
On k-Path Covers and their Applications

Stefan Funke
Universität Stuttgart

Germany
funke@fmi.uni-stuttgart.de

André Nusser
Universität Stuttgart

Germany
nusser@fmi.uni-stuttgart.de

Sabine Storandt
Universität Freiburg

Germany
storandt@cs.uni-freiburg.de

ABSTRACT
For a directed graph G with vertex set V we call a subset
C ⊆ V a k-(All-)Path Cover if C contains a node from any
path consisting of k nodes. This paper considers the prob-
lem of constructing small k-Path Covers in the context of
road networks with millions of nodes and edges. In many ap-
plication scenarios the set C and its induced overlay graph
constitute a very compact synopsis of G which is the ba-
sis for the currently fastest data structure for personalized
shortest path queries, visually pleasing overlays of subsam-
pled paths, and efficient reporting, retrieval and aggregation
of associated data in spatial network databases. Apart from
a theoretical investigation of the problem, we provide effi-
cient algorithms that produce very small k-Path Covers for
large real-world road networks (with a posteriori guarantees
via instance-based lower bounds).

1. INTRODUCTION
The massive acquisition of geospatial data in the course

of collaborative projects like OpenStreetMap (OSM)1 or by
companies like Google or TomTom has lead to a dramatic
growth of data to be handled in Spatial Network Databases
(SNDB). For example, the OSM ’world graph’ at the begin-
ning of 2007 contained less than 30 million nodes whereas in
2013 this number has grown to more than 2 billion nodes.
A limit to this growth is nowhere to be seen due to the de-
mand for a more and more accurate and detailed representa-
tion of our environment. SNDBs manage geographic entities
located in an underlying road network supporting efficient
data retrieval operations, in particular taking into account
connectivity properties of the road network. Google/Bing/
Yahoo Maps are all incarnations of SNDBs. Let us first
look at a few applications for SNDBs which can benefit from
small k-Path Covers.

1http://www.openstreetmap.org

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 10
Copyright 2014 VLDB Endowment 2150-8097/14/06.

Application 1: Assume we have computed or decided on
some (not necessarily shortest or quickest) route π for a
weekend trip and are interested in shopping or refueling
opportunities along the route. If we had a data structure
D which can retrieve for any node v ∈ V in the network
nearby points of interest like shopping malls or gas stations,
we could query D with every node on π to get the desired
answer. With π possibly consisting of hundreds or thou-
sands of nodes, of course, it might be more efficient (but
sufficiently accurate) to query D with only every k-th node
on π (e.g., k = 10). Still, this requires having constructed D
for all nodes of the network. An elegant solution approach is
to identify a small subset C ⊆ V such that for any path con-
sisting of k nodes at least one node is contained in C – and
construct D for C only. Similarly, if the goal is to acquire
statistics along paths (like the percentage of forest/desert
coverage along routes throughout the USA), it is more effi-
cient to aggregate that data at the nodes determined by C
both in terms of space requirement as well as running time
for a single query.

Application 2: In another scenario, a web portal dealing
with scenic hiking trips sends several suggested hiking routes
to the clients for visualization in a browser. In particular in
a zoomed out view, it would be a waste of bandwidth to
transmit every single node of each route across the internet;
subsampling the paths, e.g. every k-th node, is the preferred
method. If routes overlap, though, the chosen subsampling
for the routes should be consistent to avoid visual artefacts.
Again, if we could determine a subsample C of V which guar-
antees that in any route at least every k-th node is present,
a more pleasing visual appearance can be achieved when
rendering an overlay of the subsampled routes, see Figure 1.

Application 3: Next generation route planners allow for
personalized route planning queries where each user has
an individual profile depending on his personal preferences
and driving styles. For example the typical driving speed
varies (speeder or slow driver), people like to trade gas price
against travel time, different vehicles exhibit different turn
costs and so on. So a query might not only consist of source
and destination but also of a set of parameters which de-
termine under which metric the optimal path in the road
network is to be computed. If we construct an overlay graph
on a small subsample C of V where C hits any k-path in
the road network, we have a metric-independent compressed
graph at hand. For any kind of input parameters specified
by a user, we can compute the respective edge costs in this

893

s

s′
t

Figure 1: Small hiking map. In the upper image
the dashed red and green line indicate two hiking
routes (s → t and s′ → t) simplified greedily using
k = 6. While s′ → t is a subroute of s → t, the
two simplified routes do not resemble each other at
all. The circled nodes are a feasible global cover for
k = 6, resulting in a nice simplification of the map
presented in the lower image.

graph on demand and find the optimal path by a search in
the overlay graph considerably faster than a search in the
original graph.

We want to emphasize that for all these applications it is
crucial that the path cover C hits any path consisting of k
nodes, not only shortest or quickest paths under some fixed
metric.

Related Work
Tao et al. in [12] considered the problem of computing a
k-Shortest-Path Cover, that is, a set of nodes C ⊆ V such
that C contains at least one node from every shortest path
(under some fixed metric) consisting of k nodes. More con-
cretely, they could, for example, construct a set C which was
only 15% of the size of V for k = 16 and the US road net-
work. As one application example they showed how to use
such a small C to accelerate shortest path queries (for a fixed
metric) via the overlay graph induced by C (and in combi-
nation with additional speed-up techniques like reach [9]).
We want to note, though, that the achievable query times
have meanwhile been superseded by current speed-up tech-
niques like Transit Nodes [3], Contraction Hierarchies (CH)
[8] or Hub Labels [2] which answer queries faster by several
orders of magnitude. A fundamental restriction of all these
techniques (including [12]) is that they all rely on fixed edge
weights for the preprocessing stage. If edge weights change
(e.g. for a different user profile), the preprocessing has to be
revised or even redone from scratch again, making all these
approaches unsuitable for the use-case where every query
comes with a different user profile.

In [6] a three phase approach was introduced to allow
for customizable route planning (CRP). The first phase is
a metric-independent graph preprocessing purely based on
the topology of the graph. In the second phase some met-
ric is considered and the graph is customized accordingly.
In the third phase queries can be answered efficiently for

the metric specified in the second phase. But as soon as
the metric changes, phase two has to be redone. For the
CRP framework, the metric customization takes several sec-
onds (on a rather powerful multicore machine). While this
is tolerable for simulating traffic dependent edge costs or
when customizing for a specific single user, some seconds
are too slow when every query demands its own metric (in
fact running plain Dijkstra might then be faster). We will
take care of such highly dynamic queries by also applying
a metric-independent preprocessing at first, but then merge
the second and third phase such that metric changes due to
different input parameters can be dealt with on query time.

