Scalable Logging through Emerging Non-Volatile Memory

Tianzheng Wang
Department of Computer Science
University of Toronto

tzwang@cs.toronto.edu

ABSTRACT

Emerging byte-addressable, non-volatile memory (NVM) is
fundamentally changing the design principle of transaction
logging. It potentially invalidates the need for flush-before-
commit as log records are persistent immediately upon write.
Distributed logging—a once prohibitive technique for single
node systems in the DRAM era—becomes a promising so-
lution to easing the logging bottleneck because of the non-
volatility and high performance of NVM.

In this paper, we advocate NVM and distributed logging
on multicore and multi-socket hardware. We identify the
challenges brought by distributed logging and discuss solu-
tions. To protect committed work in NVM-based systems,
we propose passive group commit, a lightweight, practical
approach that leverages existing hardware and group com-
mit. We expect that durable processor cache is the ultimate
solution to protecting committed work and building reliable,
scalable NVM-based systems in general. We evaluate dis-
tributed logging with logging-intensive workloads and show
that distributed logging can achieve as much as ~3x speedup
over centralized logging in a modern DBMS and that passive
group commit only induces minuscule overhead.

1. INTRODUCTION

Since its debut in the early 90s, ARIES [28] has been the
de facto standard of transaction logging. Despite the preva-
lence of multicore hardware and large main memories, most
systems still use a centralized ARIES-style log that buffers
log records in DRAM until a commit request forces them
to stable storage. Given the volatile, fast DRAM and non-
volatile, slow disk, such flush-before-commit principle im-
proves performance, without risk of lost work, by replacing
the random write-back of all dirty pages in a transaction’s
footprint with (ideally) a single sequential I/O to harden the
log. However, centralized logging has become a significant
bottleneck on today’s massively parallel hardware [21, 22].

Emerging byte-addressable, non-volatile memory (NVM)
technologies, such as phase change memory (PCM) [44] and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 10

Copyright 2014 VLDB Endowment 2150-8097/14/06.

865

Ryan Johnson
Department of Computer Science
University of Toronto

ryan.johnson@cs.utoronto.ca

& 100

§ 75 Log work s
3 Log contention s
< 50 Lock manager
o Other contention =
S 25 Other work s
E

|_

4 8 1624 324044
Transaction threads

Figure 1: Time breakdown of running the Update
Location transaction of TATP on a modern DBMS.
Log contention is a major source of overhead.

spin-transfer torque RAM (STT-RAM) [14], are fundamen-
tally changing the design principle of logging. These NVM
products promise high performance, good scalability and
low power consumption [25]. For example, STT-RAM could
achieve ~10ns write latency [18], which is even faster than
DRAM. With proper caching, carefully architected PCM
could also match DRAM performance [4]. These memories
can be manufactured as DIMMs and placed side by side with
DRAM on the memory bus, allowing direct access through
ordinary load and store instructions. The combination of
DRAM-like performance and non-volatility makes NVM an
attractive candidate for logging: log records persist immedi-
ately upon write, so transactions need not force log records
to disk at commit. Various simplifications can then be ad-
mitted to improve logging performance and reliability, such
as removing asynchronous and group commit [12, 37], and
unifying the log buffer with backend log storage [10].

Although NVM-based logging brings improvements in la-
tency and single-thread performance, contention for the log
head still exists because of the centralized design. Figure 1
shows the time breakdown of Shore-MT [20], a prototype
database system optimized for modern hardware, when run-
ning a logging-intensive workload on a 48-core quad-socket
server (with hyper-threading). As system load increases,
contention for the centralized log becomes a major over-
head. Though rarely used in single node systems, we ob-
serve that a distributed log has the potential to remedy this
situation. In this paper, we show that NVM-enhanced dis-
tributed logging can eliminate the logging bottleneck for
modern multicore and multi-socket hardware. We equip
each log with an NVM-based buffer, accessed via load and
store instructions. Transactions commit immediately af-
ter buffering their commit records, and log records are only
de-staged to disk when the log buffer is full.

Neither adopting distributed logging nor NVM is trivial.
Distributed logging poses two main challenges: how to as-
sign log records to logs (log space partitioning), and how
to prevent holes in the distributed log, without imposing
excessive overhead at commit time. ARIES-style recovery
favors partitioning the log either by page or transaction,
i.e., assigning all log records involving a given page or trans-
action to the same log, respectively. As we will show in later
sections, adopting either approach involves different design
challenges and performance implications.

Byte-addressable NVM is no panacea, either. Modern
processors heavily rely on multiple levels of caches to im-
prove performance. Though log records become persistent
immediately after reaching NVM, by default they are first
buffered in volatile processor caches (“write-back” caching).
Data remain cached until some event evicts the value from
the caches (e.g., a cache conflict or the OS explicitly re-
quests a cache flush), and a power failure in the mean-
time would lose log records buffered in the SRAM cache.
Spreading log records over multiple logs worsens the situ-
ation: a transaction cannot commit until all records from
all logs it accessed have reached persistent storage. In case
of transaction-level partitioning, the transaction must also
ensure that all previous log records for pages in its footprint
have become persistent, even if they reside in a log the trans-
action never accessed. Tracking these dependencies explic-
itly is prohibitively complex, and forcing log records to disk
at every commit imposes unacceptable I/O overheads [21].

Based on existing hardware, we propose passive group
commit, a lightweight group commit protocol for NVM-based
distributed logging, to protect committed work upon fail-
ure. Unlike most NVM logging proposals, passive group
commit does not rely on NVM-specific hardware support
for customized memory barriers [9], and does not issue a
barrier after buffering each log write to NVM [10, 35]. In-
stead, passive group commit builds on commodity processor
features—write combining and memory barriers—and lever-
ages group commit to ensure all necessary log records are
persistent before a transaction finishes committing.

Passive group commit is very lightweight and offers sig-
nificant performance benefits for existing hardware equipped
with NVM, but is actually a stop-gap solution. For future
NVM-based systems, we argue that the ultimate solution is
not a new type of memory barrier, but rather a durable pro-
cessor cache [23, 45]. A durable cache ensures that writes
are effectively persistent as soon as they leave the CPU’s
store buffers, and can be implemented either with on-chip
NVM or a supercapacitor-based solution that drains caches
whenever power is lost. Durable caching is largely transpar-
ent to software. The only requirement, on some processors,
is to employ memory fences that prevent reordering of stores
(x86 does not reorder stores, but other architectures like
ARM are more aggressive). Durable caches are also helpful
in extending the lifetime of NVM by allowing the cache hi-
erarchy to absorb the vast majority of writes. Although not
yet widely available, they could be developed rapidly using
existing technology: prototypes have already been built [29,
32]. Durable caches would improve and simplify our pro-
posed design even further, by removing the need for passive
group commit and write combining. Due to their ease of use,
high performance, and reduced wearout rates for underlying
NVM, we expect durable caches to become widely available
as NVMe-equipped systems become more popular.

866

In summary, we make the following contributions:

e We show that NVM allows for practical distributed
logging, thereby eliminating the scalability challenges
posed by a single centralized log.

e We propose passive group commit, a lightweight group
commit protocol that leverages existing hardware sup-
port for write combining to protect committed work
upon failures.

e We show that durable cache architectures promise to
both simplify distributed logging and improve its per-
formance in NVM-based systems.

Note that the focus of this work is not to create another
NVM-based log that removes I/O latencies. Rather, we pro-
pose to leverage NVM in support of distributed logging, with
the goal to alleviate the contention bottleneck that all cen-
tralized logging schemes suffer (NVM-based or otherwise).

In the rest of this paper, we provide background on NVM
and logging in Section 2. In Section 3, we discuss design
challenges brought by distributed logging and propose solu-
tions. Section 4 details approaches to protecting committed
work and expected support for NVM from hardware/OS.
Section 5 presents evaluation results. We summarize related
work and conclude in Sections 6 and 7, respectively.

2. BACKGROUND

In this section, we briefly introduce NVM technologies and
discuss how they could be used for database logging. In the
end, we give an brief overview of database logging.

