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ABSTRACT
This paper presents a technique called WideTable that aims to im-
prove the speed of analytical data processing systems. A WideTable
is built by denormalizing the database, and then converting com-
plex queries into simple scans on the underlying (wide) table. To
avoid the pitfalls associated with denormalization, e.g. space over-
heads, WideTable uses a combination of techniques including dic-
tionary encoding and columnar storage. When denormalizing the
data, WideTable uses outer joins to ensure that queries on tables
in the schema graph, which are now nested as embedded tables in
the WideTable, are processed correctly. Then, using a packed code
scan technique, even complex queries on the original database can
be answered by using simple scans on the WideTable(s). We exper-
imentally evaluate our methods in a main memory setting using the
queries in TPC-H, and demonstrate the effectiveness of our meth-
ods, both in terms of raw query performance and scalability when
running on many-core machines.

1. INTRODUCTION
There is a unique confluence of technologies with the trend to-

wards read-mostly and append-only databases (popularized by the
MapReduce style of processing), the move towards main-memory
databases (for speed), and the use of column stores (for speed and
flexibility in schema evolution). In this paper, we design, develop
and evaluate a technique called WideTable that leverages these forces
to produce a high-performance analytical data processing system.

WideTable uses aggressive denormalization to flatten a database
schema into one or more big (wide) tables. Queries on the original
database, even complex join queries, now become simple scans on
the WideTables. The use of outer joins during the denormalization
process is critical to ensure that the WideTable technique produces
correct answers. WideTable uses a columnar storage representation
with dictionary encoding to control the space overhead that is as-
sociated with denormalization. It also uses recently-proposed fast
columnar scan techniques that pack multiple codes into a processor
word, and evaluate scans on these “packed codes.”

While the WideTable technique can be used in various settings,
in this paper we focus on main memory analytical data process-
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Figure 1: Performance comparison with a subset of TPC-H queries.

ing systems. Such main memory settings are an important part of
the analytical space, and there is considerable interest in this area
(e.g. [3, 4, 10, 14, 16, 22, 23, 34, 37]). This interest has been kindled
by the observation that with large main memory configurations, it is
often practical to stage at least the most crucial part of the database
in memory. The high performance associated with such main mem-
ory settings is specially appealing as there is an arms race towards
near real-time analytical systems.

We note that WideTable can be used in many different settings,
but in this paper we focus on using it as an front-end accelerator for
a traditional data processing platform. Thus, our goal is to focus
on performance when evaluating an important and common class
of queries in WideTable, and queries that cannot be answered by
WideTable are processed in a traditional way.

We have conducted an evaluation of WideTable on the TPC-H
benchmark. Figure 1 compares the performance of MonetDB, Vec-
torwise, and our implementation of WideTable. (Section 4 presents
additional results.) This figure shows two results for both MonetDB
and Vectorwise. The first uses MonetDB and Vectorwise as is, and
the second denormalizes the TPC-H schema by pre-joining all the
tables to form a join table (akin to part of the WideTable design,
but using MonetDB and Vectorwise as is). This latter method aims
to show how a simple materialization approach works compared to
the WideTable technique. As can be seen in this figure, the use of
denormalization improves the performance of queries with Mon-
etDB and Vectorwise by up to 3X in some cases. But, there is a far
larger improvement when using WideTable, as it uses techniques
that go beyond simply pre-joining the underlying tables.

We also note that in Figure 1, we only show the results for a
small number of TPC-H queries. The queries that are missing
in this figure require techniques to rewrite and optimize nested
queries against a database of materialized pre-joined tables. Part
of our contribution in this paper is developing these techniques for
WideTable.

With the WideTable technique that is proposed in this paper, we
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Customer
cid cname gender address nid
1 Andy M 100 Main St. 1
2 Kate F 20 10th blvd. 2
3 Bob M 300 5th Ave. 1

Product
pid pname quantity nid
1 Milk 10.00 1
2 Coffee 1.00 1
3 Tea 5.00 3

Nation
nid nname rid
1 United States 1
2 Canada 1
3 China 2

Region
rid rname
1 America
2 Asia

Buy
cid pid amount status
1 2 1 S
2 2 3 F
3 3 2 S
1 2 1 S
2 3 1 S

Figure 2: Normalized tables.

cid cname gender address cnid cnname cnrid cnrname pid pname quantity pnid pnname pnrid pnrname amount status
1 Andy M 100 Main St. 1 United States 1 America 2 Coffee 1.00 1 United States 1 America 1 S
2 Kate F 20 10th blvd. 2 Canada 1 America 2 Coffee 1.00 1 United States 1 America 3 F
3 Bob M 300 5th Ave. 1 United States 1 America 3 Tea 5.00 3 China 2 Asia 2 S
1 Andy M 100 Main St. 1 United States 1 America 2 Coffee 1.00 1 United States 1 America 1 S
2 Kate F 20 10th blvd. 2 Canada 1 America 3 Tea 5.00 3 China 2 Asia 1 S

NULL NULL NULL NULL NULL NULL NULL NULL 1 Milk 10.00 1 United Status 1 America NULL NULL

Figure 3: Denormalized table.

can run 21 of the 22 TPC-H queries. Our evaluation shows that our
WideTable implementation outperforms MonetDB (with or without
denormalization) for nearly all of these queries. WideTable results
in over 10X speedup for about half of the 21 queries. Furthermore,
the WideTable technique also shows better scalability when run-
ning on a many-core machine.

The remainder of this paper is organized as follows: Section 2
discusses denormalization, and Section 3 describes the WideTable
design. Section 4 presents experimental results. Related work is
covered in Section 5, and our concluding remarks are in Section 6.

2. REVISITING DENORMALIZATION
In this section, we present the basic idea behind the denormal-

ization method, as well as the three key techniques that make the
denormalization method used in WideTable practical and efficient,
namely: column-stores, dictionary encoding, and packed code scans.

Running Example. Throughout this paper, we use a running ex-
ample based on the sample data warehousing schema shown below.
In this example, the primary key fields are underlined, and the for-
eign keys are shown in bold. Figure 2 shows the example instances
for these tables. In this example, the Buy relation is a “fact” table,
and the other tables are “dimension” tables.

Region(rid, rname)
Nation(nid, nname, rid)
Customer(cid, cname, gender, address, nid)
Product(pid, pname, price, nid)
Buy(cid, pid, amount, status)

2.1 Denormalization
Relational databases are often normalized to eliminate various

types of anomalies associated with duplicating information. The
basic idea behind the denormalization method is straightforward:
we pre-join all the tables to produce a flat table that retains tuples
from the original tables, as well as the relationships between these
tuples. Consequently, join queries on the original normalized tables
now become simple scans on the denormalized table.

Figure 3 shows the denormalized table for the example database
shown in Figure 2. In this example, we use outer joins on each pair
of primary key and foreign key to create the denormalized table.
Thus, the denormalization tuple retains one copy of each tuple. For
instance, the product “Milk” is not purchased by any customer, but
it is still included in the denormalized table, and the corresponding
Customer, and Buy attributes are padded with NULLs.

As illustrated by the example shown in Figure 3, the number of
attributes in the denormalized table is nearly the sum of the number

of attributes in each individual normalized table (we drop all for-
eign key fields to avoid duplicating these keys), whereas the num-
ber of rows in the denormalized table is nearly equal to the number
of rows in the largest original table. In a way, we have produced a
wider (fact) table with the denormalization technique. In this pa-
per, we use the term “WideTable” to metaphorically describe such
a denormalized table. As we will see below, the use of outer joins
is a critical aspect of the WideTable design.