In [7] the authors adapt the CH preprocessing technique
to the case where each edge e in the network has d associ-
ated costs c1(e), c2(e), . . . , cd(e). A query consists of source,
destination and non-negative multipliers α1, α2, . . . , αd; the
data structure returns the shortest paths under edge costs
c(e) = α1c1(e) + α2c2(e) + · · · + αdcd(e). Experimental re-
sults proved the technique to yield high speed-ups for d = 2
and 3. Still, the speed-up for d = 3 was already considerably
lower than for d = 2, as with each additional metric the hi-
erarchy of optimal paths (which is crucial for the approach)
subsides. Moreover it was shown that considering metrics
which are orthogonal to each other (like low travel time and
preferring quiet roads at the same time) is disadvantageous.
For a larger number (e.g. d > 4) of unsimilar costs this
approach comes at its limits.

Our Results
The main contributions of our paper are the following:

• We generalize the work of [12] by considering all paths
in the network instead of only shortest paths and devise
efficient algorithms to compute small k-Path Covers.
The resulting covers are even smaller than the covers
reported in [12] but with the much stronger property of
covering all k-paths instead of only shortest k-paths.

• As a by-product we devise an algorithm that con-
structs considerably smaller sets C with the same prop-
erties (covering shortest k-paths) as the ones derived in
[12]; for example, for the US road network and k = 16
we can find a set C which is only 5.8% the size of |V |
(compared to 15% reported in [12]).

• More on the theoretical side we show that the problem
of covering all k-shortest-paths can be approximated
within a logarithmic factor of the optimal solution by
using ε-net theory and proving a new result on the
VC-dimension of directed shortest path systems.

• As a concrete application for our k-Path Covers we
devise the to our knowledge to-date fastest scheme to
answer personalized route planning queries.

Outline
After providing formal definitions in Section 2, we review in
Section 3 theoretical results on the complexity of the k-Path
Cover problem, and the k-Shortest-Path Cover problem re-
spectively. As k-Path Cover is NP-hard [4] and k-Shortest-
Path Cover turns out to be NP-hard as well, we investigate
approximation algorithms based on low VC-dimension of the
underlying set system. In Section 4 we develop practical
algorithms to construct k-All-Path Covers and k-Shortest-
Path Covers as well as instance-based lower bounds. We

894

conclude with an experimental section showing the practica-
bility of our developed algorithms and in particular looking
at the use case of personalized route planning.

2. FORMAL DEFINITIONS
To formalize our cover problems, we introduce the follow-

ing notations: The input is a simple directed graph G(V,E).
Therefore a path π in G can be uniquely represented as the
list of its traversed vertices. Throughout this paper, when
using the term ’path’ we always refer to simple paths, that is,
no vertex appears more than once. Our focus lies on deter-
mining a small subset of nodes such that all paths contained
in G are subsampled sufficiently by those nodes. The density
of the sampling can be chosen in an application-dependent
manner via the input parameter k.

Definition 1 (Minimum k-(All-) Path Cover).
Given a (di)graph G(V,E) and k ∈ N, select a minimum
subset of vertices C ⊆ V such that for every simple path
π = v1, · · · , vk in G we have C ∩ π 6= ∅. We will refer to
this problem as k-APC.

Of course, a cover for all paths also yields a feasible cover if
we are only interested in subsampling shortest paths under
a specific metric. Nevertheless the problem of covering only
shortest paths allows for specializations of the algorithms
for the general case which lead to even more compact cover
sets C. Hence we also define the cover problem for shortest
paths.

Definition 2 (Minimum k-Shortest-Path Cover).
Given a weighted (di)graph G(V,E, c) and k ∈ N, select
a minimum subset of vertices C ⊆ V such that for every
shortest (according to c) path π = v1, · · · , vk in G we have
C ∩ π 6= ∅. We will refer to this problem in the following as
k-SPC.

Note that in contrast to [12] our definition for k-SPC re-
quires covering all shortest paths, which appears harder if
several shortest paths between some pairs of nodes exist.

Our main application – the efficient computation of per-
sonalized shortest path queries – will take advantage of the
fact, that a k-APC can also be seen as a k-SPC for all pos-
sible metrics. More concretely, we are given r edge cost
functions c1, c2, · · · , cr : E → R+ and each query specifies –
apart from source and target nodes s, t ∈ V – which costs
are important and to what extent (which can be realized by
choosing weighting factors w1, w2, . . . , wr ∈ R+). The goal
is then to find the path π from s to t which minimizes the
aggregated weighted costs

∑
e∈π

∑r
i=1 wi · ci(e). To allow

for efficient answering of such queries, we will first compute
a concise k-APC C ⊆ V in a preprocessing phase and then
evaluate edge costs between nodes in C at query time ac-
cording to the query weights.

3. THEORETICAL ANALYSIS
In this section we give a brief overview of complexity re-

sults for k-APC and k-SPC. Then we derive a log |OPT |-
approximation for k-SPC based on VC-dimension analysis.

3.1 NP-hardness and Approximation
In [11], the MinimumGateVertexSet (MGS) problem was

analyzed, which is closely related to k-SPC. Here, the au-
thors proved NP-hardness for a generalized problem version,

namely, in terms of our setting, a variant where only a pre-
specified subcollection of shortest paths of length k has to
be hit. However, the complexity of hitting all shortest paths
of length k remains unclear there, as hitting all paths is a
special case of hitting a subcollection – and therefore might
be easier to solve than the generalized version. A thorough
theoretical analysis of k-APC was conducted in [4]. Via re-
duction from the VertexCover problem, the authors proved
APX-hardness of k-APC (subsuming NP-hardness). In par-
ticular, they showed that for k > 2 an approximation better
than 1.3606 in polynomial time demands P=NP. We remark
that if the unique game conjecture holds, their results even
imply APX-hardness for 2 − ε. Furthermore we would like
to point out that the APX-hardness result carries over to
k-SPC, because augmenting all edges with uniform costs in
the reduction gadget used in [4] makes all paths of length
k shortest paths. Hence, their proposed k-approximation
based on converting the problem to an instance of HittingSet
(as defined for the sake of notation in the following) is also
valid for k-SPC.