2.1 Byte-addressable Non-Volatile Memories

Several NVM technologies—such as PCM [44], memris-
tor [41] and STT-RAM [14]—are being actively investigated
as alternatives to DRAM due to their scalability, energy
efficiency and non-volatility. Other efforts focus on NV-
DIMMs, or DRAM backed by flash /batteries [1, 43]. Though
based on different technologies, these NVMs are all byte-
addressable and can be placed side by side with DRAM on
the memory bus. Software can use ordinary load and store
instructions to access them. Data are immediately persis-
tent upon write, no constant voltage is needed to maintain
the data. We summarize these NVM technologies below.

Maturing/in production NVM. Although most NVM
technologies are only beginning to roll out, enterprise-level
products are available today—for applications that can jus-
tify the cost—in the form of DIMMs backed by batteries
or NAND flash [1, 43]. These products are already in mass
production and available on the market. They usually buffer
data first in DRAM to allow full DDR3 speed, and then pe-
riodically persist data on flash. Such NV-DIMMs could be
a convenient drop-in solution for distributed logging.

Another maturing technology is PCM, which stores data
by changing the state of its underlying material. PCM cells
consist of two electrodes and phase change materials that
can switch between low- and high-resistance states in re-
sponse to electrical signals [44]. Raw PCM exhibits longer
latency (80ns — 1ps) than DRAM (20ns — 50ns) and lim-
ited programming cycles (108 — 109) [6, 25]; various com-
pensating mechanisms have been proposed [7, 17, 25, 36,
46]. We expect future PCM products to be equipped with
a capacitor-backed SRAM buffer (like some disks today) to
deliver near-DRAM performance with reasonable lifetimes.

Future promising candidates. Known as the “fourth
basic circuit element”, the memristor [41] consists of two
layers of titanium dioxide and wire electrodes. Its resis-
tance changes as electric current passes through, thus stor-
ing information. Reported latency ranged from hundreds of
pico-seconds to tens of nanoseconds [38]. 100TB memris-
tor drives may be available by 2018 [27]. STT-RAM [14]
is another promising NVM technology that offers 10-25ns
latency, making it a good candidate for both on-chip cache
and storage [18]. These NVM technologies are still several
years from reaching the market, but their high performance
and non-volatility will further ease the adoption of NVM as
a drop-in solution to scalable logging.

Summary. Flash/battery backed NV-DIMMs and PCM
are the most promising NVM candidates to date, as they
are already or about to be available on the market. Despite
slower writes and limited endurance, it is widely accepted
that commercial PCM products will feature a capacitor-
backed SRAM/DRAM buffer, both to hide latency and to
avoid premature wearout. Moreover, our scheme writes log
records sequentially and without partial overwriting, which
makes logging an ideal candidate application for NVM; we
do not regard endurance as a major problem. NVMs that are
fast enough (e.g., flash-backed NV-DIMMs) could be used
as a drop-in replacement. Our approach does not rely on an
NVM having specific timing or wearout characteristics.

2.2 Write-ahead Logging

First proposed by Mohan et al. [28], ARIES logging is
endemic among both commercial and open source database
systems. Transactions record all updates in a single, global
log before the dirty pages reach disk. To hide the perfor-
mance difference between fast memory and slow disk, log
records are cached in a centralized DRAM buffer and forced
to disk only at transaction commit. The log is usually pro-
tected by a latch or mutex, which must be obtained by the
inserting transaction before writing to the log buffer. De-
spite the adoption of multicore and multi-socket hardware,
centralized logging still dominates database engine designs.

When a transaction commits, its buffered log records must
be forced to disk to ensure recoverability. Each log record
is uniquely identified by a monotonically increasing log se-
quence number (LSN). An LSN in each page indicates the
latest log record that modified the page. During recovery,
the log is analyzed and scanned forward to repeat history
(“redo”), applying log records with an LSN greater than its
targeted page. After redo, loser transactions are rolled back
(“undo”). A compensation log record (CLR) is written af-
ter each undo operation to make sure log records are undone
exactly once in spite of repeated crashes during recovery.

3. DISTRIBUTED LOGGING

Distributed logging eases the logging bottleneck by spread-
ing log insertions over multiple physical logs. Historically,
distributed logging has been prohibitive for single node sys-
tems due to dependency tracking and I/O overheads. Most
single node systems avoid using a distributed log, and even
distributed systems have used a centralized log, hosted on
a dedicated node [26]. NVM makes it possible to use dis-
tributed logging in single node systems, as it potentially
eliminates the need for flush-before-commit. Log de-staging
is only required when log buffers are full, and uses large
sequential writes to maximize disk bandwidth utilization.

867

Logging is tightly coupled with other core components
in database systems (e.g., the transaction manager) and is
strongly affected by recovery: ARIES uses physical logging
for redo and logical logging for undo (physiological logging).
Both redo and undo have their own parallelism models: dur-
ing redo, modifications to different pages can be replayed in
parallel, while undo is parallelized at transaction-level. Re-
source managers that generated the log records select a log
either by page or transaction, and the competing recovery
parallelism modes add to the importance of selecting the
right partitioning scheme. The rest of this section discusses
the design challenges and trade-offs posed by distributed
logging, in terms of both forward processing and recovery.

3.1 Forward Processing

Uniqueness of log records. In a centralized log, the log
sequence number (LSN) uniquely identifies each log record;
records written by the same transaction are chained together
using a prevLSN field, which identifies the previous log record
written by the same transaction. When a transaction aborts,
log records are undone by following the chain of prevLSN
pointers, most-recent first. However, LSNs are not unique
identifiers in distributed logging, because they only indicate
a log record’s position within the log that holds it, saying
nothing about the relative ordering of records from different
logs. Under page-level log space partitioning, a transaction
could touch any page and write to any log, and a prevLSN no
longer allows a transaction to trace its log records backward.
For transaction-level log space partitioning, a transaction
only inserts log records to a single log, but page LSNs are no
longer unique in the transaction because updates generated
by different transactions go to different logs. The lack of
ordering among records from different logs potentially causes
the recovery manager to skip applying newer log records, or
even to apply older log records on top of newer log records
that happen to have smaller LSNs.

To uniquely identify log records, we propose a global se-
quence number (GSN) based on logical clock [24]. At run-
time, a GSN is maintained in each page, transaction and
log. Pages and log records also store a GSN with them
permanently. Pinning a page in the buffer pool sets both
page and transaction GSNs to max(tx GSN, page GSN) +
1 if the transaction intends to modify the page; otherwise
only the transaction GSN is set to max(tx GSN, page GSN).
Inserting a log record will set both transaction and page
GSNs to max(tx GSN, page GSN) + 1. The log then sets
its GSN to max(tx GSN, page GSN, log GSN). The same
GSN is also stored in the log record that is being inserted.
In addition to the GSN, each log record also stores an LSN,
which indicates the offset into an individual log that holds
it. Although GSNs are only partially ordered, they uniquely
identify log records and provide a total order for log records
belonging to any one page, log, or transaction.