Queries on the original tables, even complex join queries, now
can be executed as simple scan queries on the WideTable. As an
example, consider the following query Q1 that finds the names of
customers who have purchased products from their own nation:

Q1: SELECT cname
FROM Customer, Buy, Product
WHERE Customer.cid = Buy.cid
AND Buy.pid = Product.pid
AND Customer.nid = Product.nid

The execution of this query on the original tables requires two
joins across three tables, but only requires a single scan with a sin-
gle predicate cnid = pnid on the corresponding WideTable.

We note that there is a rich legacy of work on denormalization
in the area of database research, including work done in the early
days of this field (e.g. [17, 21, 30]), and also more recent work
(e.g. [8,24,27]). Several drawbacks of the denormalization method
have been identified and discussed, such as how the duplication
of information in the denormalized table takes extra space, how it
makes updates more challenging, and how the query performance
could potentially suffer since the denormalized data is much larger
in size. In this paper, we argue that many recent technical trends
now make it practical to reconsider the idea of denormalization. We
present these (three) key techniques below.

2.2 Columnar storage
Denormalizing a database might slow down query processing

in traditional row-oriented database systems, even for the simplest
queries. Although denormalization might simplify query process-
ing by converting join operations into (potentially faster) scan oper-
ations, it can slow down the access to each individual tuple. This is
because a tuple in the denormalized table is generally much larger
than the tuple(s) in the original normalized tables, as there are more
attributes in the denormalized table, and large fields/attributes (e.g.
strings) might be added to the denormalized table. Consequently,
when tuples in the denormalized format are brought into the pro-
cessor during query processing, considerable (memory and/or IO)
bus bandwidth is wasted in fetching attributes that are not needed
for query processing. In other words, in a row-oriented storage for-
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cname dict
value code
Andy 0
Bob 1
Kate 2

gender dict
value code

F 0
M 1

address dict
value code

100 Main St. 0
20 5th Ave. 1

300 10th blvd. 2

nname dict
value code

Canada 0
China 1

United States 2

rname dict
value code

America 0
Asia 1

status dict
value code

F 0
S 1

pname dict
value code
Coffee 0
Milk 1
Tea 2

quantity dict
value code
1.00 0
5.00 1

10.00 2

cid cname gender address cnid cnname cnrid cnrname pid pname quantity pnid pnname pnrid pnrname amount status
1 0 1 0 1 2 1 0 2 0 0 1 2 1 0 1 1
2 2 0 1 2 0 1 0 2 0 0 1 2 1 0 3 0
3 1 1 2 1 2 1 0 3 2 1 3 1 2 1 2 1
1 0 1 0 1 2 1 0 2 0 0 1 2 1 0 1 1
2 2 0 1 2 0 1 0 3 2 1 3 1 2 1 1 1

NULL NULL NULL NULL NULL NULL NULL NULL 1 1 2 1 2 1 0 NULL NULL

Figure 4: Encoded denormalized table with dictionaries.

mat, adding more columns into the table (i.e. denormalizing tables)
generally hurts the performance of queries that only access a few
columns in the database (which is the common case).

There has been significant interest in column-oriented databases
in both the research community (e.g. [1,4,28]) and in the commer-
cial products (e.g. [11, 19, 37]). We observe that storing data in
columns is well-suited to the WideTable design, because column-
oriented databases only access the values of the columns that are
required for processing a given query, (largely) regardless of how
many columns there are in the underlying table. Consequently,
adding more attributes or columns (when using denormalization)
is nearly “cost-free” in terms of the query processing cost.

2.3 Dictionary encoding
Denormalization methods generally store additional redundant

information that consumes extra space, and slows down query pro-
cessing as more data has to be moved through the memory and/or
IO buses. In contrast, in a normalized database, each data item is
stored in only one location.

For example, in Figure 2, each address for each customer is
stored only once in the normalized representation, whereas in the
denormalized representation (Figure 3), this address information
is often duplicated. Imagine that each customer purchases a large
number of products, and the address field is a wide string, e.g. a
CHAR(100) data type, then the space associated with storing this
attribute can cause a large increase in the space that is needed to
store the denormalized table.

WideTable uses dictionary encoding to address this limitation.
Dictionary encoding [6,31] is a popular method to compress databases,
even in main memory settings [5, 10, 18, 23]. Dictionary encoding
builds a dictionary on all the distinct values in the column, and
maps each native column value to a code. In this paper, we use
the term “code” to mean an encoded column value. The data for a
column is represented using these codes, and these codes only use
as many bits as are needed for the fixed-length encoding.

Figure 4 demonstrates the dictionary-encoded denormalized ta-
ble with the dictionaries on each string or numeric attribute (we
omit showing the dictionaries for integer attributes). Each dictio-
nary that is built on the dimension attributes contains up to three
values, which is equal to the number of tuples in the dimension
tables Customer, Buy, and Nation.

We observe that the dictionary encoding technique is well-suited
to the idea of denormalization. Essentially, the dictionaries play a
similar role as the dimension table in a normalized database – i.e.
it reduces the amount of redundant data. More interestingly, the
number of entries in each dictionary is bounded by the cardinality
of the corresponding (dimension) table, because the number of dis-
tinct values for an attribute is less than or equal to the number of
tuples in the (dimension) table.

Denormalization

Columnar storage Dictionary encoding Packed code scan

Figure 5: Relationships between the techniques used in WideTable.

2.4 Packed code scan
There has been a recent flurry of activity/interest in efficient scan

primitives for main memory analytic database systems, where the
data is often stored in compressed form using dictionary encoding
or other encoding schemes. Many recent scan methods exploit the
parallelism that is available at the processor word level (such as
[15,20,23,32,33,36]). In this paper, we call these methods packed
code scans, as they pack multiple codes into a processor word, and
evaluate scans on these “packed codes”. In these methods, the scan
evaluation is carried out by computing the scan predicates on all
the codes in the packed processor word in parallel.

For example, the query Q1 (cf. Section 2.1) can be executed with
a single predicate cnid = pnid on the denormalized table. If, as
in this example, the attributes cnid and pnid have only three dis-
tinct values (see Figure 4), then we can encode each attribute using
only 2 bits of space. If the processor word is 64-bits, then there is
a 32-way parallelism at the processor word level when performing
packed code scans on these columns’ attributes.

WideTable is particularly well suited to leverage packed code
scans, as WideTable converts complex queries into scan queries.
Since denormalization may introduce redundancy, WideTable may
require scanning columns over underlying tables that contain more
tuples (especially the columns in the dimension table). Thus, effi-
cient packed scan methods are critical for WideTable.

3. WIDETABLE
WideTable uses the four techniques described above in Section 2

using the relationships shown in Figure 5. Each arrow in the figure
represents a dependency relationship between the techniques. As
shown in the figure, to avoid the pitfalls associated with denormal-
ization, we exploit columnar storage to only fetch the columns that
are of interest to the query. In addition, the use of dictionary encod-
ing bounds the additional space overhead that is associated with the
WideTable design. Finally, using efficient packed code scans im-
proves the speed of the key access method that is used to answer
queries on WideTables.

3.1 System architecture
Figure 6 shows a representative architecture of how the WideTable

technique can be used in a data processing ecosystem. (Note there
are other ways to embed WideTable in data processing pipelines,
and here we show the approach that we evaluate in this paper.)
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Figure 6: WideTable in a Data Processing Framework.

The WideTable component is a module in a larger computational
pipeline for the data warehouse. Data from external sources are
extracted, transformed, and loaded (using ETL gateways) into the
archival data store, which can use a standard scale-out data plat-
form (e.g. Hadoop or sharded MySQL) to store the data. The data
is cooked (prepared) in the WideTable Baking module to feed into
the main WideTable module.

