a very fast lossless net-

work. This node is running 64-bit Linux kernel 3.2.0.

Due to the differences in the types of nodes, we never compare

directly the performance of these types of server nodes. Instead,

the setups are used for different types of performance analysis.

We use the perf tool to access the hardware event counters re-

quired for the architectural-level analysis, the time command to

measure user and kernel time, and the strace tool to track the sys-

tem calls. All jobs are running alone in the server nodes, and we

stop unnecessary background programs. To minimize performance

variability, all the runs are repeated three times and the average

among these runs is reported. However, none of the experiments

exhibit significant differences among these three runs.

2. PERFORMANCE OF IN­MEMORY AN­

ALYTICS

2.1 Cluster Performance
Figures 2 and 3 show the execution time for one iteration of all

four versions of PageRank implementations: Memcached, Redis

client-side, Redis server-side and RDD when using up to 16 nodes.

Both figures plot the execution time as a function of the number of

nodes, and the ideal scalability lines.

The most surprising result is the gap in the performance between

RDD and Memcached/Redis. RDD finishes one iteration 1.3-14×
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Figure 3: Execution time of PageRank - RDD

faster than Memcached, 1.4-12× faster than Redis client-side, and

over 400× faster than Redis server-side.

Redis server-side has poor performance because the Redis server

operates in a single-threaded manner. Within a long-running script-

ing job, the server cannot service requests from other servers. Thus,

increasing the number of servers worsens the performance, due to

the increasing waiting time among servers.

Memcached, Redis client-side, and RDD exhibit different de-

grees of scalability. Memcached and Redis client-side generally

scale well, and their execution time is close to the ideal scalability

line. RDD, although finishing much faster, scales worse. We notice

that RDD exhibits different ratios of computation time to commu-

nication time as the number of nodes increases. On small number

of nodes, the graph size exceeds the maximum cache size. Thus,

during the computation of PageRank, RDD must cycle between

loading from disk and performing computations on the in-memory

data. The communication time is typically small, because it in-

volves a small number of nodes. Thus, on small number of nodes,

the computation time of PageRank dominates the execution time.

In contrast, on large number of nodes, the dataset can fit completely

in the memory, and the computation requires much less disk activ-

ity. Thus, when using large number of nodes, the communication

time becomes the dominant part. Because the communication cost

depends linearly on the number of nodes, the PageRank execution

time does not decrease anymore when adding more nodes. This

behavior ameliorates as the dataset size increases, because larger

datasets shift the bottleneck to the computation phase.

In the next subsection we investigate the reasons for the perfor-

mance gap between RDD and Memcached/Redis.

2.2 Single­Node Analysis
We investigate the reasons for the large performance difference

between RDD and Memcached/Redis. We run all four programs on

the single-node setup and collect important OS-level performance

metrics, summarized in Table 1. We measure the cumulative CPU

utilization (average number of cores used by the programs; maxi-

mum allowed is 12), the percentage of the CPU time spent in the

kernel and the number of system calls performed per second.

Metric
RDD Memcached Redis client-side Redis

Worker Driver Server Driver Server Driver Server-side

CPU utilization 3.79 0.22 0.326 2.166 0.354 4.008 0.71

System time [%] <0.01 <0.01 61 23 31 9 68

Syscalls/s – – 63093 665891 33567 115309 32700

Table 1: OS-level performance of PageRank

RDD, Memcached and Redis client-side exhibit good CPU uti-

lization, and benefit from the multi-core architecture. However,

RDD spends very little time in the kernel, while both the drivers

and the servers of Memcached/Redis spend 9% to 61% of the CPU

time inside the kernel, which is further confirmed by the large num-

ber of system calls performed by these programs.

Using the strace system call profiler, we see that the Memcached

and Redis drivers perform a large number of system calls per sec-
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Figure 4: Multi-node get throughput

ond. On closer investigation we discover that 90% and 99% of

these calls are futex system calls, caused by the synchronization

among the drivers’ threads. However, these calls solve very fast,

and do not explain the long time spent in kernel mode. The most

time-consuming system calls of the drivers are related to reading

from and writing to the network. Similarly, on the server side, more

than 98% of the system-level CPU time is spent in a sequence of

system calls related to reading from and writing to the network.

For each data object request, the driver performs two system

calls, while the Memcached server performs three system calls, and

the Redis server performs six system calls. As the main bottleneck

is linked to the performance of the object operations via TCP, it

motivates us to perform a deep analysis of the suitability of TCP

for transporting key-value objects, which is shown in Section §3.
The main reason for the good performance of RDD is that the

analytics operations are performed inside the same process as the

data. In contrast to Memcached and Redis, RDD does not perform

any system calls to access the data, relying on direct access to the

process heap. Good parallelization by using Java threads further

increases the efficiency of analytics operations over RDD.