Definition 3 (HittingSet). Given a set system (U, S)
with U being a universe of elements and S a collection of
subsets Si ⊆ U . Find a minimum set U∗ ⊆ U such that
∀Si ∈ S : Si ∩ U∗ 6= ∅, i.e. every set in S is hit by U∗.

In fact, a primal-dual algorithm exists (the so called pricing
method), which provides a k-approximation for HittingSet
if all Si have a size ≤ k. In our setting, we interpret every
(shortest) path of length k as set of its contained vertices to
construct the HittingSet instance. So for k-APC and k-SPC
every set has exactly k elements, immediately implying a
valid k-approximation.

3.2 VC-Dimension of Directed Shortest Paths
To obtain an upper bound for the size of a k-SPC, the

theory of ε-nets was applied in [12]. An ε-net for a set system
(U, S) is a HittingSet for all elements in S which satisfy
|Si| ≥ ε|U | for some ε ∈ (0, 1). As shown in [12], an ε-net
with ε = k/n is a k-SPC for the set system where U equals
the set V of nodes in G and S the set of all shortest paths.
Applying the ε-net theorem [10] we can find a k-SPC of size
O(d(n/k) log(n/k)) with d being the VC-dimension of the set
system [13].

Definition 4 (VC-Dimension). The VC-dimension d
of a set system (U, S) is defined as the size of the largest
subset of U that can be shattered. Thereby, a subset U ′ ⊆ U
is called shattered if for any subset A ⊆ U ′ there exists
B ∈ S with U ′ ∩B = A.

So in the setting of S being a set of paths, the VC-dimension
describes an exclusive upper bound on how often two paths
can intersect in a non-contiguous manner. Obviously if
shortest paths are ambiguous in G, the VC-dimension can-
not be bounded. But as already shown in [11], for every
G there exists a system of unique shortest paths that can
be investigated. The same effect can be achieved by sym-
bolic perturbation of the edge weights. For undirected short-
est paths, it was proven in [1] (in the context of analyzing
shortest path speed-up techniques) and [12] that the VC-
dimension is at most 2. Hence we can find a k-SPC contain-
ing no more than O(n/k log(n/k)) elements. It was remarked
in [12] that the result is valid for general graphs, also in-
cluding directed graphs. This is not true, as the example in

895

Figure 2 shows. There a directed path of three nodes indeed
can be shattered disproving 2 as an upper bound.

a b c

1 1

1

Figure 2: Consider the shortest path node set
π(a, c) = {a, b, c}. As π(a, a) = {a}, π(b, b) = {b}, π(c, c) =
{c}, π(a, b) = {a, b}, π(b, c) = {b, c} and π(c, a) = {c, a},
every subset of {a, b, c} can be created by intersec-
tion with another shortest path in this graph, so
the VC-dimension of the system of shortest paths
(which are all unique) in this example is 3.

But as dealing with directed edges is naturally required when
considering street graphs (asymmetric edge weights, one-
way streets, roundabouts), the VC-dimension for this case is
clearly of interest. We will prove in Theorem 1 that the VC-
dimension for unique directed shortest path systems (UD-
SPS) is 3, and therefore we can also derive k-SPC solutions
with at most O(n/k log(n/k)) vertices for directed graphs.

Theorem 1 (VC-Dimension of UDSPS). A system of
unique directed shortest paths has VC-dimension at most 3.

Proof. We prove that an arbitrary set of four nodes
{v1, v2, v3, v4} cannot be shattered. If there exists no short-
est path containing all the nodes v1, · · · , v4 this is trivially
true. So from now on let π be a directed shortest path
that contains all these nodes, w.l.o.g. in the order implied
by their indices. Consider now the sets B1 = {v1, v4},
B2 = {v2, v4} and B3 = {v1, v2, v4} and assume they can
be realized by paths q1, q2, q3 ∈ A. Because q1 does not con-
tain v3 (and v2) and shortest paths are unique, it follows
q1 = · · · , v4, · · · , v1, · · · . With the same argument B2 leads
to q2 = · · · , v4, · · · , v2, · · · . For B3 observe, that for all or-
dered pairs of its elements besides (v2, v1) the shortest path
is already known and none of them is consistent with q3. But
a path from v2 to v1 over v4 must contain v3. Hence there
exists no q3 and {v1, v2, v3, v4} cannot be shattered.

Remark 1. As already explained in [1], output sensitive
upper bounds can be derived from VC-dimension analysis,
e.g. the algorithm presented in [5] yields a solution of size
O(d|OPT | log(d|OPT |)). Plugging in our value of d = 3
for UDSPS, we end up with an approximation factor of
O(log |OPT |).

4. CONSTRUCTING K-PATH COVERS IN
PRACTICE

In the following we will develop approaches for efficient
cover set construction in practice. We will first discuss the
general case of k-Path Covers but then also consider the
special case of k-Shortest-Path Covers.

A naive approach that immediately comes to mind is to
enumerate for each vertex v ∈ V all paths with k nodes
that start in v and store them. Then any (heuristic) Set-
Cover/HittingSet algorithm, e.g. the greedy approach, could
be used to retrieve a feasible cover C. Unfortunately, this is
not practical for large input graphs, as the exploration time
as well as the space consumption for extracting and storing
all k-node paths is prohibitive. Therefore we will devise a

more sophisticated approach, which allows for a consider-
ably more efficient computation of a feasible cover C.

4.1 The Pruning Algorithm
We follow a pruning approach with the following high-

level idea: Starting with all the nodes in the cover, i.e. C =
V , we consider the nodes one by one, always deciding for a
node v whether it is necessary to keep it in C to maintain
the covering property. To decide whether a node v can be
pruned from C, we essentially have to make sure that there
exists no k-node path over v which does not contain any
other node from the current cover C. So we basically have
to explore all outgoing and ingoing paths of v until reaching
other nodes from C. If the combination of such an outgoing
and ingoing path yields a concatenated path of length k, we
have to keep v in C.