Inside the WideTable component, the denormalizer is responsi-
ble for issuing commands to the WideTable Baking component to
produce a set of WideTables based on the database schema (cf. Sec-
tion 3.2). The user can also provide hints to denormalize additional
WideTables to enhance performance for certain classes of queries
(we hope to automate this part in the future). The denormalized
table generated by the WideTable Baking component is fed into
the loader, which parses the input data, and invokes the encoder
to convert all native values into codes. These codes are stored in a
columnar WideTable format in a main memory storage manager.

On the query processing side, the query translator takes as input
user queries, and first checks whether the query can be evaluated
with one of the materialized WideTable(s) (cf. Section 3.3). If so,
then the query translator generates an actual scan-based query plan
to execute this query against the selected WideTable. If not, then
the query is sent to the archival system, which runs that query and
sends the results to the user. Note in this architecture, WideTable
is simply used as a potential accelerator to the archival system.
Thus, a primary goal of this paper is to increase the functionality of
WideTable to answer as large a class of queries as it can. (As part
of future work, we plan to “expand” the footprint of WideTable.)

Notice that the query optimizer here is simpler than an opti-
mizer in a standard DBMS, because no join is performed inside the
WideTable system. The query optimizer selects an order of scans
on a set of columns based on many factors, e.g. the widths of these
columns (in terms of the number of bits), the types of predicates,
the estimated selectivities, etc. Our current optimizer is fairly sim-
ple and simply selects the order based on the widths of the columns.
Then, the query executor (cf. Section 3.4) evaluates the query using
a sequence of WideTable operations, that include scans, group-by
operations and aggregations. The decoder is invoked to convert the
code back to native column values when an arithmetic operation is
needed, or when the results are returned to the users.

In the interest of space we omit details about how to deal with
situations when the WideTables do not fit entirely in memory. Cur-
rently our implementation is crude in this regard, and requires re-
building the WideTables on a smaller (the most recent) set of data
in the warehouse. Part of future work is to overcome these limita-
tions and employ techniques that continually monitor the workload
and incrementally rebuild the WideTables.

3.2 Denormalizing databases
The denormalizer component generates a set of WideTables, called

Buy Nation
Customer

Product

 

Region

(a) Schema Graph

Buy
NationCustomer

Product Nation

Region

Region

(b) Schema Tree

Figure 7: Schema graph and schema tree for the example database.

the Set of Materialized WideTables (SMW), which includes the
WideTables that are automatically produced by the denormalizer
based on the database schema, as well as WideTables that are ex-
plicitly requested by the users to enhance the performance of cer-
tain classes of queries.

The WideTable denormalizer converts the input database schema
into a directed acyclic graph (DAG), called the schema graph, with
a vertex for each table and a directed edge from the vertex u to a
vertex v for each foreign key in table u that points to a primary key
in table v1. As an example, Figure 7(a) shows the schema graph for
the example database (Figure 2).

We note that although circular reference of foreign keys is possi-
ble in a database schema, it is not common, and in this section we
assume that the schema graph is a DAG. Schema graphs with cy-
cles can be handled with our methods and that discussion is omitted
here in the interest of space.

Next, the WideTable denormalizer transforms each component
of the schema graph into a hierarchical tree representation, which
we call the schema tree. For each component in the schema graph,
we continue to split vertices of indegree more than one, until all
the vertices have at most one incoming edge. To split a vertex v
of indegree k (k > 1), we replace v by k vertices v1 ∼ vk. The
i-th (1 ≤ i ≤ k) incoming edge (ui, v) of v is replaced by an edge
(ui, vi). Finally, each outgoing edge (v, w) of v is replaced by k
edges (v1, w) ∼ (vk, w). Figure 7(b) shows the schema tree for
the example schema graph. The Nation and Region vertices in
the schema graph are split in turn to produce the schema tree.

In the description below, we use T (u) to denote the associated
table of vertex u in a schema tree. For instance, if s denotes the
source vertex of the example schema tree (Figure 7(b)), then T (s)
represents the Buy table. In addition, for a tableR, we useR.p and
R.f(S) to denote the primary key and the foreign key referencing
the table S, respectively.

The SMW contains the WideTables that are automatically con-
structed by the denormalizer based on the schema tree(s). To au-
tomatically materialize a WideTable, the system performs joins on
all nodes/tables in the associated schema tree, using a post-order
depth-first traversal algorithm. For each node v that we traverse, if
there is an incoming edge (u, v) in the schema tree, we perform a
join between T (u) and T (v).

Rather than regular joins, WideTable actually uses outer joins
on each pair of primary key and foreign key to produce the de-
normalized tables. Formally, for each directed edge (u, v) in the
schema tree, we perform T (v) 1 T (u), where the operator 1 rep-
resents a full outer join2. With these outer joins, a WideTable re-
tains each tuple in the original normalized tables, even if there are
no matching tuple on the “other side” of the join. For instance,
even though the product “Milk” is not purchased by any customer,
it is included in the BuyWT WideTable, and missing attributes are

1For the sake of simplicity, in this discussion, we assume that a primary key
or a foreign key is a single attribute.
2In practice, we can use a left/right outer join for certain vertices/nodes,
due to the foreign key constraint.
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marked as NULLs3. These NULL-padded tuples are required to
answer queries that contain nested subquery blocks, or to answer
queries on the table that has been embedded into a WideTable (a
more detailed discussion follows in Sections 3.3.2 and 3.3.3).

For the example database, there is only one connected compo-
nent in the schema graph, and thus the SMW is the singleton set
{BuyWT}, where BuyWT refers to the WideTable built on the orig-
inal Buy table and is the result of the expression (Region 1

Nation 1 Customer) 1 (Region 1 Nation 1 Product 1

Buy). Note that the Nation and the Region tables are joined
twice to produce this WideTable.

Once the denormalization on all the sources is complete, each ta-
ble in the original database has been denormalized into at least one
WideTable, since each vertex in the schema graph is either reach-
able from a source, or is a source itself.

Some queries may run faster on smaller WideTables (as dis-
cussed below in Section 3.3.3), and users can make explicit re-
quests to create additional WideTables (we plan to automate this
part in the future). Note that dictionaries can be shared by all the
WideTables on the same columns, thus adding a new WideTable
does not necessarily result in creating new dictionaries.

For example, a user can explicitly request creating a WideTable
on the Customer table in the example database. Figure 8 shows
the corresponding CustomerWT WideTable that is constructed by
the expression Region 1 Nation 1 Customer. The dictionar-
ies for this WideTable are shared with the BuyWT WideTable, and
is not shown in this figure.

With this new WideTable, the SMW for the example database
is {BuyWT,CustomerWT}, and we use this SMW instance in the
examples below.

cid cname gender address cnid cnname cnrid cnrname
1 0 1 0 1 2 1 0
2 2 0 1 2 0 1 0
3 1 1 2 1 2 1 0
1 0 1 0 1 2 1 0
2 2 0 1 2 0 1 0

Figure 8: WideTable CustomerWT (Dictionaries are in Figure 4).

3.3 Query translation
WideTable evaluates queries posed by the users on the denor-

malized tables by translating the queries into a relational algebraic
(RA) expression on an appropriate WideTable in the SMW. The
query translator module is responsible for parsing the input SQL
query and generating an equivalent RA expression.

The operators of the relational algebra include selection (σ), pro-
jection (π), set union (∪), set difference (−), inner join (1), semi
join (n), (full) outer join (1 ), and aggregation (γ).

3.3.1 Single block queries
A single block (i.e. with no nested subquery blocks) query is

often expressed as a Select-Project-Join (SPJ) query. A representa-
tive SPJ query performs scans, followed by joins on multiple tables,
followed by a group operation, and finally some aggregate opera-
tions.

WideTable supports two variants of joins: regular (inner) joins
(1) and semi joins (n). Semi joins are not common in single block
queries, but may arise when WideTable flattens nested queries as
we will present in Section 3.3.2.