3. PERFORMANCE OF OBJECT OPERA­

TIONS
We perform an analysis of the throughput of set/get operations

on arbitrary objects. However, RDD does not support set opera-

tions. Thus, for RDDwe profile only the get operation, by writing a

program that performs get operations using the look-up API. Spark

does not provide an index for the RDD objects. To support efficient

get, we implement an indexing mechanism in Spark by hashing all

the keys to the offset inside the RDD partitions. The experiments

are conducted in both multi- and single-node configurations. The

performance of set and get operations are very similar, and thus we

only discuss one of them in different scenarios.

3.1 Concurrency Tuning
To make sure that the performance of the server is maximized,

we perform an experiment during which we vary the number of

clients, the number of network connections between clients and

servers, and the number of threads of the server for Memcached

(Redis is single-threaded). We then select the configuration that

maximizes the throughput. All subsequent experiments described

in this section are performed with these configurations as follows.

In the multi-node experiments, we set (i) four threads for Mem-

cached servers, three client nodes per server node, each client node

holding 10 clients, each client using a single TCP connection per

server; (ii) same settings for Redis expect for the thread configura-

tion; (iii) 64 threads for RDD driver and default settings for Spark.

In the single node experiment we use (i) one Memcached server

using 12 threads, four clients, each using 50 concurrent connec-

tions; (ii) one Redis server, three clients each with 50 concurrent

connections; (iii) same settings for RDD as in the multi-node.
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Figure 5: Single-node set throughput

3.2 Multi­node Throughput
We run the three systems on up to 16 nodes. After data pop-

ulating phase (107 records with random keys), the clients/drivers

continuously perform get operations. We sample the throughput in

units of two seconds, for 10 times, and report the maximum ob-

served throughput. Figure 4 shows the throughput of a get opera-

tion for small objects (10B for both key and value).

We see that the throughput of Memcached/Redis scales almost

linearly with the number of nodes, and is in the range of millions

of requests per second. In contrast, the get throughput of RDD is

three orders of magnitude lower and does not scale beyond 8 nodes.

Surprisingly, even a hash-based index for RDD only improves the

throughput by 1.6-5× compared to RDD without index.

The large disparity in the performance is caused by two factors.

First, because of the job isolation mechanism of Spark, there is

only one driver that can serve requests to all its RDDs. This archi-

tecture puts a large performance burden on the driver, which can

quickly become the bottleneck when serving requests to multiple

nodes. In contrast, Memcached and Redis allow an indefinite num-

ber of clients to query the same data. In our case, even with a

multithreaded driver for RDD, the performance plateaus after two

nodes for RDD with index and eight nodes for RDD without index.

Second, each get operation of RDD is associated with a job startup

overhead of about 0.8 milliseconds, for both versions of RDD. This

long response time amplifies the first performance problem.

Memcached and Redis scale well with the number of nodes, but

the throughput per-node is still substantially below the peak net-

work throughput: 6-17 MB/s out of 125 MB/s.

3.3 Single­node Throughput

3.3.1 Memcached and Redis

We use the single-node setup to analyze the throughput of both

set and get operations as a factor of key and value size for Mem-

cached and Redis. As the key size and value size have similar ef-

fects on the throughput, we only show the results for the value size.

The results, shown in Figure 5 reveal an unexpected behavior. The

requests-per-second throughput is almost constant when the value

size changes between 10 bytes and 1 kB. From 1 kB to 10 kB there

is a slight dip. It implies that it is almost as expensive to transfer a

10 bytes object as a 10 kB object. In contrast, from 10 kB onwards

the requests-per-second throughput decreases significantly, which

shows better utilization of the available network bandwidth.

To understand the reason for the poor performance of transfer-

ring small objects, we perform an analysis of the CPU activities of

the Memcached and Redis servers during the transfers of objects

of different sizes. We discover serious inefficiencies in the way the

Memcached and Redis servers make use of the CPU architecture.

Table 2 lists some important CPU performance metrics for val-

ues of different sizes (10 bytes key), which show two consistent

trends for both Memcached and Redis, in the set/get operations: (i)

Instruction cache miss rate is high for small objects and decreases
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Metric
10 bytes 100 bytes 10 kB

Memcached Redis Memcached Redis Memcached Redis

CPU utilization 4.87 0.99 4.95 0.99 5.36 0.99

System time [%] 72.43 57.20 71.40 58.63 72.63 54.24

L1D miss rate [%] 9.82 7.49 10.19 7.75 15.56 15.59

L1I miss rate [%] 19.78 14.80 19.45 14.56 16.56 13.91

LLC miss rate [%] 9.40 10.61 9.54 10.82 5.70 10.50

Table 2: CPU performance metrics for different value sizes

with an increase in the value size; (ii) Data cache miss rate has an

opposing trend.