A high-level view on this procedure is given in Algorithm
1. To decide whether a node v can be pruned, the procedure

Algorithm 1 Procedure to decide whether node v is neces-
sary for k-APC-cover.

nodeNecessary(v,k)
construct the set Po of all outgoing paths from v not con-
taining any node in C − {v}
if ∃π ∈ Po with |π| = k then

return true
end if
for all π ∈ Po do

search for the longest incoming path into v
not containing nodes in (C ∪ π)− {v}

if such path of length k − |π|+ 1 exists then
return true

end if
end for
return false

is called with nodeNecessary(v,k). It returns true if a k-node
path exists which is only covered by v (that is, v cannot be
pruned) or false if no such path exists (that is, v can be
pruned). The procedure uses two subroutines enumerating
all incoming and outgoing paths not containing a specific
set of nodes – these subroutines can be easily implemented
very similar to depth first search (but with potentially ex-
ponential running time in k). While these subroutines are
naturally implemented in a recursive fashion (like depth first
search), our implementation is stack-based which is much
faster in practice due to the avoidance of the overhead of
stack frame (de)allocation during the recursive calls. Also
observe that both the construction of the set Po as well as
the search for an incoming path will only explore paths of
length at most k since by assumption C was a valid cover
before consideration of node v. And in particular at the very
beginning, when C is almost the whole vertex set, these two
steps abort almost immediately. This is one reason for the
pruning approach to be much faster than the naive algo-
rithm in practice.

Theorem 2. The pruning algorithm produces a feasible
and minimal k-Path Cover C.

Proof. The pruning algorithm only discards a node v
from C if all paths of k nodes containing v are covered by
C − {v}. Therefore throughout the algorithm we always

896

maintain a feasible k-APC C. So especially after termina-
tion the resulting set C has to cover all k-paths. For min-
imality, consider the moment when v is regarded but not
pruned from C. In this case there was a path π which con-
tains v as the only node from the current C. Hence any node
present in the final cover C has a witness path π which cer-
tifies its necessity for the cover. Therefore no node can be
removed from the final C without invalidating the solution.
Hence C has to be minimal in a set theoretic sense.

Of course, minimality of C does not imply that it is also
minimum, i.e. of minimal cardinality amongst all possible
covers.

Observe that the order in which nodes are considered dur-
ing the course of the algorithm highly influences the solution
quality (while not for feasibility or minimality). Intuitively,
nodes with a low degree might not cover as many paths as
nodes embedded in dense clusters. We will provide an ex-
perimental study measuring the influence of different node
order schemes for pruning towards the end of the paper.

4.2 Lower Bounds
Unfortunately, there are no meaningful theoretical lower

bounds we can compare our result to for quality analysis (as
e.g. in a star graph a single node yields a valid cover, but the
solution size might be arbitrarily large). Nevertheless for a
given problem instance, we can derive valid lower bounds
for practical purposes by greedily choosing disjoint k-node
paths. Obviously a set of pairwise non-intersecting k-node
paths requires an extra node in C for each element in this
set, so the size of any such set yields a valid lower bound for
the size of C. In Figure 3 a small illustration for the lower
bounding technique is provided.

Figure 3: The set of circled nodes shows a feasi-
ble 2-APC. The highlighted paths are disjoint and
therefore prove a lower bound of 3 on the size of a
feasible cover for this instance.

4.3 Nested k-Path Covers
Reconsider our application of transmitting and visualizing

hiking routes. Depending on the zoom-level in which we
want to render the hiking map, we might require different
values of k. So in fact we like to have a sequence of covers
C1, · · · , Cr for k1 < k2 < · · · < kr to allow for r zoom-
levels. Note that in this visualization context it is crucial to
demand Ci ⊇ Ci+1, because otherwise the refinement of a
path when zooming-in might lead to a completely different
path representation, which would make it hard for a user to
recognize substructures and orient himself. To extract such
a sequence of nested k-Path Covers, we first compute the
cover C1 for k1 conventionally with our pruning algorithm.
When, for k2 we do not initialize the pruning algorithm with
C2 = V but C2 = C1 instead. Therefore we make sure

that the resulting cover C2 (after pruning superfluous nodes)
is a subset of C1. Correctness follows from the fact that
obviously a valid cover C for some value k is always also a
feasible cover for all values k′ > k. Proceeding like this up to
kr – always taking the last computed cover as initialization
for the next pruning round – we retrieve the desired sequence
of nested covers.

4.4 Overlay-Graph Construction
For several application scenarios we not only require the

cover set C but also the overlay graph induced by this set.
That means, for any two nodes v, w ∈ C for whom there
exists a path in G from v to w containing no other nodes
from C, we create an edge (v, w) in the overlay graph. We
denote the resulting structure by GO(C,EO). To construct
GO, we proceed as follows: We run breadth first search on
G (BFS) from every node v ∈ C. Every time a node w
which is in C −{v} is extracted from the queue, we add the
respective edge (v, w) to EO but do not relax outgoing edges
of w. So we never explore paths that are already hit by C.
Therefore our algorithm terminates as soon as all paths end
with nodes in C (which due to the characteristic of C being
a k-APC happens after at most all nodes which are k − 1
nodes away were visited; but possibly much earlier).

4.5 Special Case: k-Shortest-Path Cover
The problem of covering all k-node shortest paths for

a specific metric was first tackled in [12]. The authors
proposed a greedy augmentation algorithm which they call
Adaptive Sampling. The idea is to start with an empty cover
C = ∅, and then consider the nodes in V one-by-one, adding
a node v to C iff at the moment of consideration there ex-
ists a so far uncovered k-node shortest path starting in v.
Unfortunately, this approach does not guarantee minimality
(in a set theoretic sense) of the resulting cover since a node
v added to C at some point of the algorithm might become
redundant later on due to nodes subsequently added to C.

We reimplemented their approach for evaluation but made
some small modifications which keep us from inserting su-
perfluous nodes. Even using this improved version of Adap-
tive Sampling, we observed that metric-independent k-Path
Covers constructed with our pruning algorithm were smaller
in size than the k-SPC by Adaptive Sampling on the same
graph (even though in the k-SPC setting much fewer paths
have to be hit).

To improve further, we adapted the pruning algorithm to
the k-SPC setting. Like for the general case we start with
C = V and try to prune nodes ensuring that their removal
does not lead to any uncovered k-node shortest path.