3There are pros and cons associated with using a non-NULL special value,
but we omit that discussion in this paper.

Algorithm 1 Translating an RA expression for single block queries

Input: q′: a relational algebra (RA) expression
Output: q: a equivalent RA expression on a WideTable
1: q := q′

2: Construct query graph G for q
3: Remove certain FKJ conditions in G and q
4: if G is not connected then
5: return NULL
6: Replace all semi joins by inner joins in q
7: Push inner joins ahead of selections and projections in q
8: Select the smallest WideTable W that covers G
9: Replace the permutation of all inner joins by W in q

10: Remove unnecessary selection conditions in q
11: return q.

WideTable first converts the input SQL query to an RA expres-
sion on the original tables using traditional methods [25]. This RA
expression is then transformed into an equivalent RA expression on
a WideTable using Algorithm 1, as discussed below.

We define a condition of the form R.f(S) = S.p in the RA
expression of a query to be a Foreign Key Join (FKJ) condition
if the attribute R.f(S) is a foreign key that references the primary
key attribute S.p in table S. Note that FKJ conditions can explicitly
appear in selection or join conditions, or be implicitly derived by
common attribute names in natural joins.

Given an RA expression q, we convert q into a graph, called the
query graph, with a vertex for each table variable that appears in
the query, and an edge from vertex u to vertex v if there is a FKJ
condition between the foreign key table T (u) and the primary key
table T (v). If a table is involved with k variables in the query, we
add k vertices associated with this table in the query graph.

If two directed edges (u1, v) and (u2, v) enter the same vertex
v in the query graph, then there must exist two FKJ conditions
T (u1).f(T (v)) = T (v).p and T (u2).f(T (v)) = T (v).p. In this
case, we arbitrarily replace one of the two FKJ conditions by a non-
FKJ condition T (u1).f(T (v)) = T (u2).f(T (v)), and remove the
corresponding edge in the query graph. This step does not change
the semantics of the query, but reduces the indegree of the vertex
that has more than one incoming edge. By successively applying
this step, we guarantee that each vertex in the query graph has at
most one incoming edge.

The query can be evaluated with the WideTables in the SMW
iff the query graph is connected. If the query graph is discon-
nected, then certain join components have not been materialized
in any WideTables in the SMW, and that query must be sent to the
archival data processing system for evaluation. In this paper, we
focus on evaluating queries that are fully covered by WideTable.
Part of future work is to develop techniques that allow processing a
part of a query using WideTable, and then evaluating the rest of the
query in the underlying archival system.

Now, the query graph is connected and has no vertex of indegree
more than one, and therefore can be represented as a tree. The re-
maining steps for transforming q into an equivalent RA expression
on a WideTable are as follows.

First, we replace semi join operations (n) in q by inner join oper-
ations (1) with a sequence of equivalent transformations. For each
semi join R n S in q, we replace it by πR.∗(R 1 S), applying the
relational equivalence E1 shown below. (Note R.∗ denotes all the
attributes in R). This step essentially adds a projection operation
for each semi join operation to eliminate duplicate values.

R n S ≡ πR.∗(R 1 S) (E1)
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Second, we push all the inner join operations ahead of all the se-
lection and the projection operations, as we can commute an inner
join operation with selection and projection operations.

Next, we pick the smallest (in terms of cardinality) WideTable
in the SMW that “covers” the query. A query is “covered” by
a WideTable iff its query graph is a subgraph of the associated
schema tree of this WideTable. Then, we replace the inner join
operations in q by outer join operations (1 ). For the permuta-
tion of all the inner joins R 1 . . . 1 S in q, we replace it by
σR.p6=NULL∧...∧S.p 6=NULL(R 1 . . . 1 S), applying the relational
equivalence E2. The selection operation that is introduced filters
out tuples that occur because of the outer joins, e.g. the “milk”
row in the denormalized table shown in Figure 3. Then, we replace
the permutation of all the outer join operations in q by the selected
WideTable. (For simplicity, we assume that the source of the se-
lected schema tree is included in the query graph. We relax this
assumption in Section 3.3.3).

R 1 ... 1 S ≡ σR.p6=NULL∧...∧S.p 6=NULL(R 1 ... 1 S) (E2)

Finally, we optimize the transformed RA expression q by remov-
ing unnecessary selection conditions. A selection condition in the
form of R.p 6= NULL (introduced by E2) can be removed from
q, if the R attributes in the WideTable does not contain NULLs
that are introduced by outer joins in the results of q. The algorithm
to remove unnecessary selection conditions is as follows: for the
source s in the query graph, if there exists no non-FKJ predicate
on T (s), and s is not the lowest common ancestor of all vertices
whose associated tables are involved in non-FKJ predicates, then
we keep a condition of the form T (s).p 6= NULL; otherwise, all
conditions of the form R.p 6= NULL are removed from q.

Example. Consider the query Q2 below. The RA expression for
this query is shown as q′2.

Q2: SELECT DISTINCT cname
FROM Customer C, Buy B, Product P

Nation N1, Nation N2, Region R
WHERE C.cid = B.cid AND B.pid = P.pid
AND C.nid = N1.nid AND N1.rid = R.rid
AND P.nid = N2.nid AND N2.rid = R.rid
AND N1.nname 6= N2.nname
AND C.gender = ’M’
AND R.rname = ’America’

q′2 :πcname(σN1.nname 6=N2.nname((σrname=′America′(R)

1 N1 1 σgender=′M′(C) 1 B) 1 (P 1 N2)))

q′′2 :πcname(σN1.nname 6=N2.nname∧rname=′America′

∧gender=′M′∧N1.rid=N2.rid(R 1 N1 1 C 1 B 1 P 1 N2))

The query graph for Q2 is shown in Figure 9. The edge from
the N1 vertex to the Region vertex (marked as a dashed arc) is re-
moved as there is another edge entering the Region vertex, and a
new condition N1.rid = N2.rid is therefore added. The selec-
tion conditions Customer. gender = ’M’ and cnrname =
’America’, as well as the join conditions N1. nname 6= N2.nname
and N1.rid = N2.rid are non-FKJ conditions. We push the
selection with these conditions after all the join operations, as shown
in q′′2 . To run Q2 on the example database, we select the BuyWT
WideTable, since the schema tree of CustomerWTWideTable does
not cover the query graph of Q2. Then, we replace the permu-
tation of joins in q′′2 by the BuyWT WideTable (by applying E2).
Since all vertices, whose associated tables are involved in these
non-FKJ conditions (shaded in gray in Figure 9), are only reachable
from the source, we remove all selection conditions in the form of
R.p 6= NULL that are introduced when converting the inner joins

to outer joins (E2). The final transformed RA expression is shown
as q2.

q2 :πcname(σcnrid=pnrid∧cnname 6=pnname

∧gender=′M′∧cnrname=′America′(BuyWT))

Buy
N1Customer

Product

 

Region

N2

Figure 9: Query graph for the example query Q2. The table vari-
ables involved in non-FKJ predicates are shaded in gray.

3.3.2 Nested queries
Nested queries are fairly common in analytical data warehousing

environments, and often contain keywords such as IN, EXISTS, or
set-comparison operators. In this section, we focus on correlated
nested queries, i.e. queries whose inner blocks involve variables
that are defined in the outer block (otherwise, a nested query can be
simply split into multiple single-block queries, each of which can
be separately evaluated using the method present in Section 3.3.1).

Nested queries are generally flattened using techniques such as [9,
12, 26]. Amongst these, Dayal’s methods [9] are well-suited for
WideTable as they use generalized outer joins.