GSN solves the uniqueness problem posed by LSN in dis-
tributed logging. The recovery manager can follow GSNs to
determine if a record should be applied to its targeted page.
Note that GSN might not be mandatory for page-level log
space partitioning because log records for the same page are
always stored in the same log. To allow transaction rollback,
each transaction should record not only the LSN, but also
the log in which each log record is stored. Though not re-
quired, using GSN can avoid such complex bookkeeping and
simplify the design of page-level partitioning. Transaction-

Tx 1 thread (on processor 1) Tx 2 thread (on processor 2)
\ Undo buffer | \ Undo buffer |
i f f f

1. write P1 2. write P4 1. write P1 2. write P4
v &«
NVM log buffer 1 «—Chkpt— NVM log buffer 2
NUMA node 1 NUMA node 2
(a) Page-level log space partitioning

Tx 1 thread (on processor 1)

Tx 2 thread (on processor 2)
\ Undo buffer | \ Undo buffer |
f f f f

1. write P1 2. write P4 1. write P1
} | .
NVM log buffer 1 <—Chkpt— NVM log buffer 2
NUMA node 1 NUMA node 2

(b) Transaction-level log space partitioning

2. write P4

Figure 2: The processor affinity problem brought by distributed logging. (a) Threads may cross NUMA node
boundaries to insert log records. (b) Threads only insert to the log that is local to its running processor.

level partitioning relies heavily on GSN to function properly
during forward processing as log records for the same page
could be stored in arbitrary logs by different transactions.
Cross-log aborts. GSN only partially solves the prob-
lem of tracking log records in a distributed log. Compared
to LSN, GSN is also monotonically increasing, however, it
does not identify the log a particular log record came from,
nor give the record’s byte offset within that log. A naive
implementation will scan multiple logs during forward pro-
cessing to find the correct log record with a specified GSN.
To avoid expensive log scans, we maintain a private DRAM
undo buffer which records log writes in each transaction.
Similar approaches have already been implemented in both
commercial and open source systems to simplify transaction
rollback [40]. The buffer is managed as a stack (with abort
repeatedly popping records), and discarded after the trans-
action is ended. Log records generated during rollback are
never undone, and recorded in the NVM log buffer only.
Processor affinity. The shift to multicore and multi-
socket systems brings non-uniform memory access (NUMA),
where memory is either “local” or “remote”, with the latter
being much more expensive to access. Transaction threads
could be scheduled on arbitrary processors, spreading inser-
tions over any log, which in turn could be allocated in any
NUMA node (or striped over all of them). If the log buffer
and the transaction thread are not within the same NUMA
node, as shown in Figure 2(a), log insertion will involve re-
mote memory accesses. Since page-level log space partition-
ing allows transactions to write to any log, accessing remote
memory is inevitable, unless transactions are scheduled in a
way that restricts threads to particular sets of pages (e.g. us-
ing physiological partitioning [34]). Transaction-level parti-
tioning, on the contrary, fits directly with multi-socket hard-
ware as each transaction’s writes go to one log. As shown in
Figure 2(b), a log could be allocated in each NUMA node,
with transactions assigned to logs based on the CPU they
run on. This approach eliminates remote memory accesses
when inserting log records, improving logging performance
and freeing up interconnect bandwidth for other uses.
Checkpointing. To accelerate recovery, ARIES man-
dates periodic checkpoints of all dirty pages and in-flight
transactions during forward processing. The recovery man-
ager can load these tables directly rather than scanning the
entire log to reconstruct them. A distributed log requires
the checkpointing thread to be aware of individual logs, es-
pecially for page-level log space partitioning: either page
GSN must be recorded, or a dirty pages table should be gen-
erated for each log. The analysis pass can then process log
records from different logs in parallel. As the active trans-
actions table is global and records only transaction status,

868

it could be stored in a predefined log (e.g., the first one),
and recovered with a pre-analysis step. Another approach
is to generate multiple active transactions tables, one for
each log, to remove the pre-analysis pass.

Log space utilization and skew. Under page-level
partitioning, transactions leave log records in multiple logs
during forward processing, but all records for a given page
are stored in the same log. If certain pages are especially
hot, the corresponding logs could become over utilized, while
leaving other logs under utilized. In contrast, transaction-
level partitioning stores each transaction’s log records in a
single log, so log accesses should be distributed uniformly as
long as the OS spreads load evenly across cores. Transac-
tions are usually short enough, and migrations rare enough,
that we can assign each transaction a log based on the core
where it first runs, with little impact on performance.

3.2 Recovery

ARIES separates recovery into three passes: analysis, redo
and undo. The analysis pass extracts information (e.g., lists
of dirty pages and active transactions) logged before the
system failed, to determine how redo and undo should pro-
ceed. With a distributed log, the analysis pass could be
parallelized at both page or transaction levels, though a pre-
analysis step might be needed first, to retrieve the dirty page
and/or active transactions tables (as discussed previously).
Once analysis completes, ARIES naturally supports paral-
lel redo and undo: redo of different pages can proceed in
parallel, as can undo of different transactions. Ideally, a
distributed log should recover fully in parallel, but neither
log partitioning choice aligns perfectly with both redo and
undo. We discuss how distributed logging impacts recovery
under page and transaction level partitioning in this section.

Page-level log space partitioning. A page-partitioned
distributed log suits parallel redo nicely. The only difference
is that each redo thread should work with pages from a sin-
gle log, preferably residing on the same socket. However,
the undo pass requires analysis to build up the same per-
transaction log buffers that would have existed during for-
ward processing, which is potentially expensive given that
we expect the vast majority of transactions to have com-
mitted with only a few losers left to undo. Further, if the
per-transaction buffers store pointers rather than copies of
log records, a parallel undo pass would have to randomly ac-
cess multiple logs, which is expensive for disk based systems
(recall that log records are de-staged to disk as the NVM
buffer fills). The overheads can be mitigated by copying log
records to the per-transaction buffers, or (if transactions are
too large to cache this way) by using efficient checkpointing
to ensure that most log records to be undone are in NVM.

Table 1: Comparing page-level and transaction-level log space partitioning.

Page-level

Transaction-level

Record uniqueness

LSN is adequate, but GSN is more convenient

GSN is required

Checkpointing Per-log dirty pages tables without GSN Per-log transaction tables for simpler recovery

Recovery Easy parallel redo, expensive transactions-level | Log synchronization needed for parallel redo;
parallel undo (need to hop among multiple logs) | cheap parallel undo by transactions

CPU affinity Cannot utilize CPU affinity since a transaction | Logs can be pinned to specified NUMA nodes

could potentially insert to any log

to serve requests exclusively for the node

Log utilization

May be unbalanced, depending on workload

Balanced if transactions are scheduled properly

Tracking dummy CLRs written by nested top actions also
complicates undo for page-level partitioning. ARIES uses
nested top actions and dummy CLRs to denote (usually
physical) operations that will never be undone once com-
plete, even if the requesting transaction eventually aborts.
For example, B-Tree page splits only affect physical repre-
sentations (not logical contents in the database) and can
safely persist across transaction rollback [28]. A dummy
CLR is written after the nested top action (e.g., B-Tree split)
completes, with a prevLSN field pointing directly to the log
record before the nested top action started. Since a dummy
CLR could cover multiple log records which are spread over
multiple logs under page-level partitioning, tracking back to
the log record before the nested top action involves jumping
across different logs. Even though the log records written
by nested top actions are never undone, they still have to be
examined (and potentially cached) during the analysis pass.

To simplify undo, we replace nested top actions with sys-
tem transactions [13]. A system transaction only modifies
physical representations of the database, and will not change
any logical contents visible to the user. Therefore, system
transactions acquire no locks, and can inherit latches from
the invoking transaction. The user transaction can start a
system transaction when physical-only changes are required,
and resumes after it finishes.! System transactions also gen-
erate log records like user transactions do, and the rollback
of an interrupted system transaction is identical to that of a
user transaction: it can safely go through its log records in
the private DRAM undo buffer to undo them one by one.

Transaction-level log space partitioning. Parallel
undo is straightforward for a transaction-partitioned log as
all the log records to undo a transaction reside in the same
log. However, redo becomes more complex because depen-
dencies among pages can reside in any log. A nalve replay
of all logs in parallel results in log records for the same page
being applied in arbitrary order, potentially skipping cer-
tain records. For example, consider a transaction Tx 1 that
modified page P1 and logged it on Log 1 with GSN 50. An-
other transaction Tx 2 modified the same page but logged
it on Log 2 with GSN 60. Though the log record generated
by Tx 2 had a larger GSN, its relative position (byte offset)
in Log 2 could be well before the log record generated by
Tx 1 in Log 1, causing the log record generated by Tx 2 to
be applied first (assuming we start redoing both logs at the
same time and they proceed at the same speed). As the redo
pass will not apply a log record with a GSN less than the
page GSN;, the record generated by Tx 1 will be skipped.

!The system transaction can use the resources (e.g., latches)
of its invoking thread, which therefore is essentially “wait-
ing” for a function call to return, instead of another thread.

869

A two-step redo pipeline, reminiscent of map/reduce, can
solve this problem efficiently: the first stage uses N threads
to scan the logs up to some target GSN, partitioning log
records into M buckets by page ID. M threads can then sort
each bucket and apply the changes in parallel, without risk of
skipped records. Full parallelism can be achieved using this
approach, with the available parallelism balanced between
the N partitions and M redo threads.