To decide if there exists an uncovered k-node shortest path
containing v, we proceed as follows:

1. temporarily remove v from C
2. grow a shortest path tree TF (v) by running Dijkstra’s

algorithm until all unsettled but labeled nodes contain
a node from C on their current path from v

3. in the reversed graph2 G−1 grow a shortest path tree
TR(v) from v until all unsettled but labeled nodes con-
tain a node from C on their current path from v

4. if TF (v) contains a kF -node path not containing any
node from C and TR(v) a kR-node path not containing
any node from C and kF + kR − 1 > k, add v back to
C otherwise prune it.

2G−1 has the same vertex set as G but all edges reversed.

897

We call this algorithm Quick Pruning because it runs very
fast in practice. But in contrast to our general pruning algo-
rithm for k-APC, we cannot guarantee minimality with this
approach (the same holds for Adaptive Sampling). The rea-
son for possibly keeping some unnecessary nodes in C is that
the concatenation of two shortest paths (one from TR, one
from TF) not necessarily needs to be a shortest path itself.
So the k-node path we take as a witness for the necessity of
v might not be a shortest path and therefore does not have
to be covered by our C. In fact, we can fix this by running a
slightly modified pruning algorithm. For every node in the
backward search tree TR, we run a forward search and check
if there are uncovered k-node shortest paths over v. More
formally it can be described like this:

1. temporarily remove v from C
2. in the reversed graph G−1 grow a shortest path tree
TR(v) from v until all unsettled but labeled nodes con-
tain a node from C on their current path from v

3. for every node w in TR(v) grow a shortest path tree
TF (w) in G until all unsettled but labeled nodes con-
tain a node from C on their current path from w

4. if there is a k-node path over v in TF (w) not contain-
ing a node from C, v has to be added back into C,
otherwise it can be pruned

While this pruning approach again guarantees set minimal-
ity of the output cover, it triggers a lot more Dijkstra com-
putations. Therefore we expect the quality to be superior to
Quick Pruning but the runtime to be worse. So it depends
on the application context which approach to use.

According to our definition of k−SPC we aim at covering
all shortest paths, not only one shortest path for each pair
s, t of vertices. We now provide the details which we left out
in the above description for sake of a clearer presentation.
The basic idea is to temporarily make shortest paths already
covered by the current C infinitesimally more expensive such
that uncovered shortest paths are always exhibited. To that
end consider slightly modified edge costs c′ : E → R where
for an edge e = (v, w) with v ∈ C or w ∈ C we define
c′(e) = c(e) + ε for some arbitrarily small ε > 0, otherwise
c′(e) = c(e). Growing a shortest path tree from s under
this edge cost function c′ until all nodes have a node from C
on their shortest path from s ensures that if there exists a
shortest path from s to v not containing any node from C,
its nodes will be part of the shortest path tree grown from
s. Now consider the directed acyclic graph D induced by
the nodes of the shortest path tree and all edges e = (v, w)
with d(v) + c(e) = d(w) (here d(.) denotes the shortest path
distance from s). Every path in D from s to some node v
corresponds to a shortest path from s to v not containing
any nodes from C and vice versa. The maximum-hop path
amongst these can easily be determined for all nodes in D
in O(|D|) time.

name #nodes #edges davg dmax tdij (ms)
CAL 1.89M 4.65M 2.46 8 139

D
IM

USA 23.95M 58.33M 2.43 9 3142
BW 2.23M 4.64M 2.04 7 396

O
S
M

GER 17.73M 36.06M 2.03 8 3823

Table 1: Benchmark graphs (M = 106).

We want to emphasize, though, that this is only necessary
if we really insist on hitting all shortest paths. It is very

easy to enforce uniqueness of shortest paths by techniques
like symbolic perturbation. In practice, the ambiguity of
shortest paths hardly affects the size of the covers in road
networks.

5. EXPERIMENTAL EVALUATION

5.1 Environment and Data Sets
Our C++ implementations were compiled using gcc 4.6.3

and benchmarked on a 3.2GHz intel i5-3470 with 16GB
RAM. As benchmark data we used road networks extracted
from the OpenStreetMap (OSM) project as well as the stan-
dard DIMACS road network graphs3, which were also used
in [12]. Edge costs (in the single metric case) were set
to travel times. Most experiments were conducted on the
largest graphs GER and USA, see Table 4.5 for an overview
of the characteristics of the used graphs. The values of davg,
dmax and tdij denote the average degree, the maximum de-
gree and the time a random one to all run of Dijkstra’s
algorithm takes on average, respectively.

5.2 Constructing k-APC
Let us start with the pruning approach for constructing

sets C covering all paths consisting of k nodes: In Table 2
we first examine how different node orders affect the quality
and the running time of the cover construction. We consid-
ered the two largest networks GER and USA; fixing k = 16
we evaluated node orders both decreasing (-dec) as well as
increasing (-inc) according to their node ID (id-) as given
by the original graph file, number of incoming plus outgoing
edges (oi-), the order in which the recursive calls of a depth-
first-search visit the nodes (dfs-), the order in which the
recursive calls of a depth-first-search are completed on the
nodes (comp-), and finally simply random order (rand). In-
tuitively it makes sense to prune away low-degree nodes first,
and indeed pruning in increasing degree order (oi-inc) leads
to much smaller cover sizes compared to oi-dec. dfs-dec

and comp-inc tend to prune out nodes in dead-ends first
which seems favorable to dfs-inc and comp-dec. For the
lower bounds the differences are not very pronounced, so
throughout the following benchmarks we use the comp-inc

order for both cover construction as well as lower bounds.
Note that our instance-based lower bounds prove that our
constructed covers are pretty close to optimal (at most a
factor 1.7 larger for GER, a bit worse with a factor of 3.2
for USA) – in fact, they could be even closer to the optimum
since the lower bound is probably not really tight. The con-
struction times for the lower bounds are almost negligible.