In order to rewrite a nested query for WideTables, we first flat-
ten the query with Dayal’s methods, producing a set of equivalent
RA expressions for the nested query. In the interest of space, we
omit restating Dayal’s methods here, as we use it exactly as was
proposed in [9], and it behaves like a black box to transform/flatten
queries. Then, we enumerate all the produced (flattened) RA ex-
pressions, and find the one that can be transformed into an equiva-
lent RA expression on an appropriate WideTable. If such an (RA)
expression does not exist, then the query must be sent to the archival
data processing system (see Figure 6).

With Dayal’s method, the nested predicates and correlated pred-
icates in the original query are removed and translated into three
variants of joins: inner joins (1), semi joins (n), and asymmetric
outer joins (1). In this paper, we focus on nested queries that can
be converted into a RA expression with inner and semi joins after
applying Dayal’s methods. To translate such a RA expression, we
use the method for single block queries (cf. Section 3.3.1). Outer
joins are necessary for certain nested queries (with the COUNT ag-
gregation function in inner blocks or with the NOT EXISTS quan-
tifier). Our method can also be extended to support outer joins, as
the denormalized WideTables are produced by outer joins. In the
interest of space, we omit this discussion in this paper.

However, before we feed each of the produced RA expression q
into the method for single block queries, we need to push all join
operations ahead of all the aggregation operations. To delay pro-
cessing an aggregation operation (γ) to after an inner join operation
(1), we add to the grouping attributes all the attributes of the table
being joined to, as shown by the relational equivalence E3. In prac-
tice, only the primary key and the attributes that are referenced in
the subsequent operators need to be added into the grouping at-
tributes of the aggregation operation. Semi joins are first converted
to inner joins by using relational equivalence E1.

γ...(R) 1 S ≡ γ...,S.∗(R 1 S) (E3)

Example. As an example of this approach, consider query Q3.
This query finds the names of the nations that produce products, ex-
cept for coffee, that are available in quantities that are greater than
the amount of this product that has been successfully purchased by
male customers. This query has two levels of nested subqueries,
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the first subquery is nested under the IN keyword, and the second
subquery is nested under the arithmetic operator >.

Q3: SELECT DISTINCT Nation.nname
FROM Nation N
WHERE N.nid IN (
SELECT P.nid FROM Product P
WHERE P.name 6= ’Coffee’
AND P.quantity > (
SELECT SUM(amount)
FROM Buy B, Customer C
WHERE B.pid = P.pid AND B.cid = C.cid
AND B.status = ’S’ AND C.gender = ’M’))

Applying Dayal’s methods on Q3 produces q′3 and a set of other
RA expressions. We first push the semi join in q′3 ahead of the
aggregation, transforming q′3 to q′′3 . Then, we use the method for
single block queries to translate q′′3 . The query graph of q′′3 (shown
in Figure 10) is a subgraph of the associated schema tree of BuyWT.
Thus, we select BuyWT as the base table to transform q′′3 . To con-
vert the two inner joins in q′′3 to outer joins, we add two new se-
lection conditions pid 6= NULL and cid 6= NULL. Both con-
ditions are then removed because there exists a non-FKJ condition
(status=’S’) on the Buy table. After walking through all the
steps to rewrite q′′3 , the transformed RA expression is shown as q3.

q′3: πnname(N n σquantity>Sum(γpid,quantity,Sum(amount)(
σpname 6=′Coffee′(P ) 1 σstatus=′S′(B) 1 σgender=′M′(C))))

q′′3 : πnname(σquantity>Sum(γpid,quantity,nname,Sum(amount)(
N 1 (σpname6=′Coffee′(P ) 1 σstatus=′S′(B) 1 σgender=′M′(C)))))

q′′′3 : πpnname(σquantity>Sum(γpid,quantity,pnname,Sum(amount)(
σpname6=′Coffee′∧status=′S′∧gender=′M′(N 1 P 1 B 1 C))))

q3: πpnname(σquantity>Sum(γpid,quantity,pnname,Sum(amount)(
σpname6=′Coffee′∧status=′S′∧gender=′M′(BuyWT))))

Buy
Customer

Product

 

Nation

Figure 10: Query graph for the example query Q3.

3.3.3 Child table queries
If the query graph of a query does not include the root node of

the schema tree of the selected WideTable, then this query is called
a child table query. The key problem with evaluating a child ta-
ble query on a WideTable is that each tuple of the child table may
appear more than once in the WideTable, which may produce in-
correct query results. We fix this problem by adding a projection
operator in the RA expression to eliminate duplicate tuples.

Translating a child table query follows the method for single ta-
ble queries with additional handling for the “child table”. Given a
child table query, we use the method for single block queries (Sec-
tion 3.3.1) to generate an RA expression q. Let q′ be a subexpres-
sion in q that corresponds to the selection operators on the chosen
WideTable. Then, we replace q′ by πT (u).p,...(q

′) in q, where u
denote the source of the query graph of q, and the triple-dot punc-
tuation represents a list of attributes that are referenced in the scope
of q, but outside the scope of q′.

The correctness of this algorithm can be demonstrated with the
relational equivalences E4 and E5. Let s be the source of the se-
lected schema tree, and u be the vertex in the schema tree that cor-
responds to the source of the query graph. Then, we can replace

T (u) by πT (u).∗(T (u) 1 . . . 1 T (s)) in q, by continuously ap-
plying E4 and E5 to include all ancestors of u into q. Thus, we
transform the child table query into a regular single block query.

R ≡ πR.∗(R 1 S) (E4)
πa1(R) ≡ πa1(. . . (πan(R))) , where a1 ⊆ . . . ⊆ an (E5)

Example. The example query Q4 computes the count of prod-
ucts that are available in a quantity greater than 3, for each nation.
Notice that of the two WideTables in the SMW (i.e. BuyWT and
CustomerWT), only the BuyWT WideTable “covers” the query
graph of this query, and thus can be used to answer this query. Since
the table Buy is not involved in this query, Q4 is treated as a child
table query. By applying the method for translating single block
queries, Q4 is rewritten as an intermediate RA expression q′4 (note
that q′4 is not equivalent to the original query Q4), which is then
further transformed to an RA expression q4.

Q4: SELECT N.nname, COUNT(*)
FROM Product P, Nation N
WHERE P.nid = N.nid AND P.quantity > 3.00
GROUP BY N.nname

q′4 : γpnname,Count(∗)(σquantity>3.00(BuyWT))

q4 : γpnname,Count(∗)(πpid,pnname(σquantity>3.00(BuyWT)))

The use of outer joins is critical to obtain correct query results
for child table queries. The relational equivalence E4 does not hold
if we replace 1 by 1. In the case of query Q4, the tuple “Milk” in
the original Product table has a value of 10.00 for the attribute
quantity, which is greater than the literal (3.00) that is specified
in the query. Hence, this tuple should be counted in the result.
However, this value would be missed if the underlying WideTable
was generated with inner join operations.

We note that if the system notices that many child table queries
are being issued, then a new WideTable corresponding to these
child tables can be materialized and added to the SMW. This au-
tomatic materialization is part of future work.

3.4 Query evaluation
With the query translation techniques presented in Section 3.3,

an original query is translated into a logical query plan (RA expres-
sion) on a single WideTable. WideTable then evaluates this query
in an efficient scan-based column-wise fashion as follows.

In WideTable, the method for mapping a logical query plan (the
tree representation of an RA expression) to a physical execution
plan is fairly simple. Given a logical query plan (RA expression),
the selection operator (σ) is converted to a subtree in the execution
plan tree: a leaf node encapsulates a packed code scan on a single
column (attribute); the internal nodes represent logical operation,
e.g. AND, OR, NOT, on one or two nodes. Other operators are
also mapped to corresponding execution operations in the physical
execution tree.