3.3 Page vs. Transaction-Level Partitioning

We compare and summarize page-level and transaction-
level log partitioning in this section. Figure 2 clarifies the ba-
sic ideas of both approaches based on an example on a dual-
socket machine. In Figure 2(a), each NUMA node has an
NVM log buffer allocated from local memory. Two transac-
tion threads (Tx 1 and Tx 2) run on two processors. The ex-
ample assumes all pages with odd page numbers are covered
by Log 1, and all even numbered pages are covered by the
other log. Under page-level partitioning, both transactions
access remote memory for log insertions, while transaction-
level partitioning generates only local writes. For both de-
signs, checkpointing records could be kept in a predefined
log or generated for specific logs to ease recovery: page-level
partitioning could use individual dirty pages tables for each
log, while transaction-level partitioning could utilize per-log
active transactions tables.

Table 1 compares the two approaches in terms of design
challenges. In general, a transaction-level partitioned dis-
tributed log features straightforward undo and tracking of
log records. However, it needs more complex redo because
of dependencies among pages and transactions. Page-level
log space partitioning is implicitly supported by ARIES. It
allows easy parallel redo, but complicates with transaction-
level parallel undo and generates more remote accesses. As
we will show in our evaluation results, transaction-level par-
titioning achieves higher performance during forward pro-
cessing for multi-socket hardware as it avoids crossing NUMA
boundaries to insert log records.

4. NVM-BASED LOGGING

Modern processors rely heavily on caching for good per-
formance. When accessing NVM through the memory inter-
face, log records are first cached by the CPU. Log records
that are not yet persistent in NVM could be lost upon fail-
ures, which risks losing committed work. ARIES truncates
the log at the first hole, and transaction-level partitioning
could leave the database unrecoverable if earlier updates to
a page in one log are lost and the system attempts to apply
later updates to the same page from a different log. Worse,
the transactions generating such log records may not have
committed before a crash. So it is not sufficient to track

which logs a committed transaction touched. Instead, we
must ensure that no transaction can commit until every log
is durable up to the transaction’s commit GSN. The over-
head of flushing every log at every commit (or every time a
page moves to a new log) is a principal reason why imple-
mentations have avoided distributed logging when possible.

It is straightforward to store log records directly in NVM
by completely disabling caching for the NVM address range.
However, this approach adds significant latency to the crit-
ical path (log insertion) and threatens to cancel out any
benefits brought by a distributed log. Prior NVM research
has proposed augmenting the processor with a new memory
epoch barrier [9]. Although such a barrier would be com-
plex to implement, and would have high runtime overhead,
some NVM logging proposals rely on this primitive. Fang
et al. [10] propose to issue an epoch barrier after writing
each log record to persist the record. To tolerate holes in
the log, an epoch barrier is issued as soon as the log header
is written, leaving transactions to populate log records at
their leisure. Pellely et al. [35] proposed NVRAM Group
Commit to mitigate the overhead of the epoch barrier. All
these approaches are tailored for centralized logging, how-
ever. With a distributed log, the issuing processor would
have to not only flush its own records to NVM, but also en-
sure that other processors have done the same (in case any
dependent log records are not yet durable). The proposed
epoch barrier introduces more complexity in both processor
cache and the memory controller, and it is not clear whether
this approach can scale in multicore environments. Instead
of relying on hypothetical hardware primitives, we develop
a group commit protocol that protects committed work by
leveraging existing hardware support.

4.1 Passive Group Commit

This section presents passive group commit, a lightweight
group commit protocol for reliable and high performance
NVM-based distributed logging. Passive group commit lever-
ages existing hardware primitives to protect committed work
while still providing good performance.

Leveraging existing hardware primitives. Modern
processors allow the OS to control how the cache inter-
acts with accesses to a given physical address range. Ad-
dresses can be marked as uncacheable (important for mem-
ory mapped I/0), write-through (serving reads from the
cache but propagating all writes immediately), write-back
(the normal caching mode), or write-combining (WC). The
latter is a compromise for uncacheable memory in cases
where write coalescing is tolerable. Accesses to WC mem-
ory bypass caches for both reads and writes, but can buffer
writes inside the CPU for a short time. For example, the In-
tel Core series processors have eight WC buffers per core [16].
WC buffers can coalesce repeated/adjacent writes (replac-
ing several small memory transfers with a larger one) and
allow store instructions to complete before the write actu-
ally completes (to be drained lazily); with judicious use of
normal memory fences, write combining provides compara-
ble performance to cached writes, while guaranteeing that
those writes still reach the memory system in a timely man-
ner [2, 15]. Events such as interrupts and context switches
also drain WC buffers, avoiding the need to worry about
thread migrations. Though WC only provides uncached
(slow) reads, it has minuscule effect on logging, which is
write-mostly. In particular, our distributed log does not read

870

from NVM during forward processing (abort is supported by
the private DRAM undo buffer). During recovery, we map
the NVM in write-back mode before the undo pass for fast
reads, because no log records are generated during the anal-
ysis or redo passes. Thus, write combining is a natural fit
for NVM-based logging buffers. Whenever writing sensitive
log records (e.g., commit), a memory barrier (e.g., mfence)
is issued to empty the WC buffers and persist log records
in NVM. When the user receives a return value from the
log manager, the records are guaranteed to reside in NVM.
However, simply issuing memory barriers when committing
the transaction does not solve the dependency problem, as
discussed in the beginning of this section.

Protecting committed work. Log records are spread
over multiple logs by transaction threads running on differ-
ent processors. Before a transaction can safely commit, all
of its log records, along with all the log records that logically
precede them, must become persistent. For transaction-level
partitioning, log records affecting pages touched by a com-
mitting transaction could have been created by other, as-yet-
uncommitted transactions running on other processors. The
committing transaction’s own memory barrier only empties
the worker thread’s own WC buffers, potentially leaving
(parts of) other dependent log records in other cores’” WC
buffers; a memory barrier from the running processor will
only make its writes globally visible from a cache coherence
perspective, and does not guarantee that other WC buffers
have drained. We thus introduce a variant of group commit
to coordinate draining of WC buffers on other cores.

Group commit was originally proposed to avoid excessive
random writes to the disk. It gathers and writes multiple
commit records in a single disk I/O. Passive group commit
relies on a similar mechanism to ensure that all log records
written by the committing transactions are persistent in
NVM before notifying the client that commit succeeded. In
each thread, we maintain a thread-local variable called dgsn
to record the GSN of the last log record the thread can guar-
antee to be persistent. We reserve one bit as a dirty flag, to
indicate whether the thread has written any log records that
might not be persistent yet. Whenever a thread writes a log
record, it sets the dirty flag. When a transaction commits,
it will issue a memory fence, clear the dirty bit and store
the record’s GSN in dgsn. The transaction is then added to
a group commit queue. The group commit daemon period-
ically examines the dgsn of each worker thread and records
the smallest dgsn it sees (min_dgsn), as the guaranteed up-
per bound of persistent log records. Log records written by
all transactions on any processor with a GSN < min_dgsn
are guaranteed to be persistent. The passive group commit
daemon dequeues transactions once their commit record pre-
cedes min_dgsn and notifies the client. If any thread takes
too long to update its dgsn (perhaps due to a long read-only
query), the daemon sends a signal to the straggler. Signal
delivery implicitly drains the WC buffers of the processor
the thread is running on, and the thread’s signal handler
then clears the dirty bit so the commit daemon can pro-
ceed. Note that operations on dgsn need not be atomic,
because the owning thread makes all writes and the daemon
thread reads a monotonically increasing GSN.