In Table 3 we examine the cover construction for varying
values of k. As to be expected, for growing k the cover con-
struction time increases rapidly, nevertheless it is somewhat
astonishing that it is feasible to construct covers for k values
as large as k = 32. Also note that while the lower bounds
of the GER and USA graphs are very similar, the cover
sizes (and the respective construction times) are consider-
ably worse for the USA graph – one reason might be the
presence of many grid-like substructures in the USA road
network. Nevertheless the approximation ratio guaranteed
by our instance-based lower bounds never exceeded 2.2 (for
GER) and 5.0 (for USA); the actual optimum might also

3http://www.dis.uniroma1.it/challenge9/download.
shtml

898

G order lb secs |C| rel. secs

id-inc 681,242 10 1,302,559 7.35% 35
id-dec 628,533 12 1,992,315 11.20% 48
oi-inc 708,417 11 1,368,034 7.72% 39
oi-dec 622,685 13 2,072,841 11.70% 56

G
E
R

rand 659,958 21 1,740,967 9.82% 73
dfs-inc 735,199 10 1,913,269 10.80% 64
dfs-dec 727,341 10 1,201,654 6.78% 47
comp-inc 735,746 10 1,209,215 6.82% 46
comp-dec 736,775 10 1,877,547 10.60% 62
id-inc 720,221 9 3,232,581 13.50% 98
id-dec 739,922 10 2,951,161 12.30% 79
oi-inc 764,760 12 2,504,626 10.50% 61
oi-dec 685,110 13 4,191,685 17.50% 224

U
S
A

rand 716,058 28 3,112,202 13.00% 134
dfs-inc 755,352 11 3,674,978 15.30% 137
dfs-dec 752,906 11 2,351,124 9.82% 110
comp-inc 759,961 11 2,351,124 9.82% 111
comp-dec 755,338 11 3,704,711 15.50% 151

Table 2: k-APC: Influence of different node orders
on cover size and lower bounds (lb) for k = 16. The
columns are from left to right: graph, order, lower
bound size, lower bound construction time, cover
size, relative cover size, cover construction time.

G k lb |C| perc time(s) apx

2 8,560,543 8,863,443 50.00% 17 1.04
4 3,969,092 4,513,217 25.50% 21 1.14
8 1,739,476 2,308,934 13.00% 29 1.33

G
E
R

16 735,746 1,209,215 6.82% 47 1.64
32 306,009 666,829 3.76% 119 2.18
2 10,906,996 11,910,322 49.70% 15 1.09
4 4,631,511 6,676,239 27.90% 22 1.44
8 1,854,605 3,776,360 15.80% 38 2.04

U
S
A

16 759,961 2,351,124 9.82% 110 3.09
32 321,853 1,603,267 6.69% 15,100 4.98

Table 3: k-APC: Approximation ratios (apx) and
construction times for comp-inc order and varying
values of k. ’perc’ describes the fraction of nodes in
V that are contained in the cover C.

be much closer to our constructed covers than to our rather
naive lower bound.

5.3 Special case: Constructing k-SPC
For comparison with the results in [12] we implemented

a variant of their Adaptive Sampling approach and our two
pruning strategies for the k-SPC case. The respective results
can be found in Table 4. The outcomes of our implemen-
tation of the Adaptive Sampling approach are pretty close
to their reported performances (maybe even slightly better
in terms of quality of the solution): for the USA instance
and k = 16 our implementation of Adaptive Sampling con-
structed a cover of size 3,295,812 which is about 14% of the
total number of nodes in the graph ([12] reported around
15% for this very instance). Our pruning approach on the
other hand produced for the same instance and k-value a
cover of size only 5.8% of the total number of nodes. For all
choices of k the pruning approach consistently outperformed
Adaptive Sampling by a considerable margin in terms of
quality. Running times are slightly above the ones for Adap-
tive Sampling yet our Quick Pruning variant (which does not
guarantee minimality) was always much faster than adaptive
sampling but still better in terms of quality of the solution.

In general – for a given time budget – k-SPC can be com-
puted for larger values of k, in comparison to k-APC; which
does not come as a real surprise since at some point con-
sidering all possible paths of some length starts exhibiting
exponential blow-up.

It is worth emphasizing that e.g. for k = 16 our pruning-
based k-APC covers which guarantee covering all k-paths
have smaller cardinality than the Adaptive Sampling based
k-SPC covers (like [12]) which only cover shortest k-paths
in spite of the much stronger coverage property (in the USA
instance: 2,351,124 vs. 3,295,812 nodes).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n
u
m

b
e
r

o
f
n
e
ig

h
b
o
rs

 (
in

 t
h
o
u
s
a
n
d
s
)

hop distance

Adapative Sampling
Pruning

Figure 4: Distribution of hop distances between
neighboring nodes in the USA skip-graph for k = 16.

In addition, we analyzed the hop distances between neigh-
boring nodes for Adaptive Sampling (AS) and Pruning, ex-
emplary for USA with k = 16. Here two nodes in C are
called neighbors if the shortest path between them in G con-
tains no other nodes from C. Obviously large hop distances
between neighbors is a quality indicator for C. The average
hop distance between two cover nodes for AS is 6.45, for
Pruning 8.04. Even more significant is the distribution of
hop distances among all neighbors as depicted in Figure 4.
For AS we observe that a large number of neighboring nodes
are only a few hops apart. Indeed, the maximum is at 1 and
the curve decreases almost monotonously with growing hop
distance. This is a direct consequence of the redundancy
of nodes in an AS cover. However, for pruning, the curve
looks quite different: The peak is at 8 and – as there is also
the median – a significant number of neighbor pairs have a
larger hop distance.

Considering the representation of paths subsampled ac-
cording to C, we can compare the number of edges of this
simplified path to the number of original edges in G to mea-
sure the compression. The resulting numbers can be found
for varying values of k in Table 5. A natural lower bound
for the number of edges on such a path is the number of
original edges divided by k (otherwise the underlying cover
would not be a valid k-SPC). If we compare AS and Pruning,
we see that Pruning results in edge values much closer to the
lower bound than AS, and especially for small k Pruning is
near-optimal.