Given a physical execution plan, WideTable performs scans on
the selection conditions in the RA expression, using a packed code
scan method (See Section 2.4). The scan operation iteratively eval-
uates a predicate on a set of codes that fit into a processor word,
resulting in a much higher speed compared to the standard scan
method. To perform scans in WideTable, the scan primitive in
WideTable first evaluates basic comparisons on each column, us-
ing a packed code scan method. Each packed code scan produces
a result bit vector, with one bit for each input column value that
indicates if the corresponding column value is selected as part of
the result set. Conjunctions and disjunctions in the selection condi-
tion are implemented as logical AND and OR operations on these
result bit vectors. Note that the columns of interest in the query

913



in the WideTable may come from different original tables in the
normalized database. However, since we have denormalized them
into the WideTable, all the columns have the same cardinality and
the same order of tuples, which makes it efficient to merge the bit
vectors that are produced on these columns. The output of the scan
primitive on WideTable is a single result bit vector.

Once the scans are complete, the result bit vector is converted
to a list of record numbers/ids, which is then used to retrieve other
columns of interest for this query. Group-by operations and aggre-
gations are performed using standard hash-based aggregation algo-
rithms [13], which build a hash table with entries on the group-by
columns, and then use the the hash table entries to store scratch pad
variables to incrementally compute the aggregate.

As an example, Figure 11 shows the WideTable’s physical exe-
cution plan for the translated RA expression q3. To evaluate this
query, we continue to perform logical ANDs between the result bit
vectors that are produced by packed code scans on each involved
column. The results of the scans are then converted to a list of
record numbers/ids, and fed into a standard group-by and aggrega-
tion pipeline.

gender=‘M’status=‘S’ pname!‘Coffee’

group by on pid, 

quantity, pnname

quantity > sum

distinct(pnname)

Code Scan Code Scan Code Scan

AND

GRP

EXPR

GRP

AND

Figure 11: Execution plan of the example query Q3.

We note that besides the materialized foreign key joins, certain
types of complex components in the original queries are also con-
verted into simple scans on WideTables. Such components include
unmaterialized join predicates (e.g. the join predicate N1.nname 6=
N2.nname in Q2) and predicates with nested subblocks (such as
Product. quantity > ( . . .) in Q3). In summary, WideTable
can process a rich set of queries beyond primary-key foreign-key
join queries.

3.5 Maintenance of WideTables
In this section, we focus on the maintenance of the WideTables

when tuples are added to or deleted from an original table. Our al-
gorithm for maintaining the WideTables targets the scenarios when
the original tables are being updated in a batch, which is fairly com-
mon in analytical data warehousing environments.

When inserting a set of tuples, I , into an original table R, we
do the following for each WideTable in the SMW. Let U be the set
of vertices corresponding to R in the schema tree of the selected
WideTable. For each vertex u ∈ U , WideTable performs inner
joins between I and all the tables whose associated vertices are in
the subtree rooted at u. These joins are computed in the WideTable
baking component to produce the denormalized tuples of I (miss-
ing attributes are padded with NULLs). These denormalized tuples
of I are then loaded into the selected WideTable and are encoded
using dictionaries or other encoding schemes in the WideTable. If
new values are added to a sorted dictionary, then we update the dic-
tionary and may repopulate the corresponding column(s) with the
updated dictionary.

A certain class of tuples must be removed from the WideTable
due to the insertions of new tuples. Suppose that the table R has a
foreign key that references the table S. If there exists a tuple s in

S that is not referenced by any tuple in R, then s has been added
into the WideTable as an “unjoined” tuple with NULL-padded at-
tributes using outer joins. Nevertheless, if there is a tuple in I
that references s, then s should be removed from the WideTable.
WideTable runs the following query in the WideTable baking com-
ponent (see Figure 6) to find such tuples, and deletes these tuples
from the WideTable.

SELECT I.p FROM I WHERE NOT EXISTS (
SELECT * FROM R WHERE I.f(S) = R.f(S) )

When deleting a set of tuples, D, from an original table R, we
first create an index, K, on the primary keys of all tuples in D.
Then, we scan the WideTable as follows. For each tuple in the
WideTable, we lookup the values of the attributes, that correspond
to the primary key of R, against K. If such attribute values were
found in K, then this tuple is either a tuple to be deleted, or a tuple
that references a tuple that must be deleted. In either case, this tuple
should be removed from the WideTable.

To deal with “unjoined” tuples in the WideTable, WideTable runs
the following query in the WideTable Baking component to find the
new “unjoined” tuples, and inserts these new “unjoined” tuples into
the WideTable. An efficient implementation of this step is to mod-
ify the tuples to be deleted in the WideTable to these “unjoined” tu-
ples directly, by setting the attributes in R to NULLs. More specif-
ically, suppose that s is a tuple in the table S that is not referenced
by any tuples in R − D, then WideTable rewrites the tuple in the
WideTable that references s (i.e. containing an embedded s) into a
“unjoined” tuple s by setting the attributes in R to NULLs.

SELECT D.p FROM D WHERE NOT EXISTS (
SELECT * FROM R WHERE D.f(S) = R.f(S)
AND D.p 6= R.p )

We note that many techniques could be used to improve the
maintenance performance of WideTables, e.g. employing indices
to quickly find the tuples to be deleted, using “sparse” dictionaries
to avoid frequent repopulation of column values, and storing the up-
dated data into a separate “delta” WideTable that is used to evaluate
incoming queries in combination with the “primary” WideTable.
The investigation of these techniques is part of future work.

4. EVALUATION
In this section, we present results from an empirical evaluation

of the WideTable technique.

4.1 Experimental setups
System Configuration. Our experimental server runs 64-bit

Linux, and has dual 2.0 GHz Intel Xeon E5-2620 6-core proces-
sors, and 32GB of 1600 MHz DDR3 main memory. Each processor
has 15MB of L3 cache, which is shared by all the cores on that pro-
cessor. In addition, each core has 32KB of private L1 instruction
cache, 32KB of L1 data cache, and 256KB of L2 cache.

MonetDB. In the evaluation below, we compare WideTable to
the leading open-source analytical DBMS – MonetDB [3, 4, 14].
MonetDB is a full-fledged column-oriented DBMS developed at
CWI. It is designed to provide high performance on complex ana-
lytics queries, and is optimized for modern multi-core CPUs.

We compiled the MonetDB code (version 11.15) with the flags
--enable-monetdb5 --enable-sql --enable-optimize.
In all the results below, we measured the running time of queries by
specifying the --interactive option for the MonetDB client.
We do not include the time to print the result table in the reported
query execution times. Before running each experiment, we run
sufficient TPC-H queries to warm up the system.
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Figure 12: Performance comparison with one thread. The numbers at the top of each bar are the speedups of WideTable over MonetDB.

We also conducted experiments to show the performance of Mon-
etDB on the denormalized table. These results were shown in Fig-
ure 1, and are omitted in this section. Similarly, we have conducted
experiment with Vectorwise and these results are also omitted here
as the insights are similar to what we present here.

Implementation. We have implemented the WideTable tech-
niques in C++. We choose BitWeaving4 [20] as the packed code
scan method used in WideTable. The implementation uses regular
CPU instructions, and does not use any SIMD optimizations. We
have also fairly-standard implementations of the aggregate (with
group-by), sorting, top-k, and string matching operations in the
query processor component (see Figure 6), and we compose the
code for each query based on the query plan generated by the meth-
ods presented in Section 3.3. We note that our implementation sup-
ports a limited class of queries, and is less general than MonetDB
and Vectorwise. The comparison with these other systems is to es-
tablish a yardstick to better understand the benefits of WideTable
on the class of queries that WideTable can handle.

Dataset. In the evaluation below, we use queries from the TPC-
H benchmark [29]. These experiments were run against a TPC-H
dataset at scale factor 10. The total size of the database is approxi-
mately 10GB.