Figure 3 shows an example of passive group commit in
action. Here, each transaction thread runs on a physical
processor. Transactions Tx 3 and Tx 4 update pages P1 and
P2 before commit. At steps (3) and (4), both transactions

,,,,,,,,,, . . [Durable recs| 13 |

Commit queue Commit queu Stragglers check J—
1. write P1 2. write P2 Tx1 | dgsn: 5 | | FxAdgsni S | | Tx5: D == 5. write P1
dgsn: 9 dgsn: 6 A I - dgsn: 8

o B o B Tx3 |dgsn: 10| | Tx3 |dgsn: 10 (9. signal) |, 9% B
3. commit 4. commit —- » | Tx4 |dgsn: 12| | Tx4 |dgsn: 12 (10. continue) (10. barrier)

v v ; x Pl H
dgsn: 10 [D] dgsn: 12 [D] 6. tlmeoutiqueue ful N - - - dgsn: 13 [D]
“----7" 7. dequeue “=----(8. stragglers)

Thread1—- Tx 3 Min Tx dgsn: 8

(on processor 1)

Thread 2 - Tx 4
(on processor 2)

Passive Group Commit Daemon

Thread 3- Tx 5
(on processor 3)

Figure 3: Protecting committed work with passive group commit. The passive group commit daemon keeps
dequeuing committed transactions with GSN < the minimum dgsn and signaling stragglers to make progress.

issue an mfence, clear their dirty bit, and join the commit
queue. Another transaction Tx 5 sets its dirty bit and in-
serts a log record for updating P1 (right of the figure). The
daemon reads dgsn of all threads and obtains the minimum,
which is 8 from Tx 5. Note that Tx 5 has not committed
yet, therefore it still has the dirty bit set. The daemon then
dequeues all transactions with dgsn < 8 in the queue and
notifies the clients. After step (7), Tx 3 and Tx 4 are left
in the queue since they have dgsn > 8. Normally the dae-
mon will start another round of checking for the smallest
dgsn and repeat (1) — (7). However, if there is any strag-
gler which is not updating its dgsn, the commit queue will
become full gradually and no more transactions could be
removed from it due to low min_gsn. In such cases, the
daemon will signal through pthread kill all threads whose
dirty bit is still set. Upon receiving the signal, the thread’s
signal handler will set the correct dgsn and clear the dirty
bit, as shown in steps (8) — (10). Since the signal delivery is
asynchronous, the call to pthread_kill may return before
the signal is delivered. Therefore the daemon will return to
step (6) and start checking again, as shown in step (10).
Note that it is unnecessary to issue a barrier for every
processor. We only need to make sure that all the processors
that have written log records issue a barrier to empty their
WC buffers. This observation makes passive group commit
lightweight: signaling is only required if stragglers arise.

4.2 Durable Processor Cache

Recent advances in ferroelectric RAM(FeRAM) [3] and
STT-RAM [23] have made it possible to build processors
with durable caches. For instance, real prototypes [32] have
been built using FeERAM to realize “normally off, instant
on” computing. Kiln [45] is a recent proposal which adopts
both non-volatile cache and main memory to build a per-
sistent memory system. Another approach is augmenting
the processor with a supercapacitor [9] that can drain the
SRAM cache back to NVM if power is lost. As a beneficial
side effect, durable caches improve NVM lifetime by allowing
large L2 and L3 caches to absorb the vast majority of writes
without risking data loss. When a durable cache is avail-
able, programming NVM becomes much simpler: NVM can
be treated like normal memory by the OS and caches, and
software need only issue memory fences, when it is necessary
to force ordering of writes. Based on these observations, we
expect that durable processor cache (built with capacitor-
backed SRAM or NVM such as FeRAM) is the ultimate
solution to reliable and high performance NVM-based sys-
tems. Though durable cache is still in its infancy, we believe
it will become the most convenient drop-in solution in the

future. In the context of a distributed log, passive group
commit is no longer necessary since all writes, on all proces-
sors, are immediately durable as long as each log insertion
includes a (now inexpensive) memory fence to ensure write
ordering on certain architectures that are aggressive on re-
ordering store operations (e.g., ARM and SPARC). There-
fore, in later sections we also measure the performance that
could be achieved with a durable cache, in addition to eval-
uating passive group commit.

4.3 Hardware/OS Support

To use NVM in existing systems, the memory controller
should distinguish DRAM and NVM, so that the OS can
manage both of them and enable applications to make re-
quests for both types of memory explicitly. Moreover, trans-
action level log space partitioning requires directly allocating
NVM from specified NUMA nodes. It is therefore desirable
to have a certain amount of NVM on each NUMA node. We
use NVM for buffering log records, and use DRAM as main
memory for the buffer manager, etc.

At the software level, the memory allocator should pro-
vide interfaces for explicitly allocating NVM from a speci-
fied NUMA node for transaction-level log space partitioning.
For passive group commit to work, the OS should expose
interface for user space to specify the caching mode. How-
ever, currently most systems expose such interfaces in kernel
space or only allow very limited control in user space (e.g.,
via MTRR registers). NVM-based systems would benefit
strongly if the OS could expose more interfaces for user space
to directly control the behavior of NVM. These changes
are straightforward and easy to make in the OS. For ex-
ample, caching-mode-related functions are already available
for Linux device drivers. Even without current OS support,
our kernel module for NUMA-aware write combining mem-
ory allocation has only ~250 LoC. After changes in the OS,
such functionality can be exposed to user space as system
calls easily. Given historical trends, however, we suspect
that durable caches will become widely available before op-
erating systems incorporate such support.

5. EVALUATION

We implement both flavors of distributed logging and pas-
sive group commit based on Shore-MT [20], an open source
DBMS prototype designed specifically to remove bottlenecks
on multicore hardware?. Since different NVM products have
varied latencies and most of them provide near-DRAM (or

“Downloaded from https://bitbucket.org/shoremt.

871

faster, such as STT-RAM) performance as discussed in Sec-
tion 2, we first use DRAM in our experiments, and then add
delays to emulate the latencies for worst-case analysis. The
rest of this section presents experimental setup and results.

5.1 Experimental Setup

We conduct experiments on a quad-socket Linux server
with 64GB main memory and four Intel Xeon E7-4807 pro-
cessors, each with six physical cores. With hyper-threading,
the OS sees a total of 48 “CPUs”. The data used in our ex-
periments are completely memory-resident using a tmpfs file
system, to eliminate 1/O effects unrelated to logging. Buffer
flushing and checkpointing are still enabled, however.

Experimental variants. We evaluate distributed log-
ging based on two dimensions: (1) log space partitioning:
transaction (TX) or page (PG) level, and (2) processor cache
type: durable (D) or volatile (V). Variants that use volatile
caches rely on passive group commit to protect committed
work. Variants that emulate a durable cache machine dis-
able passive group commit as it is not needed. Based on
existing work on non-volatile caches, similar performance
to SRAM is expected, giving us the opportunity to mea-
sure the performance on existing hardware. We use the
default write-back mode for durable cache variants, and
write-combining for volatile cache variants. To focus on
logging performance, we minimize other bottlenecks by en-
abling speculative lock inheritance (SLI) [19] and early lock
release (ELR) [21] in Shore-MT for all distributed logging
variants. Both flavors of distributed logging are compared
to Aether with SLI and ELR enabled (denoted as “Aether”).
Results from another Aether variant without SLI and ELR
(denoted as “Baseline”) are also provided for comparison.
For both Aether and Baseline, group commit is enabled and
the log buffer size is set to 80MB. For all distributed logging
variants we use 20 logs, each with a 64MB NVM-based log
buffer. TX variants have five logs per socket and insert log
records only to local logs. PG variants insert log records into
the log with 1ogID = pageID modulo 20. Records carrying
no page ID are inserted into a predefined log. These config-
urations are completely adjustable, and we did not observe
significant difference by varying them as other contention
becomes the major bottleneck.