5.4 Application: Personalized Route Planning
Let us now instrument k-All Path Covers to speed-up fully

personalized route planning queries. As input we are given a

899

G k lower Adaptive Sampling Quick Pruning Pruning
bound time (secs) time (secs) time (secs)

8 1,750,150 5,483,792 172 4,563,885 76 3,067,632 175
16 618,755 3,295,812 615 2,449,744 179 1,392,803 782
32 200,774 1,890,620 2,700 1,256,871 513 584,904 4,970

U
S
A

40 136,592 1,564,624 4,401 1,004,268 772 431,686 9,520
8 1,637,613 3,659,568 92 3,294,225 42 2,184,986 76

16 654,679 2,142,327 248 1,710,510 89 1,028,696 222
32 246,459 1,259,841 783 826,636 210 463,064 856
40 177,619 1,065,534 1,179 648,508 322 355,062 1,360
48 135,545 925,359 1,584 530,949 433 285,780 2,050

G
E

R

56 107,687 825,694 2,214 447,816 546 237,479 2,900

Table 4: k-SPC: Sampling vs. Pruning: Comparison for USA and GER.

k 2 4 8 16 32

AS 67% 42% 26% 18% 12%
Pruning 56% 33% 20% 12% 8%
Lower Bound 50% 25% 12% 6% 3%

Table 5: Ratio of edges on a k-sampled path com-
pared to all edges in the original path. Values are
averaged over 1000 random queries.

road network G(V,E) and a set of cost functions c1, c2, . . . cr
with ci : E → R+

0 . A query consists of source node s, desti-
nation node t and weights w1, w2, . . . , wr with wi ∈ R+

0 and
expects as a result a path π minimizing the weighted cost∑
e∈π

∑r
i=1 wi · ci(e). The straightforward baseline strat-

egy to answer such a query is to run Dijkstra’s algorithm
and each time an edge is considered in the course of the al-
gorithm, compute its respective weighted cost according to
the wi values provided with the query.

Apart from [7], which is only practicable for a small num-
ber of metrics (r ≤ 3), we are not aware of any speed-up
scheme for such type of queries. The customizable route
planning approach in [6] allows for updates of the underly-
ing graph metric, but an update takes several seconds on a
multicore server, and hence is only worth if several queries
with exactly the same weights are to be answered. Our ap-
proach allows for the specification of different weights wi
with every single query and works as follows:

• Preprocessing:

– compute a k-APC C

– construct the overlay multigraph GO(C,EO) wrt
G(V,E), where there is an edge (v, w) ∈ EO for
every path π in G between nodes v, w ∈ C which
does not contain other nodes of C. The r cost
values of an edge e ∈ EO arise from component-
wise addition of the cost values of the edges of the
respective path.

• Query:

– start a Dijkstra (using edge cost functions c1, . . . , cr
and weights w1, . . . , wr according to the query) in
G(V,E) from s ∈ V stopping as soon as all nodes
in the priority queue have shortest paths from
s containing at least one node from C. If this

search has already settled t, we are done. Other-
wise we obtain a set of access nodes A(s) ⊂ C as
well as their shortest path distances d(s, as) for
all as ∈ A(s). We know that the shortest path
from s to t has to pass through one of the nodes
in A(s).

– do the same from the target t but on the reverse
graphG−1; this yields a set of access nodes A(t) ⊂
C as well as shortest path distances d(at, t) for all
at ∈ A(t). The shortest path from s to t has to
pass through one of the nodes from A(t).

– In the overlay multigraph GO(C,EO) fill the pri-
ority queue with the nodes as ∈ A(s) (initialized
with the respective distances d(s, as) and let Di-
jkstra run until all nodes in A(t) have been set-
tled. At this point we have found shortest path
distances d(s, at) from s to all nodes at ∈ A(t).
The desired shortest path distance (and the path
itself) is determined by the access node at ∈ A(t)
minimizing d(s, at) + d(at, t).

The efficiency of our approach is based on the fact that
the search in the overlay multigraph GO(C,EO) turns out
to be much faster than on the original graph G(V,E) and
the initial searches for A(s) and A(t) take negligible time.
Let us first experimentally examine the cost and structure
of the overlay multigraph GO(C,EO).

5.4.1 Personalized Route Planning: Preprocessing
In Table 6 we see the characteristics of the overlay multi-

graphs constructed for our benchmark graphs for different
values of k. It is not surprising that the number of edges in
the overlay multigraph is much higher than in a respective
shortest-path overlay multigraph (where there is at most one
edge between any pair of nodes) since every path between
two nodes in the cover needs to be represented by a respec-
tive edge. While the number of nodes in the cover decreases
rapidly with growing value of k, the number of edges in the
overlay multigraph first remains almost constant but then
increases quickly, surpassing the number of edges of the orig-
inal graph for large values of k. Since this preprocessing only
has to be performed if the combinatorial structure of the
road network changes (addition/deletion of nodes or edges),
the respective running time is not that important. Never-
theless we see that even large graphs like GER can easily be
preprocessed within a few minutes.

900

k |C| |EO| time (sec) total (sec) avg. deg max deg

8 264,662 1,103,606 4.4 7.6 4 99
12 187,398 1,091,776 4.4 8.5 5 236
16 146,761 1,195,321 5.1 10.1 8 525
20 121,750 1,389,930 6.2 12.4 11 1,313

B
W

24 104,899 1,750,495 8.1 15.9 16 5,470
28 92,428 2,374,019 11.7 21.1 25 38,675
32 83,173 3,036,534 15.1 27.1 36 14,351
36 75,977 4,421,291 23.5 39.4 58 65,910
40 70,185 7,677,834 45.1 68.7 109 278,315
8 2,308,934 9,117,057 35.6 65.6 3 116
16 1,209,215 9,504,005 45.5 92.1 7 1,589
24 845,905 15,050,313 79.0 149.4 17 30,539

G
E

R

32 666,829 32,057,249 186.8 304.6 48 163,654

Table 6: Personalized Route Planning/Preprocessing. Construction of k-APC and overlay graph: size of
k-APC, number of edges in the overlay graph, time to construct the overlay graph, total time (k-APC and
overlay graph construction), avg. and maximum degree in overlay graph.

k Dijkstra search search search speed-
local overlay total up

(ms) (ms) (ms) (ms)
8 3,282 0.01 481 481 6.82
12 3,282 0.02 356 356 9.21
16 3,282 0.03 295 295 11.1
20 3,282 0.04 265 265 12.4
24 3,282 0.04 249 249 13.1
28 3,282 0.06 248 248 13.2

Table 7: Personalized Route Planning Queries on
GER: 8 metrics, random source-target pairs, ran-
dom weights w1, . . . , w8. Averages for 100 random
queries: Dijkstra baseline, search for access nodes,
search in overlay multigraph, total search time,
speed-up vs. Dijkstra.