For the TPC-H schema, the WideTable technique produces a sin-
gle WideTable, called lineitemWT (lineitem 1 (partsupp
1 part 1 supplier 1 nation 1 region) 1 (orders 1

customer 1 nation 1 region)).
In addition, we explicitly created the following three additional

WideTables: partsuppWT (partsupp 1 part 1 supplier
1 nation 1 region), ordersWT (orders 1 customer
1 nation 1 region), and customerWT (customer 1

nation 1 region). Without these three additional WideTables,
queries on “child” tables (cf. Section 3.3.3) are slower by up to 6X
(these queries are shown in the last three rows of Table 2).

In our experiments, we used MonetDB as the WideTable Baking
component to produce these WideTables, and then requested Mon-
etDB to dump the WideTables as raw text files. This step took 75
minutes. We then loaded these raw text files into the WideTable
module (see Figure 6). The loading and encoding time was about
90 minutes with one thread. In the future, we plan to speed up this
step with multithreading.

Table 1 shows the characteristics of these four WideTables5. With
the encoding techniques in WideTable, the size of the database is
reduced from 45.7GB to 8.5GB. Note that the database size in the

4http://quickstep.cs.wisc.edu/bitweaving
5The compression ratio for each WideTable does not count the dictionary
size, since the dictionaries are shared by all the WideTables.

WideTable format (8.5GB) is even smaller than the size of the raw
text files of the original (normalized) tables (∼10GB).

Components WideTable WideTable Raw text Compression
sizes cardinality sizes ratios

lineitemWT 5.4 GB 60.5 M 38.8 GB 7.2X
ordersWT 0.7 GB 15.5M 4.4 GB 6.3X
partsuppWT 0.2 GB 8 M 2.2 GB 11.0X
customerWT 0.05 GB 1.5 M 0.3 GB 5.0X
dictionaries 0.8 GB N/A N/A N/A
filter columns 1.3 GB N/A N/A N/A
Total 8.5 GB N/A 45.7 GB 5.4X

Table 1: Sizes of the TPC-H WideTable components. A “filter col-
umn” is a special column that is used to evaluate string predicates.

With our WideTable implementation we can run 21 of the 22
queries in the TPC-H benchmark. The characteristics of the 22
queries are summarized in Table 2. Two of the 22 queries are sim-
ple scan queries. Nested queries are processed using the technique
presented in Section 3.3.2. There is only one query (Q21) that con-
tains a non-FKJ (foreign key join). The WideTable that only mate-
rializes the FKJs does not support Q21. However, there are some
extensions of our method to support non-FKJs, which we defer to
future work.

TPC-H Queries Joins Nested Non-FK WideTableQueries Joins
Q1, Q6 lineitemWT

Q3, Q5, Q7-Q10, × lineitemWTQ12, Q14, Q19
Q4, Q15, Q17, × × lineitemWTQ18, Q20

Q21 × × × lineitemWT
Q2, Q11, Q16 × × partsuppWT

Q13 × ordersWT

Q22 × × ordersWT,
customerWT

Table 2: Characteristics of the queries in the TPC-H benchmark.

4.2 Single thread performance comparison
In this experiment, we measure the single thread performance

by running the TPC-H queries using a single process with a single
thread. Each query in the TPC-H benchmark was run 10 times
with different query parameters. We report the average execution
time for the 10 runs for each query. Both the MonetDB and the
WideTable systems were warmed up before each experiment. We
also pinned the server thread on a particular CPU core, so that no
thread migration occurs during this experiment.
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Figure 13: Performance comparison with 12 threads.

Figure 12 shows the run times of MonetDB and WideTable with
the 21 queries in the TPC-H benchmark. We also label the speedup
of WideTable over MonetDB on the top of the bar for each query.
As can be seen in the figure, WideTable outperforms MonetDB on
all queries, except for Q18, and with over 10X in speedup for about
half of the 21 queries.

Q18 is the only query for which MonetDB is (slightly) faster than
the WideTable approach. This query performs a full table scan on
the Lineitem table with no filter predicate, followed by a group-
by operation on keys in the customer table. As there is no filter
predicate (the selectivity is 100%), Q18 suffers from fetching the
values in the involved columns in the group-by operation for every
tuple in the table. Note that fetching column values from the un-
derlying packed code storage format is often relatively slow [20],
which makes the WideTable approach underperform on this query.

Q1 and Q6 are the two simple scan queries in the benchmark.
WideTable outperforms MonetDB by 2.0X and 2.3X respectively.
Q1 is a simple query that selects 2.4% – 3.6% of the rows in the
Lineitem table, and calculates aggregate values on nine columns.
As MonetDB and WideTable have similar query plans for this query
(no join operations), and the aggregate operations accounts for a
large portion of the total run time for this query, the performance
gap here can be largely attributed to the implementation of the
group-by and the aggregate operations. For Q6, WideTable shows
a slightly higher speedup over MonetDB than for Q1, mainly be-
cause the scan phase contributes a larger portion to the total run
time (the packed code scan primitive in WideTable is faster than
the scan method used in MonetDB).

For other (join) queries in TPC-H, WideTable takes advantage
of the denormalization method, which evaluates complex queries
using sequential scans over packed codes. For most of these join
queries, WideTable achieves over 5X speedup over MonetDB.

For the join queries Q11, Q13, Q14, Q15, Q20, the speedups of
WideTable over MonetDB are 5.0X, 2.3X, 2.3X, 3.3X, and 3.4X,
respectively. This is mainly because the group-by operation makes
up a large portion of the total run time for these queries. (See the
discussion below for the time breakdown which is shown in Fig-
ure 16). Some group-by operations in these queries are specified
in the original query, whereas some group-by operations are intro-
duced into the query plan when dealing with nested queries (cf.
Section 3.3.2). These group-by operations use a hash table on the
group-by attributes. The group-by attributes often include the pri-
mary keys of the original (normalized) tables, e.g. order keys, cus-
tomer keys, supplier keys, and contain from hundreds of thousands
of group entries to tens of millions of group entries. As a result, the
group-by hash tables are often larger than the L3 CPU cache. When
accessing the group-by hash table, the number of L3 cache misses

quickly increases, and hinders the overall performance. In our
experiments, we used a simple open addressing-based hash table
(with linear probing) as the underlying data structure for the group-
by operations. This implementation runs well for small (number of
groups) hash tables, but incurs many cache misses for larger hash
tables. We plan to investigate a more cache-friendly method to per-
form group-by operations on larger hash tables as part of future
work (building on ideas presented in [35]).

WideTable achieves exceptional speedups (>100X) over Mon-
etDB on Q17. Q17 is a good example that demonstrates the effec-
tiveness of WideTable when evaluating a complex nested query (cf.
Section 3.3.2). The group-by table created for this query is rela-
tively small (∼60K group entries), and fits in the L3 CPU cache
(15MB), which makes accesses to this group-by table efficient.

4.3 Multithreading performance comparison
In this experiment, we use multiple threads. We set the number

of threads to 12, which is equal to the number of processors (cores)
in the system. We have also experimented using 24 threads (which
is equal to the number of hardware contexts in the system), but we
did not see significant performance gain over using 12 threads. In
the interest of space, we omit these results.

In this experiment, for each of the 21 queries we create 120 dif-
ferent instances of each query. Each query instance uses a different
set of (randomly chosen) query parameters; thus, these queries gen-
erally access different portions of the database. Now, each thread
runs 10 of these queries sequentially, and since there are 12 threads,
collectively the system is working on 12 streams of 120 queries for
each original query. We do not mix the queries – i.e. this is not
the TPC-H throughput test. So, when we show results for a query
below, it is the average response time for that query across the 120
different instances. Note both WideTable and MonetDB use the
same queries (i.e. they use the same random number seed to gener-
ate the queries). The goal of this experiment is to study a specific
case of multithreaded performance when the system is running a
“homogeneous” workload.