NVM performance. As we discussed in Section 2, some
NVM technologies (e.g., flash backed NV-DIMMs) already
promise at least comparable speed to DRAM. For such can-
didates, we use DRAM in our experiments. PCM is the only
maturing byte-addressable NVM with longer latency. Since
it is not widely available, we add a conservative delay of
1.2us, longer than the maximum (~1us) reported in most
existing literature [6, 25], on top of DRAM latency for emu-
lation. The final, mature PCM DIMMs are still yet to reach
the enterprise market and they are constantly changing any-
way. Therefore, by using DRAM and artificial delays, we
only provide a lower bound for NVM latency based on ex-
isting hardware. Our scheme is general enough that better
performance is expected with faster-than-DRAM NVM. The
extra latency is added through a loop that busy-waits for a
specified number of CPU cycles. We first convert clock time
latency to CPU cycles according to our CPU’s frequency.
Then for each log insertion, we embed an RDTSC instruction
in the loop to read the number of cycles passed since we
entered the loop, so it can break after the specified num-
ber of cycles have passed. Since our NVM log buffers are

872

write-only—a private DRAM undo buffer is maintained in
each transaction—we do not introduce read delays. Recent
research has shown that carefully architected DDR PCM
modules could provide a write bandwidth comparable to at
least 50% of that of DRAM [4]. Pelley et al. [35] also showed
that bandwidth is not a concern for OLTP. Thus we do not
specifically model NVM bandwidth in our experiments.
Log buffer allocation. For Baseline, Aether and PG-D
variants, we use the default malloc to allocate log buffers
and use write-back caching. We build a Linux device driver
for PG-V variants to allocate write combining memory. We
export it to user space via the mmap interface by reserving
memory at the end of the physical address space (i.e., the
last NUMA node in our experimental system). We develop
the driver this way due to the difficulty of mimicking the
behavior of malloc and the need for write combining. In
Section 5.3 we show the impacts of this design in detail.
For TX variants, we implement another driver which is
capable of allocating memory from a specified NUMA node
and marking it as write-back or write combining as requested.
Libraries such as libnuma also provide similar functionality
(e.g., numa_alloc_onnode). However, Linux does not provide
convenient ways to mark specific ranges of virtual memory
as write combining from user space. We therefore build this
dedicated driver to change caching modes directly and then
export the memory to user space through the mmap interface.
Using the driver, we allocate write-back memory for TX-D
variants, and write combining memory for TX-V variants.
Benchmarks. We run the TATP [30], TPC-B and TPC-
C [42] benchmarks to test the scalability of different variants.
TATP models a cell phone service database with very small
transactions, stressing the locking and logging subsystems.
TPC-B models an update-intensive banking workload and
we run its only transaction “Account Update”. For TATP
and TPC-C, we run both the full mix and write intensive
transactions (“Update Location” in TATP and “Payment”
in TPC-C) to show the general and stressed performances.
For each benchmark and variant, we report the average
throughput (in thousand transactions per second, or kTPS)
of five 30-second runs under different system loads (by vary-
ing the number of transaction threads). All workloads have
a scaling factor of 48 to saturate the system and avoid dead-
locks, so internal storage engine bottlenecks are responsible
for any observed performance differences. We use perf® to
collect stack traces and turn them into time breakdowns to
identify the CPU cycles consumed by different components.

5.2 Distributed vs. Centralized Logging

As we have shown in Figure 1, the locking bottleneck is
mostly eliminated by SLI and ELR, but logging gradually
becomes a bottleneck as system load increases, even with a
state-of-the-art centralized log. Figure 4 compares the scal-
ability of centralized and distributed logging when running
write-intensive workloads. The y-axis shows the throughput
as a function of core count on the x-axis. Due to heavy log
contention, neither Baseline nor Aether scales well as the
system approaches saturation.

The other lines in Figure 4 plot the throughput of both
distributed logging variants, assuming a durable cache sys-
tem. We use durable cache variants to highlight the scalabil-
ity improvement brought by distributed logging (Section 5.3
analyzes the performance impacts of passive group commit

Details at http://perf.wiki.kernel.org.

Aether —=— Baseline —— TX-D (ideal) —— PG-D (ideal) —< TX-D (1.2us) —*— PG-D (1.2us) =
750 TATP - Update Location 200 TPC-B - Account Update 160 [TPCC - Payment
o ® B
R 600 & 150 = TR 120
x X x
= 450 = I
a 3 100 . 3 80
3
2 150 | 2 %0 %/e\e,,,e——m g 40
[= [
O 1 1 1 1 1) 1 1 1 1 1) 1 1 1 1 1)
4 8 16 24 32 4044 4 8 16 24 32 4044 4 8 16 24 32 4044

Transaction threads

Transaction threads

Transaction threads

Figure 4: Scalability of distributed logging with write-intensive workloads. Distributed logging scales better
as system load increases. Transaction-level partitioning outperforms page-level due to local memory access.

m Other contention
100

m Log contention
TATP - Update Location

100

\I
o
~
3

a
o
(o))
o

N
(¢}
N
(¢}

Time breakdown (%)
Time breakdown (%)

4 8 16 24 32 40 42 44
Transaction threads

m | ock manager

TPC-B - Account Update

4 8 16 24 3240 42 44
Transaction threads

m Log work = Other work
TPC-C - Payment

<100 ¢
S 75
[e]
2 50
4]
o
S 25
(0]
£
l_

4 8 16 24 32 40 42 44
Transaction threads

Figure 5: Time breakdowns for write-intensive transactions with transaction-level log partitioning.

for existing volatile-cache systems). For comparison, we also
include the variants with NVM delays (labeled as “1.2us”,
while those without these delays as “ideal”). However, in fu-
ture real durable cache systems, we do not expect any such
delays, even if the NVM is slower than DRAM, as the non-
volatile CPU cache (in write-back mode) will be fast enough
to hide the latency and provide at least near-DRAM perfor-
mance. The performance numbers for these variants with
extra delays show a lower bound and are for reference only.
For TATP, Figure 4 shows that both TX-D and PG-D (with
and without the delay) achieve near-linear scalability up to
24 threads, the number of physical cores in our system. TX-
D (ideal) achieves a speedup from 1.6x — 3.2x over Aether.
The numbers for PG-D (ideal) are slightly lower, ranging
from 1.3x — 2.7x. Figure 4 shows a similar trend for TPC-
B and TPC-C. As system load increases, throughput scales
up more slowly due to bottlenecks outside the log manager,
especially after 24 threads. The corresponding time break-
downs for TX-D (ideal) in Figure 5, clearly show that logging
continues to perform well, but other sources of contention
(e.g., contention in the buffer manager) gradually become
larger for TPC-B and TPC-C. The growth of throughput in
Figure 4 also becomes slower or even stopped. The same
breakdowns for TATP do not show significant increase in
contention as system load increases, explaining the superior
scalability of the microbenchmark vs. TPC-B and TPC-C.
In most cases, the imposed NVM delay shows an overhead
of up to 15% for all the three workloads. However, in other
cases the “1.2us” variants actually achieved higher through-
put (e.g., TPC-C with 24 threads) because the delay slowed

873

down the system and thus reduced contention in components
outside the log manager. Threads will spend more time in
the log manager, resulting in fewer threads contending for
other components at the same time. For example, running
TPC-C - Payment under TX-D (1.2us) with 24 threads in-
creased 4.09% of log work, and reduced contention for the
log and other components by 0.99% and 1.16%, respectively.

To show the performance of distributed logging and com-
pare it with centralized counterparts in more ordinary cases,
we repeat the same experiment with the full TATP and
TPC-C benchmark mix (TPC-B only has one transaction,
which is also write-intensive). Figure 6 shows the result
for running the these workloads which have less contention
and more read operations. For clarity, we only show the
“ideal” variants. With fewer writes, Aether scales almost
equally well as both distributed logging variants for TATP,
though the throughput is slightly lower. Baseline keeps a
similar trend as before, and cannot scale as system load in-
creases. For TPC-C, both Baseline and Aether scaled up
to 16 threads, after which only distributed logging variants
can scale. Similar to the write-intensive case we discussed
earlier in this section, after 32 threads, throughput numbers
stop growing or even start to drop as the system approaches
full saturation. Clearly passive group commit has an effect
on this phenomenon as both TX-V and PG-V have lower
throughput after 32 threads. However, PG-D also sees a
drop at 40 threads. As we will show in Section 5.3, passive
group commit is not the major cause. We plot the time
breakdown graph for TX-V in Figure 7, in which “other
work” increased by ~4% from 32 to 44 threads with de-

TXV ——
r TPC-C - Transactoin Mix

PG-V = m Log contention = Other contention

m L ock manager = Log work m Other work
TPC-C - Payment

100

N G N
a o o

Aether —=— Baseline —=— TX-D —— PG-D ——
750 TATP - Transaction Mix 30

& 600

|_

4

— 450

3

Q

5, 300

3

£ 150

|_

O 1 1 1 1 1 J O 1 1
4 8 16 24 32 4044 4 8 16

Transaction threads

24
Transaction threads

Time breakdown (%)

32 4044 4 8 1624 32 40 42 44

Transaction threads

Figure 6: Scalability of distributed logging with more realistic TATP Figure 7: Time breakdown for TPC-

(left) and TPC-C (right) workloads (transaction mixes).