5.4.2 Query Processing
We considered the following 8 metrics for personalized

route planning:

Metric Explanation

travel time based on road categories
eucl. dist simple euclidean distance

height difference absolute value of height difference
energy energy consumption

edge-type OSM-edge type as a number
speed maxspeed based on OSM tags
rand a random value
unit 1 for each edge

For query evaluation we generated 100 random source-target
queries with random weights w1, w2, . . . , w8 comparing the
performance of our speed-up scheme for different values of
k with a standard Dijkstra run. Apart from the measured
query times, we will also look more closely at the time spent
in the search for the access nodes A(s) and A(t) as well as
the search in the overlay graph. See Table 7 for the results.

We first observe that the searches for the access node
sets A(s) and A(t) in the original graph only take negligi-
ble time, the search in the overlay multigraph clearly dom-

inates the overall query time. The achieved speed-up first
quickly grows with increasing k but improves only slightly
above k = 20. One should bear in mind, though, that the
overlay multigraph gets very dense for large k (see Table
6), so in terms of memory efficiency it is not reasonable to
choose k larger than 30 on our benchmark data. While we
do not present respective measurements here, we want to
note that different choices of the weight values w1, . . . , w8

hardly made any difference in the running times, neither
did different metrics (in contrast to [7] where depending on
the choice of the metrics, the speed-up was greatly reduced).
In any case, for moderate values of k like k = 24 our scheme
accelerates personalized route planning queries by one order
of magnitude without incurring too much of a space over-
head (for k = 24, the overlay multigraph is less than half
the size of the original road network, queries are answered
more than 13 times faster).

Very interesting in this context is how the running times
and the speed-ups behave when adding more metrics. There
are quite a few possible use cases for a large number of met-
rics. For example, one might induce a fine-grained partition
of the roads of the network and then perform queries where
certain classes of roads are disabled. This can be achieved
by creating a metric for each road class which bears cost ∞
for the edges of the respective road class, 0 for the others. In
a query one can then disable a certain road class by choosing
a multiplier of 1 for the respective metric. Another interest-
ing scenario exists, which makes sense for rather short, e.g.
commuter route planning queries. Here one can simulate
time-dependent edge costs (longer travel times during rush
hour) by associating different travel times on the edges for
each hour of the day as a separate metric each. Again by
choosing appropriate multipliers one can perform the query
on the respective road network at that time of the day. (Of
course this only makes sense for rather short queries since
we cannot express dynamic changes of edge costs over time
in one route). In Table 8 we measured the behavior for a
growing number of metrics for the smaller BW graph.

It turns out that even for quite a large number of metrics,
the speed-up compared to plain Dijkstra still is considerable
and almost one order of magnitude. The absolute query

901

of Dijkstra total search speed-up
metrics (ms) (ms)

2 338 27 12.5
4 352 29 12.1
8 377 35 10.8

16 419 41 10.2
32 521 55 9.5
64 654 80 8.2

Table 8: Search times when increasing the number
of metrics (random weights). BW graph, k = 20.
Average of 100 random queries, speed-up compared
to plain Dijkstra.

time, of course, increases with growing number of metrics
due to the more expensive evaluation of edge costs, but that
is true for both the Dijkstra baseline as well as our approach.

6. CONCLUSION
We introduced the k-All-Path Cover optimization prob-

lem with the goal of computing compact yet faithful syn-
opses of the vertex set of road networks. Our proposed
pruning algorithm provides close to optimal results in prac-
tice and was experimentally proven to be very efficient on
large graphs. For the special subcase of covering all k-node
shortest paths as proposed by Tao et al. [12], we consider-
ably improved their results in terms of running time and
solution quality. But even for covering all paths consisting
of k nodes, we could construct surprisingly small cover sets
in reasonable time for moderate values of k.

On that basis, we developed a completely new frame-
work for answering personalized route queries, where the
user provides not only source and target but also weights
for a given set of metrics. Our solution is based on a metric-
independent overlay multigraph constructed upon our cover
set in a preprocessing phase. While other route planners re-
quire a relatively expensive customization phase to adapt
to personalized metrics, our approach allows to incorpo-
rate them in the overlay graph on the fly. This leads to
a speed-up of an order of magnitude compared to Dijkstra’s
algorithm. While this already allows for real-time query an-
swering, a natural direction for future research is to aim
for query times in the order of milliseconds as achievable
for fixed metric shortest path queries. We want to empha-
size that our speed-up techniqe is somewhat orthogonal to
speed-up techniques like A∗ and may be very well combined
with them. This might be a good starting point to achieve
query times in the milliseconds range even for personalized
route queries.

7. REFERENCES
[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and

R. F. Werneck. Vc-dimension and shortest path
algorithms. In International Colloquium on Automata,
Languages, and Programming (ICALP), pages
690–699. Springer, 2011.

[2] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In Symposium on
Experimental Algorithms (SEA), pages 230–241.
Springer, 2011.

[3] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
routing in road networks using transit nodes. Science,
316(5824):566, 2007.

[4] B. Brešar, F. Kardoš, J. Katrenič, and G. Semanǐsin.
Minimum k-path vertex cover. Discrete Applied
Mathematics, 159(12):1189–1195, 2011.

[5] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite vc-dimension. Discrete &
Computational Geometry, 14(1):463–479, 1995.

[6] D. Delling, A. V. Goldberg, T. Pajor, and R. F. F.
Werneck. Customizable route planning. In P. M.
Pardalos and S. Rebennack, editors, Symposium on
Experimental Algorithms (SEA), pages 376–387.
Springer, 2011.

[7] S. Funke and S. Storandt. Polynomial-time
construction of contraction hierarchies for
multi-criteria objectives. In Algorithm Engineering and
Experiments (ALENEX), pages 41–54. SIAM, 2013.

[8] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter.
Exact routing in large road networks using contraction
hierarchies. Transportation Science, 46(3):388–404,
2012.

[9] R. J. Gutman. Reach-based routing: A new approach
to shortest path algorithms optimized for road
networks. In Algorithm Engineering and Experiments
(ALENEX), pages 100–111, 2004.

[10] D. Haussler and E. Welzl. Epsilon-nets and simplex
range queries. In Symposium on Computational
Geometry (SCG), pages 61–71, New York, NY, USA,
1986. ACM.

[11] N. Ruan, R. Jin, and Y. Huang. Distance preserving
graph simplification. CoRR, abs/1110.0517, 2011.

[12] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest
paths. In ACM SIGMOD, pages 421–432. ACM, 2011.

[13] V. N. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971.

902