Figure 13 shows the speedups of MonetDB and WideTable over
the single thread case (discussed in Section 4.2) for each of the 21
TPC-H queries. We also mark a horizontal line in the figure to
indicate the ideal speedup with 12 threads.

The speedup of MonetDB over the single thread case ranges
from 2.4X to 12.9X6, with an average value of 9.3X. We see that
for the two scan queries (Q1 and Q6), MonetDB nearly achieves the
ideal speedup of 12X. However, for most of the other (join) queries,
the speedups are not close to the ideal speedup, mainly because the

6The speedup exceeds the ideal speedup in some cases because of data
sharing in the CPU caches.
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Figure 14: Scalability of multithreading
with all the 22 TPC-H queries.
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Figure 16: Time breakdown of WideTable with the queries in
the TPC-H benchmark.

join implementation needs a relatively large amount of space to
store its working set. When there are 12 concurrent threads, the
average size of the L3 cache per processor is reduced from 15MB
to 2.5MB (six processors share a 15MB L3 cache). The reduced
effective cache size per thread quickly increases the number of L3
cache misses, and hinders the overall performance of MonetDB.

The speedup of WideTable over the single thread case ranges
from 8.4X to 13.2X, with an average value of 11.3X. For most
queries in the TPC-H benchmark, the speedups are close to the
ideal speedup of 12X, because the size of the working set for the
scan operations and the aggregate operations is small. Consequently,
the interference amongst the concurrent threads is insignificant for
the scan and the aggregate operations. As a result, WideTable lever-
ages scan operations on the denormalized tables to achieve near
linear scalability. However, the speedups of WideTable drops for
queries that involve large group-by hash tables. This degradation
is more acute when the group-by hash table for one thread fits into
the L3 cache, but the total size of all the group-by tables across the
12 concurrent threads exceed the L3 cache size.

In Figure 14, we plot the speedups of MonetDB and WideTable
over the single threaded case, by varying the number of concur-
rent threads from 1 to 12. Each thread issues all 22 queries in the
TPC-H benchmark, but in a random order (so this test is closer to
the TPC-H throughput case). MonetDB is free to use the threads
for either intra-query parallelism or inter-query parallelism, but our
WideTable implementation is simpler, and only uses one thread per
query. The speedup over the single thread case is calculated in
terms of the total run time for all the 22 queries. As a result, the
reported scalability is largely affected and dominated by the scala-
bility of the long-running queries.

As shown in Figure 14, WideTable demonstrates a linear speedup
as the number of threads increases. When running with 12 threads
(there are 12 cores in this machine), WideTable achieves 11.4X
speedup over the single thread case. MonetDB shows linear speedup
as long as the number of threads does not exceed 8. The gap be-
tween the measured speedup and the ideal linear speedup increases
when the number of threads is more than 8. In our experiments, the
maximum speedup achieved by MonetDB is 9.5X.

4.4 Update performance
Figure 15 shows the performance comparison of MonetDB and

WideTable with two refresh functions (update queries) in the TPC-
H benchmark. As per the TPC-H specification, the first refresh
function, RF1, inserts 15,000 tuples into the Orders table, and
around 60,000 tuples into the Lineitem table. The other refresh
function, RF2, deletes the same number of tuples from the Orders
and the Lineitem tables.

Not surprisingly, WideTable is 2.0X slower than MonetDB for
the insert query (RF1), as WideTable must denormalize the newly
added tuples, and encode all the attribute values using dictionaries
or other encoding schemes.

For the delete query (RF2), MonetDB does not complete this
query within ten minutes, as it suffers from repeatedly scanning
the table to find the tuples to be deleted. WideTable deletes tuples
in a batch, creating an index on the primary keys of the tuples to
be deleted, and scanning the primary key column(s) just once to
delete all the tuples. If a similar technique was applied to Mon-
etDB, we expect to see comparable delete performance for Mon-
etDB and WideTable.

4.5 WideTable time breakdown
To better understand the performance characteristics of WideTable,

in this last experiment, we examine the detailed time breakdown
for the key operations when running WideTable with the TPC-H
benchmark.

Figure 16 shows the time breakdown for the different operations.
The five key operations that are shown here include: (a) scan opera-
tion to scan columns and generate a bit-vector to indicate matching
tuples for a set of filter predicates, (b) string matching operation to
perform a scan with complex string filter predicates, (c) group-by
(labeled Group) to fetch column values from the matching tuples,
and cluster column values based on the group keys, (d) top-k op-
eration to select the top-k entries from the group-by tables or the
WideTables, and (e) aggregation (labeled Aggr) operation to fetch
column values from the matching tuples, and calculate aggregate
values (except of group-by) on these column values.

As can be seen in Figure 16, the string and top-k operations are
the fastest operations – their cost is below 5% of the total query
execution time. The other three operations, scan, aggregation, and
group-by operations are all significant across all the queries in the
benchmark. On average, these three operations account for 38.3%,
29.2%, and 31.7%, of the total run time, respectively.

5. RELATED WORK
Recently, there has been significant interest in main memory

analytical databases in both the research community (e.g. Mon-
etDB [3, 4, 14], Blink [23], Hyper [16], Shark [34]) and in the
industry (e.g. Vectorwise [37], SAP HANA [10], and IBM DB2
BLU [22]). The focus of our work is to explore the denormaliza-
tion technique in this popular main memory settings.

Our work is inspired by the rich body of work in the use of de-
normalization. In contrast to previous work on denormalization
(such as [7, 8, 17, 21, 24, 27, 30]), a) we use outer joins instead of
inner joins to denormalize a database schema; b) we explore the
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idea of denormalization at the physical schema level rather than at
the logical level; and c) we focus on various techniques that can be
realized in practice to avoid some of the pitfalls that are associated
with denormalization.

Many packed scan methods have been proposed recently (e.g. [15,
20,23,32,33,36]). We leverage these methods in our work, and note
that our work here is complementary to that line of research as the
WideTable design simply uses these methods to scan the underly-
ing (wide) columns.

Blink [23] is an analytical engine that targets consistent response
times to ad hoc queries. The original incarnation of Blink [23] con-
sidered the idea of denormalization with compression and a row-
wise packed code scan method [15], but it evaluated data largely in
a row-wise manner. The later version (called IBM DB2 BLU [22])
uses columnar storage, but abandoned the denormalization strategy
due to the redundancy introduced by denormalization [2].

6. CONCLUSIONS AND FUTURE WORK
This paper proposed WideTable, a new method for denormaliz-

ing data warehousing schemas that converts even complex queries
on the original schema into scans on WideTables. Scans are far
simpler to execute (e.g. they have predictable access patterns so
that its easy for the software to explicitly issue pre-fetch calls,
or for the hardware to do so implicitly), making them crucial to
high-performance analytical systems. We have empirically demon-
strated the performance and scalability (to multi-cores) aspects of
WideTable in a main memory setting, and shown that it presents a
promising approach for fast analytical query processing.

This paper only touches on a subset of the space in which WideTable
can be used. In this initial work, we have focused on using WideTable
as a main memory accelerator. Expanding the use of WideTable
to other settings presents a host of interesting directions for future
work. We also plan on investigation techniques that only flatten out
parts of the original schema into one or more WideTables, building
optimization and physical design tuning advisors for WideTable,
expanding to cluster settings, developing faster update techniques,
looking at a broader spectrum of workloads, expanding to non-main
memory environments, and developing theoretical limits for the
space and performance costs for WideTable based on the schema
graph properties.
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