C full mix with TX-V.

Aether —=— Baseline —— TX-V (ideal) —— PG-V (ideal) — TX-V (1.2us) —— PG-V (1.2us) = PG-V (malloc) ——
750 TATP - Update Location 200 TPC-B - Account Update 160 [TPC-C - Payment
%) n %)
o 600 2 450 £ 120
x X x
= 450 = =
3 2 100 2 80
-§, 300 -§, -§,
o
2 150 g 50 _g 40
= = =
O 1 1 1 1 1) 0 1 1 1 1 1) O 1 1 1 1 1)
4 8 16 24 32 4044 4 8 16 24 32 4044 4 8 16 24 32 4044

Transaction threads

Transaction threads

Transaction threads

Figure 8: Scalability of distributed logging with passive group commit. PG-V cannot scale after 32 threads
due to single-node log buffer allocation. However, PG-V with malloc shows similar scalability to TX-P.

creased contention. More time is spent on other work which
is responsible for the slowdown, but log related contention
is low and does not change much as system load increases.

Compared to TX-D (ideal), PG-D (ideal) achieved lower
throughput in all benchmarks for all experiments we have
conducted so far, because PG-D accesses log buffers in re-
mote memories. Profiling both TX-D and PG-D, when
running the Update Location transaction from TATP with
24 threads, we observe nearly 9% more off-core requests
with PG-D (by comparison, Baseline produces 18% more
requests). Based on these results, we conclude that a dis-
tributed log can improve performance on multi-socket under
both high and low contentions, and transaction-level parti-
tioning can avoid NUMA effects for even higher throughput.

5.3 Impact of Passive Group Commit

We explore the performance impact of passive group com-
mit, which is required to protect committed work in to-
day’s volatile-cache machines. Passive group commit im-
poses overhead mostly when it signals stragglers, though we
expect the signaling should be rare.? We show the through-
put in Figure 8 when running distributed logging variants
with passive group commit. Similar to durable cache vari-
ants, TX variants scale well as core count increases. When
running TATP’s Update Location transaction, both TX-V
and PG-V lose throughput when compared to the durable

“In our experiments, fewer than one in 20,000 commits re-
quires a signal, though this could vary with workload.

874

cache variants in Figure 4. The overhead ranges from 4% to
10% for TX-V (ideal). A similar trend is observed for PG-V
(ideal) until the core count reaches 32, after which the per-
formance could drop as much as 50%. TPC-B and TPC-C
results show the similar trend. Compared to the TX-V vari-
ant in Figure 6, when running TPC-C, TX-V in Figure 8
does not show a performance drop as core count increases.
Note that in Figure 8 TX-V runs a more write-intensive
workload. Thus the extra other work incurred by the trans-
action mix workload is the real major cause of the overhead,
not passive group commit. Note that PG-V (ideal) and PG-
V (1.2us) use our simplistic driver to allocate WC memory
from a single NUMA node, concentrating log traffic to a
single node and taxing the machine’s interconnect. The im-
pact becomes more severe when we impose NVM delays. A
more sophisticated strategy, such as the one used by malloc,
would stripe the allocation over all nodes to distribute mem-
ory traffic more evenly. In Figure 8 we also show a PG-V
variant using malloc, (“PG-V (malloc)”) to estimate the
real performance that passive group commit could achieve
if the driver were improved to stripe the log across all nodes.

Compared to PG-V (ideal), PG-V (malloc) in Figure 8
shows similar scalability to TX-V (ideal), except that the
numbers are slightly lower, which is in line with our results
on TX-V (ideal) and PG-V (ideal). Note that as the system
approaches full saturation (e.g., with 42 threads), daemon
threads including the passive group commit daemon and
buffer flusher start to affect performance. Therefore perfor-

mance numbers after 42 threads are only for completeness.
Results from PG-V (malloc) also indicate that the perfor-
mance difference between write-back and write combining
on write-only access is minuscule as the throughput num-
bers are very close before 32 threads. After 32 threads,
PG-V (malloc) maintained the same trend as TX-V (ideal)
for both workloads. Since we also use malloc to allocate log
buffers for PG-D variants, the scalability of PG-D is similar
to that of TX-D, as shown in Figure 4.

Based on the above results and analysis, we have shown
the real overhead of passive group commit, and conclude
that passive group commit is very lightweight and is suitable
for current multi-socket systems. We also verify that write
combining imposes little overhead when compared to write-
back in terms of writes [2, 15]. The performance of write
combining is not a major concern in distributed logging.

5.4 Log Space Partitioning

We summarize the differences between and implications of
page and transaction level partitioning. As discussed in Sec-
tions 5.2 and 5.3, transaction-level partitioning generally has
higher throughput on multi-socket machines. With the high
performance interconnect, OS scheduling and NUMA-aware
memory allocation, page-level partitioning only induces a
small amount of overhead. However, without NUMA-aware
memory allocation, page-level partitioning cannot scale as
core count reaches the system limit due to the NUMA ef-
fect. Compared to transaction-level, page-level partitioning
is more suited for systems which also partition data by pro-
cessor locations [33, 34]. Several logs could be allocated for
each data partition, turning log insert into operations local
to the socket on which the thread is running.

Page-level partitioning is more naturally supported by
ARIES. The implementation is also simpler. For exam-
ple, GSN is not required unless passive group commit is
needed. In terms of individual components, page-level par-
titioning requires more changes in the transaction manager,
as a transaction will touch multiple logs. On the contrary,
transaction-level partitioning requires more changes in the
buffer manager, while changes in the transaction manager
are more straightforward with the help of GSN. Based on
Aether in Shore-MT, we added, modified and removed 9644
LoC in total to implement page-level partitioning, while the
number for transaction-level is 10280. These numbers in-
clude GSN and passive group commit implementations. The
net changes required without GSN will be fewer. The major-
ity of code changes were simply refactoring to replace “lsn”
with “gsn” in variable names; the actual implementation
of distributed logging only occupied about 2kLoC (much of
which was deletions from the removal of Aether).

Based on the above analysis, we argue that on multicore
and multi-socket hardware, transaction-level is more pre-
ferred over page-level log space partitioning. Though the
implementation is somewhat invasive, due to refactoring in-
volved, it does not require significantly more design effort.

6. RELATED WORK

Most related work focused on adopting new storage tech-
nologies and utilizing massively parallel hardware.

Leveraging new storage technologies. There has
been active research on using NVM to reduce logging over-
head, e.g., remove the disk and use NVM as the sole logging
device [10]. It requires two (expensive) epoch barriers [9]

875

per log write and partial overwriting to tolerate holes in
the log (necessary to improve parallelism), and is thus not
implementable on current hardware; the partial overwriting
also accelerates device wear-out. PCMLogging [11] employs
PCM as both data buffer and log space. Pelley et al. [35]
demonstrated different uses of NVM in database systems,
but also relies on the epoch barrier. MARS [8] removes
LSN and checkpointing, and moves most functionality of
logging into hardware. FlashLogging [5] uses multiple USB
flash sticks to boost logging performance. Flag Commit [31]
embeds transaction status into flash pages by a chain of com-
mit flags to minimize the need of logging. Although these
proposals differ in how they achieve improved logging per-
formance, they all remain thoroughly centralized and thus
subject to the kinds of contention we propose to eliminate.