The instruction cache miss rate of 20% for Memcached and 15%

for Redis when transferring small key-value objects are unexpected,

since their sources do not exceed 20,000 lines of C code. Further-

more, Memcached/Redis spends all the service time inside a loop

where it checks the sockets using the epoll_wait system calls,

and subsequently read/write them. For comparison, a highly

memory-bounded program such as SP from NASA Parallel Bench-

mark that is performing analytics on a penta-diagonal matrix has

0.01-0.05% instruction cache miss rate on the same hardware.

The high instruction cache miss rate has deep implications on the

efficiency of using the CPU. Modern CPU cores operate using an

out-of-order execution, which allows multiple data cache misses to

be fetched from L2/L3 caches or the main memory, but only one

instruction cache miss. Thus, the latency of the memory is hid-

den under many concurrent data requests, but for instruction cache

misses, the full latency penalty must be incurred. Due to this, CPU

appears to be active during Memcached/Redis server execution, but

instead is spending more than 70% of the CPU time waiting for in-

structions to be fetched from memory without doing useful work.

We use perf record to gather traces of the kernel function calls.

During Memcached/Redis execution, the kernel spends most of the

time in the TCP code and the epoll mechanism. But most of the

L1 instruction cache misses come from the TCP code: by visual

inspection, we see that kernel functions prefixed with tcp and inet

trigger more than 30% of L1 instruction cache misses for both

Memcached and Redis when using objects of less than 100 bytes.

We conclude that TCP is inefficient at handling small objects.

But analytics computations such as PageRank mostly encapsulate

numbers inside key-value objects, thus generating many small ob-

jects. To efficiently transfer key-value objects, all objects should

ideally be larger than 100 kB, as seen in Figure 5. The implications

of this conclusion are further discussed in Section 4.

A recent paper which analyzed the performance of Memcached

in web cache deployments also noticed unexpected low performance

for object sizes between 1 kB and 4 kB [6]. They also observed that

network stack is the main culprit, but their analysis does not link the

architectural-level characterization to the OS-level analysis. And

in web deployments, the key-value object requests cannot be coa-

lesced into larger meta-objects. The solution proposed by them is

a custom hardware that handles network connections without in-

terventions from CPU. In contrast, most key-value objects in data

analytics are less than 20 bytes, which can be coalesced into meta-

objects of up to hundreds of kilobytes. Thus, a software solution

relying on coalescing small objects may achieve good performance.

3.3.2 RDD

The single-node performance of RDD on get operation is shown

in Figure 6, for varying number of records stored in the RDD.

In the original RDD design, for small number of records, the

startup cost of the get job is the bottleneck. Past 106 records, due

to the sequential scan used by RDD, the memory access becomes

the bottleneck. This can be seen by the strong correlation between

throughput loss and last level cache (L3) miss rate.
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Figure 6: Single-node get throughput for RDD

The throughput of RDD with index is similar to the original de-

sign, for number of records less than 10
6. This confirms that the

startup cost is the bottleneck. Even past 106 records indexing does

not lead to significant advantages, because the startup cost compro-

mises the achievable throughput. We conclude that indexing does

not bring significant advantages to the throughput of get operations

because the job startup time dominates the response time.

4. CONCLUSIONS AND SYSTEM DESIGN

IMPLICATIONS
This paper provided a detailed analysis on the performance of

Memcached, Redis, and RDD for both analytics operations and

fine-grained key-value object operations. We showed that neither

system handles both tasks efficiently. The architecture of Mem-

cached and Redis forces the computation component of the appli-

cation to use TCP to access the in-memory data, and is shown to

be detrimental to the performance. RDD does not support efficient

object get operations due to a large job startup cost.

Our analysis provides a set of insights on designing a system

that efficiently handles both analytics and fine-grained object op-

erations. First, a system must support fast inter-process communi-

cation (IPC) within the same node, and efficient transfer of small

key-value objects. Analytics applications such as PageRank gener-

ate many such objects because they need to encapsulate numbers.

Second, IPC across nodes must still use TCP, as UDP is unreliable

and may lead to errors if requests are dropped, especially for set re-

quests. However, it must avoid as much as possible to transfer small

key-value objects, potentially by coalescing several key-value ob-

jects into a larger meta-object. Third, an index is required for fast

random access to an object. Fourth, a lightweight architecture for

accepting set/get requests is required; otherwise the startup cost of

an object operation will compromise the achievable throughput.

5. ACKNOWLEDGMENTS
This work was supported by A*STAR project 1321202073.

6. REFERENCES
[1] Aredis java redis client. http://aredis.sourceforge.net/.

[2] Memcached. http://memcached.org.

[3] Redis. http://redis.io.

[4] Spymemcached memcached client.

https://code.google.com/p/spymemcached/.

[5] Stanford large network dataset collection.

https://snap.stanford.edu/data/.

[6] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F.

Wenisch. Thin Servers with Smart Pipes: Designing SoC

Accelerators for Memcached. In ISCA, 2013.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

Resilient Distributed Datasets: A Fault-tolerant Abstraction

for In-memory Cluster Computing. In NSDI, 2012.

836