Utilizing parallel hardware. Group and asynchronous
commit [12, 37] are two widely used techniques for reducing
logging overhead. Group commit aggregates multiple com-
mit requests into a single I1/0. It improves throughput at the
expense of transaction response times. Asynchronous com-
mit allows transactions to complete without waiting for the
log records to be de-staged to disk. It completely eliminates
log flush delays, but risks losing committed work upon fail-
ure due to the volatility of DRAM. Recent research focused
more on parallel hardware. Aether [21] allows locks to be re-
leased earlier to reduce lock contention due to long log flush
waits, reducing the impact of policies like group commit.
Aether also reduces log contention, but those mechanisms
rely on shared caches and do not perform as well in multi-
socket NUMA environments [22]. C-ARIES [39] enhances
ARIES with multi-threaded recovery, without changing log
insertion (or the contention that accompanies it) in any way.

7. CONCLUSION

NVM is fundamentally changing the landscape of transac-
tion logging. Its non-volatility and byte-addressability po-
tentially invalidate the assumption of flush-before-commit
and thus enable distributed logging to ease the logging bot-
tleneck. However, the volatile nature of existing proces-
sor caches vetoes the option of blindly replacing the cen-
tralized log with a distributed one. The increasing popu-
larity of multi-socket hardware today also poses challenges
in adopting a distributed log. In this paper, we have dis-
cussed and proposed solutions to these challenges, in par-
ticular log space partitioning. We have shown that a dis-
tributed log could provide near-linear scalability and up to
more than 3x speedup over state-of-the-art centralized log-
ging on multi-socket hardware. In particular, transaction-
level partitioning is more favorable by allowing us to allo-
cate log buffers from local memory, avoiding cross-socket
log buffer access. Leveraging existing hardware, we have
proposed passive group commit which is very lightweight to
protect committed work. Finally, we expect that durable
processor caches will be the ultimate solution to building
reliable and high performance NVM-based systems.

8. REFERENCES

[1] AgigaTech. AGIGARAM non-volatile system, 2013.
[2] Bhandari, K., Chakrabarti, D. R., and Boehm, H.-J.
Implications of CPU caching on byte-addressable
non-volatile memory programming. HP Technical

Report HPL-2012-236, 2012.

8]

[4]

[5]

(6]

(7]

(15]
(16]
(17]

(18]

(19]

Buck, D. A. Ferroelectrics for digital information
storage and switching. MIT Report R-212, 1952.
Caulfield, A. M., et al. Understanding the impact of
emerging non-volatile memories on high-performance,
1O-intensive computing. SC, pp. 1-11, 2010.

Chen, S. FlashLogging: exploiting flash devices for
synchronous logging performance. SIGMOD, pp.
73-86, 2009.

Chen, S., Gibbons, P. B., and Nath, S. Rethinking
database algorithms for phase change memory. CIDR,
pp- 21-31, 2011.

Cho, S. and Lee, H. Flip-N-Write: A simple
deterministic technique to improve PRAM write
performance, energy and endurance. MICRO, pp.
347-357, 2009.

Coburn, J.; et al. From ARIES to MARS: Transaction
support for next-generation, solid-state drives. SOSP,
pp. 197-212, 2013.

Condit, J., et al. Better I/O through byte-addressable,
persistent memory. SOSP, pp. 133-146, 2009.

Fang, R., et al. High performance database logging
using storage class memory. ICDE, pp. 1221-1231,
2011.

Gao, S., et al. PCMLogging: reducing transaction
logging overhead with PCM. CIKM, pp. 24012404,
2011.

Gawlick, D. and Kinkade, D. Varieties of concurrency
control in IMS/VS fast path. HP Technical Report
TR-85.6, 1985.

Graefe, G. A survey of b-tree logging and recovery
techniques. TODS, 37(1):1:1-1:35, 2012.

Hosomi, M., et al. A novel nonvolatile memory with
spin torque transfer magnetization switching:
spin-ram. IEDM, pp. 459-462, 2005.

Intel. Write Combining Memory Implementation
Guidelines, 1998.

Intel. Intel 64 and IA-32 Architectures Optimization
Reference Manual, 2007.

Jiang, L., et al. Improving write operations in MLC
phase change memory. HPCA, pp. 1-10, 2012.

Jog, A., et al. Cache revive: Architecting volatile
STT-RAM caches for enhanced performance in CMPs.
DAC, pp. 243-252, 2012.

Johnson, R., Pandis, I., and Ailamaki, A. Improving
OLTP scalability using speculative lock inheritance.
PVLDB, pp. 479-489, 2009.

Johnson, R., et al. Shore-MT: a scalable storage
manager for the multicore era. EDBT, pp. 24-35,
2009.

Johnson, R., et al. Aether: a scalable approach to
logging. PVLDB, pp. 681-692, 2010.

Johnson, R., et al. Scalability of write-ahead logging
on multicore and multisocket hardware. VLDBJ, pp.
239-263, 2012.

Kawahara, T. Scalable spin-transfer torque RAM
technology for normally-off computing. IEEE Design
Test of Computers, 28(1):52-63, 2011.

Lamport, L. Time, clocks, and the ordering of events
in a distributed system. CACM, pp. 558-565, 1978.

876

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

33]

37]

(38]

(39]

Lee, B. C., Ipek, E., Mutlu, O., and Burger, D.

Architecting phase change memory as a scalable
DRAM alternative. ISCA, pp. 2—-13, 2009.

Lomet, D., Anderson, R., Rengarajan, T., and Spiro,
P. How the Rdb/VMS data sharing system became
fast, 1992.

Mellor, C. HP 100TB Memristor drives by 2018 if
you’re lucky, admits tech titan. The Register, 2013.
Mohan, C., et al. ARIES: a transaction recovery met-
hod supporting fine-granularity locking and partial
roll backs using write-ahead logging. T'ODS,
17(1):94-162, 1992.

Narayanan, D. and Hodson, O. Whole-system
persistence. ASPLOS, pp. 401-410, 2012.

Neuvonen, S., Wolski, A., Manner, M., and Raatikka,
V. Telecom Application Transaction Processing
Benchmark.

On, S. T., et al. Flag Commit: Supporting efficient
transaction recovery in flash-based DBMSs. TKDE,
24(9):1624-1639, 2012.

Ooishi, M. Rohm demonstrates nonvolatile CPU,
power consumption cut by 90%. Tech-On/, 2007.
Pandis, 1., Johnson, R., Hardavellas, N., and
Ailamaki, A. Data-oriented transaction execution.
PVLDB, pp. 928-939, 2010.

Pandis, 1., T6zln, P., Johnson, R., and Ailamaki, A.
PLP: Page latch-free shared-everything OLTP.
PVLDB, pp. 610-621, 2011.

Pelley, S., Wenisch, T. F., Gold, B. T., and Bridge, B.
Storage management in the NVRAM era. PVLDB,
pp. 121-132, 2014.

Qureshi, M. K., et al. Enhancing lifetime and security
of PCM-based main memory with Start-gap wear
leveling. MICRO, pp. 14-23, 2009.

Ramakrishnan, R. and Gehrke, J. Database
Management Systems. McGraw-Hill, 3rd edn., 2002.
Saadeldeen, H., et al. Memristors for neural branch
prediction: A case study in strict latency and write
endurance challenges. CF, pp. 26:1-26:10, 2013.
Speer, J. and Kirchberg, M. C-ARIES: A
multi-threaded version of the ARIES recovery
algorithm. Database and Expert Systems Applications,
pp- 319-328, 2007.

Stonebraker, M., et al. The end of an architectural
era: (it’s time for a complete rewrite). PVLDB, pp.
1150-1160, 2007.

Strukov, D. B., Snider, G. S., Stewart, D. R., and
Williams, R. S. The missing memristor found. Nature,
453(7191):80-83, 2008.

Transaction Processing Performance Council. TPC
benchmarks B and C.

Viking Technology. ArxCis-NV NVDIMM, 2013.
Wong, H. S. P., et al. Phase change memory.
Proceedings of the IEEE, 98(12):2201-2227, 2010.
Zhao, J., et al. Kiln: closing the performance gap
between systems with and without persistence
support. MICRO, pp. 421-432, 2013.

Zhou, P., Zhao, B., Yang, J., and Zhang, Y. A durable
and energy efficient main memory using phase change
memory technology. ISCA, pp. 14-23, 2009.

